PARALLEL COMPUTING 83

M. Feilmeier, J. Joubert and U. Schendel (eds.)

Elsevier Science Publishers B.V. (North-Holland) 483
© Int. Conf. “Parallel Computing 83", 1984

SYSTOLIC MATRIX ITERATIVE ALGORITHMS
M.Berzins, T.F. Buckley and P.M. Dew

Department of Computer Studies
The University
Leeds LS29IT
UK.

Systolic algorithms for matrix iterative methods are described for systems of linear equations
that often arise in the discretisation of partial differential equations. In particular the Gauss-Seidel
iterative method with a relaxation factor is considered in detail for an irregular sparse-banded
coefficient matrix. The systolic algorithms compute m iterations in ©(2#) time units using mxb
processing cells, where b is the number of nonzero bands in the coefficient matrix.

INTRODUCTION

It is well known that the numerical solution of nonlinear partial differential equations involves the solution of
large sparse systems of linear equations that often arise as one step of a modified Newton’s method. It follows
therefore that an important first step in the design of fast parallel algorithms/architectures for partial
differential equations is the development of parallel algorithms for the solution of sparse systems of linear
equations. In this paper we consider the design of systolic algorithms for matrix iterative methods, where the
coefficient matrix is an irregular sparse-banded matrix (see below). The main reason for considering iterative
methods is that it is ' much easier to illustrate how to exploit the sparsity in the matrix. We are concerned here
with the design of the high level systolic algorithms, for details on some of the implementation issues the
reader is referred, in the first instance, to Dew (1983). The original motivation for this work arose out of a
study of VLST architectures for the simulation of gas transmission networks supported by the British Gas

Corporation (see Dew, Buckiey and Berzins (1983)).

The general problem we wish to consider is the solution of a large sparse system of banded equations written
in the standard form

Ax

b

where the nxn coefficient matrix 4 is assumed to be diagonally dominant so that it is well-posed for a matrix
iterative algorithm. The type of coefficient matrix that commonly occurs from the finite difference
discretisation of partial differential equations in simple regions (e.g. Laplace’s equation) has a series of
non-zero bands. Such matrices are referred to as sparse-banded matrices. Systolic iterative algorithms for this
type of matrix was first considered by Kung and Leiserson (1980) and more recently by Dew, Buckley and
Berzins (1983). In this paper we generalise the algorithms to handle matrices where the bands do not
necessary run diagonally across the matrix, but the overall bandwidth is small compared with the order of the
matrix n. Matrices of this type often arise from the discretisation of partial differential equations, providing

that the nodes are ordered in a suitable manner.

484 M. Berzins, T.F. Buckley and P.M. Dew

Definition

A nxn square matrix 4 is said to be sparse-banded, if there exist a sequence of bands running diagonally across

the matrix such that for je N, =[1,2,-.-,n]
(Do) = a;
[U,]J= aj,j+,,,’.(j) i= 1.2. mee ,k
ILdi=ajom iy i=12---,1
where a; ;=0 whenever ij¢ N, ,and there exist positive constants p; and g;such that for all j
m()=pi m- ()=

and the sequences {p;} {‘ and {q;} { are strictly monotonically increasing with py=p and g;=q so that the total
bandwidth of the matrix is given by b,=p—+ ¢+ 1. The sparseness comes from the fact that k and [are

assumed small compared with n.

The matrix is said to be an irregular sparse-banded, if m; : N, N, is one-one and the sequences, {m;()} {-‘zl

Amo; (D} f-=1 are strictly monotonically increasing for each j¢ N, and in addition satisfy the inequalities, for

all j
mi()<p; and p;i—m;(j) <d
m-{j)= q; and m;(j)—gq;<d
where d is a positive constant. n|

An example of an irregular sparse-banded matrix arising in the simulation of gas transmission networks can
be found in Dew, Buckley and Berzins (1983). The systolic approach used in this paper is particularly well

suited to the case when b, <« n.
SYSTOLIC MATRIX ITERATIVE ARRAY

We shall consider the Jacobi method given by
DXV = —(L+ AV +5 =012 -
and the Gauss-Seidel method with relaxation factor w,

P+ wlxV=(1-w) D=0)X+ p =012, ,

where L, D, U denote the usual lower triangular, diagonal and upper triangular matrices of A and X0 is the

initial vector.

