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ABSTRACT The integrin heterodimer is a transmembrane protein critical for driving cellular process and is a therapeutic target
in the treatment of multiple diseases linked to its malfunction. Activation of integrin involves conformational transitions between
bent and extended states. Some of the conformations that are intermediate between bent and extended states of the hetero-
dimer have been experimentally characterized, but the full activation pathways remain unresolved both experimentally due to
their transient nature and computationally due to the challenges in simulating rare barrier crossing events in these large molec-
ular systems. An understanding of the activation pathways can provide new fundamental understanding of the biophysical pro-
cesses associated with the dynamic interconversions between bent and extended states and can unveil new putative
therapeutic targets. In this work, we apply nonlinear manifold learning to coarse-grained molecular dynamics simulations of
bent, extended, and two intermediate states of aIIbb3 integrin to learn a low-dimensional embedding of the configurational phase
space. We then train deep generative models to learn an inverse mapping between the low-dimensional embedding and high-
dimensional molecular space and use these models to interpolate the molecular configurations constituting the activation path-
ways between the experimentally characterized states. This work furnishes plausible predictions of integrin activation pathways
and reports a generic and transferable multiscale technique to predict transition pathways for biomolecular systems.
SIGNIFICANCE Access to transition structures of the integrin heterodimer remains challenging experimentally due to
their transient nature and computationally since the transitions are rare events. We address this challenge by developing a
machine learning method trained on molecular simulation data within known stable states to predict activation pathways
between these states. We apply this approach to the aIIbb3 integrin, a transmembrane cell signaling protein whose
malfunction can lead to multiple pathologies. Our results provide predictions of putative integrin activation pathways and
mechanisms and can guide the identification of new metastable states as candidate therapeutic targets. Our method is
generic and transferable to other large biomolecular systems.
INTRODUCTION

Integrins are transmembrane proteins that mediate the sig-
nals across the cell membrane between extracellular matrix
and cytoplasm (1–4) and play a vital role in various biolog-
ical processes such as cell adhesion, migration, prolifera-
tion, and differentiation, tissue development, angiogenesis,
mechanosensing, and homeostasis (5–11). The two mole-
cules constituting the integrin heterodimer are referred as
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the a and b subunits that exist in a noncovalently associated
complex (2). The activation mechanism of integrin involves
a large-scale allosteric conformational change of the nonco-
valently interacting a and b subunits from an inactive (low-
affinity) to an active (high-affinity) state (2). The structures
of integrin in the inactive and active ligand-binding state are
respectively known as the ‘‘bent-closed’’ and ‘‘extended-
open’’ conformations (8). Fig. 1 illustrates the all-atom
(AA) cartoon structures of the bent-closed and extended-
open conformations of aIIbb3 integrin at near physiological
conditions initially resolved using cryo-electron microscopy
(12) and subsequently used to initialize AA molecular dy-
namics simulations (13). In the bent-closed conformation
(Fig. 1 a), both a and b subunits are generally closely
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FIGURE 1 All-atom structures of aIIbb3 integrin in the inactive bent-closed and active extended-open states along with two extended-intermediate states.

The atomic coordinates of these structures were taken from a prior study by Tong et al. (13) employing all-atommolecular dynamics simulations with explicit

water in the presence of lipid membrane. The initial coordinates of the four structures for the all-atom molecular dynamics simulations in Tong et al. were

themselves constructed from cryo-electron microscopy data (12). (a) In the bent-closed state, both the a and b subunits are closely associated with a large part

of the head ectodomains bent at the genu or linker regions, and the remaining cytoplasmic helical regions are extended and embedded within the cell mem-

brane. (b) Structure of extended-intermediate 1 (Int 1) state exhibiting an opening at the genu or linker regions relative to the bent-closed structure. (c) Struc-

ture of extended-intermediate 2 (Int 2) state wherein the hybrid domain in b subunit swings out relative to the Int 1 state along with a crossing of the tail

helices. (d) Structure of extended-open state resulting from separation of transmembrane tail helices in Int 2 state. Molecular renderings in this and all sub-

sequent figures were constructed using VMD 1.9.4 (14). To see this figure in color, go online.
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associated with a large part of their head ectodomains bent
at the genu or linker regions connecting the remaining
extended but associated leg regions (2). The extracellular
ligand-binding site in aIIbb3 lies between the headpiece
bpropeller domain of a subunit and b3-I domain of the b

subunit of integrin, which in the bent-closed conformation
is closer to the membrane but remains accessible to the
ligand (12). The upright extended-open conformation
(Fig. 1 d) differs from the bent-closed conformation by an
extension of the ectodomain of both a and b subunits
away from the membrane and a separation of leg regions
of a and b subunits at the genu or linker regions by a dis-
tance of �7–8 nm (2,12).

