
Department: Scientific Computing
Editor: Name, xxxx@email

Structured Adaptive Mesh
Refinement Adaptations to
Retain Performance Portability
with Increasing Heterogeneity

A. Dubey
Mathematics and Computer Science Division
Argonne National Laboratory, USA

M. Berzins
School of Computing, University of Utah, USA

C. Burstedde
Institut für Numerische Simulation, University of Bonn, Germany

M.L. Norman
San Diego Supercomputer Center
Department of Physics, University of California, San Diego, USA

D. Unat
Koç University, İstanbul, Turkey

M. Wahib
National Institute of Advanced Industrial Science and Technology AIST/TokyoTech
RIKEN Center for Computational Science,Japan

Abstract—Adaptive mesh refinement (AMR) is an important method that enables many
mesh-based applications to run at effectively higher resolution within limited computing
resources by allowing high resolution only where really needed. This advantage comes at a cost,
however: greater complexity in the mesh management machinery and challenges with load
distribution. With the current trend of increasing heterogeneity in hardware architecture, AMR
presents an orthogonal axis of complexity. The usual techniques, such as asynchronous
communication and hierarchy management for parallelism and memory that are necessary to
obtain reasonable performance are very challenging to reason about with AMR. Different groups
working with AMR are bringing different approaches to this challenge. Here, we examine the
design choices of several AMR codes and also the degree to which demands placed on them by
their users influence these choices.

September/October 2021 1



Introduction
In many science research domains mesh-based

methods for solving partial differential equations
(PDEs) play a crucial role in scientific discovery.
In many of these applications a wide range of
scales needs to be resolved, which can make
simulations intractable without adaptivity in mesh
resolution even on the largest available super-
computers. Adaptive mesh refinement (AMR) [2]
is an important method that enables mesh-based
applications to run effectively at higher resolution
within available computing resources by allowing
high resolution only where needed. This advan-
tage comes with greater complexity in the mesh
management machinery, however, which includes
resolution of quantities at fine-coarse interfaces
and load distribution that changes dynamically in
parallel environments.

Many of the AMR packages and codes grew
when the distributed-memory parallel model was
dominant. The decomposition and distribution of
work in this parallelization model can be very
coarse grained, and this is reflected in the design
of almost all early AMR libraries and AMR-
based codes. The intermediate years of multicore
platforms motivated the use of threading provided
by OpenMP, which was not very invasive and,
therefore, easy to adopt. The arrival of hetero-
geneity in the form of accelerators of different
types on compute nodes of supercomputing plat-
forms poses a challenge that has required varying
degrees of intrusive changes in AMR libraries
and applications codes. Because different codes
are tackling this challenge in different ways, it is
interesting and useful to understand the rationale
behind the choices made by their developers.

An opportunity to do so occurred in the
form of a minisymposium at “The Platform for
Advanced Scientific Computing” conference in
Zurich, Switzerland. The theme of the minisym-
posium was techniques and tools being developed
and utilized by various AMR packages and AMR-
based codes for heterogeneous platforms. It be-
came obvious that there is considerable diversity
in perceived challenges and in approaches in
response to those challenges. The causation and
correlations were intriguing enough that several
of the participants proceeded to do a deeper anal-
ysis of their respective motivations and priorities

that are presented in this article.

Adaptive Mesh Refinement
AMR is a method for reducing both the mem-

ory and compute footprint of partial differential
equation (PDE) solvers. The method has been
around for 40 years [2]. The commonality among
the AMR codes and packages featured here is
that they have logically Cartesian mesh cells on
which the solution evolves and that the cells at
the same level of refinement have identical spatial
resolution. Within that commonality there are two
distict flavors of refinement handling and AMR
bookkeeping:

1) Cells are collected in equally-sized blocks
in terms of number of cells per block. The
blocks are organized in one or more octrees
where the coarsest level forms the root of
the trees. Usually an explicit parent-child
relationship exists between blocks at two
consecutive levels. We refer to this type as
octree AMR.

2) Cells are collected in arbitrarily-sized
blocks called patches. These blocks can be
placed anywhere on the physical domain
as long as finer blocks are fully contained
within a region of the next coarse level.
Unlike octrees, no explicit parent-child re-
lationship exists among blocks. This flavor
is referred to as block-structured AMR here-
after.

Of the codes discussed in this paper, Flash-
X is a new incarnation of FLASH for exascale.
FLASH was developed on top of Paramesh [9],
an octree AMR library. In addition to Paramesh,
Flash-X also supports the use AMReX [1], which
is natively block-structured but mimics the be-
havior of octrees for Flash-X. Uintah implements
block-structured AMR. Enzo transitioned from
block-structured to octrees in its newest version,
Enzo-E, using Cello [4] as its underlying AMR.
p4est is an AMR software library managing a
forest of octrees.