To derive and describe the systolic arrays we shall apply the programming technique of stepwise refinement.
The first level is simply to note that we can perform m iterations systolically by simply using a lincar systolic

array to perform each iteration (which is essentially a matrix/vector multiplication). This is shown in figure 1.

Systolic Matrix Iterative Algorithms 485

. A b
5(0)
#»(LINEAR SYSTOLIC ARRAY et
(1)
28
—®("LINEAR SYSTOLIC ARRAY J<@—|

E(Z)F—E ¥ i

Figure 1: Systolic array for Matrix Iteration
The reader should notice that the above array satisfies the systolic property that the 170 is only from the
boundaries of the array. The next stage of the refinement is the design of the linear systolic array to perform

one iteration. For this we need systolic arrays to perforim the computations

Sylem)=UxXT+ ¢ and Sjcr)=LxXD+¢
and a boundary cell to combine them with the appropriate diagonal element. For the Jacobi iterative array
we pipe the result of Sy(b, 7) to give S, (S;(4,), 7) and then divide by the diagonal element (see figure 2a). In
the case of the Gauss-Seidel method we have to compute S, {5 7) and S;(0,t+1) separately and use a

boundary cell to perform the rather more complex operation

LD = (1-0) X ~ waj) {S,(b.7) + S0 7+ 1)}

This is shown in figure 2b. The systolic arrays for S, and S;can be interleaved in the manner used by Kung

(1980) for the 1R filter computation but this can be regarded as a lower level refinement,
IRREGULAR SPARSE MATRIX/VECTOR MULTIPLICATION

So far we have defined the main data paths through the array. In the next level of refinement we add the

timing information. Following the work of Leiserson and Saxe (1983) we shall use directed graphs to describe

(a)
l b lu L
4]
(0 3 - M
X — boundary -
Su L
cell
o (T] SO
= s +s_+4b s_+b
u L L
= (D))
T
Z‘_(N = s +b = -
boundary u
x(‘I:+l)‘__ cell s +b
x(+L

Figure 2: Systolic Arrays for Performing One Iteration

the systolic algorithms, where the weights on the edges represent delays (i.e. registers) and the nodes represent

each computational step or I/0 port. The directed graph for the upper triangular matrix/vector

486 M. Berzins, T.F. Buckley and P.M. Dew

multiplication, S, (b), is shown in figure 3. The circular nodes denote one inner product step computation
and the square nodes are the 170 ports. The data is "twiced-slowed" which means that the results arrive every
other time cycle. and a null element is inserted after each element in the input data streams in the standard
systolic manner. To minimise the pipeline latency we would set c=my (j) — (k— 1)/2 where Xj4.1/, denotes
the null element after X; assuming j is an integer value. Applying the node retiming technique given in

Leiserson and Saxe (1983) it is easy to verify that the network will compute the required results.

Q= 2(c—m)) + (¢-9

Figure 3: The Network for Computing S, (b, 7)

An immediate consequent of having an irregular sparse-banded matrix is that the delays arc dependent on the
timing parameter j. This means that we most now provide positional information for each coefficient of the
matrix. For example each upper diagonal element of the matrix, G j+mgj) » would be represented by a data
structure that contains its numerical value and the distance di=pi—m{)). In a semisystolic algorithm we
would maintain a window of active x-values and use the positional information to roufe the appropriate
elements of X(7) o the inner product step cells. Alternatively we can adopt a truly systolic approach and
maintain an active window within each cell. This is achieved by retiming the array for a sparse-banded matrix
with constants, p; and saving in each cell the last ¢ x-values (ignoring the null elements). The positional
information can then be used to select the required value of x{¥). In the definition of a irregular sparse-
banded matrix we have been careful to ensure that d; is bounded above by 4. The systolic array for a
sparse-banded upper matrix/vector multiplication is shown in figure 4, remembel:ing that the input/output

data streams are "twiced slowed".

