
Colza: Enabling Elastic In Situ Visualization
for High-performance Computing Simulations

Matthieu Dorier†§, Zhe Wang‡§, Utkarsh Ayachit§, Shane Snyder†, Rob Ross† and Manish Parashar‖
†Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439 – Email: {mdorier,ssnyder,rross}@anl.gov

‡Rutgers University, New Jersey – Email: jay.wang@rutgers.edu
§Kitware, Inc. – Email: utkarsh.ayachit@kitware.com

‖University of Utah, Salt Lake City, Utah 84112 – Email: manish.parashar@utah.edu

Abstract—In situ analysis and visualization have grown in-
creasingly popular for enabling direct access to data from high-
performance computing (HPC) simulations. As a simulation
progresses and interesting physical phenomena emerge, however,
the data produced may become increasingly complex, and users
may need to dynamically change the type and scale of in situ
analysis tasks being carried out and consequently adapt the
amount of resources allocated to such tasks. To date, none of the
production in situ analysis frameworks offer such an elasticity
feature, and for good reason: the assumption that the number of
processes could vary during run time would force developers
to rethink software and algorithms at every level of the in
situ analysis stack. In this paper we present Colza, a data
staging service with elastic in situ visualization capabilities. Colza
relies on the widely used ParaView Catalyst in situ visualization
framework and enables elasticity by replacing MPI with a custom
collective communication library based on the Mochi suite of
libraries. To the best of our knowledge, this work is the
first to enable elastic in situ visualization capabilities for HPC
applications on top of existing production analysis tools.

I. INTRODUCTION

In situ analysis and visualization consist of coupling a high-

performance computing (HPC) simulation with an analysis and

visualization framework to get live insight into the simulation’s

evolution. This approach has gained popularity thanks to its

adoption by long-standing parallel visualization software such

as ParaView [1] and VisIt [2]. Resource allocation for in situ

analysis has been the subject of many research works [3], with

solutions ranging from periodically interrupting the simulation

to use its resources, to dedicating resources to in situ tasks.

However, these solutions assume that the visualization work-
load remains similar throughout the simulation’s run time, a

situation that rarely happens in practice. Indeed, as a simula-

tion progresses and complex physical phenomena appear, the

cost of running analysis and visualization algorithms changes,

and the initial resource allocation may no longer be optimal.

As an example, Figure 1a shows the number of cells in

the unstructured mesh produced by the Deep Water Impact

simulation [4] as it progresses, as well as corresponding

file sizes in VTK format. Figure 1b illustrates the volume

rendering of three iterations taken at the beginning, in the

middle, and at the end of the run. This example shows that

not only does the data size increase over time, so does the

rendering complexity, justifying a modest initial allocation of

§These authors contributed equally to the work.

(a) Data size (number of cells and corresponding file sizes) of the dataset.

(b) Rendering of the Deep Water Impact dataset using ParaView.

Fig. 1: Analysis of the data produced by the Deep Water Impact
simulation, and rendering of three iterations at various stages of the
simulation.

visualization resources that are augmented over the course of

the run.

With HPC applications moving towards more complex

workflows, dynamic resource management for in situ analysis

has been identified by the community as a key research

direction to enable faster scientific discoveries [5], [6], [7].

Hence the question arises: Can we make in situ analysis

elastic, that is, capable of accommodating run-time changes in

the number of processes executing analysis/visualization tasks,

without having to restart the entire workflow?

This question is arguably difficult to answer. On the one

hand, existing parallel analysis and visualization frameworks,

and the algorithms and libraries they depend on, all assume

that the number of processes will remain fixed throughout run

time, making their use difficult in an elastic context. The MPI

standard, on which they all rely, does not yet provide sufficient

functionalities to grow and shrink communicators during run

time. On the other hand, designing and implementing a brand

new elastic in situ analysis framework from scratch entail

an enormous amount of work before this framework can

start offering a fraction of the features and performance that

existing, nonelastic frameworks already provide.

538

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00059

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

05
9

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

Therefore, it is critical to be able to provide elasticity using
existing, widely-used in situ visualization technologies.

In this paper we propose Colza, a modular, elastic data-

staging service enabling in situ analysis and visualization via

ParaView/Catalyst. We built Colza using Mochi [8], a set of

building blocks for rapidly developing highly efficient and

portable HPC data services. Colza uses dependency-injection

to replace MPI in ParaView and its image-compositing library

IceT with our own communication layer, called MoNA.

We evaluate Colza with three applications on the Cori

supercomputer at NERSC. Our experiments show that (1)

typical in situ visualization algorithms perform just as well in

Colza when MPI is replaced with our custom communication

layer, making it usable in non-elastic contexts, and (2) our

solution effectively enables adding and removing processes

at run time without needing to restart the simulation nor the

staging area.

To the best of our knowledge, Colza is the first data-staging

service to provide elastic in situ analysis and visualization

capabilities for HPC applications.

The rest of this paper is organized as follows. Section II

presents Colza. Section III evaluates it on the Cori supercom-

puter using three applications, comparing it against an MPI-

based version of the same rendering pipelines and against

state-of-the-art data staging services. Some aspects of elas-

ticity related to job scheduling and triggers are discussed in

Section IV. Section V puts our contribution in perspective with

related work. We conclude in Section VI with a summary and

a discussion of future work.

II. THE COLZA ELASTIC FRAMEWORK

The first challenge posed by elastic in situ analy-

sis comes from the fact that existing parallel analysis

frameworks rely on MPI, which assumes a static num-

ber of processes throughout run time. While MPI provides

MPI_Comm_spawn(_multiple) to spawn new processes

and MPI_Comm_accept/connect to establish connec-

tions, these functionalities are often not implemented by

vendors or have limited support. Proposals to enable com-

municators to grow and shrink have been around for some

time in the context of fault tolerance [9], [10], but no such

features have made it into the standard yet. While we are

hopeful that MPI will eventually provide new functionalities

for dynamic process management, we have to work around

those limitations if we are to implement an elastic solution

right now. In fact, successful use cases of elastic computing
in HPC might be necessary to motivate the inclusion of those
features into the MPI standard.

A second challenge is to be able to rely on existing, widely-

used visualization software, such as ParaView and its in situ

library Catalyst. These frameworks not only provide well-

tested, well-performing analysis and visualization algorithms,

which would be nearly impossible to redesign from scratch

just for the sake of enabling elasticity, they are also familiar

to users, enabling wider adoption of our solution.

In light of these challenges, we developed Colza, an elastic

Mochi runtime

Argobots

NA

MoNA
Mercury

Margo

Colza
Provider

SSG

Pipeline B
Pipeline A

(e.g. ParaView)

Colza framework

Simulation

C
ol

za
 C

lie
nt

ServersClients

Control plane

Analysis and visualization

Group membership

Communication layers

Threading and tasking

RPC

RDMA

Fig. 2: Overview of the Colza architecture.

staging area for in situ analysis and visualization. This section

details its architecture, interface, and implementation.

