
J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A survey of high level frameworks in block-structured adaptive mesh
refinement packages
Anshu Dubey a,∗, Ann Almgren a, John Bell a, Martin Berzins j, Steve Brandt f,g, Greg Bryan k,
Phillip Colella a,l, Daniel Graves a, Michael Lijewski a, Frank Löffler f, Brian O’Shea c,d,e,
Erik Schnetter h,i,f, Brian Van Straalen a, Klaus Weide b

a Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b Flash Center for Computational Science, The University of Chicago, Chicago 60637, USA
c Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
d Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
e The Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI 48824, USA
f Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
g Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
h Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
i Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
j Mathematics and School of Computing, University of Utah, Salt Lake City, UT 84112, USA
k Department of Astronomy, Columbia University, New York, NY 10025, USA
l Computer Science Department, University of California, Berkeley, CA 94720, USA

h i g h l i g h t s

• A survey of mature openly available state-of-the-art structured AMR libraries and codes.
• Discussion of their frameworks, challenges and design trade-offs.
• Directions being pursued by the codes to prepare for the future many-core and heterogeneous platforms.

a r t i c l e i n f o

Article history:
Received 16 July 2013
Received in revised form
14 April 2014
Accepted 3 July 2014
Available online xxxx

Keywords:
SAMR
BoxLib
Chombo
FLASH
Cactus
Enzo
Uintah

a b s t r a c t

Over the last decade block-structured adaptivemesh refinement (SAMR) has found increasing use in large,
publicly available codes and frameworks. SAMR frameworks have evolved along different paths. Some
have stayed focused on specific domain areas, others have pursued a more general functionality, provid-
ing the building blocks for a larger variety of applications. In this survey paper we examine a representa-
tive set of SAMR packages and SAMR-based codes that have been in existence for half a decade or more,
have a reasonably sized and active user base outside of their home institutions, and are publicly available.
The set consists of a mix of SAMR packages and application codes that cover a broad range of scientific
domains. We look at their high-level frameworks, their design trade-offs and their approach to dealing
with the advent of radical changes in hardware architecture. The codes included in this survey are BoxLib,
Cactus, Chombo, Enzo, FLASH, and Uintah.

Published by Elsevier Inc.

1. Introduction

Block-structured adaptive mesh refinement (SAMR) [8,7] first
appeared as a computational technique almost 30 years ago; since

∗ Correspondence to: One Cyclotron Road, Mailstop 50A1148, Berkeley, CA
94720, USA.

E-mail addresses: adubey@lbl.gov, adubey64@gmail.com (A. Dubey).

then it has been used in many individual research codes and, in-
creasingly over the last decade, in large, publicly available code
frameworks and application codes. The first uses of SAMR focused
almost entirely on explicitmethods for compressible hydrodynam-
ics, and these types of problemsmotivated the building of many of
the large code frameworks. SAMR frameworks have evolved along
different paths. Some have stayed focused on specific domain ar-
eas, adding large amounts of functionality and problem-specific

http://dx.doi.org/10.1016/j.jpdc.2014.07.001
0743-7315/Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jpdc.2014.07.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:adubey@lbl.gov
mailto:adubey64@gmail.com
http://dx.doi.org/10.1016/j.jpdc.2014.07.001

2 A. Dubey et al. / J. Parallel Distrib. Comput. () –

physics modules that are relevant to those applications. Exam-
ples of these include AstroBEAR [26], CRASH [91], Cactus [42,15],
Enzo [14,38], FLASH [40,32], Overture [76], PLUTO [68,89], and
Uintah [77,78]. Other frameworks have pursued a more general
functionality, providing the building blocks for a larger variety
of applications while enabling domain-specific codes to be built
using that framework. As an example, while almost every SAMR
framework can be used to solve systems of hyperbolic conserva-
tion laws explicitly, not all frameworks include the functionality
to solve elliptic equations accurately on the entire hierarchy or
a subset of levels. Examples of frameworks constructed specifi-
cally for solving hyperbolic conservation laws include AMROC [29]
and AMRClaw [5], both based on the wave propagation algorithms
of R. LeVeque. Extensions of AMRClaw include GeoClaw [41], the
widely used tsunami simulation tool. BoxLib [13], Chombo [23],
Jasmine [73] and SAMRAI [17,47] are more general in that they
supply full functionality for solving equation sets containing
hyperbolic, parabolic and elliptic equations, and facilitate the de-
velopment of codes for simulating a wide variety of different ap-
plications. PARAMESH [39] supplies only the mesh management
capability and as such is equation-independent. A more compre-
hensive list of codes that use SAMR, and other useful adaptivemesh
refinement (AMR) resources can be found at [46].

SAMR codes all rely on the same fundamental concept, viz.
that the solution can be computed in different regions of the do-
main with different spatial resolutions, where each region at a
particular resolution has a logically rectangular structure. In some
SAMR codes the data is organized by level, so that the descrip-
tion of the hierarchy is fundamentally defined by the union of
blocks at each level; while others organize their data with unique
parent–child relationships. Along with the spatial decomposition,
different codes solving time-dependent equations make different
assumptions about the time stepping, i.e., whether blocks at all
levels advance at the same time step, or blocks advance with a
time step unique to their level. Finally, even when frameworks are
used to solve exactly the same equations with exactly the same
algorithm, the performance can vary due to the fact that differ-
ent frameworks are written in different languages, with different
choices of data layout, and also differ in other implementation
details. However, despite their differences in infrastructure and
target domain applications, the codes have many aspects that are
similar, and many of these codes follow a set of very similar soft-
ware engineering practices.

In this survey paper we examine a representative set of SAMR
packages and SAMR-based codes that: (1) have been in existence
for half a decade or more, (2) have a reasonably sized and active
user base outside of their home institutions, and most impor-
tantly, (3) are publicly available to any interested user. In select-
ing the codes we have taken care to include variations in spatial
and temporal refinement practices, load distribution and meta-
information management. Therefore, we have octree and patch
based SAMR, no subcycling and subcycling done in different ways,
load distribution on a level by level or all levels at once, and globally
replicated meta-data or local view. Additionally, the set covers a
broad range of scientific domains that use SAMR technology in dif-
ferent ways. We look at their high-level frameworks, consider the
trade-offs between various approaches, and the challenges posed
by the advent of radical changes in hardware architecture. The
codes studied in detail in this survey are BoxLib, Cactus, Chombo,
Enzo, FLASH, and Uintah. The application domains covered by a
union of these codes include astrophysics, cosmology, general rel-
ativity, combustion, climate science, subsurface flow, turbulence,
fluid–structure interactions, plasma physics, and particle acceler-
ators.

2. Overview of the codes

BoxLib is primarily a framework for building massively parallel
SAMR applications. The goals of the BoxLib framework are twofold:

first, to support the rapid development, implementation and test-
ing of new algorithms in a massively parallel SAMR framework;
and second, to provide the basis for large-scale domain-specific
simulation codes to be used for numerical investigations of phe-
nomena in fields such as astrophysics, cosmology, subsurface flow,
turbulent combustion, and any other fieldwhich can be fundamen-
tally described by time-dependent PDE’s (with additional source
terms, constraints, etc.). In accordance with both goals, the core
remains relatively agile and agnostic, and is not tied to a particular
time-stepping or spatial discretization strategy, or to a particular
set of physics packages.

That said, while BoxLib itself supplies a very general capability
for solving time-dependent PDE’s on an adaptive mesh hierarchy,
there are a number of large, domain-specific BoxLib-based appli-
cation codes in scientific use today. The most widely used include
CASTRO [3,93,94] for fully compressible radiation-hydrodynamics;
MAESTRO [74], for low Mach number astrophysical flows; Nyx [4]
for cosmological applications; LMC [28] for lowMachnumber com-
bustion; and the structured grid component of the Amanzi code for
modeling subsurface flow [79].

Chombo is an offshoot of the BoxLib framework, having
branched off from BoxLib in 1998. As a result Chombo sharesmany
features with BoxLib, including the hybrid C++/Fortran approach,
and the separation of concerns between the parts that are best
handled in C++ (abstractions, memory management, I/O, flow con-
trol) and Fortran dialects (loop parallelism, stencil computations).
Chombo articulates its APIs explicitly for easier plugin by the client
application code. It has also diverged from BoxLib in the design of
its data containers. Chombo currently supports applications in a
range of disciplines, including the following: MHD for tokamaks
using all-speed projection methods, and large eddy simulations of
wind turbines at KAUST; compressible CFD + collision-less parti-
cle cosmology simulations (CHARM code, [70,71]); physics of the
solar wind and its interaction with the interstellar medium us-
ing compressible hyperbolic CFD + electromagnetic and kinetic
effects (MS-FLUKSS code [61,81,80]); general astrophysics mod-
eling (PLUTO code [69]); astrophysical MHD turbulence (ORION
code [56]); SF Bay and Delta hydrology modeling – shallow water
(Realm code [6]); plasma-wakefield accelerators – compressible
viscous flow at LBNL; blood flow in cerebral arteries – fluid/solid
coupling (UCB ParLab project [30]); pore-scale subsurface react-
ing flow (Chombo-Crunch code, [72]); conjugate heat transfer in
nuclear reactors [25]); 4D gyrokinetic models of tokamak edge
plasmas (COGENT code, [31,18]); land ice model for climate sim-
ulation(BISICLES code, [24]); and atmospheric models for climate
simulation—low-Mach number CFD at University of Michigan.

Cactus [42,15] was designed as a general-purpose software
framework for high-performance computing with AMR as one of
its features. The first set of applications that used the framework
was astrophysical simulations of compact objects involving gen-
eral relativity (GR) such as black holes and neutron stars. These sce-
narios require high resolution inside and near the compact objects,
and at the same timeneed to track gravitationalwaves propagating
to large distances of several hundred times the radii of the compact
objects. This leads very naturally to the use of AMR. In GR, gravita-
tional effects are described via hyperbolic (wave-type) equations,
propagating at the speed of light. This removes the need for an
elliptic solver that is necessary in Newtonian gravity to calculate
the gravitational potential. While the Cactus framework is generic,
its most prominent user today is the Einstein Toolkit [55,95,37],
a large set of physics modules for relativistic astrophysics simu-
lations. The Einstein Toolkit includes modules for solving the Ein-
stein equations and relativistic magneto-hydrodynamics, as well
as modules for initial conditions, analysis, and so on.

