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Abstract. In this paper, we propose a new method for longitudinal
shape analysis that fits a linear mixed-effects model, while simultane-
ously optimizing correspondences on a set of anatomical shapes. Shape
changes are modeled in a hierarchical fashion, with the global population
trend as a fixed effect and individual trends as random effects. The statis-
tical significance of the estimated trends are evaluated using specifically
designed permutation tests. We also develop a permutation test based
on the Hotelling T 2 statistic to compare the average shapes trends be-
tween two populations. We demonstrate the benefits of our method on
a synthetic example of longitudinal tori and data from a developmental
neuroimaging study.

1 Introduction

Longitudinal imaging studies involve the collection of imaging data at multiple
time points for each participant. Such studies have the potential to provide a
rich picture of the anatomical changes occurring during development, disease
progression or recovery. Tracking each individual in a longitudinal study gives a
model of change with a clarity that cannot be achieved in a cross-sectional study.
Further, a more accurate model is possible if each individual in a longitudinal
study acts as their own control, that is, factors that vary between individuals
remain constant within the same individual. This control over nuisance factors
reduces the variance in measurements and results in higher statistical power to
quantify change.
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tute: A.C. Evans, D.L. Collins, G.B. Pike, P. Kostopoulos; Samir Das; Image Pro-
cessing Core: University of Utah: G. Gerig; University of North Carolina: M. Styner;
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Previous work on characterizing anatomical shape changes has focused pri-
marily on the analysis of cross-sectional data. Approaches to the shape regres-
sion problem have been formulated for several shape representations or metrics,
including diffeomorphic shape changes [1], medial shape representations [2], at-
las appearance models [3], deformation tensors [4], and shape regression using
particle-based representation in [5]. Work on longitudinal shape modeling in-
cludes the use of diffeomorphic mappings and parallel transport by Qiu et al. [6]
to track changes in an individual and mapping the individual trends to a pop-
ulation atlas. Durrleman et al. [7] construct spatiotemporal image atlases from
longitudinal data. Lorenzi et al. [8] use a hierarchical model on stationary ve-
locity fields, in a framework that does not include a Riemannian metric on the
manifold of diffeomorphisms. Fishbaugh et al. [9] estimate smooth growth trajec-
tories as deformations defined through flows with regularized acceleration fields.
Barry and Bowman [10] built mixed-effects models on a small number of man-
ually selected landmarks to model the development of facial shape. [11] develop
a manifold version of a mixed-effects model to analyze longitudinal data taking
values on a Riemannian manifold.

Linear mixed-effects models, pioneered by Laird and Ware [12] have become
a natural choice when modeling univariate longitudinal data. These models are
hierarchical, characterizing each individual trend as a linear model, which in turn
can be modeled as a perturbation of the overall population trend. While these
models are powerful for analyzing univariate or low-dimensional multivariate
data, little has been done in the high-dimensional setting, such as longitudinal
data extracted from medical images. A major bottleneck is the difficulty of esti-
mating the large number of parameters involved in covariances between random
effects.

In this paper, we present a new method for characterizing longitudinal shape
change that combines point correspondences across shapes with the statistical
modeling of individual and population trends via the linear mixed-effects model.
Our shape models are based on the particle correspondence framework intro-
duced by Cates et al [13], where particle positions on the object surfaces are
optimized in a variational framework that seeks a balance between model sim-
plicity and geometric accuracy of the surface representations.

2 Background

In the following section we provide a brief overview the particle-system corre-
spondence optimization method as proposed in [13]. The general strategy of this
method is to represent correspondences as point sets that are distributed across
an ensemble of similar shapes by minimizing an objective function that quantifies
the entropy of the system. We also review the linear mixed-effects model, de-
scribed by Laird and Ware [12], and used as the underlying statistical descriptor
of longitudinal changes in our system.
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2.1 Correspondence Optimization

Let us define a surface as a smooth, closed manifold of codimension one, which
is a subset of Rd (e.g., d = 3 for volumes). We sample the surface S ⊂ Rd
using a discrete set of N points that are considered as random variables S =
(Y1,Y2, . . . ,YN )T ,Y ∈ Rd drawn from a probability density function (PDF),
p(Y). We denote a realization of this PDF with lower case, and thus we have
s = (y1,y2, . . . ,yN )T , where s ∈ SN . We refer to the positions y as particles,
and a set of particles, a particle system.