A. Architecture and interface overview
Colza is based on Mochi, a set of tools created by Argonne

National Laboratory, Carnegie Mellon University, Los Alamos

National Laboratory, and The HDF Group, for developing ef-

ficient HPC data services. Mochi encourages the development

and use of software components managing specific aspects of a

service, such as threading, remote procedure calls (RPCs), and

group management. It relies on Argobots [11] for threading

and on Mercury [12] for RPCs and RDMAs. The Margo

library binds Mercury and Argobots together to hide Mercury’s

network progress loop in an Argobots user-level thread. Margo

is used by Colza for control messages across servers and for

communications with the simulation.

Figure 2 provides an overview of the Colza architecture. In

each staging-area process a Colza provider manages analysis
pipelines, forwarding simulation data to them for processing.

The Colza providers not only interact with the client appli-

cation, they also react to membership changes by registering

callbacks to Mochi’s scalable service groups (SSG) library.

SSG manages group membership and tracks servers as they

join and leave, using the SWIM gossip protocol [13]. To enable

collective communications across staging area processes in

parallel analysis algorithms, we implemented our own custom

communication library, called MoNA. The next sections dive

deeper into each of these individual components.

B. Colza’s core: pipelines and pipeline handles
Central to our framework is the notion of user-provided

pipelines. A pipeline is a C++ object instantiated on each

server that stages incoming data and executes some analysis

tasks on it. Colza pipelines are implemented by the user as

a C++ class inheriting from the abstract colza::Backend
class. They are compiled into shared libraries and dynamically

loaded on demand based on current requirements. They can

include any type of processing, depend on additional libraries

(e.g. we use Catalyst in this paper), and even leverage on-node

accelerators and GPUs. This design allows users to deploy

the staging area without any pipeline to begin with, and later

539

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

decide which pipelines to load and execute based on what

they see happening in their simulation. Pipelines that execute

parallel operations must have an instance on each process of

the staging area.

Pipeline objects provide the following methods, which are

exposed as RPCs to the simulation.

• activate(iteration): tells the pipeline that the

given iteration of analysis is about to start, and freezes

the number of servers, preventing additions and removals

by the group membership component until deactivate
is called .

• stage(... /* data and metadata */ ...):

requests the pipeline to stage some data by pulling it from

the simulation’s memory via RDMA.

• execute(iteration): executes the pipeline’s analysis

function on the staged data.

• deactivate(iteration): tells the pipeline that the

iteration is complete and the staged data can be cleaned

up. Processes may now freely join and leave the staging

area until the next analysis iteration starts.

Colza provides both a C++ and a Python API. Simula-

tion processes interact with pipelines either via a pipeline
handle, which references a specific pipeline in a specific

server, or most often via a distributed pipeline handle, which

references a collection of pipeline instances across multiple

servers. Both interfaces provide the activate, stage,

execute, and deactivate functions to their underlying

remote pipeline(s), as well as non-blocking versions of these

functions. The stage function does not send data directly to

the target pipeline. Instead, it sends a memory handle along

with some metadata (field name, dimensions, type, etc.). The

receiving pipeline instance is responsible for pulling data from

the simulation’s memory using RDMA on the memory handle.

Simulations are expected to issue an activate RPC to

start a new iteration of in situ analysis, followed by one or

more stage RPC to send data, an execute RPC to process

the staged data, and a deactivate RPC to indicate that the

iteration has completed.

When using a distributed pipeline handle, the activate,

execute, and deactivate functions respectively broad-

cast an activate, execute, and deactivate RPC to

all the underlying pipelines, while the stage function selects

an individual pipeline instance to receive each pieces of data.

By default, this selection is based on a block id provided as

part of the metadata, but users can change this policy.

An “admin” interface to the Colza provider, in the form of a

separate library, offers an additional set of RPCs to create and

destroy pipelines and to request a server to leave the staging

area and shut down. The interface to create a pipeline takes

the address of the node in which to deploy it, the name of the

pipeline, the path its shared library, and an optional JSON-

formatted configuration string that the pipeline may use during

initialization. This admin library can be used by the simulation,

by the user via external tools, or by any agent that needs to

modify the size of the staging area or the type of analysis being

carried out. We kept it separate from Colza’s client library

because of the entirely different nature of its functionalities.

C. MoNA: Communications across pipelines
Distributed analysis rarely involves individual pipelines that

can operate without communications. Even a pipeline as

simple as computing an average across the data received

by multiple staging servers needs a reduction operation. To

handle such communications, we developed MoNA,1 a library

built on top of Argobots and NA, Mercury’s messaging

layer. While Mercury provides RPC on top of NA, MoNA

provides collective communications. MoNa was built from

the ground up for an environment where communicating

processes come and go. After initializing a MoNA progress

loop, represented by a mona_instance_t handle, a MoNA

communicator can be built from a list of addresses using

the mona_comm_create(...) function. This list of ad-

dresses is obtained from the group membership component,

SSG, described in Section II-E. From there, MoNA provides

collective communication functions similar to MPI, such as

mona_comm_bcast, mona_comm_reduce, and their non-

blocking counterparts.

We implemented typical tree-based algorithms for collective

operations in MoNA, taking inspiration from the MPICH

source code.2 We do not expect MoNA to perform better

than MPICH or OpenMPI, let alone vendor-provided MPI

implementations tailored to specific platforms, but MoNA

provides at least two advantages over MPI.

First, MoNA can be more easily integrated in the Mochi

ecosystem than MPI. Its use of Argobots makes its progress

loop capable of yielding to other tasks (such as pipeline execu-

tion or control messages) when a user-level thread is blocking

on MoNA communications. In MPI, such communications

would block the core they execute on, preventing other tasks

from executing and therefore wasting resources.3

Second, MoNA does not have a notion of world communi-
cator, and new communicators can be created as desired when

new processes join. This capability makes it much easier to

integrate in a system that aims to be elastic.

D. Integration of VTK, IceT, and ParaView
We used the plugable pipeline mechanism described above,

along with MoNA, to implement concrete pipelines using

ParaView’s Catalyst in situ visualization library. Although

ParaView and its dependencies rely on MPI for parallelism,

the Kitware developers already abstracted communications in

VTK, ParaView, and in the IceT image compositing library.

VTK provides two abstract classes to handle communi-

cations: vtkMultiProcessController and vtkCom-
municator. Both provide an interface for point-to-point

and collective communication functions. Their respective child

classes vtkMPIController and vtkMPICommunica-

1https://github.com/mochi-hpc/mochi-mona/
2https://www.mpich.org/
3At the time of writing, MPICH provides the option to compile with

Argobots support and would also yield to other Argobots threads when
blocking on communication. However, vendor-provided implementations do
not provide this capability.