Design Choices

Flash-X
The Flash-X approach to design can be sum-

marized as the distribution of compositional and

2 c© 2021 IEEE Published by the IEEE Computer Society IT Professional



performance handling between source and con-
figuration tools so that none is too complex or
difficult to maintain. The most influential design
choice of composability in the earliest version
of FLASH was driven by the need to handle a
variety of physical situations that required inclu-
sion of components in different permutations and
combinations along with different sets of physical
state variables. This was achieved by creating
a domain-specific language (DSL) that encodes
meta-information about various components and
subcomponents of the code in “config” files. A
“setup tool” parses the config files recursively
to generate a self-consistent collection of com-
ponents [7]. This fundamental design choice has
remained the linchpin of all architectural en-
hancements including the most recent one.

True to the philosophy of distributed complex-
ity handling, different abstractions and tools are
being used to address different challenges posed
by heterogeneity. For hierarchical domain decom-
position, Flash-X uses AMReX’s tiling as the
base abstraction instead of blocks. Elimination of
bulk synchronization is planned through a com-
bination of using asynchronous collectives from
the host overlapping with other local operations
on the host or accelerators and combined with a
domain-specific runtime system that manages all
data movements.

Two modes of code transformation are used
to handle platform-specific heterogeneity: one for
physics operators, and another one for timestep-
ping. Physics operators take a key-value dic-
tionary approach where keys can have multiple
alternative values, each one specific to a type
of accelerator. The numerics of the code are
decorated with keys to enable a single expression
of the computation. The timestepping code trans-
formation tool generates the code from a library
of platform specific templates.

Uintah
Uintah opted for an asynchronous many-task

(AMT) dataflow approach from the outset [3]
that consists of tasks and a runtime system
that uses a dynamic directed acyclic graph to
guide task execution. This AMT runtime extracts
the appropriate level of parallelism by automat-
ically mapping tasks to available computational
resources. The primary features of the design

include: (1) A shared memory compute-node
data warehouse that uses atomic operations to be
lock-free. (2) Decentralized execution of the task
graph, which is implemented by each CPU core
or GPU requesting work itself. (3) Accelerator
task execution on a node, which is implemented
through an extension of the runtime system that
uses data prefetching for efficient task execution.
(4) Extensive scalability through exploiting asyn-
chronous (including out-of-order) task execution,
over-decomposition of tasks, overlapping of com-
munication and computation, work stealing, and
task graph prioritization, based on communication
needs and dependencies.

An important aspect of the Uintah design is
the choice of scheduler. Uintah uses two main
schedulers. The Uintah MPI scheduler executes a
fixed task graph on a core but with asynchronous
communication. In contrast, the unified sched-
uler implements a completely asynchronous ap-
proach across all available cores or accelerators.
In order to enable Uintah tasks to run without
code changes across multiple types of CPUs and
GPUs, the Kokkos approach was adopted over
other portability approaches after early experi-
ments and design studies. At scale, the use of
MPI+Kokkos has allowed for good strong-scaling
to 442,368 threads across 1,728 Knights Landing
processors.

Enzo-E
Enzo-E [5] is a new, extreme-scale version of

Enzo that addresses the extensibility and scalabil-
ity limitations of Enzo through a completely new
object-oriented software design and implementa-
tion and a new, more scalable AMR infrastructure
layer called Cello inspired by p4est. Enzo-E
uses Charm++ for parallelization rather than MPI.
This provides an abstract interface to the parallel
machine, asynchronous task execution, dynamic
load balancing, and fault tolerance, among other
benefits. The entire code is implemented in C++
except for certain Fortran physics kernels taken
from the Enzo codebase.

Enzo, like other block-structured AMR, repli-
cates metadata on every node. While that makes
communication primitives easier to implement,
the amount of metadata grows with the size of the
problem and runs into a scaling limit eventually.
The most significant design choice for Enzo-E

September/October 2021 3



was to abandon block-structured AMR in favor
of a forest-of-octrees-style AMR because of its
superior parallel scalability and simplicity [6].
The entire multilevel mesh is fully distributed
across the parallel machine by using Charm++’s
chare-array data structure, and each block in the
array is assigned to a Charm++ task called a
chare.