The amount of information encoded in this random sampling is, in the limit,
the differential entropy of the PDF, given by H[Y] = −E{log p(Y)}, where E{·}
is the expectation. Approximating the expectation by the sample mean, we have
H[Y] ≈ − 1

Nd

∑
i log p(yi). To determine the probability of a particle’s posi-

tion, p(yi), [13] uses a nonparametric Parzen-window density estimation given
by a mixture of multivariate, isotropic Gaussian kernels with standard devia-
tion σ that determines the strength of particle interaction with N neighbouring
particles within the defined window. An ensemble comprised of M surfaces,
E = s1, . . . , sM can be described by a Nd × M matrix of particle positions
P = (ykj ), where k = 1, . . . ,M and j = 1, . . . , N . Let sk ∈ RNd be an instance
of a random variable S, then, the combined ensemble and shape cost function is
defined by

Q = H(S)−
∑
k

H(P k) (1)

This cost function is composed of two interacting terms. The first term produces
a compact distribution of samples in shape space, while the second term provides
uniformly-distributed correspondence positions on the shape surfaces, to achieve
a faithful shape representation. The optimization process of this cost function is
defined via gradient descent as described in [13].

2.2 The Laird and Ware linear mixed-effects model

In a linear mixed-effects model, the response or observed variable yi is assumed to
have a set of parameters α, fixed across individuals. In addition, each individual
i, is assigned a set of random parameters bi that model the deviation from the
fixed effect α. For i ∈ {1, 2, . . . , m}, the model reads as follows:

yi = Xiα+ Zibi + εi, (2)

where for the ith individual, Xi and Zi are known independent variables which
influence yi through fixed and random effects respectively. bi are distributed as
N(0, D), D being an arbitrary covariance matrix. εi models the error from the
observed data, and is distributed as N(0, σ2Ii), Ii being an identity matrix.

A simple case of the mixed-effects model occurs when we have a single inde-
pendent variable (such as time or age) that is used for both fixed and random
effects. In this case we have Zi = Xi and (2) simply reduces to

yi = Xi(α+ bi) + εi, (3)
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Fig. 1. Example of randomly-generated, synthetic longitudinal data. Data points for
each “individual” are displayed with different symbols. The estimated mixed-effects
model is shown with both the fixed effects, i.e., group trend (solid black line), and
random effects, i.e., individual trends (dashed lines). The estimated linear regression
model, which ignores correlations within individuals, is shown as a red line.

where for the ith individual, α and bi are 2-vectors interpreted as slope-intercept
pairs of the group and random effects of the individual, respectively.

An example of synthetically generated data from the model (3) is shown in
Fig. 1. This example illustrates the power of mixed-effects models and the impor-
tance of modeling correlations within each individual. Ignoring these correlations
leaves us with a simple linear regression model. Fig. 1 shows the estimated linear
regression model, which does not concur with the trends of the individuals. In
contrast, the estimated α from mixed-effects modeling optimally summarizes the
overall group trend.

3 Methodology

The correspondence optimization framework described in Sec. 2.1 was extended
to incorporate a linear regression based approach in [5]. However, this approach
may not model longitudinal data correctly due to differences in relationships
across individuals. To address this issue, we propose a method that incorpo-
rates the linear mixed-effects model described in Sec. 2.2 into the framework in
Sec. 2.1. Parameters of the linear mixed-effects model are simultaneously esti-
mated along with the correspondence optimization. The following section de-
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scribes our approach and revisits the parameter estimation for the linear mixed-
effects model given by [12].

3.1 Correspondence with Linear Mixed-effects Modeling of Shapes

With the assumption of a Gaussian distribution in shape space, we can introduce
a generative statistical model

y = µ+ ε, ε ∼ N (0, Σ) (4)

for correspondences, where µ is the vector of mean correspondences, and ε is
normally-distributed error. Replacing µ in this model with a function of an
explanatory variable x gives the more general, regression model

y = f(x) + ε̂, ε̂ ∼ N (0, Σ̂). (5)

We propose to optimize correspondences under the linear mixed-effects model
described in Sec. 2.2 to facilitate the estimation of individual and population
trends in longitudinal data. Using the same explanatory variable (age of the
individual, in case of real data) for both fixed and random effects as in (3), we
assume that correspondences for shapes belonging to individual i are generated
by the following analogous statistical model:

Yi = Xiα+Xibi + εi, (6)

where Xi represents the explanatory variable (age; in the case of real data),
Yi is the matrix containing correspondences for all shapes in the population, α
represents the fixed-effects parameters (slope, intercept), while bi represents the
random-effects parameters (slope, intercept) for the individual i and εi represents
the error in correspondences.