540

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

tor rely on MPI to provide concrete implementations of

this interface. Other VTK classes are agnostic to this im-

plementation. Hence we were able to replace MPI with

MoNA by implementing a vtkMonaController class and

a vtkMonaCommunicator class. Making VTK use these

classes is done by instantiating a vtkMonaController
and passing it to vtkMultiProcessController’s Set-
GlobalController function prior to setting up the in situ

visualization pipeline.

Similarly, VTK’s image compositing library IceT, written

in C, provides an IceTCommunicator structure that lists

function pointers for point-to-point and collective communica-

tion primitives. The only current implementation of this struc-

ture is based on MPI. We provided our own implementation

based on MoNA.

Neither VTK nor IceT was modified for us to add MoNA

support. ParaView, however, needed to be. ParaView indeed

currently creates an IceTCommunicator from a vtkCom-
municator by downcasting the latter to a vtkMPICommu-
nicator, extracting its internal MPI_Comm handle, and cre-

ating an MPI-based IceTCommunicator from it. To avoid

introducing a dependency on MoNA in ParaView, we added

a factory function mechanism in the vtkIceTContext
class, allowing us to register functions to convert other child

classes of vtkCommunicator into their corresponding IceT

counterpart. We also found that ParaView was initially unable

to be reinitialized with a different communicator. Solving this

issue required the help of Kitware developers.

These modifications make it possible for users to implement

their pipeline the same way they would normally do with

Catalyst, or reuse their existing Catalyst pipelines.

E. Group membership and consistency
Colza uses Mochi’s Scalable Service Group4 (SSG) to

handle group membership. SSG relies on the SWIM protocol,

which provides an eventually consistent view (list of members)

of the group to all its members using gossip. When a new

process joins the staging area, it contacts one of the existing

members. This member sends its view to the new process

and sends the information about the new member to another

randomly selected group member periodically for a given time

period. These group members will also forward this informa-

tion to other randomly selected members. Eventually, all the

processes learn about the new member. The same mechanism

applies when a process leaves the group. To address the fact

that SSG only provides an eventually consistent membership

view, we rely on a two-phase commit (2PC) protocol between

clients and Colza servers to ensure that all the parties have the

same view when activate is called.

We chose this approach to minimize development time,

since SSG is currently the de-facto group membership compo-

nent provided by Mochi. We acknowledge however that other

strategies could have been (and in the future will be) explored.

Due to space constraints, we leave the in-depth evaluation of

the overhead of group management to a future extension of this

4https://github.com/mochi-hpc/mochi-ssg/

paper. Our experiments however show that it does not incur

any overhead if the group hasn’t changed when activate
is called, and an overhead in the order of a second when

the group did change. Furthermore, this overhead depends

on SSG’s configuration parameters such as how frequently

information is exchanged across members.

F. Triggering elasticity
Triggering a change in Colza resources is done differently

depending on whether resources are added or removed.

a) Scaling up

Adding a node requires allocating it via the platform’s re-

source manager and starting a Colza daemon on it. The Colza

daemon will read connection information from a file generated

by existing Colza processes and use SSG to automatically

join the existing group. The addition of a node can therefore

be triggered by any entity (in particular the user) with the

ability to request node allocations from the resource manager.

The scientific application itself, or even existing processes of

the staging area, could request such addition, provided that

a mechanism is available for them to request resources. This

could be implemented for example using PMIx [14]. In our

experiments in Section III, a job script periodically launches

new Colza processes on new nodes.

b) Scaling down

Removing a node is done by sending an RPC to that

node, requesting it to leave the staging area. This is done

using Colza’s admin library. This library can be used by the

simulation itself (e.g. if the simulation is able to assess its

in-situ requirements), the user via a standalone program, the

resource manager, or Colza itself.

Overall, Colza offers various ways of triggering elasticity,

which will enable us in the future to study multiple ways of

leveraging it, from user-driven interactive in situ analysis, to

AI-based monitoring and autotuning methods.

III. EVALUATION

In the following, we evaluate our Colza in situ service.

More specifically, we first show that adding new nodes via

SSG is faster than restarting the full service. We then compare

the performance of MoNA against MPI for relevant collective

communication operations, in a standalone manner and within

the context of in situ visualization tasks. We also show that

Colza’s performance is on par with two state-of-the-art in

situ analysis frameworks: Damaris and DataSpaces. Finally we

show that Colza effectively enables elasticity by incrementally

adding server nodes while a simulation is running.

A. Platform and applications
We evaluate Colza on NERSC’s Cray XC40 Cori super-

computer,5 using its Haswell partition, which contains 2,388

compute nodes equipped with 32 Intel Xeon E5-2698 v3

1.4 GHz processors and 128 GB DDR4 2133 MHz memory.

These nodes are interconnected via a Cray Aries network

5https://docs.nersc.gov/systems/cori/

541

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

arranged in a Dragonfly topology with more than 45 TB/s

global peak bisection bandwidth.

Aside from benchmarks, we rely on three applications as

the data sources for our experiments.

The Gray–Scott simulation6 uses reaction-diffusion equa-

tions to simulate complex spatial and temporal patterns [15].

It uses a three-dimensional Cartesian partitioning of a regular

grid across its processes, generating the same amount of data

per process at every iteration.

The Mandelbulb miniapp7 produces a three-dimensional

Mandelbrot fractal [16] and aims at stressing visualization

pipelines with complex mesh geometries. It also uses a regular

grid, but this grid is partitioned across processes along the z
axis, and each process may be in charge of multiple blocks.

Both Gray–Scott and Mandelbulb were originally written as

examples for tutorials on the ADIOS I/O system [17] and the

ParaView/Catalyst in situ library, respectively.

The Deep Water Impact (DWI) proxy is a Python

application that we wrote, based on the mpi4py and meshio
libraries. It reads VTU files produced by the Deep Water

Impact simulation [4], and feeds the data into an in situ

visualization framework. We use it with a subset of the Deep

Water Impact Ensemble Dataset [18] in place of the real

simulation for simplicity. The simulation that produced this

dataset originally ran on 512 processes, for 30,000 iterations.

We use files corresponding to 30 of these iterations, roughly

equally spaced throughout the run.8 At every iteration, the

DWI proxy reads the 512 corresponding VTU files, distribut-

ing them evenly across available client processes. Each file

contains an unstructured mesh along with point and cell data.

The modular implementation of Colza described in Sec-

tion II-D, along with ParaView Catalyst’s ability to run Python

scripts in situ, make it easy for us to express visualization

tasks as scripts directly exported from ParaView. Figure 3

illustrates the rendered results for Mandelbulb and Gray–Scott.