Enzo is a standalone application code [14,38] that was orig-
inally designed to simulate the formation of large-scale cosmo-
logical structure, such as clusters of galaxies and the intergalactic
medium. Since the formation of structures in the Universe is a

A. Dubey et al. / J. Parallel Distrib. Comput. () – 3

process that is driven by gravitational collapse, the study of this
phenomenon naturally requires high resolution in both space and
time, making AMR a logical choice. Since the first version of Enzo
was written in 1996, the user base has grown to include roughly
100 researchers studying a variety of astrophysical phenomena, in-
cluding galaxies, galaxy clusters, the interstellar and intergalactic
media, turbulence, and star formation in the early universe and in
our ownGalaxy. Because of this growth, awide range of capabilities
have been added to the Enzo code, including a range of hydrody-
namic andmagnetohydrodynamic solvers, implicit flux-limited ra-
diation diffusion and explicit radiation transportwith a ray-casting
method, optically-thin and thick radiative cooling, prescriptions
for active particles and passive tracer particles, and a wide vari-
ety of problem types that users can expand upon to pursue their
own interests.

FLASH [32,35,40] was originally designed for simulating astro-
physical phenomena dominated by compressible reactive flows.
The target applications also had multiple physical scales and
therefore required AMR, which was provided by the octree-based
PARAMESH package [39]. Though PARAMESH supports subcycling
in time FLASH does not. FLASH underwent three iterations of in-
frastructure refactoring, and the resultant architecture has enabled
the code to be readily extensible. As a result, capabilities have been
added to the code to make it useful for such disparate communi-
ties such as cosmology, astrophysics, high-energy-density physics,
computational fluid dynamics, and fluid–structure interactions.
FLASH’s capabilities include solvers for hydrodynamics, magne-
tohydrodynamics, self-gravity, flux-limited radiation, several spe-
cialized equations of state, several source terms including nuclear
burning and laser driver, material properties, tracer and active par-
ticles, and immersed boundaries.

The Uintah software was initially a direct outcome from the
University of Utah DOE Center for the Simulation of Accidental
Fires and Explosions (C-SAFE) [78] that focused on providing state-
of-the-art, science-based tools for the numerical simulation of
accidental fires and explosions. The Uintah framework allows
chemistry and engineering physics to be fully coupled with
nonlinear solvers and visualization packages. The Uintah open-
source (MIT License) software has been widely ported and used
for many different types of problems involving fluid, solid, and
fluid–structure interaction problems. The present status of Uintah
is described by [10].

Uintah presently contains four main simulation algorithms,
or components: (1) the ICE [51,52] compressible multi-material
finite-volume CFD component, (2) the particle-based Material
Point Method (MPM) [88] for structural mechanics, (3) the
combined fluid–structure interaction (FSI) algorithm MPM-ICE
[44,45,43], and (4) the Arches turbulent reacting CFD component
[87,86] that was designed for simulation of turbulent reacting
flows with participating media radiation. Arches is a three-
dimensional, Large Eddy Simulation (LES) code that uses a low-
Mach number variable density formulation to simulate heat, mass,
and momentum transport in reacting flows. Uintah has been used,
and is being used, formany different projects such as angiogenesis,
tissue engineering, heart injury modeling, blast-wave simulation,
semiconductor design, and multi-scale materials research [10].

3. Frameworks

There are a number of similarities between the six codes/
software frameworks (which fromnowonwewill call ‘‘codes’’) de-
scribed in this paper. Each of these codes provides some generic
support for SAMR applications as well as more specialized sup-
port for specific applications. Since the codes detailed in the sur-
vey come from different disciplines, groups, and scientific domains
they each use various terms in their own different ways. In order
to facilitate the discussion we override individual code’s usage and
adhere to the following terminology:

• cell: the smallest unit of discretized domain
• mesh/grid: generic way of describing the discretized domain
• block: logically rectangular collection of cells
• patch: a collection of contiguous cells of the same size (at the

same refinement level), patches may be subdivided into blocks
• active cells: cells in a block that are updated when an operator

is applied to the block
• guard cells: halo of cells surrounding the active cells that are

needed for computation of an operator, but are not updated by
the operator

• level: union of blocks that have the same cell size
• framework: the infrastructure backbone of the code
• component: an encapsulated stand-alone functionality within

the code

All codes perform domain decomposition into blocks. BoxLib,
Cactus, Chombo and Uintah are perhaps the most general frame-
works, in that the bulk of the software capability is not tied to a
particular application. Enzo is perhaps the most specific in that
it is designed for astrophysical and cosmological applications. As
such, the Enzo release contains numerousmodules for specific pro-
cesses such as star formation and feedback. FLASH lies between
BoxLib/Cactus/Chombo/Uintah and Enzo; it not only has exten-
sive physics-independent infrastructure, but also includes physics-
specific modules and solvers for a variety of applications in its
releases. All of the codes support finite difference/finite volume
methods in 1, 2 or 3 dimensions in Cartesian coordinates and all
codes except Cactus support particle andparticle/mesh algorithms,
with both active and passive particles. Support is provided for data
that lives on cell centers, faces, edges, or nodes. Except FLASH, all
other codes support subcycling in time. The original parallelization
model in these codes, as in most codes of similar vintage, was dis-
tributedmemory withMPI, though now they have various degrees
of hybrid parallelization (see Table 1).

In all of the codes, explicit hyperbolic solvers act upon indi-
vidual blocks with no knowledge of other blocks once the guard
cells have been filled from blocks at the same or coarser levels
as appropriate. Explicit refluxing occurs at coarse–fine boundaries
to correctly update the solution. The implicit and semi-implicit
solvers place more demands on the communications and different
codes handle them differently. An interesting observation is that
the original implicit and semi-implicit solvers came in the form
of geometric multigrid in those codes that had any. As the codes
started supporting capabilities more demanding of such solvers
they started to provide interfaces to the readily available capabil-
ities from libraries such as PETSc and Hypre. Note that because of
AMR, and therefore the presence of fine–coarse boundaries, these
interfaces are non-trivial and involve considerable effort to do cor-
rectly. Chombo, Flash and Uintah have support for fluid/structure
interaction—in Chombo, embedded boundaries are used to repre-
sent the fluid/solid interface; FLASH uses an immersed boundary
representation, and Uintah uses the particle-based Material Point
Method (MPM) for structuralmodeling. The following sections give
more details about individual codes and Table 1 summarizes the
important framework features and capabilities in various codes.

3.1. BoxLib

The main branch of BoxLib is a combination of C++/Fortran90
software; a newer branch of BoxLib iswritten in pure Fortran90 but
currently supports only non-subcyling algorithms. BoxLib contains
extensive support for both explicit and implicit grid-based opera-
tions as well as particles on hierarchical adaptive meshes. Single-
level and multi-level multigrid solvers are included for cell-based
and node-based data. The fundamental parallel abstraction in both
the C++ and Fortran90 versions is the MultiFab, which holds the
data on the union of blocks at a level. A MultiFab is composed of

4 A. Dubey et al. / J. Parallel Distrib. Comput. () –

Table 1
A summary of features in the SAMR codes and frameworks. In the above table GMG stands for ‘‘Geometric Multigrid’’, and FSI stands for ‘‘Fluid–Structure Interaction’’. The
‘‘Spherical’’ and ‘‘Cylindrical’’ AMR columns specify whether the AMR structure understands something other than Cartesian geometry. The entry ‘‘multipatch’’ denotes that
Cactus can cover spherical or cylindrical regions by piecing together distorted but logically rectangular regions.

Feature BoxLib Cactus Chombo Enzo FLASH Uintah

Subcycling Optional Optional Optional Required None Required
Time step ratio Same as refinement Independent Same as

refinement
Independent Same as refinement

Elliptic solver PETSc/Hypre/Trilinos native
GMG

User supplied PETSc/native GMG Hypre native
GMG

Hypre/native
GMG

PETSc/Hypre

GMG with AMR Sub or whole mesh Sub or whole
mesh

Single level Whole mesh Sub or whole mesh

Spherical AMR 1D Multipatch 1D 1, 2, or 3D 1D
Cylindrical AMR 2D Multipatch 2D 1, 2, or 3D 2D
Mixed dimensions Yes
Highest dimension 4D Up to 6D
Block size Variable Variable Variable Variable Fixed Variable
Refine factor 2/4 2 2/4 Any integer 2 Any integer
Parent blocks Not unique Not unique Not unique Unique Unique Unique
Regridding level Tag cells per level Tag cells per level Tag cells per level Tag cells per

level
Tag blocks all at
once

Tag cells all at once

Space filling curve Morton Morton Piano-Hilbert Morton Hilbert + fast
sorting

OpenMP Per block and loops Dynamically tuned
loops

Per block Per block and
loops

Per block and
loops

Accelerators CUDA OpenCL CUDA CUDA
Parallel I/O native HDF5 HDF5 HDF5 HDF5 PnetCDF HDF5
Viz VisIt/yt VisIt/yt VisIt VisIt/yt VisIt/yt VisIt
FSI Embedded

boundary
Immersed
boundary

MPMMethod

Framework
language

C++/Fortran C/C++ C++ C++ Fortran C++

User module
language

Fortran C/C++ Fortran Fortran Fortran Fortran

multiple FABs (Fortran Array Boxes); each FAB is an array of data on
a single block. During each MultiFab operation the FABs compos-
ing that MultiFab are distributed among the nodes; MultiFabs at
each level of refinement are distributed independently. Each node
holds meta-data that is needed to fully specify the geometry and
processor assignments of theMultiFabs. Themeta-data can be used
to dynamically evaluate the necessary communication patterns for
sharing data amongst processors in order to optimize communica-
tion patterns within the algorithm.

The scaling behavior of BoxLib depends strongly on the algo-
rithm being implemented. Solving only a system of hyperbolic
conservation laws, CASTRO has achieved excellent weak scaling
to 196K cores on the Jaguar machine at the Oak Ridge Leader-
ship Computing Facility (OLCF) using only MPI-based parallelism.
Good scaling of linear solves is known to be much more difficult
to achieve. Recent scaling results of the Nyx code, which relies on
multigrid solves of the Poisson equation for self-gravity, demon-
strate excellent scaling up to 49K cores on the Hopper machine at
NERSC.

3.2. Chombo

Many features in Chombo, such as hybrid language model, are
similar to BoxLib. Chombo’s union of blocks is called a BoxLayout
(with a specialization being a DisjointBoxLayout). These
maintain the mapping of blocks to compute elements (nodes, or
cores). This meta-data is replicated across all processors redun-
dantly. In cases with extreme block counts (O(106) blocks) this
meta-data is compressed [92]. Meta-data is shared at the thread-
level. Cell-based refinement codes have a different parameter
space to operate in and can have significantly higher meta-data
costs in return for higher floating-point efficiency.