The algorithm proceeds as follows. (1) Correspondences are first optimized
under the nonregression model (4) to minimize the entropy associated with the
total error ε, and are used to compute an initial estimate of the linear mixed-
effects model parameters. (2) We then follow the optimization procedure as
described in Sec. 2.1, with the replacement of the model covariance Σ by the
covariance Σ̂ of the underlying residual relative to the regression model. (3) We
interleave the two estimation problems, re-estimating the mixed-effects model
parameters after each iteration of the gradient descent on the correspondences.

3.2 Estimation of Parameters

We denote the parameters in the covariance matrix D and σ2 by a vector θ. We
compute maximum likelihood (ML) estimates for α and θ and empirical Bayes
estimates for bi. If we were to able to observe bi and εi, we could compute closed-
form ML estimates of α and θ, but this is not the case. Therefore, an expectation
maximization (EM) algorithm is used to estimate α and θ, treating bi and εi as
hidden variables. The EM algorithm guarantees that the likelihood increases or
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stays constant at each iteration, but it can converge to a local maximum instead
of the global one.

We model the response variable yi in (2) as being marginally distributed as
N(α, σ2Ii + ZiDZ

T
i ). Since we don’t observe bi and εi, let us replace σ2 and D

by their current estimates σ̂2(j) and D̂(j) at iteration j of the EM algorithm. Let

us also define r
(j)
i := yi −Xiα̂

(j), and N :=
∑m
i=1 ni. The ML estimate for α is

given by

α̂(j) =

(
m∑
i=1

XT
i W

(j)
i Xi

)−1 m∑
i=1

XT
i W

(j)
i yi,

where W
(j)
i =

(
σ̂2(j)Ii + ZiD̂

(j)ZTi

)−1

.

The random-effects, bi, are estimated using empirical Bayes as

b̂
(j)
i = E

[
bi|yi, α̂(j), θ̂(j)

]
= D̂(j)ZTi W

(j)
i r

(j)
i

The covariances σ2 and D are estimated by taking the expectation over hidden
variables εi and bi, conditioned on yi and the current estimates of α and θ. This
step combines both the estimation and a maximization. The resulting estimate
for the error variance is

σ̂2(j+1) =
1

N
E

{
m∑
i=1

εTi εi|yi, α̂(j), θ̂(j)

}

=
1

N

m∑
i=1

[
êTi êi + tr Var

{
εi|yi, α̂(j), θ̂(j)

}]
=

1

N

m∑
i=1

[
êTi êi + σ̂2(j) tr

(
Ii − σ̂2(j)W

(j)
i

)]
,

where êi = E[εi|yi, α̂(j), θ̂(j)] = r
(j)
i − Zib̂

(j)
i . Similarly, the estimate for covari-

ance matrix D is given by

D̂(j) =
1

m
E

[
m∑
i=1

bib
T
i |yi, α̂(j), θ̂(j)

]

=
1

m

m∑
i=1

b̂
(j)
i b̂

(j)T
i + D̂(j)(I − ZiW (j)

i ZiD̂
(j)).

We initialize the covariance matrix D̂(0) to the identity matrix and σ̂2(0) to 1
before starting the EM iterations.

3.3 Permutation test for significance of random-effects

In the case of longitudinal data, correlations may exist within shapes at different
time-points for a given individual and break the independence assumption of
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the simple linear regression model. Another assumption that can be broken is
homoscedasticity, i.e., the property that the variance of the residuals is constant
across the independent parameter. When these assumptions are not met, simple
linear regression models give less reliable (i.e., higher variance) estimates of the
α parameters.

We use a nonparametric permutation test based on an estimate of the error
variance Vε to confirm the significance of the random-effects introduced in the
mixed-effects model. This permutation test works by permuting the assignment
of shapes to individuals. The explanatory variable for the shape is not permuted
- only “group memberships” are permuted. For every permutation, we can com-
pute the squared norm of the residual vector for each shape, and use the average
value as an estimate of Vε in fitting the linear mixed-effects model to this per-
muted ensemble of shapes. This allows us to compute a distribution of Vε of the
model as a test statistic and test the null hypothesis that random-effects have
no effect on the final parameter estimates of the model, and consequently lead
to unaltered Vε values across permutations. Then comparing our unpermuted
Vε to this distribution, we can compute a p-value to test the null hypothesis.
We perform the correspondence optimization on each permutation separately,
and thus the results of our permutation test are not biased by the correspondence
optimization method.