For the Gray–Scott application, we combine multiple levels of

isosurfaces with clipping to look at what is happening inside

the domain. Figure 3a shows the seed of the simulation at

the center, in blue, surrounded by random noise, in red. For

Mandelbulb, we use a single level of isosurface. The pipeline

used for DWI includes block merging, followed by volume

rendering of the unstructured mesh, colored with the velocity

field. The rendered result was shown in Figure 1b.

In all our experiments, the application and Colza use distinct

nodes. The application runs on a fixed number of nodes,

whereas Colza may use a varying number of nodes if elasticity

is enabled.

B. Advantages of elasticity in resizing times
The first set of experiments aims to show how much time

is required to increase the size of a staging area. Since it re-

quires asking the job manager for resources, which could take

6https://github.com/pnorbert/adiosvm/tree/master/Tutorial/gray-scott
7https://github.com/mdorier/MandelbulbCatalystExample
8For simplicity in this paper we renumbered the iterations 1 to 30 rather

than keeping the original iteration numbers. Original iteration numbers are
shown in Figure 1a.

(a) Gray–Scott (b) Mandelbulb

Fig. 3: Rendered results of simulations

Fig. 4: Resizing times from a staging area of N processes to a staging
area of N+1 processes, using either a static or an elastic deployment.

anywhere from seconds to hours depending on the machine’s

activities, we leave job-manager aspects aside and we consider

what happens from the instant the job manager gives us extra

nodes to work with.9

We measure how long it takes for the staging area to go

from n to n + 1 nodes, using two strategies: (1) in a static

deployment we kill the staging area and fully restart it on a

new number of nodes, measuring the time between the kill

signal and the moment the new staging area is ready to accept

client requests; (2) in an elastic deployment we add a new

node without shutting down the existing ones and rely on SSG

to propagate the membership information, measuring the time

between the srun command that deployed the new node and

the moment the membership information has fully propagated.

In both cases we wait 60 seconds between each rescaling to

make sure the staging are has reached a stable state.

Figure 4 shows the result of this experiment. The elastic

deployment offers a stable resizing time averaging 5 seconds,

while the static deployment has a larger and more unpre-

dictable resizing time, ranging from 5 seconds to more than

40 seconds and averaging 16 seconds.

C. Overhead of the MoNA communication layer
We now evaluate whether replacing MPI with our own

communication layer causes any performance degradation on

the visualization pipeline. We first use benchmarks to compare

9In practice we allocate a job with the maximum number of nodes upfront.

542

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

Message size Cray-mpich OpenMPI MoNA NA
8 bytes 1.163 1.527 1.924 2.103
128 bytes 1.215 1.608 1.985 2.122
2 KiB 1.709 2.12 2.714 2.766
16 KiB 5.247 61.451 14.087 -
32 KiB 6.773 59.279 15.305 -
512 KiB 56.371 109.472 72.69 -

TABLE I: Time (in milliseconds) to complete 1000 send/recv oper-
ations using Cray-mpich, OpenMPI, MoNA, and NA.

Message size Cray-mpich OpenMPI MoNA
8 B 93.7 204.8 225.1
128 B 90.7 229.9 228.8
2 KiB 92.3 816.3 250.9
16 KiB 79.2 54253.9 304.0
32 KiB 122.8 219104.5 527.9

TABLE II: Time (in milliseconds) to complete 1000 binary-xor
reduce operations using Cray-mpich, OpenMPI, and MoNA.

MoNA’s performance against MPI. We then use the three

applications described in Section III-A with their respective

VTK-based pipelines.

1) Communication benchmarks
As a preliminary experiment, we use benchmarks to com-

pare MPI and MoNA’s point-to-point and collective perfor-

mance. For MPI, we use Cray-mpich and OpenMPI, both

available as modules on Cori by default. Table I shows the

performance of point-to-point communications as a function

of the message size. While Cray-mpich generally outperforms

all other libraries, MoNA outperforms OpenMPI for large

messages (16 KiB and more), probably thanks to its switching

to RDMA rather than a rendez-vous protocol. For small

messages, we also provide the performance of NA. Despite

being built on top of NA, MoNA outperforms it by caching and

reusing requests and message buffers, avoiding many small

allocations in the process.

Next, we benchmark the performance of these libraries for

a reduce operation. We chose this operation as an example of

collective because it is at the core of the image-compositing

algorithm used for parallel rendering. We run the reduce

operation on 32 nodes using 16 ranks per node, for a total

of 512 processes. Table II shows that once again Cray-

mpich outperforms MoNA and OpenMPI. This time however,

OpenMPI’s performance rapidly degrades to become 1800×
slower than Cray-mpich, while MoNA is “only” 4.3× slower.

These results show that while MoNA does not outperform

a vendor-optimized MPI implementation like Cray-mpich (we

would be surprised if it did), which directly relies on the uGNI

library rather than going through several software layers like

MoNA and OpenMPI do, it is on par with an open-source MPI

implementation like OpenMPI, even outperforming it with

naive algorithms. Indeed, MoNA’s reduce algorithm is a sim-

ple binary-tree-based reduction. We expect that implementing

more optimized collectives in MoNA, along with using AVX2

instructions to speed up processing, could further improve

its performance. The performance of Cray-mpich shows how

much we could gain by having at our disposal a vendor-

optimized, elastic MPI implementation, instead of needing to

rely on MoNA.

In the following sections, comparisons will only be made

against Cray-mpich, since it is the best-performing MPI im-

plementation on Cori.

2) Mandelbulb
We set up the Mandelbulb application to run on up to 512

processes spread across up to 16 nodes (using 32 processes per

node). Each client process generates 4 blocks of data, of size

128×128×128 integers (8 MB per blocks). We run Colza such

that each Colza node runs 4 Colza processes, and each Colza

process serves 4 client processes,10 leading to a staging area

spanning 4 to 128 processes, for a weak-scaling evaluation

scenario (the amount of data to process is proportional to

the number of Colza servers). We use a Python-based VTK

pipeline that we execute for 6 iterations of the application.

This pipeline may use either MPI or MoNA as communi-

cation layer. We discard the timing of the first iteration in

our measurements: this timing is indeed highly variable and

significantly larger than that of subsequent iterations because

of VTK loading dynamic libraries and initializing a Python

interpreter. We compute the average of the next 5 iterations.

Figure 5 shows the resulting average pipeline execution time.

From these results, we can see that despite performing worse
than MPI in benchmarks, our MoNA-based communication
layer does not introduce any significant overhead when used
in a real analysis pipeline.11 This is due to the fact that our

pipeline is computation-intensive rather than communication-

intensive. In situ visualization, which represents a subset of

in situ analysis, has this advantage that its algorithms are

generally embarrassingly parallel, requiring communication

only for a final image-compositing step. More communication-

intensive algorithms (e.g. Voronoi tessellation) might struggle

more with MoNA at present.

3) Gray–Scott
We ran the Gray–Scott application with 512 processes on 16

nodes and a full domain size of 2 GB for each iteration. Every

process generates a fixed portion of the whole data evenly.