Chombo keeps the FAB (Fortran Array Box) data member from
BoxLib, but it is templated on data type and data centering.
Chombo has a hierarchy of templated data holders (LayoutData,
BoxLayoutData, and LevelData). An important reason for the

templated data holder design is to provide a common code base
that also supports the EBCellFAB, a cell-centered finite vol-
ume data holder that supports embedded boundary algorithms
[20–22,19], and the BinFAB to support Particle-In-Cell algorithms.
Chombo also supports mapped multiblock domains and mixed-
dimension domains up to 6D.

Chombo has built-in diagnostics to track time in functions (se-
rial and parallel), memory leak tracking,memory tracing, sampling
profilers, and the ability to trap and attach a native debugger to a
running job as part of the default build environment without re-
quiring third party packages. Chombo has demonstrated scaling
behavior of both its hyperbolic gas dynamics codes and its multi-
grid elliptic solver to 196K cores on the Jaguar machine at the Oak
Ridge Leadership Computing Facility (OLCF) using flat MPI-based
parallelism [92].

3.3. Cactus/carpet

Cactus modules consist of routines targeting blocks, where the
core Cactus framework manages when and how these routines
are called. The framework itself does not provide parallelism or
AMR; these are instead implemented via a special driver compo-
nent. These days, Carpet [84,83,16] is the only widely-used driver.
In principle, it would be possible to replace Carpet by an alternative
driver that provides, e.g., a different AMR algorithm; if that new
driver adhered to the existing interfaces, neither the framework
nor existing physics modules would need to be modified.

Carpet supports two ways to define the grid hierarchy. Appli-
cation components can explicitly describe locations, shapes, and
depths of refined regions, which is useful, e.g., when tracking black
holes or stars. Alternatively, the application can mark individual
cells for refinement, and Carpet will then employ a tiling method
(implemented in parallel) to find an efficient grid structure that
encloses all marked points.

Cactus relies on a domain-specific language (DSL) describing its
modules [1]. This DSL describes the schedule (workflow) of tasks in
a Cactus computation, the grid functions (a distributed data struc-

A. Dubey et al. / J. Parallel Distrib. Comput. () – 5

ture which contains the values of a field on every point of the
grid), and parameter files. The framework provides an API that
lets infrastructure components (e.g., the driver) query this infor-
mation. One distinguishing feature of Cactus is that the compo-
nents self-assemble—the information provided via this DSL is rich
enough that components can simply be added to an existing sim-
ulation without explicitly specifying inter-component data flow.
(Note that components have to be designed with this in mind.)
This framework design requires Cactus applications to modularize
functionality to a high degree.

Cactus is designed such that the executable is almost always
compiled by the user, from the source code of Cactus and its mod-
ules, and, optionally, additional private modules. While the source
code of all modules is typically stored in standard revision control
systems, they may be of varying type, hosted by various research
groups, spread across theworld. Cactus provides convenience tools
to automatically assemble a complete source tree from a given list
of modules [85], and to compile on a large list of known supercom-
puters and standard environments [90].

This component-based design makes it possible to provide
fairly interesting high level features which include, e.g., (1) ex-
ternalizing the driver into a component as described above, (2) a
generic time integrationmodule that provides high-order coupling
between independently-developed physics modules, or (3) an in-
tegrated web server for monitoring simulations that offers func-
tionality similar to a debugger [53] or Web 2.0 integrations [2].

Kranc [49,54] is a Mathematica-based tool that generates com-
plete Cactus components from equations specified inMathematica
syntax. In particular, Kranc allows tensorial equations to bewritten
in a compact way employing abstract index notation. Kranc is able
to apply a set of high-level optimizations that compilers are typi-
cally unable to perform, especially for large compute kernels (loop
fission/fusion, SIMD vectorization). Kranc generates both C++ and
OpenCL code.

3.4. Enzo

Enzo’s SAMR supports arbitrary block sizes and aspect ratios
(although blocks must be rectangular solids, and there are some
practical limitations on their sizes and locations). Adaptive time-
stepping is used throughout the code, with each level of the grid
hierarchy taking its own time step. This adaptive time-stepping is
absolutely critical to the study of gravitationally-driven astrophys-
ical phenomena, since the local timescale for evolution of physical
systems typically scales as ρ−0.5, where ρ is the local density.

Similar to BoxLib and Chombo, Enzo uses C++ for the overall
code infrastructure and memory management, and typically uses
Fortran-90 for computationally-intensive solvers.Within the code,
the fundamental object is the ‘‘grid patch’’, or block, and individual
patches are composed of a number of baryon fields, as well as
particles of a variety of types. The non-local solvers for gravity
and implicit flux-limited diffusion require substantial amounts of
communication—gravity solves currently use a FFT-based method
on the root patch, and a multigrid relaxation-based method on
subpatches. Threading is supported at block-level and deeper
level, but the improvement in performance has been marginal
with deeper threading compared to block-level parallelism. In
addition, several of the hydrodynamic and magnetohydrodynamic
solvers have been ported to graphics processing units (GPUs),
with substantial speedup seen in situations where this physics
dominates the computational time (e.g., driven compressible
MHD turbulence). Using the hybrid-parallelized (MPI + OpenMP
threads) version of Enzo, nearly-perfect weak scaling up to 130K
cores on a Cray XK5 has been observed when the code is used in its
unigrid (non-AMR)mode, and reasonable scaling of up to 32K cores
has been observed onBlueWaters (a CrayXK7machine) usingAMR
with adaptive time-stepping.

A noteworthy feature of the Enzo code is its development pro-
cess, which has become completely open source and community-
driven. The Enzo project was originally developed by the
Laboratory for Computational Astrophysics at UIUC and then UC
San Diego, but is now developed and maintained by a distributed
team of scientists. Code improvements are funded at the individ-
ual PI level by a wide variety of sources, and user contribution to
the source code is heavily encouraged. To facilitate this process,
Enzo uses the distributed version control system Mercurial [67],
which allows for extremely simple forking, branching, and merg-
ing of code bases. Coupledwith an extensive answer testing frame-
work [14] and a formalized system of peer review (managed by
explicit ‘‘pull requests’’ from user forks to the main Enzo code-
base), this enables the code to remain stablewhile at the same time
directly incorporating feedback from non-core developers. User
contribution is further encouraged by the code structure, which
enables the straightforward addition of new physics modules, par-
ticularly those that are purely local in their impact (i.e., plasma
chemistry, radiative cooling, star formation and feedback routines,
etc.).

3.5. FLASH

FLASH combines two frameworks, an Eulerian discretizedmesh
and a Lagrangian framework [34] into one integrated code. Though
most of the other codes discussed in the paper support Lagrangian
particles in some form, a general purpose framework for La-
grangian data is unique to FLASH. The backbone of the overall code
infrastructure is component-based, similar to Cactus. Instead of re-
lying upon F90 object-oriented features for architecting the code,
FLASH imposes its own object-oriented framework built using a
very limited DSL and a Python-based configuration tool that to-
gether exploit the Unix directory structure for scoping and inher-
itance. FLASH’s Grid unit manages the Eulerian mesh and all the
associated data structures. Support exists for explicit stencil-type
solvers using a homegrown uniform grid package, and for AMR us-
ing PARAMESH and Chombo. FLASH’s explicit physics solvers are
completely oblivious to the details of the underlying mesh and can
switch between packages during application configuration. The el-
liptic and parabolic solvers need closer interaction with the mesh,
therefore applications that require those solvers usually default to
using PARAMESH, which has the most comprehensive solver cov-
erage in FLASH.

The physics units that rely on their solvers interacting closely
with the mesh are split into two components; the mechanics of
the solvers that need to know the details of the mesh, but are ag-
nostic to the physics, become sub-units within the Grid unit, while
the sections that are physics-specific exist in their own separate
physics units. Within the Grid unit, a unified API is provided for
the various underlying solvers, some of which are interfaces to
libraries such as Hypre. The unified API exploits the provision for
co-existence of multiple alternative implementations of a given
functionality to facilitate the use of themost appropriate solver for
a specific application. This feature also allows re-use of the solvers
for other purposes as needed.

The Lagrangian capabilities of FLASH have evolved into a frame-
work of their own because they can be used inmultiple ways, both
for modeling physical particles directly and for providing mech-
anisms used by other code units. The mechanics of Lagrangian
data movement is employed for implementing a laser drive for
simulating laser-driven shock experiments, in addition to their
original use for active and passive tracer particles. Similarly, an
immersed boundary method for fluid–structure interaction makes
use ofmapping and datamovementmechanics to couple the struc-
turewith the fluid through Lagrangianmarkers. FLASHhas demon-
strated scaling up to 130K cores in production runs and a million
way parallelism in benchmarking on the BG/P and BG/Q platforms
[33,27] respectively.

6 A. Dubey et al. / J. Parallel Distrib. Comput. () –

Fig. 1. Schematic of the Uintah nodal runtime system [64].

3.6. Uintah

Uintah consists of a set of parallel software components and li-
braries in a framework that can integratemultiple simulation com-
ponents, analyze the dependencies and communication patterns
between them, and efficiently execute the resulting multi-physics
simulation. Uintah uses task-graphs in a similar way to Charm++
[50], but with its own unique algorithms. For example Uintah
uses a ‘‘data warehouse’’ through which all data transfer takes
place, andwhich ensures that the user’s code is independent of the
communications layer. Uintah’s task-graph structure of the com-
putation makes it possible to improve scalability through adaptive
self-tuning without necessitating changes to the task graph speci-
fications themselves. This task-graph is used tomapprocesses onto
processors and to make sure that the appropriate communication
mechanisms are in place.

Uintah has been used increasinglywidely since 2008, and a con-
certed effort to improve its scalability has been undertaken [66]
by building upon the visionary design of Parker [77]. Particular
advances made in Uintah are advanced scalable AMR [59,60,57]
coupled to challenging multiphysics problems [58,11], and a load
balancing data assimilation and feedback approach which out-
performs traditional cost models. Uintah originally utilized the
widely-used Berger–Rigoutsos algorithm [9] to perform regrid-
ding. However, at large core counts this algorithm does not
scale [57], requiring a redesigned regridder for such cases. The re-
gridder in Uintah defines a set of fixed-sized tiles throughout the
domain. Each tile is then searched, in parallel, for refinement flags
without the need for communication. All tiles that contain refine-
ment flags become patches. This regridder is advantageous at large
scale because cores only communicate once at the end of regrid-
ding when the patch sets are combined. This approach immedi-
ately led to a substantial increases in the scalability of AMR by a
factor of 20× [58]. The load balancer makes use of profiling-based
cost estimation methods that utilize time series analysis. These
methods provide highly accurate cost estimations that automati-
cally adjust to the changing simulation based upon a novel feed-
back mechanism [58].