3.4 Permutation test for group discrimination

One of the major motivations of longitudinal data analysis is to test if changes
observed in one group differ from those found in another. For instance, one might
ask if the brain anatomy of Alzheimer’s patients deteriorates faster than those
of healthily aging subjects. In this section, we develop a permutation test on
the Hotelling T 2 statistic to test the statistical significance of group-parameter
differences between two groups of longitudinal data.

Recall the Hotelling T 2 statistic is a test statistic often used in a multivari-
ate test of the difference between sample means, p̄, q̄, of two groups of data
{p1, . . . , pm} and {q1, . . . , qn}, with all pi, qi ∈ Rd. The idea is to compare the
difference between the two means, relative to the pooled sample covariance:

W =

∑
i(pi − p̄)(pi − p̄)T +

∑
i(qi − q̄)(qi − q̄)T

m+ n− 2
.

The T 2 statistic can be thought of as a squared Mahalanobis distance between
the means, using this pooled covariance, W . The sample T 2 statistic is given by

t2 =
mn

m+ n
(p̄− q̄)TW−1(p̄− q̄) (7)

The permutation test procedure is as follows: (1) compute the t2 statistic, (2)
randomly permute (swap) data points between the p and q groups, computing
a t2k statistic for the permuted groups, (3) repeat step 2 for k = 1, . . . , P , (4)
compute the p-value: p = B/(P +1), where B is the number of t2k < t2. The final
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p-value can be interpreted as the probability of finding a larger group difference
by random chance under the null hypothesis (that there is no difference between
the means).

Consider the specific problem of comparing the mean trends in two different

groups G and H. Let Y
(G)
ij and Y

(H)
ij be two sets of longitudinal data and the

resulting parameter estimates for the two groups to be (α̂G1 , α̂
G
2 ) and (α̂H1 , α̂

H
2 ).

It is often most interesting to separate the tests of the slope parameter α1 and
the intercept parameter α2. For example, in testing the differences in anatomical
changes between a healthy and disease group, it is important to distinguish if
the shape differences are present at baseline (intercept) or if they develop over
time (slope). To make this distinction, we can separate the above Hotelling T 2

test into these two components. We will thus look at the two separated statistics,
t2α1

and t2α2
given by (7).

4 Results and Discussion

We validate the proposed method through experiments on synthetic longitudinal
tori, and test the significance of our estimated parameters via a nonparametric
permutation test. We present applications of the method in longitudinal studies
of early development of brain shapes from a neuroimaging study.

4.1 Synthetic Tori

Test of model significance. We generated longitudinal tori comprising of 11 “in-
dividuals”, at 3 different time points. The two radii of the tori within a group
are generated according to the mixed-effects model in (6).

2.0 3.0 4.0 5.0 6.0 7.0

Fig. 2. Visualizing fixed effects on the synthetic data

For each individual i, Xi ∼ U(2, 10) drawn independently, random-effects
bi ∼ N (0, 0.4), and errors εi ∼ N (0, 0.3). The slope-intercept pair for the fixed-
effects are given as: (α1R, α2R) = (2, 30) and (α1r, α2r) = (−1, 15), where R, r
are the outer and inner radii respectively. The particle correspondence positions
and model parameters can then be estimated as prescribed in Section 3. Figure 2
shows the change in shape obtained using the fixed-effects of particle positions.
The parameter R, increases whereas r decreases, which is consistent with the
slope parameters used in the generative model.
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We evaluate the significance of the bi parameters using the nonparametric
permutation test described in Sec. 3.3. Each of the 11 groups are assigned 3
random shapes from the total pool without repetition. We generate 500 such
permutations and estimate Vε(P ), for each permutation P . Over these permuta-
tions, Vε(P ) ranges from 2500 to 6500. Vε for unpermuted group memberships is
940. This implies a p-value ∼ 0. If it was possible to explain the population by
only using fixed-effects, the permutation of group memberships should not have
affected Vε values significantly. This test shows that using random-effects gives
significant reduction in Vε independent of the increase in the number of model
parameters.