The staging area is deployed on 4 to 128 processes (1 to 16

nodes) to provide a strong-scaling use-case (fixed total amount

of data for a varying number of processes). Figure 6 shows the

average resulting pipeline execution time for 5 iterations. For

this application as well, we notice little difference in execution

time between MoNA and MPI.

4) Deep Water Impact
We run the DWI proxy on 2 client nodes, with 16 client

processes per node. Since each iteration in the dataset consists

of 512 VTU files, each process reads 16 files per iteration and

sends the data to Colza via its Python interface. Contrary to

Mandelbulb and Gray–Scott, which produce the same amount

10Because we cannot add processes dynamically when using MPI, in both
MoNA and MPI scenarios we redeploy the entire application and staging area
at the appropriate scale between each experiment.

11Other experiments, not presented here due to space constraints, led to
the same conclusion at different scales, with different block sizes, and with a
different number of blocks per server.

543

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Execution time of the pipeline for the Mandelbulb application
using the MPI and MoNA communication layers at various scales,
with a block size of 8 MB and a number of blocks proportional to the
staging area size (weak scaling, hence the somewhat equal execution
time at all scales).

Fig. 6: Execution time of the pipeline for the Gray–Scott application
using either MPI or MoNA as communication layer at various scales,
with a fixed total data size of 2 GB (strong scaling). Note: weak
scaling results lead to the same conclusion.

of data at every iteration, the rendering payload in DWI

increases at every iteration. Hence in Figure 7 we show the

rendering time as a function of the iteration number, with both

MPI and MoNA, and with 8, 16, 32, and 64 Colza processes

(1, 2, 4, and 8 nodes respectively).

The results show that the performance of MoNA is again on

par with and MPI-based rendering pipeline, even outperform-

ing it for some iterations at a scale of 8 and 16 processes.12

D. Comparison with Damaris and DataSpaces
To show that Colza can rival state-of-the-art in situ

analysis frameworks, we ran the Mandelbulb miniapp with

Damaris [19] and DataSpaces [20]. Just like Colza, Damaris’

ability to be extended through plugins made it easy to reuse

the same rendering pipeline in both cases. DataSpaces was

recently refactored to make use of Margo (via its C++ interface

Thallium), making it close to Colza in terms of its dependen-

cies. We use 32 nodes in total: 64 client processes across 16

nodes, and 64 analysis servers for Colza/Damaris/DataSpaces

12This result is reproducible and while we haven’t been able to identify why
this happens, we suspect that MoNA’s use of shared memory when processes
are on the same node gives it an advantage at small scales.

Fig. 7: Execution time of the pipeline for the Deep Water Impact
proxy application using either MPI or MoNA as communication layer
at various scales. The graph was truncated for readability reasons.
At iteration 25 and 26 with 8 processes, the MPI-based pipeline’s
rendering time is around 60 seconds.

across the remaining 16 nodes. We use a block size of

64 × 64 × 64 integers (1 MB per blocks) and 32 blocks per

client process.

Figure 8 shows that Colza outperforms Damaris, both with

MPI and MoNA. In Damaris’ defence, this difference in run

time could be attributed to the fact that the analysis plugin in

Damaris is triggered independently by all the clients, hence

if a client calls damaris_signal earlier than other clients,

its corresponding server will enter the plugin earlier and will

have to wait for other Damaris servers to become ready as

well. In Colza, the execute call is triggered by a single

client process, then coordinated across servers.

DataSpaces, which uses the same MPI-based pipeline as

Colza+MPI, outperforms Colza when Colza uses MoNA, but

does not when it uses MPI.

This experiment shows that Colza rivals with Damaris and

DataSpaces in a static scenario, while also bringing elasticity

as an option. In fact, Colza overcomes several other limitations

linked to Damaris’ reliance on MPI.

• Damaris splits MPI_COMM_WORLD to dedicate some ranks

to data processing. This requires changes to the application

so that it no longer relies on this communicator. Using

Colza, the application’s use of MPI remains unchanged.

• Damaris must be deployed at the same time as the appli-

cation, while Colza, can be deployed and shut down when

needed, potentially in a separate job.

• Damaris imposes that the number of dedicated processes

divides the number of client processes. Colza allows any

number of server processes for any number of clients.

• Deploying Damaris and its clients as a single application

means that they must use the same launcher parameters

(processes per node, binding to cores, threading, etc.).

DataSpaces does not have the above drawbacks and could

more easily take advantage of our work, in particular thanks

to its use of Mochi and Mochi’s emphasize on software

composability.

E. Elasticity in practice with Colza
So far we have considered the group membership and the

544

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Pipeline execution time for the Mandelbulb application when
using it in Colza (with either an MPI or MoNA communication
layer), as a Damaris plugin (set in “dedicated nodes” mode), or in
DataSpaces.

Fig. 9: Exercising elasticity with the Mandelbulb application and
Colza resized from 2 to 8 nodes.

communications aspects of Colza separately. In this section

we demonstrate Colza’ ability to change its number of pro-

cesses dynamically. We do so with the Mandelbulb and DWI

applications.

1) Mandelbulb
We execute the Mandelbulb application on 16 nodes, using

16 processes per node. Each process generates a single 128×
128 × 64-element block, for a total of 256 blocks (1 GB of

data in total). Colza is initially deployed on 2 nodes, using

1 process per node. Every 60 seconds, we add a new Colza

node, up to a total of 8 nodes. We measure the duration of

activate , stage, execute, and deactivate calls for

each iteration, and monitor the number of Colza nodes in use

as the application progresses.

The results, shown in Figure 9, illustrate the decrease in

pipeline execution time as the staging area is resized to larger

scales. When a new node is added, we observe an increase of

execution time for that iteration, caused by the need for the

new process to initialize VTK. The activate , stage,

and deactivate calls represent a negligible portion of run

time, respectively lasting an average of 4 milliseconds, 100

milliseconds, and 0.6 milliseconds.

Note that in a real application, only activate , stage,

and deactivate calls would represent an overhead for the

application. Since the purpose of a staging area is to perform

analysis in the background, while the application continues

Fig. 10: Execution time of the rendering pipeline for the Deep Water
Impact proxy application with Colza being resized from 1 to 9
nodes (8 to 72 processes) every other iteration after iteration 13,
and compared with a static deployment of 8 or 72 processes.

running, the non-blocking version of execute would be used

in practice.

2) Deep Water Impact
We run the DWI proxy application in the same manner as in

Section III-C4. We initially use a Colza staging area spanning

a single node with 8 processes. Starting from iteration 13,

we add 8 new Colza processes (1 extra node) at every other

iteration, up to using 72 processes towards the end of the run.