A key factor in improving performance is the reduction in wait
time through the dynamic and even out-of-order execution of task-
graphs [66,11]. Uintah reduces its memory footprint through the
use of a nodal shared memory model in which there is one MPI
rank and one global memory (a Uintah data warehouse) per mul-
ticore node, with a thread-based runtime system used to exploit
all the cores on the node [63]. The task-based runtime system is
designed around the premise of asynchronous task execution and
dynamic task management and includes (see Fig. 1) the following
features. Each CPU core andGPU accelerator uses decentralized ex-

ecution [66] and requests its ownwork from task queues. A Shared
Memory Abstraction through Uintah’s data warehouse is used to
achieve lock-free execution by making use of atomic operations
supported by modern CPUs so as to allow scheduling of tasks to
not only CPUs but also to multiple GPUs per nodes. Support is pro-
vided for multiple accelerators per node and for ensuring that task
queues are hosted by the accelerator [48,64]. The nodal runtime
system that makes this possible is shown in Fig. 1. Two queues of
tasks are used to organize work for CPU cores and accelerators in
a dynamic way. This architecture has now also been used success-
fully on Intel Xeon Phi accelerators. All of these optimizations have
resulted in the benchmark fluid–structure interaction. AMR appli-
cation’s demonstrated scalability to 500K cores and beyond on the
Blue Gene Mira at the DOE’s Argonne National Laboratory [65].

4. Performance challenges

Use of SAMR provides an effective compression mechanism for
the solution data by keeping high resolution only where it is most
needed. This data compression comes with certain costs; the man-
agement of mesh is more complex with a lot more meta-data,
and good performance (scaling) is harder to achieve. The design
space is large as observed from the variations found in the SAMR
codes. Some of the performance challenges are inherent in using
SAMR, for example even load distribution among computational
resources. Some others such as memory consumption are artifacts
of design choices. In this section we discuss the impact of design
choices on code manageability and performance.

The dominant design difference between SAMR codes is in
the way the grid hierarchies are managed. Logically the simplest
to manage is the tree with clear parent–child relationship, with
more flexibility proportionately increasing the complexity. The
tree structure combined with the constraint of having identical
number of cells in each block makes FLASH’s meta-data the easiest
to manage and compress. Not surprisingly, FLASH was among the
first SAMR codes to eliminate redundantmeta-data replication. Lo-
cal tree views are easy to construct and do not consume too much
memory. The disadvantage is that compression of solution data is
less efficientwithmanymore blocks being at higher resolution that
they need to be. Other frameworks are more aggressive in limit-
ing unnecessary refinement, though the refinement efficiency is
usually a tunable parameter to allow greater flexibility in resource
usage. The disadvantage is that devising distributed meta-data, or
even compression of meta-data is more difficult. Enzo constrains
its refinement by insisting on a single parent at the coarser level for
each patch in the finer level, thereby allowing some simplifying as-
sumptions in the management of meta-data. Other codes such as
Chombo and BoxLib do not place such constraints in the interest
of allowing maximum flexibility in tagging cells for refinement. In
general, more flexibility in refinement options translates to more
complex meta-data. Chombo, for example, has a mechanism for
compressing the meta-data, but that imposes restrictions on the
size of individual boxes [92]. Replicating meta-data makes man-
agement of the mesh cheaper in communication costs, but more
expensive in memory cost. The scaling limitations of replicating
meta-data are well known, though Chombo team’s contention is
that distributed meta-data has been a premature optimization for
patch-based frameworks. This is because MPI rank count and local
fast memory are growing proportionately on all vendor roadmaps.
However, the straightmeta-data replication is unlikely to persist in
the current form in future versions of these codes. The code that has
gone the farthest in overcoming this limitation is Uintah, which is
also ahead of other codes in embracing newer programming mod-
els.

Achieving balanced load distribution is difficult for all of these
codes not only because of AMR, but also because they supportmul-
tiphysics, where different solvers have different demands on the
communication and memory infrastructure. For example, if spe-
cialized physics such as evaluation of reaction networks is very

A. Dubey et al. / J. Parallel Distrib. Comput. () – 7

localized, some blocks will have much more computational work
than others. Sometimes weighting blocks by the amount of work
helps, but not if different solvers dictate conflicting weighting on
the same blocks. Similarly, with subcycling finer grids do much
more work, therefore appropriately weighting the blocks and dis-
tributing work becomes harder. One possible solution is to dis-
tribute the load on a per level basis on all the available processors.
This achieves load balance at the possible cost of somewhat longer
range communications for filling the guard cells, which is not a
huge cost on moderate processor count. When there is no subcy-
cling, weighting for load per block is easier and a global all-levels
load distribution gives reasonable results. Here the disadvantage
is that coarser levels do redundant work because the time step is
usually dictated by the finest level. For all of these reasons per-
formance and scaling have been major concerns for SAMR codes
and all frameworks adopt some tunability for performance. For ex-
ample ‘‘grid-efficiency’’ in patch based meshes allows for trade-off
between efficiency of solution data compression and load balance.
Similarly parameters likemaximumblock size, the frequency of re-
gridding etc. give some tools to the users to optimize their science
output within given resource constraints. A case study of this kind
of optimization can be found in [33].

5. Future directions

As we anticipate the move to architectures with increasingly
more cores and heterogeneous computational resources per node,
both algorithms and software need to evolve. Uintah is perhaps
ahead of all the other codes in exploiting newer approaches in pro-
gramming abstractions. The future plans for SAMRandothermulti-
physics codes are trending towards removing flexibility from some
partswhile adding flexibility to other parts. For example a common
theme among many patch based codes is to move towards a fixed
block size to allow for easier distributed meta-data management.
Chombo is experimenting with this approach, while Enzo is con-
sidering a transition to octree based code similar to FLASH to avoid
memory fragmentation, difficulty in optimizing solvers, and diffi-
culty in load balancing.

Another common theme is more fine-grained specification of
tasks through some form of tiling (in FLASH, Chombo and BoxLib)
and higher level specification of computational tasks or workflow
items in the schedule (Cactus and Uintah) to improve both paral-
lel efficiency, as well as safety by reducing programming errors.
Dynamic task scheduling already exists in Uintah, others such as
Chombo, Cactus and Boxlib are actively working with researchers
in runtime systems to bring it into their frameworks. The use of
domain specific languages is also under consideration, and is in
different degrees of adoption by different packages. Cactus and
Uintah already deploy some, and are looking at further expansion.
Chombo uses one at C++/Fortran interface, while FLASH uses one
only for configuration purposes. Code transformation and auto-
tuning are under investigation as well, with some deployment in
Cactus and Uintah.

Cactus is using Kranc [49,54] to convert high-level mathemat-
ical expressions and discretized operators into code (C++, CUDA,
or OpenCL), automatically deriving dependency information. A
DSL for Kranc called EDL (Equation Description Language) exists
[12,82], but is not widely used yet. Uintah proposes to use the
Wasatch approach proposed by Sutherland [75], in which the pro-
grammerwrites pieces of code that calculate variousmathematical
expressions, explicitly identifying what data the code requires and
produces/calculates. This code is used to create both dependency
and execution graphs. Uintah will use an embedded DSL called
Nebo to achieve abstraction of field operations, including applica-
tion of discrete operators such as interpolants and gradients [36] in
addition to the directed acyclic graph expressions that expose the
dependency and flow of the calculation.

Several codes are moving to higher order methods as a part of
their strategy for dealing with future architectures. For example,
most Cactus-based physics components employ high-order finite
difference or finite volume methods for numerical calculations,
which can readily be implemented via Cactus’s block-structured
grid functions. This is being extended to support Discontinuous
Galerkin finite element methods. Similarly, almost all applications
using Chombo are nowmoving to 5th or higher-order accuracy. For
example, a new method of Local Correction potential theory ellip-
tical solver based on an extension of the original MLC solver de-
scribed in [62], but extended to higher order and exploiting SIMD
and many-core parallelism, has been implemented in Chombo.
Transitioning to higher order methods is also a part of Boxlib’s and
FLASH’s future plan.

BoxLib and Enzo developers are considering a fundamental
redesign of their time-stepping algorithms, replacing traditional
block-structured AMR with region-based AMR. BoxLib’s region-
based AMR, of which a prototype has been implemented in the
BoxLib framework, replaces the concept of a ‘‘level’’ of data with
the concept of a ‘‘region’’ of data. Regions, like levels, are defined
by their spatial refinement; the difference is thatwhile there is only
one level at any spatial resolution, there may be multiple regions
within a domain that have the same spatial resolution but different
time steps. This enables more efficient time-stepping, as different
physical areas of the flow may require the same spatial resolution
but donot require the same time-step. In someways this resembles
a tree code, in that one can track the regions in a tree structure. The
use of regions also allows more flexible job scheduling of different
parts of the calculation. Enzo’s plan is to take steps to go fromglobal
time-steps to semi-local time steps, and will restrict the possible
time steps in such a way as to make bookkeeping more straight-
forward. BoxLib is also replacing communication-intensive algo-
rithms with communication-avoiding or communication-hiding
algorithms and exploring the use of resilient temporal integration
strategies.

6. Summary and conclusions

The application codes and the infrastructure packages de-
scribed in this survey provide a snapshot of high level frameworks
utilized by multiphysics simulations when using block structured
SAMR techniques. The selected set does not claim to be compre-
hensive; there aremanymore AMR-based codes and infrastructure
packages that are in active use by different communities. Rather,
it is representative of the different approaches, capabilities and
application areas served by AMR. The codes described here share
many common characteristics. They have all been in development
for several years, and are publicly available (see Table 2 for the
download sites). The codes also all have active user communities—
their users can either contribute back to the code base for inclu-
sion in distribution, or develop their own applications within the
framework.

All the releases have core infrastructure support that provides
a layer of abstraction between the physics solver capabilities and
the nitty-gritty of housekeeping details such as domain decompo-
sition, mesh management, and IO. They have interfaces to math
solver libraries for providing more capabilities. Additionally, they
all provide varying degrees of customizability through their frame-
works. All of the codes have been used on multiple generations of
high endHPC platforms and have demonstrated good performance
at scale, as described in their respective sections.