Conversion from the inactive to active state of integrin is a
typically reversible process that occurs within seconds and
can be triggered bidirectionally by proteins or ligands in
the cytoplasm (‘‘inside-out’’ activation) or in the extracellular
matrix (‘‘outside-in’’ activation) (15,16). In addition, integrin
activation can be triggered by activating mutations and model
agonists such as divalent cations, phorbol myristate acetate,
calcium ionophore, and monoclonal antibodies (17–21).
Experimental studies of integrin activation from the bent-
closed to extended-open conformations have led to two pre-
vailing hypothesized activation mechanisms termed the
‘‘switchblade’’ and ‘‘deadbolt’’ pathways (16,22–24). In the
switchblade model, inside-out activation results in separation
2 Biophysical Journal 123, 1–14, October 1, 2024
of extended legs of integrin followed by an opening of the
head ectodomains of both a and b subunits bent at the
genu or linker regions into the straightened extended-open
conformation (high-affinity ligand-binding state) in a motion
similar to the opening of a pocketknife (23,25,26). In the
deadbolt model, there is a progressive loss of interactions be-
tween the b-tail (b-T) domain (deadbolt region) and b-I
domain (lock region) in the b subunit with a piston, seesaw,
sliding, or rotation movement before the separation of the
legs to expose the ligand-binding site (26). In contrast to
switchblade model, the deadbolt model considers the bent-
closed conformation to be a ligand-binding-active state, and
the extended-open state may be achieved after a change in af-
finity or upon ligand binding (23). Alternative models of acti-
vation have also been proposed, including a cooperative
activation mechanism that requires clustering of multiple in-
tegrins facilitated by cytoplasmic talin proteins (27,28) and a
light switch mechanism wherein the extension of the bent-
closed conformation to extended-open conformation primar-
ily requires a change in the tilt angle of the transmembrane
helix of the b-subunit potentially facilitated by the weakened
interactions between the transmembrane helices of a and b

subunits when embedded within the membrane (12).
Biochemical, crystallographic, and microscopy studies

have shed light on the major conformational states of the in-
tegrin heterodimer, but the transient intermediate structures
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and atomistic details of the activation mechanism remain
much less well understood. Integrin is a major therapeutic
target because its malfunction can result in various diseases
such as bleeding disorders, immunodeficiency, and can-
cer (29). The aIIbb3 variant, for example, is a major platelet
integrin that plays an important role in hemostasis,
thrombosis, and atherosclerosis (12,18,30). Malfunction
of aIIbb3 integrin activation is linked to thrombotic disorders
(heart attack and stroke) and bleeding disorders (13,31,32).
Molecular understanding of the integrin activation mecha-
nism would not only provide insights into the fundamental
cellular processes driven by integrin but can also identify
new structural targets for integrin-targeting therapeutics
(9,33–35). However, mapping transient structures and un-
derstanding molecular mechanism of integrin activation is
challenging for both experiment and computation. With
experimental methods, mapping high-resolution structures
along the activation path is difficult because of their inher-
ently transient nature. Currently only a few intermediate
structures at high resolution are available such as those
shown in Fig. 1 b and c (12). Computer simulations can
shed light on the atomistic details of activation but are hin-
dered by the large size of the molecular system: the integrin
heterodimer proteins comprise�1800 residues (13), making
unbiased sampling of rare activation events computationally
burdensome and biased simulations challenging due to the
absence of good order parameters with which to drive sam-
pling of activation.