Figure 10 shows the performance of the rendering pipeline as

the application progresses. We compare this rendering time

against cases in which we maintain 8 and 72 Colza processes

throughout the run. Once again we find an overhead every

time new processes are added, as these processes need to

initialize their copy of the pipeline. However we also see that

resizing Colza enables keeping the rendering time bounded –

to 20 seconds if we include the resizing overhead (in practice,

resizing would however not be done so frequently or with such

small increments), and to 10 seconds without this overhead–

while the static pipeline’s rendering time keeps increasing.

This experiment demonstrates the practical benefit of elasticity
for applications that have irregular data sizes and complexity.

IV. DISCUSSION

In this section we discuss relevant aspects of our work that

are outside the scope of the evaluation done in this paper and

present opportunities for future research.

A. Integration with job schedulers
In this paper, we allocated the maximum number of nodes

needed upfront for each experiment because the job scheduler

could not resize our job. However job schedulers are starting

to provide resizing capabilities: SLURM allows us to reduce

the size of a running job using scontrol update with

the NumNodes option,13 but doesn’t let us increase it. LFS

provides the bresize command14 to increase and decrease

job sizes.

13https://slurm.schedmd.com/scontrol.html
14https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=

reference-bresize

545

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

We could envision enhancing job schedulers with infor-

mation that would help them make allocation decisions. For

instance, adding more resources to an existing job could

have priority over scheduling new jobs. The fact that an

application is elastic could also be communicated to the job

scheduler, giving it the opportunity to scale the job up and

down depending on resources available.

B. Why triggering elasticity
Some reasons for triggering a change in resources were

listed by Dorier et al. [7].

In the context of applications that exhibit changes in com-

plexity over time (such as Deep Water Impact), elasticity could

be used to try overlapping as best as possible the duration

of an iteration in the simulation side and in the analysis

side. In Figure 10 for example, enabling elasticity allows the

analysis time to remain under 10 seconds (with the exception

of iterations that have to initialize new servers). Such a trigger

would be application-driven.

Other triggers include the user manually changing the

amount of resources to setup new analysis pipelines, or as

mentioned above, the job scheduler adding or reclaiming nodes

to optimize the platform’s overall resource usage.

If the simulation was itself elastic, elasticity could take the

form of an exchange of resources between the simulation and

the analysis code, without involving the job scheduler.

V. RELATED WORK

As part of a more general self-adapting in situ framework,

Jin et al. [21] presented an evaluation of the advantage of

dynamically changing the number of cores used by in-transit

processing. However their experiment used a fixed-size MPI

application that split MPI_COMM_WORLD into a simulation

group, an in-situ group, and an in-transit group of processes.

They worked around the limitation of MPI for their evaluation

by relying on fewer cores when necessary, but these cores

remained allocated and part of the application, and they

could not add more cores later on beyond the ones that

were originally present within MPI_COMM_WORLD.15 Their

findings however supports the potential benefits of elasticity

for in situ analysis.

Duan et al. [22] presented CoREC, a process recovery

solution that cooperates with a data resiliency scheme. This

solution aims to recover failed staging servers so as to maintain

the performance of the data staging framework over the

lifetime of the workflow. In CoREC, however, the staging area

serves only as in-memory data storage bridging simulations

and analysis applications. Analysis tasks do not run within

the staging area, making it easier for the staging area to be

resized.

Kress et al. [23] presented models to evaluate the cost

efficiency of in-transit visualization. Their works highlight

the difficulties of configuring in situ and in transit analysis

to achieve the best performance, and motivates the need for

15This technical detail is not described in their paper but was confirmed by
one of their authors.

more dynamic approaches that would allow finding optimal

configurations at run time.

With regard to redesigning the core algorithms used by in

situ analysis and visualization, Wang et al. [24] proposed an

in situ framework based on the MapReduce paradigm [25].

This solution, inspired by cloud computing, would be much

better suited to elasticity than the algorithms currently used

in ParaView. It falls in the category of works that attempt at

redesigning algorithms, rather than relying on existing, well-

established tools.

In this work we used ParaView, which abstracts its com-

munications and relies on libraries that have abstracted their

communications sufficiently that we could replace MPI. For-

tunately, abstraction at this level is common practice. The DIY

library [26] (which is also used internally by ParaView) has

a communicator class wrapping MPI. The Damaris [27]

middleware has an abstract RPC layer (the Reactor) with

implementations using MPI 2, MPI 3, or shared memory.

VisIt/LibSim [2] is much more tightly coupled to MPI. Al-

though its avtParallelContext class internally provides

some level of abstraction, the only API function allowing

controls over the communication layer is VisItSetMPI-
Communicator, which allows changing the communicator.

This shows that, with some work, other production analysis

and visualization packages could evolve beyond MPI.

ADIOS2 [28] is a well-established interface to bridge sim-

ulations with analysis code. Its SST engine [29], [30] enables

connecting data producers with consumers, with ADIOS tak-

ing care of data redistribution via RDMA, enabling streaming-

like coupling of HPC applications. Looking at the ADIOS2

code, we find that while the SST engine depends on a Comm
communicator class, this class is abstract, with a concrete

implementation relying on MPI. Hence by injecting MoNA

into ADIOS2, the work presented in this paper could be

adapted to work within the ADIOS2 interface as well.

While MPI has been evaluated in the past for use in HPC

data services [31], [32], we have yet to see data services

that rely on it in production. Service developers nowadays

tend to move beyond MPI [33] and rely either on lower-

level networking libraries such as Libfabric [34] or UCX [35]

or on RPC frameworks such as Mercury and other libraries

such as those provided by Mochi. The Mochi components are

also used in a number of HPC data services including Intel’s

DAOS [36], UnifyFS [37], and GekkoFS [38].16 Our choice

of relying on Mochi for our Colza data-staging service falls

within this trend.

Mochi was also used by Cheriere et al. [39] to implement

an elastic data storage service for HPC. They focus on the

cost of migrating data when upscaling and downscaling, and

on load rebalancing. Resizing our staging area does not

require data migration. However their work could be combined

with ours, thanks to Mochi’s component-based development

methodology, to ultimately design an elastic service providing

both storage and in situ analysis capabilities.

16https://wordpress.cels.anl.gov/mochi/projects-using-mochi/

546

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

With respect to current limitations of MPI, we note that the

MPI 4.0 draft standard [40] provides promising enhancements

that could help us in the future. MPI sessions [41], in partic-

ular, would let us create an MPI context within a non-MPI

application, which would allow us to run unmodified MPI-

based ParaView/Catalyst pipelines by creating an MPI session

for each execute phase. Our experiments in Section III show

how Colza would be improved by relying on MPI rather than

MoNA.

In the fault-tolerance space, User Level Failure Mitigation

(ULFM) [42], [43] presents lightweight MPI extensions to

detect communicator failure, along with solutions to recovery

from the failure. Gamell et al. [44], [45] presented a framework

based on ULFM to show how communicators can shrink to

remove failed processes, and the new process can be merged

into the new communication group. Similarly, Rizzi et al. [46]

present a solution to use ULFM to detect process crashes for

partial differential equation calculation. We hope that in the

future, such extensions to MPI will be available more broadly.