The codes included in this survey share a common concernwith
other similarly extensive codes bases—namely, how to position
themselves with regard to the future platform architectures. They
are large enough that customizing them to a specific machine, let
alone a class of machine architecture, is not a realistic option. Fur-
thermore, the developers of the codes have collectively seen the
advantages of optimizations that are achieved through better engi-
neering of their frameworks over platform-specific optimizations,

8 A. Dubey et al. / J. Parallel Distrib. Comput. () –

Table 2
Where and how to access the different frameworks.

Release For More Info/Where to access How to access Registration
required?

BoxLib ccse.lbl.gov/BoxLib git N
ccse.lbl.gov/Downloads

Cactus cactuscode.org/download, svn, git N
einsteintoolkit.org/download

Chombo commons.lbl.gov/display/chombo svn Y
Enzo enzo-project.org hg N
FLASH flash.uchicago.edu/site/flashcode web Y
Uintah uintah.utah.edu svn N

which tend to have shorter life-span in usability. The codes are
thereforemoving towards restructuring their frameworks through
more abstractions and design simplifications. They are in various
stages of interfacing with the abstractions that have developed
since the time that their frameworks were originally built. Though
Uintah is ahead in deployment of runtime systems, other codes
are not far behind since future architectures dictate the need to
eliminate the bulk synchronous model that most codes currently
employ. The convergence of application needs in the face of a
more challenging HPC landscape and the maturation of technolo-
gies such as task-graph-based runtime, embedded DSLs and code
transformation is set to transform the landscape of multiphysics
application code frameworks in the next few years. The codes de-
scribed in this survey, because they are critical research tools for
many scientific domains, are likely to be among the first to attempt
and to successfully go through this transformation.

Acknowledgments

BoxLib Much of the BoxLib development over the past 20+
years has been supported by the Applied Mathematics Program
and the SciDACprogramunder theUSDOEOffice of Science at LBNL
under contract No. DE-AC02-05CH11231. Scaling studies of BoxLib
have used resources of NERSC and OLCF, which are supported by
the Office of Science of the US DOE under Contract No. DE-AC02-
05CH11231, and DE-AC05-00OR22725 respectively.

Cactus Cactus is developed with direct and indirect support
from a number of different sources, including support by the US
National Science Foundation under the grant numbers 0903973,
0903782, 0904015 (CIGR) and 1212401, 1212426, 1212433,
1212460 (Einstein Toolkit), 0905046 (PetaCactus), 1047956
(Eclipse/PTP), a German Deutsche Forschungsgemeinschaft grant
SFB/Transregio 7 (Gravitational Wave Astronomy), and a Canada
NSERC grant. Computational resources are provided by Louisiana
State University (allocation hpc_cactus), by the Louisiana Opti-
cal Network Initiative (allocations loni_cactus), by the US Na-
tional Science Foundation through XSEDE resources (allocations
TG-ASC120003 and TG-SEE100004), the Argonne National Labora-
tory, NERSC, and Compute Canada.

Chombo Chombo was started in 1998 and has been in con-
tinuous development since then at Lawrence Berkeley National
Laboratory, primarily supported by the US DOE Office of Science
at LBNL under Contract No. DE-AC02-05CH11231, and supported
for a short time by the NASA Computation Technologies Project
(2002–2004).

Enzo The Enzo code has been continuously developed since
1995 by the NSF, NASA, and DOE, as well as by the National Center
for Supercomputing Applications, the San Diego Supercomputing
Center, and several individual universities. Please consult [14] for
the full list of funding sources—notably, Enzo has been funded by
the NSF Office of Cyber-Infrastructure through the PRAC program
(grant OCI-0832662).

FLASH The FLASH code was in part developed by the US DOE-
supported ASC/Alliance Center for Astrophysical Thermonuclear

Flashes at the University of Chicago under grant B523820. The
continued development has been supported in part by the US DOE
NNSA ASC through the Argonne Institute for Computing in Science
under field work proposal 57789, and by NSF Peta-apps grant
5-27429.

Uintah Uintah was originally developed at the University of
Utah’s Center for the Simulation of Accidental Fires and Explosions
(C-SAFE) funded by the US DOE, under Subcontract No. B524196.
Subsequent support was provided by the National Science Founda-
tion under Subcontract No. OCI0721659, Award No. OCI 0905068
and by DOE INCITE awards CMB015 and CMB021 and DOE NETL
for funding under NET DE-EE0004449. Applications development
of Uintah has been supported by a broad range of funding fromNSF
and DOE.

References

[1] G. Allen, T. Goodale, F. Löffler, D. Rideout, E. Schnetter, E.L. Seidel, Component
Specification in the Cactus Framework: The Cactus Configuration Language,
in: Grid2010: Proceedings of the 11th IEEE/ACM International Conference on
Grid Computing, 2010.

[2] G. Allen, F. Löffler, T. Radke, E. Schnetter, E. Seidel, Integrating Web 2.0
technologies with scientific simulation codes for real-time collaboration,
in: Cluster Computing and Workshops, 2009. Cluster ’09. IEEE International
Conference, ISSN 1552-5244, 2009. pp. 1–10. http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?reload=true&arnumber=5289130. http://dx.doi.org/10.1109/
CLUSTR.2009.5289130.

[3] A.S. Almgren, V.E. Beckner, J.B. Bell, M.S. Day, L.H. Howell, C.C. Joggerst, M.J.
Lijewski, A. Nonaka, M. Singer, M. Zingale, CASTRO: a new compressible
astrophysical solver. I. hydrodynamics and self-gravity, Astrophys. J. 715
(2010) 1221–1238.

[4] A.S. Almgren, J.B. Bell,M. Lijewski, Z. Lukic, E.V. Andel, Nyx: amassively parallel
AMR code for computational cosmology, Astrophys. J. 765 (2013) 39.

[5] AMRCLAW, 2009. http://depts.washington.edu/clawpack/users/amrclaw.
[6] E. Ateljevich, P. Colella, D. Graves, T. Ligocki, J. Percelay, P. Schwartz, Q. Shu,

CFDModeling in the San Francisco Bay and Delta, in: Proceedings of the Fourth
SIAM Conference on Mathematics for Industry MI09, 2009, 2010.

[7] M. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynam-
ics, J. Comput. Phys. 82 (1) (1989) 64–84.

[8] M. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial
differential equations, J. Comput. Phys. 53 (3) (1984) 484–512.

[9] M. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation,
IEEE Trans. Syst. Man Cybern. 21 (5) (1991) 1278–1286.

[10] M. Berzins, Status of Release of the Uintah Computational Framework, Tech.
Rep. UUSCI-2012-001, Scientific Computing and Imaging Institute, 2012.
http://www.sci.utah.edu/publications/SCITechReports/UUSCI-2012-001.pdf.

[11] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. Wight, J. Peterson, Uintah - A
Scalable Framework for Hazard Analysis, in: TG ’10: Proc. of 2010 TeraGrid
Conference, ACM, New York, NY, USA, ISBN: 978-1-60558-818-6, 2010.

[12] M. Blazewicz, I. Hinder, D.M. Koppelman, S.R. Brandt,M. Ciznicki,M. Kierzynka,
F. Löffler, E. Schnetter, J. Tao, From physics model to results: an optimizing
framework for cross-architecture code generation, Sci. Program 21 (1–2)
(2013).

[13] BoxLib, 2011. https://ccse.lbl.gov/BoxLib.
[14] G.L. Bryan, M.L. Norman, B.W. O’Shea, T. Abel, J.H. Wise, M.J. Turk,

D.R. Reynolds, D.C. Collins, P. Wang, S.W. Skillman, B. Smith, R.P. Harkness,
J. Bordner, J.-h. Kim, M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, A.G. Kritsuk,
E. Tasker, S. Skory, C.M. Simpson, O. Hahn, J.S. Oishi, G.C. So, F. Zhao, R.
Cen, Y. Li, The Enzo Collaboration, ENZO: An adaptive mesh refinement code
for astrophysics, Astrophys. J. Suppl. 211, 19. http://dx.doi.org/10.1088/0067-
0049/211/2/19.

[15] Cactus developers, Cactus Computational Toolkit, 2013 http://www.
cactuscode.org/.

http://ccse.lbl.gov/BoxLib
http://ccse.lbl.gov/Downloads
http://cactuscode.org/download
http://einsteintoolkit.org/download
http://commons.lbl.gov/display/chombo
http://enzo-project.org
http://flash.uchicago.edu/site/flashcode
http://uintah.utah.edu
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://dx.doi.org/10.1109/CLUSTR.2009.5289130
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref3
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref4
http://depts.washington.edu/clawpack/users/amrclaw
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref7
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref8
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref9
http://www.sci.utah.edu/publications/SCITechReports/UUSCI-2012-001.pdf
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref11
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref12
https://ccse.lbl.gov/BoxLib
http://dx.doi.org/10.1088/0067-0049/211/2/19
http://dx.doi.org/10.1088/0067-0049/211/2/19
http://dx.doi.org/10.1088/0067-0049/211/2/19
http://www.cactuscode.org/
http://www.cactuscode.org/
http://www.cactuscode.org/
http://www.cactuscode.org/

A. Dubey et al. / J. Parallel Distrib. Comput. () – 9

[16] Carpet developers, Carpet: Adaptive Mesh Refinement for the Cactus
Framework, 2013. http://www.carpetcode.org/.

[17] CASC, SAMRAI Structured Adaptive Mesh Refinement Application Infrastruc-
ture (https://computation.llnl.gov/casc/SAMRAI/), Center for Applied Scien-
tific Computing, Lawrence Livermore National Laboratory, 2007.

[18] P. Colella, M. Dorr, J. Hittinger, D. Martin, High-order finite-volume methods
in mapped coordinates, J. Comput. Phys. 230 (2011) 2952–2976.

[19] P. Colella, D.T. Graves, B.J. Keen, D. Modiano, A Cartesian grid embedded
boundary method for hyperbolic conservation laws, J. Comput. Phys.
(ISSN: 0021-9991) 211 (1) (2006) 347–366. http://www.sciencedirect.com/
science/article/pii/S0021999105002780. http://dx.doi.org/10.1016/j.jcp.2005.
05.026.

[20] P. Colella, D. Graves, T. Ligocki, D. Modiano, B.V. Straalen, EBC hombo
software package for Cartesian grid embedded boundary applications, 2003.
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebchombo.pdf.

[21] P. Colella, D. Graves, T. Ligocki, D. Modiano, B.V. Straalen, EBAMRTools:
EBChombo’s adaptive refinement library, 2003. http://davis.lbl.gov/APDEC/
old/designdocuments/ebamrtools.pdf.