0.0 0.5 1.0

Fig. 3. Visualizing the trends in the two groups created to test group differences:
constant trend (top), trend with increasing r (bottom)

Test for group differences. Here, we generate two groups of 11 “individuals”
each, with 3 time-points per individual, with Xi for each individual at 0, 0.5, 1,
random effects bi ∼ N (0, 0.3), and errors εi ∼ N (0, 0.1). For one of the groups,
the fixed-effect slope is kept at zero, but for the other the r fixed-effect is given a
slope 3. Figure 3 shows the tori generated using this configuration of parameters.
When looking for group differences based on baseline intercepts, as expected, the
permutation test prescribed in Section 3.4 did not a yeild a significant p-value.
But when comparing groups based on the slope parameter, we obtained a p-value
∼ 0, which confirms a stark difference in group trends.

4.2 Mixed-Effects Model for Brain Structures

Test for model significance and trend variation. In this experiment, we work with
brain structures from a developmental neuroimaging study. We have 11 subjects
scanned at approximately (6, 12, 24) months. The scans are preprocessed and
segmented to obtain the brain structures (cerebellum, left and right hemispheres)
which are input to the optimization process.

The fixed effects in Fig. 4 clearly show two changes happening in the infant
brain. The first is an elongation of both hemispheres, which can be seen as
a stretching of the frontal lobe and narrowing of the hemisphere shapes. The
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Fig. 4. Visualizing the fixed-effects of brain structures (blue denotes expansion, and
yellow denotes contraction).

Fig. 5. Visualizing the random-effects of brain structures (red denotes high variance
regions)

second effect is the growth near the top of the cerebellum. These trends are
qualitatively consistent with the cross-sectional results found in [5].

The longitudinal model can tell us more, however, than a regression model of
cross-sectional data. First, we know that these fixed effects are representative of
the growth trend that individuals undergo on average, rather than a trend seen
between multiple subjects. Second, and more interestingly, we can say something
about the variability of these trends in the population. Fig. 5 encodes the vari-
ance of the random slopes at each point and is indicative of regions where the
variation in the growth trend across individuals is high (red regions in Fig. 5).
An example inference is that the elongating frontal lobe and expanding cerebel-
lum are relatively stable across the sample (i.e. the variance of these trends is
low). We also evaluate the significance of the bi using the nonparametric permu-
tation test described in Sec. 3.3. Group memberships are permuted 500 times
and Vε(P ) is estimated for each permutation P . While Vε(P ) ranges from 10000
to 17000 for the permuted sets, the value for the unpermuted set is 5400. This
suggests a p-value ∼ 0 and implies that the random effects play a significant role
in describing the early development of the brain.

Test for differences in group trends. We also evaluate our method using a longi-
tudinal database from an Autism Center of Excellence, part of the Infant Brain
Imaging Study (IBIS). The study consists of high-risk infants as well as controls,
scanned at approximately (6, 12, 24) months. At 24 months, symptoms of autism
spectrum disorder (ASD) were measured using the Autism Diagnostic Observa-
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tion Schedule (ADOS). A positive ADOS score indicates the child has a high
probability of later being diagnosed with autism. Finally, we have two groups:
15 high-risk subjects with positive ADOS (HR+) and 14 low-risk subjects with
negative ADOS (LR-).

Fig. 6. Variation in group trends for the HR+ (top) and LR- (bottom) groups (yellow
denotes contraction, blue denotes expansion)

Fig. 6 visualizes the group trends for the HR+ and LR- groups and clari-
fies that the global trends are similar across both groups. There are localized
differences near the frontal end of the hemispheres and also near the cerebel-
lum, but these are not found to be significant by the permutation test for group
differences. The t2 statistic for differences in group trends in cerebellum, left
hemisphere and right hemisphere independently were 6.1039, 5.155 and 4.5693
respectively. The p−values were 0.112, 0.454 and 0.515 for the same.

5 Conclusion and Future Work

We presented a new mixed-effects shape model for analyzing longitudinal shape
changes, which is based on a particle system representation and entropy mini-
mization framework for point correspondences. We demonstrated the ability of
the model to characterize both group-level and individual-level shape trends on
synthetic data and developmental brain data. As for future work, the current
work does not handle spatial correlations between points on a shape. We plan to
investigate this issue, possibly using a pseudolikelihood estimation of the covari-
ance matrix of the shape parameters, similar to [10]. Such an estimation could
possibly take advantage of the entropy minimization, as this tends to decrease
the dimensionality of the covariance matrix.
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