An alternative to replacing MPI would be to rely on

AMPI [47], which decouples MPI ranks from the processes

they run on by assigning them to user-level threads. In such a

design, the number of MPI ranks used by ParaView/Catalyst

would remain fixed, while their mapping to actual resources

would change over time.

Fox et al. [48] presented E-HPC, a batch scheduler that

enables elasticity in HPC workflows. Elasticity is managed

by checkpointing the application, shutting it down, and trans-

parently restarting it on a different number of processes,

in contrast to our work, which aims not to shut down the

application. Similarly Raveendran et al. [49] discuss how to

adapt MPI-based applications for a cloud environment such as

AWS. They also adopt checkpointing and data redistribution

mechanisms to enable rescaling.

VI. CONCLUSION

Our work developing and evaluating Colza, an elastic in situ

analysis framework, showed the feasibility of implementing

elasticity using production analysis tools. We were successful

in enabling elasticity in ParaView by injecting a custom

communication layer to replace MPI, and via tricks to enable

changing ParaView’s underlying communicator when new

processes join. We showed that Colza achieves performance

on par with existing in situ frameworks that rely on MPI,

despite some overhead from its MoNA communication layer

when compared with a vendor-provided, well-optimized MPI

implementation. Our results, in particular with the Deep Water

Impact dataset, shows the potential benefit of elasticity in a

real-life scenario, where the data complexity increases over

time. We hope that this work will encourage other researchers

to explore elasticity within other analysis frameworks, and will

motivate the MPI community in providing concrete solutions

in the MPI standard.

In the future, we plan to (1) make our framework capable of

handling process crashes, effectively enabling fault tolerance

with unexpected/unplanned resizing; (2) enable automatic re-

sizing as a response to performance constraints or optimization

targets; and (3) enable state-full pipelines, for which shutting

down a process requires data migration.

ACKNOWLEDGMENT

We thank Kenneth Moreland and Andy Bauer for helping

us understand ParaView, VTK, and IceT through Kitware’s

Discourse. We thank John Patchett for providing the Deep

Water Impact dataset. Finally we thank Gail Pieper for proof-

reading and editing this paper. This material is based upon

work supported by the U.S. Department of Energy, Office

of Science, Advanced Scientific Computing Research, under

Contract DE-AC02-06CH11357.

REFERENCES

[1] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “ParaView Catalyst: Enabling in situ data analysis
and visualization,” in Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization.
ACM, 2015, pp. 25–29.

[2] T. Kuhlen, R. Pajarola, and K. Zhou, “Parallel in situ coupling of simu-
lation with a fully featured visualization system,” in Proceedings of the
11th Eurographics Conference on Parallel Graphics and Visualization
(EGPGV), 2011.

[3] H. Childs et al., “A terminology for in situ visualization and analysis
systems,” The International Journal of High Performance Computing
Applications, vol. 34, no. 6, pp. 676–691, 2020. [Online]. Available:
https://doi.org/10.1177/1094342020935991

[4] R. Imahorn, I. B. Rojo, and T. Günther, “Visualization and analysis
of deep water asteroid impacts,” in 2018 IEEE Scientific Visualization
Conference (SciVis), 2018, pp. 85–96.

[5] T. Peterka, D. Bard, J. Bennett, E. Bethel, R. Oldfield, L. Pouchard,
C. Sweeney, and M. Wolf, “ASCR workshop on in situ data manage-
ment: Enabling scientific discovery from diverse data sources,” USDOE
Office of Science (SC)(United States), Tech. Rep., 2019.

[6] T. Peterka, D. Bard, J. C. Bennett, E. W. Bethel, R. A. Oldfield,
L. Pouchard, C. Sweeney, and M. Wolf, “Priority research directions for
in situ data management: Enabling scientific discovery from diverse data
sources,” The International Journal of High Performance Computing
Applications, vol. 34, no. 4, pp. 409–427, 2020.

[7] M. Dorier, O. Yildiz, T. Peterka, and R. Ross, “The challenges
of elastic in situ analysis and visualization,” in Proceedings of
the Workshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization, ser. ISAV ’19. New York,
NY, USA: ACM, 2019, workshop, pp. 23–28. [Online]. Available:
http://doi.acm.org/10.1145/3364228.3364234

[8] R. B. Ross et al., “Mochi: Composing data services for high-
performance computing environments,” Journal of Computer Science
and Technology, vol. 35, pp. 121–144, 2020. [Online]. Available:
https://link.springer.com/article/10.1007/s11390-020-9802-0

[9] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world,” in European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting. Springer,
2000, pp. 346–353.

[10] W. Bland, H. Lu, S. Seo, and P. Balaji, “Lessons learned implementing
user-level failure mitigation in MPICH,” in 2015 15th IEEE/ACM
international symposium on cluster, cloud and grid computing. IEEE,
2015, pp. 1123–1126.

[11] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelló, D. Genet, T. Herault et al., “Argobots: A lightweight low-
level threading and tasking framework,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 3, pp. 512–526, 2017.

[12] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol, A. Af-
sahi, and R. Ross, “Mercury: Enabling remote procedure call for high-
performance computing,” in 2013 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2013, pp. 1–8.

[13] A. Das, I. Gupta, and A. Motivala, “SWIM: Scalable weakly-consistent
infection-style process group membership protocol,” in Proceedings
International Conference on Dependable Systems and Networks. IEEE,
2002, pp. 303–312.

547

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

[14] R. H. Castain, J. Hursey, A. Bouteiller, and D. Solt, “Pmix: process
management for exascale environments,” Parallel Computing, vol. 79,
pp. 9–29, 2018.

[15] A. Doelman, T. J. Kaper, and P. A. Zegeling, “Pattern formation in the
one-dimensional Gray–Scott model,” Nonlinearity, vol. 10, no. 2, p. 523,
1997.

[16] J. Aron, “The Mandelbulb: first “true” 3d image of famous fractal,” New
Scientist, vol. 204, no. 3736, pp. 54–55, 2009.

[17] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (adios),” in Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments, 2008,
pp. 15–24.

[18] J. Patchett and G. Gisler, “Deep water impact ensemble
data set,” Tech. Rep., 2017, lA-UR-17-21595. [Online].
Available: http://datascience.dsscale.org/wp-content/uploads/2017/08/
DeepWaterImpactEnsembleDataSet Revision1.pdf

[19] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/viz: a nonintrusive, adaptable and user-friendly in situ visu-
alization framework,” in 2013 IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV). IEEE, 2013, pp. 67–75.