[22] P. Colella, D. Graves, T. Ligocki, D. Modiano, B.V. Straalen, EBAMRGodunov,
2003. http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.
pdf.

[23] P. Colella, D. Graves, N. Keen, T. Ligocki, D. Martin, P. McCorquodale,
D. Modiano, P. Schwartz, T. Sternberg, B. Van Straalen, Chombo Software
Package for AMRApplications Design Document, Tech. Rep., Lawrence Berkely
National Laboratory, Applied Numerical Algorithms Group, Computational
Research Division, 2009.

[24] S. Cornford, D. Martin, D. Graves, D. Ranken, A. LeBrocq, R. Gladstone, A. Payne,
E. Ng, W. Lipscomb, Adaptive Mesh, finite-volume modeling of marine ice
sheets, J. Comput. Phys. 232 (1) (2013) 529–549.

[25] R.K. Crockett, P. Colella, D.T. Graves, A Cartesian grid embedded boundary
method for solving the Poisson and heat equations with discontinuous
coefficients in three dimensions, J. Comput. Phys. (ISSN: 0021-9991) 230
(2011) 2451–2469. http://dx.doi.org/10.1016/j.jcp.2010.12.017.

[26] A.J. Cunningham, A. Frank, P. Varnière, S. Mitran, T.W. Jones, Simulating
magnetohydrodynamical flow with constrained transport and adaptive mesh
refinement: algorithms and tests of the AstroBEAR code, Astrophys. J. Suppl.
Ser. 182 (2) (2009) 519. http://stacks.iop.org/0067-0049/182/i=2/a=519.

[27] C. Daley, J. Bachan, S. Couch, A. Dubey, M. Fatenejad, B. Gallagher,
D. Lee, K. Weide, Adding shared memory parallelism to FLASH for many-
core architectures, in: TACC-Intel Highly Parallel Computing Symposium,
2012, (submitted Feb 22, 19:27 GMT) http://www.easychair.org/conferences/
submission.cgi?a=a0b8e6e0ccc3;submission=967097.

[28] M. Day, J. Bell, Numerical simulation of laminar reacting flows with complex
chemistry, Combust. Theory Modell. 4 (2000) 535–556.

[29] R. Deiterding, AMROC-blockstructured adaptive mesh refinement in object-
oriented C++, 2002.

[30] T. Deschamps, P. Schwartz, D. Trebotich, P. Colella, D. Saloner, R. Malladi,
Vessel Segmentation and Blood Flow Simulation Using Level-Sets and
Embedded Boundary Methods, in: International Congress Series, vol. 1268,
2004, pp. 75–80.

[31] M.R. Dorr, R.H. Cohen, P. Colella, M.A. Dorf, J. A.F. Hittinger, D.F. Martin,
Numerical Simulation of Phase Space Advection in Gyrokinetic Models of
Fusion Plasmas, in: Proceedings of the 2010 Scientific Discovery through
Advanced Computing (SciDAC Conference, Chattanooga, Tennessee, July
11–15, 2010, Oak Ridge National Laboratory, 2010, pp. 42–52. http://
computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf.

[32] A. Dubey, K. Antypas, M. Ganapathy, L. Reid, K. Riley, D. Sheeler, A. Siegel,
K. Weide, Extensible component-based architecture for FLASH a massively
parallel, multiphysics simulation code, Parallel Comput. 35 (10–11) (2009)
512–522.

[33] A. Dubey, A. Calder, C. Daley, R. Fisher, C. Graziani, G. Jordan, D. Lamb,
L. Reid, D.M. Townsley, K. Weide, Pragmatic optimizations for better scientific
utilization of large supercomputers, Internat. J. High Perform. Comput. Appl.
27 (3) (2013) 360–373.

[34] A. Dubey, C. Daley, J. ZuHone, P. Ricker, K. Weide, C. Graziani, Imposing a La-
grangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in
FLASH, ApJ. Supp. 201 (2) (2012) 27. http://stacks.iop.org/0067-0049/201/27.
http://dx.doi.org/10.1088/0067-0049/201/2/27.

[35] A. Dubey, L. Reid, R. Fisher, Introduction to FLASH 3.0 with application to
supersonic turbulence, Phys. Scripta T132 (2008) topical Issue on Turbulent
Mixing and Beyond, results of a conference at ICTP, Trieste, Italy, August 2008.

[36] C. Earl, J. Sutherland, M. Might, Nebo: A Domain-Specific Language for
High-Performance Computing, Technical Report UUCS-12-032, School of
Computing, University of Utah, 2013.

[37] EinsteinToolkit maintainers, Einstein Toolkit: Open software for relativistic
astrophysics, 2013. http://einsteintoolkit.org/.

[38] Enzo developers, Enzo astrophysical AMR code, 2013. http://enzo-project.org/.
[39] P. MacNeice, K. Olson, C. Mobarry, R. de Fainchtein, C. Packer, PARAMESH:

a parallel adaptive mesh refinement community toolkit, Comput. Phys.
Commun. 126 (3) (2000) 330–354.

[40] B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb, P. MacNeice,
R. Rosner, J.W. Truran, H. Tufo, FLASH: an adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes, Astrophys. J., Suppl. 131
(2000) 273–334. http://dx.doi.org/10.1086/317361.

[41] GeoClaw, 2009. http://depts.washington.edu/clawpack/users/geoclaw.

[42] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, J. Shalf, The
Cactus framework and toolkit: design and applications, in: Vector and Parallel
Processing – VECPAR’2002, 5th International Conference, in: Lecture Notes in
Computer Science, Springer, Berlin, 2003. http://edoc.mpg.de/3341.

[43] J.E. Guilkey, T.B. Harman, B. Banerjee, An Eulerian-Lagrangian approach
for simulating explosions of energetic devices, Comput. Struct. 85 (2007)
660–674.

[44] J.E. Guilkey, T.B. Harman, A. Xia, B.A. Kashiwa, P.A. McMurtry, An Eule-
rian–Lagrangian approach for large deformation fluid–structure interaction
problems, Part 1: Algorithm development, in: Fluid Structure Interaction II,
WIT Press, Cadiz, Spain, 2003.

[45] T.B. Harman, J.E. Guilkey, B.A. Kashiwa, J. Schmidt, P.A. McMurtry, An Eule-
rian–Lagrangian approach for large deformation fluid–structure interaction
problems, Part 1: multi-physics simulations within a modern computational
framework, in: Fluid Structure Interaction II, WIT Press, Cadiz, Spain, 2003.

[46] W.D. Henshaw, D.W. Schwendeman, Parallel computation of three-
dimensional flows using overlapping grids with adaptive mesh refinement,
J. Comput. Phys. 227 (16) (2008) 7469–7502.

[47] R. Hornung, S. Kohn, Managing application complexity in the SAMRAI object-
oriented framework, Concurrency Comput.: Pract. Exp. 14 (5) (2002) 347–368.

[48] A. Humphrey, Q. Meng, M. Berzins, T. Harman, Radiation modeling using the
uintah heterogeneous CPU/GPU runtime system, in: Proceedings of the 1st
Conference of the Extreme Science and Engineering Discovery Environment
XSEDE 2012, ACM, 2012. http://dx.doi.org/10.1145/23357552335791.

[49] S. Husa, I. Hinder, C. Lechner, Kranc: a Mathematica application to generate
numerical codes for tensorial evolution equations, Comput. Phys. Commun.
174 (2006) 983–1004.

[50] L.V. Kale, E. Bohm, C. L. Mendes, T.Wilmarth, G. Zheng, Programming petascale
applications with Charm++ and AMPI, Petascale Comput.: Algorithms Appl. 1
(2007) 421–441.

[51] B. Kashiwa, E. Gaffney, Design basis for CFDLIB, Tech. Rep. LA-UR-03-1295, Los
Alamos National Laboratory, 2003.

[52] B. Kashiwa, M. Lewis, T. Wilson, Fluid–Structure Interaction Modeling, Tech.
Rep. LA-13111-PR, Los Alamos National Laboratory, 1996.

[53] O. Korobkin, G. Allen, S.R. Brandt, E. Bentivegna, P. Diener, J. Ge,
F. Löffler, E. Schnetter, J. Tao, Runtime analysis tools for parallel scien-
tific applications, in: Proceedings of the 2011 TeraGrid Conference: Extreme
Digital Discovery TG ’11, ACM, New York, NY, USA, ISBN: 978-1-4503-0888-5,
2011, pp. 22:1–22:8. http://dx.doi.org/10.1145/20167412016765.

[54] Kranc, Kranc: Kranc Assembles Numerical Code, 2013. http://kranccode.org/.
[55] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder,

B.C. Mundim, C.D. Ott, E. Schnetter, G. Allen, M. Campanelli, P. Laguna,
The Einstein Toolkit: A Community Computational Infrastructure for Rel-
ativistic Astrophysics, Classical Quantum Gravity 29 (11) (2012) 115001.
http://dx.doi.org/10.1088/0264-9381/29/11/115001.

[56] P.S. Li, D.F. Martin, R.I. Klein, C.F. McKee, A stable, accurate methodology for
highMachnumber, strongmagnetic fieldMHD turbulencewith adaptivemesh
refinement: resolution and refinement studies, Astrophys. J. 745 (2) (2012)
article id. 139, 13 pp.

[57] J. Luitjens, M. Berzins, Scalable parallel regridding algorithms for block-
structured adaptive mesh refinement, Concurr. Comput.: Pract. Exper. 23 (13)
(2011) 1522–1537.

[58] J. Luitjens, M. Berzins, Improving the Performance of Uintah: A Large-
Scale Adaptive Meshing Computational Framework, in: Proc. of the 24th
IEEE Int. Parallel and Distributed Processing Symposium, IPDPS10, 2010.
http://www.sci.utah.edu/publications/luitjens10/Luitjens_ipdps2010.pdf.

[59] J. Luitjens, M. Berzins, T. Henderson, Parallel space-filling curve generation
through sorting, Concurr. Comput.: Pract. Exper. (ISSN: 1532-0626) 19 (10)
(2007) 1387–1402.

[60] J. Luitjens, B. Worthen, M. Berzins, T. Henderson, Scalable parallel amr
for the Uintah multiphysics code, in: Petascale Computing Algorithms and
Applications, chap, Chapman and Hall/CRC, 2007.