The second major design choice was to imple-
ment the code in C++ following object-oriented
design principles. This leads to a clean separation
of concerns between numerical methods in the
Enzo-E layer, AMR mesh data structures and
operations in the Cello layer, and task mapping
and parallel execution in the Charm++ layer. The
Enzo-E application layer consists of a collection
of method objects that initialize and update field
and particle data stored in the Cello blocks. Cur-
rently, Enzo-E runs only on CPU clusters with ex-
cellent weak and strong parallel scalability. Since
the code is written mainly in C++, however, it
can in principle use performance portability tools
such as Kokkos to translate specific numerical
method kernels to be executed on GPUs.

p4est
p4est is a software library that manages

adaptive forest-of-octree meshes in the distributed
memory parallel model. From the beginnings, the
algorithms and data structures of p4est were
designed with a strong focus on modularity and
flexibility. To this day, these original structures
have supported all newer algorithms and im-
provements. Extensions have been introduced to
support new algorithmic features in a backwards-
compatible way [8]. The observed longevity can
be attributed to the logic minimalism of both local
and global state.

p4est works with two first-class objects, the
connectivity of tree roots and the forest storing
the process-local leaves (and only them). The
former is a read-only global replicated object
(one per MPI shared-memory node is sufficient)
that lists the number of trees and for each the
face, edge, and corner neighbors and their relative
orientation. One rule of thumb is to use the
connectivity to represent the domain topology and
to leave geometric representation and accuracy to
the adaptive refinement.

The forest object stores only the leaves of

the forest. The leaves satisfy a total order and
are allocated strictly process-local: each leaf has
one and only one owner process. Mesh refine-
ment, coarsening, and 2:1 balancing have strictly
process-local effects (even though the latter de-
pends on one query-reply round of communica-
tion). Since these generally offset load balance,
the leaves may be repartitioned at any time to
re-establish a guaranteed ±1 leaf distribution
between processes. This is possible only by rou-
tinely allowing for partition boundaries inside
trees and for tree boundaries inside a partition,
and for empty processes as well.

The encoding of the parallel mesh partition
requires some amount of global replicated meta-
data, which does not include per-leaf refinement
or geometrical and numerical data. Similarly,
when the metadata depends on the total number
of MPI processes, the amount per rank is kept
low. p4est, in effect, replicates 32 bytes per
MPI rank on each rank. This data is sufficient
to encode the shape of all partition boundaries
without referencing a single leaf. This is a power-
ful property of pure octree approaches and allows
for executing fast remote, general multi-objective
searches. This memory is currently redundant on
multi-rank nodes, but prototype code exists to
reduce it further using MPI-3 shared memory.
p4est currently is MPI-only, with scalability
tested to 106+ parallel processes. Plans exist for
using OpenMP for additional threading, multi-
plying the speed of internal algorithms where
applicable. However, the implementation assures
that threading is transparent and will not be
exposed to the public API (beyond the passing
of hints).

Analysis and Inferences
The codes cover a spectrum from relatively

little change (p4est), adoption of technologies
in place (Uintah), complete rewrite from scratch
(Enzo-E), and ambitious architectural refactoring
(Flash-X), in increasing order of complexity.

Uintah’s asynchronous task-based design from
the outset has proven to be prescient for hyperpar-
allelism. Although its vintage is roughly the same
as that of FLASH, it started as a new from-scratch
code and opted for C++ as the language in which
to code. The design included a separation of
concerns so that communication and computation

4 IT Professional



could evolve out of lockstep. Since a great deal
of effort has been invested in C++ template-based
tools for performance portability, Uintah has been
in a strong position to leverage those tools.

The developers of Enzo-E took a different
tack. They evaluated the limitations of their ex-
isting AMR, considered the forthcoming demands
from science, and concluded that block-structured
AMR is fundamentally flawed for scalability
that will be demanded by their future science
and machine directions. Instead of patching over
their existing framework, they opted to leverage
known scalable technologies, namely, Charm++
with built-in asynchrony and scalability, and built
their capabilities on top of it. The key to success
here was to have a long lead time for infras-
tructure development so that the project could
begin on a small scale with modest resources.
Since Enzo had been a community-developed
and community-supported code for a while, such
considerations for resource management and a
long-lead transition time were critical in driving
the directions of development.

Flash-X had the most challenging transition
to make. Even when it first came into existence,
FLASH did not start from scratch. It was an amal-
gamation of legacy codes, and its architecture was
gradually imposed over it through an iterative
process. That also set the stage for FLASH to
remain a Fortran code. Over the past few years
its growth has exploded in terms of physics
solver support, but investment in infrastructure
has suffered. It supports multiple science domains
that need an operational code. The code clearly
needed a fundamental invasive re-architecting, but
there also had to be a gradual transition path
for ongoing verification during transition. This
is the reason that it had to find a way to take
the separation of concerns several layers deep
into the architecture and find a collection of tools
to address different aspects of its computational
challenges.