[20] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction
and coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[21] T. Jin, F. Zhang, Q. Sun, M. Romanus, H. Bui, and M. Parashar, “To-
wards autonomic data management for staging-based coupled scientific
workflows,” Journal of Parallel and Distributed Computing, vol. 146,
pp. 35–51, 2020.

[22] S. Duan, P. Subedi, P. Davis, K. Teranishi, H. Kolla, M. Gamell, and
M. Parashar, “CoREC: Scalable and resilient in-memory data staging for
in-situ workflows,” ACM Transactions on Parallel Computing (TOPC),
vol. 7, no. 2, pp. 1–29, 2020.

[23] J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszki, S. Klasky,
H. Childs, and D. Pugmire, “Opportunities for cost savings with in-
transit visualization,” in High Performance Computing, P. Sadayappan,
B. L. Chamberlain, G. Juckeland, and H. Ltaief, Eds. Cham: Springer
International Publishing, 2020, pp. 146–165.

[24] Y. Wang, G. Agrawal, T. Bicer, and W. Jiang, “Smart: A MapReduce-
like framework for in-situ scientific analytics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1–12.

[25] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[26] D. Morozov and T. Peterka, “Block-parallel data analysis with DIY2,”
in Proceedings of the 2016 IEEE Large Data Analysis and Visualization
Symposium LDAV’16, Baltimore, MD, 2016.

[27] M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros, O. Yildiz,
S. Ibrahim, T. Peterka, and L. Orf, “Damaris: Addressing performance
variability in data management for post-petascale simulations,” ACM
Transactions on Parallel Computing (TOPC), vol. 3, no. 3, p. 15, 2016.

[28] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck et al., “Adios 2: The
adaptable input output system. a framework for high-performance data
management,” SoftwareX, vol. 12, p. 100561, 2020.

[29] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta,
G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta,
K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf,
K. Wu, and S. Klasky, “Adios 2: The adaptable input output
system. a framework for high-performance data management,”
SoftwareX, vol. 12, p. 100561, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352711019302560

[30] J. Logan, M. Ainsworth, C. Atkins, J. Chen, J. Y. Choi, J. Gu,
J. M. Kress, G. Eisenhauer, B. Geveci, W. Godoy, M. B. Kim,
T. Kurc, Q. Liu, K. V. Mehta, G. Ostrouchov, N. Podhorszki,
D. Pugmire, E. D. Suchyta, N. Thompson, O. Tugluk, L. Wan,
R. Wang, B. Whitney, M. D. Wolf, K. Wu, and S. A. Klasky,
“Extending the publish/subscribe abstraction for high-performance i/o
and data management at extreme scale,” Bulletin of the IEEE Technical
Committee on Data Engineering, vol. 43, no. 1, 3 2020. [Online].
Available: https://www.osti.gov/biblio/1606642

[31] R. Latham, R. Ross, and R. Thakur, “Can MPI be used for persistent par-
allel services?” in European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 2006, pp. 275–284.

[32] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using MPI in high-
performance computing services,” in Proceedings of the 20th European
MPI Users’ Group Meeting, 2013, pp. 43–48.

[33] F. Liu, C. Barthels, S. Blanas, H. Kimura, and G. Swart, “Beyond MPI:
New communication interfaces for database systems and data-intensive
applications,” ACM SIGMOD Record, vol. 49, no. 4, pp. 12–17, 2021.

[34] O. W. Group et al., “Libfabric,” https://www.openfabrics.org/.
[35] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,

Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss et al., “UCX:
an open source framework for HPC network APIs and beyond,” in
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.
IEEE, 2015, pp. 40–43.

[36] M. Hennecke, “DAOS: A scale-out high performance storage stack for
storage class memory,” Supercomputing Frontiers, p. 40, 2020.

[37] A. Moody, D. Sikich, N. Bass, M. J. Brim, C. Stanavige, H. Sim,
J. Moore, T. Hutter, S. Boehm, K. Mohror, D. Ivanov, T. Wang, C. P.
Steffen, and U. N. N. S. Administration, “UnifyFS: A distributed
burst buffer file system – 0.1.0,” 10 2017. [Online]. Available:
https://www.osti.gov/biblio/1408515

[38] M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes,
and A. Brinkmann, “GekkoFS – a temporary distributed file system for
HPC applications,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2018, pp. 319–324.

[39] N. Cheriere, M. Dorier, G. Antoniu, S. M. Wild, S. Leyffer,
and R. Ross, “Pufferscale: Rescaling HPC data services for high
energy physics applications,” in Proceedings of the 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing
(Ccgrid), ser. CCgrid ’20. IEEE/ACM, 2020, conference. [Online].
Available: https://ieeexplore.ieee.org/document/9139614

[40] “MPI 4.0rc 2020 draft specification,” https://www.mpi-forum.org/docs/,
accessed: 2021-03-24.

[41] N. Hjelm, H. Pritchard, S. K. Gutiérrez, D. J. Holmes, R. Castain, and
A. Skjellum, “MPI Sessions: Evaluation of an Implementation in Open
MPI,” in 2019 IEEE International Conference on Cluster Computing
(CLUSTER), 2019, pp. 1–11.

[42] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra, “Post-
failure recovery of mpi communication capability: Design and rationale,”
The International Journal of High Performance Computing Applications,
vol. 27, no. 3, pp. 244–254, 2013.

[43] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An evaluation of user-level failure mitigation support in mpi,”
in European MPI Users’ Group Meeting. Springer, 2012, pp. 193–203.

[44] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications
at extreme scales,” in SC’14: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2014, pp. 895–906.

[45] R. Van Der Wijngaart, M. Gamell, K. Teranishi, E. Valenzuela, M. A.
Heroux, and M. Parashaar, “Fenix a portable flexible fault tolerance pro-
gramming framework for mpi applications.” Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States), Tech. Rep., 2016.

[46] F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, B. Debusschere,
O. LeMaitre, and O. Knio, “Ulfm-mpi implementation of a resilient
task-based partial differential equations preconditioner,” in Proceedings
of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale,
2016, pp. 19–26.

[47] C. Huang, O. Lawlor, and L. V. Kale, “Adaptive MPI,” in International
workshop on languages and compilers for parallel computing. Springer,
2003, pp. 306–322.

[48] W. Fox, D. Ghoshal, A. Souza, G. P. Rodrigo, and L. Ramakrishnan,
“E-hpc: a library for elastic resource management in hpc environments,”
in Proceedings of the 12th Workshop on Workflows in Support of Large-
Scale Science, 2017, pp. 1–11.

[49] A. Raveendran, T. Bicer, and G. Agrawal, “A framework for elastic
execution of existing mpi programs,” in 2011 IEEE International Sympo-
sium on Parallel and Distributed Processing Workshops and Phd Forum.
IEEE, 2011, pp. 940–947.

548

Authorized licensed use limited to: The University of Utah. Downloaded on July 20,2022 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