[61] D.J. McComas, D. Alexashov, M. Bzowski, H. Fahr, J. Heerikhuisen,
V. Izmodenov, M.A. Lee, E. Möbius, N. Pogorelov, N.A. Schwadron, G.P.
Zank, The heliosphere’s interstellar interaction: no bow shock, Science 336
(2012) 1291. http://dx.doi.org/10.1126/science.1221054.

[62] P. McCorquodale, P. Colella, G. Balls, S. Baden, A local corrections algorithm
for solving Poisson’s equation in three dimensions., Commun. Appl. Math.
Comput. Sci. 2 (1) (2007) 57–81.

[63] Q. Meng, M. Berzins, Scalable large-scale fluid–structure interaction solvers
in the Uintah framework via hybrid task-based parallelism algorithms,
Concurrency Computat.: Pract. Exper. 26 (7) (2014) 1388–1407.

[64] Q. Meng, A. Humphrey, M. Berzins, The Uintah framework: a unified
heterogeneous task scheduling and runtime system, in: Digital Proceedings of
The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC12) - WOLFHPC Workshop, ACM, 2012.

[65] Q. Meng, A. Humphrey, J. Schmidt, M. Berzins, Preliminary experiences with
the uintah framework on Intel Xeon Phi and stampede, in: Proceedings of
the Conference on Extreme Science and Engineering Discovery Environment:
Gateway to Discovery (XSEDE ’13), ACM, New York, NY, USA, 2013, http://dx.
doi.org/10.1145/2484762.2484779. Article 48, 8 pages.

[66] Q. Meng, J. Luitjens, M. Berzins, Dynamic task scheduling for the Uintah
framework, in:Many-Task Computing onGrids and Supercomputers (MTAGS),
2010 IEEEWorkshop on, 15-15Nov. 2010, pp. 1–10, http://dx.doi.org/10.1109/
MTAGS.2010.5699431.

http://www.carpetcode.org/
https://computation.llnl.gov/casc/SAMRAI/
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref18
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://www.sciencedirect.com/science/article/pii/S0021999105002780
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebchombo.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/old/designdocuments/ebamrtools.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://davis.lbl.gov/APDEC/WWW/apdec/designdocuments/ebamrhscl.pdf
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref23
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref24
http://dx.doi.org/doi:10.1016/j.jcp.2010.12.017
http://stacks.iop.org/0067-0049/182/i=2/a=519
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://www.easychair.org/conferences/submission.cgi?a=a0b8e6e0ccc3;submission=967097
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref28
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref30
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://computing.ornl.gov/workshops/scidac2010/2010_SciDAC_Proceedings.pdf
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref32
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref33
http://stacks.iop.org/0067-0049/201/27
http://dx.doi.org/doi:10.1088/0067-0049/201/2/27
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref36
http://einsteintoolkit.org/
http://enzo-project.org/
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref39
http://dx.doi.org/doi:10.1086/317361
http://depts.washington.edu/clawpack/users/geoclaw
http://edoc.mpg.de/3341
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref43
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref44
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref45
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref46
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref47
http://dx.doi.org/doi:10.1145/23357552335791
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref49
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref50
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref51
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref52
http://dx.doi.org/doi:10.1145/20167412016765
http://kranccode.org/
http://dx.doi.org/doi:10.1088/0264-9381/29/11/115001
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref56
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref57
http://www.sci.utah.edu/publications/luitjens10/Luitjens_ipdps2010.pdf
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref59
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref60
http://dx.doi.org/doi:10.1126/science.1221054
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref62
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref63
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref64
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1145/2484762.2484779
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431
http://dx.doi.org/10.1109/MTAGS.2010.5699431

10 A. Dubey et al. / J. Parallel Distrib. Comput. () –

[67] Mercurial developers, Mercurial distributed version control system, 2013.
http://mercurial.selenic.com/.

[68] A. Mignone, C. Zanni, P. Tzeferacos, B. van Straalen, P. Colella, G. Bodo, The
PLUTO code for adaptive mesh computations in astrophysical fluid dynamics,
Astrophys. J. Suppl. Ser., 198, 7. http://dx.doi.org/10.1088/0067-0049/198/1/7.

[69] A. Mignone, C. Zanni, P. Tzeferacos, B. van Straalen, P. Colella, G. Bodo, The
PLUTO code for adaptive mesh computations in astrophysical fluid dynamics,
Astrophys. J. Suppl. Ser. 198 (7) (2012) http://dx.doi.org/10.1088/0067-
0049/198/1/7.

[70] F. Miniati, P. Colella, Block structured adaptive mesh and time refinement for
hybrid, hyperbolic + N-body systems, J. Comput. Phys. 227 (1) (2007) 400–430.
http://www.sciencedirect.com/science/article/pii/S0021999107003385.
http://dx.doi.org/10.1016/j.jcp.2007.07.035.

[71] F. Miniati, D.F. Martin, Constrained-transport Magnetohydrodynamics with
Adaptive Mesh Refinement in CHARM, Astrophys. J. Suppl. Ser. 195 (1) (2011)
5. http://stacks.iop.org/0067-0049/195/i=1/a=5.

[72] S. Molins, D. Trebotich, C.I. Steefel, C. Shen, An investigation of the effect of
pore scale flow on average geochemical reaction rates using direct numerical
simulation, Water Resour. Res. 48 (3) (2012).

[73] Z. Mo, A. Zhang, X. Cao, Q. Liu, X. Xu, H. An, W. Pei, S. Zhu, JASMIN: a parallel
software infrastructure for scientific computing, Frontiers Comput. Sci. China
(ISSN: 1673-7350) 4 (4) (2010) 480–488. http://dx.doi.org/10.1007/s11704-
010-0120-5.

[74] A. Nonaka, A. Almgren, J.B. Bell, M.J. Lijewski, C.M. Malone, M. Zingale,
MAESTRO: an adaptive lowmach number hydrodynamics algorithm for stellar
flows, Astrophys. J., Suppl. 188 (2010) 358–383.

[75] P.K. Notz, R.P. Pawlowski, J.C. Sutherland, Graph-based software design
for managing complexity and enabling concurrency in multiphysics PDE
Software, ACM Trans. Math. Software 39 (1) (2012) 1:1–1:21.

[76] Overture, An Object-Oriented Toolkit for Solving Partial Differential Equations
in Complex Geometry. http://www.overtureframework.org.

[77] S.G. Parker, A component-based architecture for parallel multi-physics PDE
simulation, Future Generation Comput. Syst. 22 (2006) 204–216.

[78] S.G. Parker, J. Guilkey, T. Harman, A component-based parallel infrastructure
for the simulation of fluid–structure interaction, Eng. Comput. 22 (2006)
277–292.

[79] G. Pau, A. Almgren, J. Bell, M. Lijewski, A parallel second-order adaptive mesh
algorithm for incompressible flow in porous media, Phil. Trans. R. Soc. A 367
(2009) 4633–4654.

[80] N.V. Pogorelov, S.N. Borovikov, G.P. Zank, L.F. Burlaga, R.A. Decker, E.C. Stone,
Radial velocity along the voyager 1 trajectory: the effect of solar cycle,
Astrophys. J. Lett., 750, L4. http://dx.doi.org/10.1088/2041-8205/750/1/L4.

[81] N.V. Pogorelov, S.T. Suess, S.N. Borovikov, R.W. Ebert, D.J. McComas, G.P. Zank,
Three-dimensional features of the outer heliosphere due to coupling between
the interstellar and interplanetarymagnetic fields. IV. Solar cycle model based
on ulysses observations, Astrophys. J., 772, 2. http://dx.doi.org/10.1088/0004-
637X/772/1/2.

[82] E. Schnetter, Performance and Optimization Abstractions for Large
Scale Heterogeneous Systems in the Cactus/Chemora Framework, 2013.
http://arxiv.org/abs/1308.1343.

[83] E. Schnetter, P. Diener, E.N. Dorband, M. Tiglio, A multi-block infrastructure
for three-dimensional time-dependent numerical relativity, Class. Quantum
Grav. 23 (2006) S553–S578. http://dx.doi.org/10.1088/0264-9381/23/16/S14.

[84] E. Schnetter, S.H. Hawley, I. Hawke, Evolutions in 3-D numerical relativity us-
ing fixed mesh refinement, Classical Quantum Gravity 21 (2004) 1465–1488.
http://dx.doi.org/10.1088/0264-9381/21/6/014.

[85] E.L. Seidel, G. Allen, S.R. Brandt, F. Löffler, E. Schnetter, Simplifying
complex software assembly: the component retrieval language and im-
plementation, in: Proceedings of the 2010 TeraGrid Conference, 2010.
http://dx.doi.org/10.1145/18385741838592.

[86] P.J. Smith, R. Rawat, J. Spinti, S. Kumar, S. Borodai, A. Violi, Large eddy
simulation of accidental fires using massively parallel computers, in: AIAA-
2003-3697, 18th AIAA Computational Fluid Dynamics Conference, 2003.

[87] J. Spinti, J. Thornock, E. Eddings, P. Smith, A. Sarofim, Heat transfer to objects in
pool fires, in transport phenomena in fires, in: Transport Phenomena in Fires,
WIT Press, Southampton, UK, 2008.

[88] D. Sulsky, Z. Chen, H. Schreyer, A particle method for history-dependent
materials, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 118
(1–2) (1994) 179–196. http://www.sciencedirect.com/science/article/pii/
0045782594901120 http://dx.doi.org/10.1016/0045-7825(94)90112-0.

[89] R. Teyssier, Cosmological hydrodynamics with adaptive mesh refinement.
A new high resolution code called RAMSES, Astron. Astrophys. 385 (2002)
337–364. http://dx.doi.org/10.1051/0004-6361:20011817.

[90] M. Thomas, E. Schnetter, Simulation Factory: Taming application configu-
ration and workflow on high-end resources, in: Grid Computing (GRID),
2010 11th IEEE/ACM International Conference on, 2010, pp. 369–378.
http://dx.doi.org/10.1109/GRID.2010.5698010.

[91] B. van der Holst, G. Tóth, I.V. Sokolov, K.G. Powell, J.P. Holloway,
E.S. Myra, Q. Stout, M.L. Adams, J.E. Morel, S. Karni, B. Fryxell, R.P. Drake,
CRASH: A Block-adaptive-mesh code for radiative shock hydrodynamics
implementation and verification, Astrophys. J. Suppl. Ser. 194 (2) (2011) 23.
http://stacks.iop.org/0067-0049/194/i=2/a=23.