We can adopt a similar design procedure for the lower triangular matrix/vector multiplication. For the
Gauss-Seidel iterative method we must be careful to design the array so that the pipeline latency is zero or
more precisely at the end of the period when x; arrives we must output [S;(0, 7+ 1)] lj+1- Again we can handle
the irregularity in the sparsity pattern by either using a semisystolic design or by transforming the array to
handle a sparse-banded matrix with constants g; This time we save upto the last d matrix coefficients arriving

at each cell. This systolic array is shown figure 5.

Systolic Matrix Iterative Algorithms 487

SYSTOLIC ARRAY FOR GAUSS-SEIDEL ITERATION

The systolic arrays for computing S, (& 7) and S;(Q, r + 1) can now be combined with a boundary cell which
performs the computation given by equation 2. This is shown in figure 6. The boundary cell also outputs the
updated vector to the array below and to the array computing S, Notice that the use of the directed graph
and the sub-division of the problem makes it easier to determine the delays and verify the correctness of the
design. For example, to compute the delay for the clements of 4 and b between iteration rows we note that if
the input to the array is x§?c+1 then the input to the next array is x§1fk13r 12 Where ¢=p—(k—1)/2. The
required delay is given by
F=2G+c+1)=2j—-(k+1)/2) =2(p+1)

The pipeline latency for an array performing m iterations is given by mp’—1. A similar type of.array can be

constructed for the Jacobi iterative method ,see Dew (1983).

The systolic algorithm shown in figure 4 is now in a form where we can address the implementation issues.

For example, pipelining in the inner-product cells and the in balance between the computation the boundary

[u2]j {Ul]j

ei=2(pi+Ipi)-l

e=p-(k-1) /2

sy -1) /2

Figure 4: Systolic Array for Sparse-Banded Upper Triangular Matrix/Vector
Multiplication

(L1, [%}zlj
[SL]j+1 ‘IJ 1 v P 5 3

Figure 5: Systolic Array for Sparse-Banded Lower Triangular Matrix/Vector
Muiltiplication

488 M. Berzins, T.F. Buckley and PM. Dew

]
Fout
out -1
t = (1-0)x!' - +s
X e (1)Xin a (su L)

=X. =a,
out 1in out in

p'=2(p+l)

Figure 6: Systolic Array for Gauss-Seidel Method

cell performs and inner product step cells. This is beyond the scope of this paper but these problems can
normally be handled by slowly down the data flow rate through the array. This is particularly effective when
we have multiple right hand sides, 4X = B, since the inner pipelines can be kept full by inputing the
clements of B row by row. This has the added advantage that the data flow rate of the matrix coefficients can

be r times slower than the rate for the x{™) and b, where 1 is the number of columns in the matrix B.
ACKNOWLEGDEMENT

The authors would like to thank the British Gas Corporation for supporting Martin Berzins during the period

this research was carried out.

REFERENCES

[1] Dew, P.M., Buckley, T.F. and Berzins, M., Application of VLSI devices to computational problems
in the gas industry, Tech. Report 163, Dept. of Comp. Studies, Leeds Univ. (1983).

[2] Dew, PM., VLSI architectures for problems in numerical computation, in: Paddon D.J. and
Pryce, 1.D. (eds), Workshop on progress in the use of vector and array processors
(Academic Press, to appear).

[31 Kung, H.T. and Leiserson C.E., Systolic arrays (for VLSI), in: Duff, LS. and/Stewart, G.W. (eds),
Sparse Matrix Proceedings 1978, (1979) (A sightly different version in
Introduction to VLSI systems by C.A. Mead and L.A. Conway, Addison-Wesley 1980)

[4] Kung H.T., Special-purpose devices for signal and image processing, in: Real-Time Signal
Processing II1, (Society of Photo-Optical Instrumentation Engineers, 1980)

[5] Leiserson, C.E. and Saxe, J.B., Optimizing synchronous systems, Jrnl of VLSI and Computer
Systems, 1, (1983), 41-67.