In contrast to Uintah, Enzo, and Flash-X,
p4est is agnostic of the numerics of the solvers,
and it is not authoritative to the orchestration
of computation. While p4est does not directly
address heavy-duty computation that might be
offloaded to an accelerator and other special-
purpose devices, it offers all the logic necessary
to support applications in device-oriented data

partitioning and assignment.

Conclusions
The codes included in this study represent a

broad coverage of the spectrum of AMR tech-
nologies and their use in science domains. Study
of their diverse approaches to tackling perfor-
mance portability in the presence of heterogene-
ity proved to be an interesting exercise. The
approaches ranged from mostly nonintrusive (in
p4est) to moderate (in Uintah) to extremely
intrusive (in Flash-X), to a complete rewrite of the
infrastructure (in Enzo-E). Each code has its own
targets and accompanying biases. One feature that
emerges as a common theme is that sufficient
attention must be paid to the basic design of the
code structure with an eye to flexibility.

Acknowledgements
REFERENCES

1. Amrex. https://amrex-codes.github.io/, 2020.

2. M. Berger and J. Oliger. Adaptive mesh refinement

for hyperbolic partial differential equations. Journal of

Computational Physics, 53:484–512, 1984.

3. M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian,

A. Humphrey, Q. Meng, J. Schmidt, , and C. Wight.

Extending the uintah framework through the petascale

modeling of detonation in arrays of high explosive de-

vices. SIAM Journal on Scientific Computing, 2016.

4. J. Bordner. Cello. https://cello-project.org/, 2020.

5. J. Bordner and M. L. Norman. Computational Cosmology

and Astrophysics on Adaptive Meshes using Charm++.

arXiv e-prints, page arXiv:1810.01319, Oct. 2018.

6. C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scal-

able algorithms for parallel adaptive mesh refinement on

forests of octrees. SIAM Journal on Scientific Computing,

33(3):1103–1133, 2011.

7. A. Dubey, K. Antypas, M. Ganapathy, L. Reid, K. Riley,

D. Sheeler, A. Siegel, and K. Weide. Extensible com-

ponent based architecture for FLASH, a massively par-

allel, multiphysics simulation code. Parallel Computing,

35:512–522, 2009.

8. T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas.

Recursive algorithms for distributed forests of octrees.

SIAM Journal on Scientific Computing, 37(5):C497–

C531, 2015.

9. P. MacNeice, K. Olson, C. Mobarry, R. de Fainchtein,

and C. Packer. PARAMESH: A parallel adaptive mesh

refinement community toolkit. Computer Physics Com-

munications, 126(3):330–354, 2000.

September/October 2021 5

https://amrex-codes.github.io/
https://cello-project.org/


Anshu Dubey is a Computational Scientist in the
Mathematics and Computer Science Division at Ar-
gonne National Laboratory. She is the software archi-
tect for Flash-X. Contact her at adubeyanl.gov

Martin Berzins is a multi-disciplinary Computational
Science researcher whose research cuts across Ap-
plied Mathematics, Computer Science and Engineer-
ing. He is a Professor of Computer Science in the
School of Computing and in the Scientific Computing
Imaging Institute at the University of Utah and a
Visiting Professor at the University of Leeds.

Carsten Burstedde is a physicist with a doctorate
degree in applied mathematics from Bonn University,
Germany. Together with Lucas C. Wilcox, he founded
the p4est software in 2007 during his postdoc at the
University of Texas at Austin. He is now a Professor
for Scientific Computing at the Institute for Numerical
Simulation in Bonn.

Michael L. Norman is Director of the San Diego
Supercomputer Center and Distinguished Professor
of Physics at the University of California, San Diego.
There, he also directs the Laboratory for Computa-
tional Astrophysics which develops community appli-
cation software for astrophysical simulation, including
the ZEUS and Enzo codes.

Didem Unat is a Professor at Ko University, Istanbul,
Turkey. She is the recipient of the Marie Sklodowska-
Curie Individual Fellowship from the European Com-
mission in 2015 and the Young Scientists Award in
2019 from the Science Academy of Turkey.

Mohammed Wahib is a senior scientist at
AIST/TokyoTech Open Innovation Laboratory,
Tokyo, Japan. Prior to that he worked as a researcher
in RIKEN Center for Computational Science (RIKEN-
CCS).

6 IT Professional


	Introduction
	Adaptive Mesh Refinement
	Design Choices
	Flash-X
	Uintah
	Enzo-E
	p4est

	Analysis and Inferences
	Conclusions
	Acknowledgements
	REFERENCES
	Biographies
	Anshu Dubey
	Martin Berzins
	Carsten Burstedde
	Michael L. Norman
	Didem Unat
	Mohammed Wahib