[92] B. Van Straalen, P. Colella, D.T. Graves, N. Keen, Petascale block-structured
AMR applications without distributed meta-data, in: Euro-Par 2011 Parallel
Processing, Springer, 2011, pp. 377–386.

[93] W. Zhang, L. Howell, A. Almgren, A. Burrows, J. Bell, CASTRO: a new com-
pressible astrophysical solver. II. Gray radiation hydrodynamics, Astrophys. J.,
Suppl. 196 (2011) 20.

[94] W. Zhang, L. Howell, A. Almgren, J. Burrows, A. Dolence, J. Bell, CASTRO:
a new compressible astrophysical solver. II. Gray radiation hydrodynamics,
Astrophys. J., Suppl. 204 (2013) 7.

[95] M. Zilhão, F. Löffler, An Introduction to the Einstein Toolkit, IJMPA 28 (22–23)
(2013).

Anshu Dubey is a member of the Applied Numerical Al-
gorithms Group at Lawrence Berkeley National Labora-
tory. Before joining LBL she was the Associate Director of
the Flash Center for Computational Science at the Univer-
sity of Chicago. She received her Ph.D. in Computer Sci-
ence (1993) from Old Dominion University and B.Tech. in
Electrical Engineering from Indian Institute of Technology
Delhi (1985). Her research interests are in parallel algo-
rithms, computer architecture and software engineering
applicable to high performance scientific computing,

Ann Almgren is a Staff Scientist in the Computing
Research Department at Lawrence Berkeley National Lab-
oratory. She received her B.A. in physics fromHarvard Uni-
versity, and her Ph.D. in mechanical engineering from the
University of California, Berkeley. Her research interests
include numerical simulation of complexmultiscale phys-
ical phenomena,with a current focus on lowMach number
fluid dynamics, as well as adaptive mesh refinement tech-
niques for evolving multicore architectures.

John Bell is a Senior Staff Scientist and leader of the Center
for Computational Sciences and Engineering at Lawrence
Berkeley National Laboratory. He received his B.S. in
mathematics from MIT, and his Ph.D. in mathematics
from Cornell University. His research focuses on the de-
velopment and analysis of numerical methods for partial
differential equations arising in science and engineering.
He has made contributions in the areas of finite difference
methods, numerical methods for lowMach number flows,
adaptive mesh refinement, interface tracking and parallel
computing. He has also worked on the application of these

numerical methods to problems from a broad range of fields including combustion,
shock physics, seismology, flow in porous media and astrophysics.

Martin Berzins is a Professor of Computer Science in
the School of Computing at the University of Utah and
a member of the Scientific Computing and Imaging
Institute there. Martin obtained his B.S. and Ph.D. degrees
from the University of Leeds in UK, where he founded
the Computational PDEs Unit and became the Research
Dean for Engineering. Martin’s research interests lie in
algorithms and software for the parallel solution of large
scale science and engineering applications.

StevenR. Brandt currently holds a position as adjunct pro-
fessor of computer science, and research staff (IT consul-
tant) at the Center for Computation & Technology (CCT)
at LSU. He received his Ph.D. at the University of Illinois
at Urbana Champaign in 1996. His research interests lie in
computational science and high performance computing.
Steven R. Brandt co-leads the Cactus development team.
His recent work includes adaptive mesh refinement, and
GPU acceleration.

Home page: https://www.cct.lsu.edu/~sbrandt/.

Greg Bryan is an Associate Professor in the Department of
Astronomy at Columbia University. He received his B.Sc.
in physics from the University of Calgary (Canada) and
his Ph.D. from the University of Illinois. His interest is in
theoretical and computational astrophysics—in particular,
computational structure formation. He is the original
creator of the Enzo code (http://enzo-project.org) and is
currently one of the lead developers.

http://mercurial.selenic.com/
http://dx.doi.org/10.1088/0067-0049/198/1/7
http://dx.doi.org/doi:10.1088/0067-0049/198/1/7
http://dx.doi.org/doi:10.1088/0067-0049/198/1/7
http://dx.doi.org/doi:10.1088/0067-0049/198/1/7
http://www.sciencedirect.com/science/article/pii/S0021999107003385
http://dx.doi.org/doi:10.1016/j.jcp.2007.07.035
http://stacks.iop.org/0067-0049/195/i=1/a=5
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref72
http://dx.doi.org/doi:10.1007/s11704-010-0120-5
http://dx.doi.org/doi:10.1007/s11704-010-0120-5
http://dx.doi.org/doi:10.1007/s11704-010-0120-5
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref74
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref75
http://www.overtureframework.org
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref77
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref78
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref79
http://dx.doi.org/10.1088/2041-8205/750/1/L4
http://dx.doi.org/10.1088/0004-637X/772/1/2
http://dx.doi.org/10.1088/0004-637X/772/1/2
http://dx.doi.org/10.1088/0004-637X/772/1/2
http://arxiv.org//abs/1308.1343
http://dx.doi.org/doi:10.1088/0264-9381/23/16/S14
http://dx.doi.org/doi:10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1145/18385741838592
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref87
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://dx.doi.org/10.1016/0045-7825(94)90112-0
http://dx.doi.org/10.1016/0045-7825(94)90112-0
http://dx.doi.org/10.1016/0045-7825(94)90112-0
http://dx.doi.org/10.1016/0045-7825(94)90112-0
http://dx.doi.org/10.1016/0045-7825(94)90112-0
http://dx.doi.org/10.1016/0045-7825(94)90112-0
http://dx.doi.org/10.1016/0045-7825(94)90112-0
http://dx.doi.org/doi:10.1051/0004-6361:20011817
http://dx.doi.org/10.1109/GRID.2010.5698010
http://stacks.iop.org/0067-0049/194/i=2/a=23
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref92
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref93
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref94
http://refhub.elsevier.com/S0743-7315(14)00117-8/sbref95
https://www.cct.lsu.edu/~sbrandt/
http://enzo-project.org

A. Dubey et al. / J. Parallel Distrib. Comput. () – 11

Phil Colella is a Senior Scientist and leads the Ap-
plied Numerical Algorithms Group in the Computational
Research Division at the Lawrence Berkeley National Lab-
oratory, and a Professor in Residence in the Electrical Engi-
neering andComputer ScienceDepartment atUCBerkeley.
Received his A.B. (1974), M.A. (1976) and Ph.D. (1979) de-
grees from the University of California at Berkeley, all in
applied mathematics. He has developed high-resolution
and adaptive numerical algorithms for partial differential
equations and numerical simulation capabilities for a vari-
ety of applications in science and engineering. He has also

participated in the design of high-performance software infrastructure for scientific
computing, including software libraries, frameworks, and programming languages.

Daniel Graves is amember of the Applied Numerical Algo-
rithms Group at Lawrence Berkeley National Laboratory.
He received his B.S. in Mechanical Engineering from Uni-
versity of New Hampshire and his Ph.D. in Mechanical En-
gineering fromUniversity of California, Berkeley. He is one
of core developers of Chombo.

Michael Lijewski is a staff member of the Center for
Computational Sciences and Engineering at Lawrence
Berkeley National Laboratory and is one of the principal
architects and developers of the BoxLib software frame-
work. He received his B.S. in Mathematics from Illinois
Wesleyan University, and his M.S. in Applied Mathemat-
ics from the University of Maryland, College Park. His ar-
eas of expertise include algorithm and software design for
current and future multicore architectures.

Frank Löffler currently holds a position as research staff
(IT consultant) at the Center for Computation & Technol-
ogy (CCT) at LSU. He received his Ph.D. at the Max-Planck-
Institute Potsdam (Albert-Einstein-Institute), Germany in
2005. His research interests lie in computational science
and applications in physics and chemistry. Löffler co-leads
the Cactus development team at LSU and is the headmain-
tainer of the Einstein Toolkit. His recent work includes
adaptive mesh refinement improvements, simulations of
single and binary neutron stars, and path integral calcula-
tions of atoms and molecules.

Home page: https://www.cct.lsu.edu/~knarf/index.html.

Brian O’Shea is an Assistant Professor of Physics and
Astronomy at Michigan State University. He received his
Ph.D. in physics at the University of Illinois in 2005. His
research interests lie in theoretical and computational
astrophysics, and he specializes in the study of galaxies
and the intergalactic medium using high-dynamic-range,
multiphysics cosmological simulations as well as in
performance optimization of large AMR simulations of
self-gravitating fluid flow. He is one of the lead developers
of the Enzo astrophysics code (http://enzo-project.org).

Home page: http://www.pa.msu.edu/~osheabr/.

Erik Schnetter is Research Technologies Group Lead at
the Perimeter Institute for Theoretical Physics in Water-
loo, Ontario, Canada. He received his Ph.D. at the Eberhard-
Karls-Universität Tübingen, Germany in 2003. His
research interests lie in computational science, in using
computers as tools to solve scientific and engineering
problems. His recent work includes adaptive mesh refine-
ment andmulti-blockmethods for relativistic astrophysics
simulations, software frameworks and automated code
generation, as well as sustainable performance optimiza-
tion for modern high-performance computing hardware

architectures.
Home page: http://www.perimeterinstitute.ca/personal/eschnetter/.

Brian Van Straalen is a member of the Applied Numeri-
cal Algorithms Group at Lawrence Berkeley National Lab-
oratory. He received his BAsc in Mechanical Engineering
(1993) and his MMath in Applied Mathematics (1995)
from theUniversity ofWaterloo, Canada and is a Ph.D. can-
didate at UC Berkeley in Computer Science. His research
focuses on software engineering for high performance sci-
entific computing.

KlausWeide is a Research Professional at the Flash Center
for Computational Science at the University of Chicago.
He received Masters and doctoral degrees (1992) in
physics from the University of Göttingen in Germany.
He did research work on the molecular dynamics of
small molecules first at the Max Planck Institute for Fluid
Dynamics in Göttingen and, after 1993, at the University
of Chicago. Klaus joined the Center for Thermonuclear
Astrophysical Flashes at the University of Chicago in 2006
and since then has been working on extending, porting,
maintaining, and supporting the Center’s FLASH code.

https://www.cct.lsu.edu/~knarf/index.html
http://enzo-project.org
http://www.pa.msu.edu/~osheabr/
http://www.perimeterinstitute.ca/personal/eschnetter/

	A survey of high level frameworks in block-structured adaptive mesh refinement packages
	Introduction
	Overview of the codes
	Frameworks
	BoxLib
	Chombo
	Cactus/carpet
	Enzo
	FLASH
	Uintah

	Performance challenges
	Future directions
	Summary and conclusions
	Acknowledgments
	References