In this work, we combine molecular dynamics (MD)
simulations, nonlinear manifold learning, and deep gener-
ative modeling within a multiscale framework to predict
activation pathways from simulation data collected within
known intermediate metastable or stable states. We apply
this approach to the activation pathways of a prototypical
aIIbb3 integrin heterodimer, but the technique is generi-
cally extensible to other molecular systems for which the
intermediate states are known but for which the activation
pathways are computationally prohibitive rare events.
The remainder of this paper is structured as follows.
We first provide a description of the generation of the
coarse-grained MD training data within the four known in-
termediate states and details of each component of our
computational approach to predict activation pathways:
density-adaptive diffusion maps (dMaps), conditional
Wasserstein generative adversarial networks (cWGAN),
and targeted molecular dynamics (TMD). We then present
and discuss the latent space of the model integrin aIIbb3,
cWGAN generated molecular structures for each interme-
diate state, and cWGAN predicted activation pathways be-
tween these states. We conclude with a discussion of the
configurational plausibility of the predicted pathways, the
possibility of using these structures to seed a targeted
campaign of unbiased or enhanced sampling AA simula-
tions, and the potential for experimental testing and valida-
tion of these predictions.
MATERIALS AND METHODS

We present in Fig. 2 an overview of the four steps of our computational pro-

tocol: 1) calculation of the similarity matrix between coarse-grained (CG)

representations of the aIIbb3 integrin heterodimer harvested from AA MD

simulations of the bent-closed, Int 1, Int 2, and extended-open states

(Fig. 2 a), 2) application of density-adaptive dMaps to learn a nonlinear pro-

jection of the simulation data into a low-dimensional latent space (Fig. 2 b),

3) training of a cWGAN to approximate the inverse mapping from the low-

dimensional latent space to the high-dimensional molecular space and the

use of the trained model to predict the molecular activation pathways be-

tween metastable states by interpolation (Fig. 2 c), and 4) TMD backmap-

ping calculations to restore AA resolution to the predicted CG

configurations (Fig. 2 d). In a nutshell, the dMaps trained over simulation

data in the four states furnish a low-dimensional compression of the

high-dimensional simulation data into a latent space exposing the structural

similarities of configurations within and between the intermediate states.

The low-dimensional nature of this embedding preserves the gross struc-

tural features discriminating the states and enables the construction of inter-

polative pathways between the states through regions of configurational

space in which no simulation data is available. The trained cWGAN learns

the inverse mapping from the latent space back to the high-dimensional mo-

lecular space and serves as a deep generative model with which to predict

(i.e., ‘‘hallucinate’’) putative molecular configurations along the activation

pathways between states. For reasons of computational tractability and sta-

bility in cWGAN training and deployment, we operate these components of

the pipeline using a 300-bead CG representation of the integrin hetero-

dimer, but we perform post hoc restoration of AA detail using TMD calcu-

lations. In the following sections, we provide full details of each of the four

steps in the pipeline.
All-atom training data in each intermediate state

Direct simulations of integrin activation pathways are challenging because of

the high cost of simulating these large systems and the nature of the transition

as a rare event. Although we are unaware of any direct unbiased simulations

of activation, a limited number of studies have utilized enhanced sampling

calculations to drive activation using artificial biasing forces (36). For

instance, Kulke and Langel applied steered MD simulations to artificially

mimic the outside-in and inside-out activation pathways of aVb3 integrin

and observed switchblade like extension mechanism from a bent-closed to

an extended-open-like state in both scenarios (37). Wang and Li captured

extension of aIIbb3 integrin from a bent-closed state to an extended state

without transmembrane tail helices separation in one of six steered MD sim-

ulations with pulling forces applied only to fibronectin ligand attached to the

headpiece of integrin (38). Tong et al. (13) previously conducted unbiased

MD simulations of aIIbb3 integrin within the bent-closed, Int 1, Int 2, and

extended-open states commencing from initial structures obtained from

cryo-electron microscopy (12). Although no transitions were observed be-

tween the intermediate states in this study, we hypothesized that our compu-

tational approach could be trained over these unbiased data and used to

propose biophysically plausible activation pathways without requiring the

application of artificial biasing potentials. Each unbiased AAMD simulation

in Tong et al. comprised the aIIbb3 integrin, lipid bilayer (3:1 M ratio of

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):1,2-dioleoyl-sn-glycero-

3-phospho-L-serine (DOPS)), and 150 mM of NaCl in water at 310 K and

1 atm (13). Snapshots were harvested at a period of 200 ps over the

�500 ns to collect a total of 2450 configurations for each state. Full details

of the simulation protocol including system preparation using CHARMM-

GUI (39) and addition of missing residues within the four experimental struc-

tures are reported in Tong et al. (13).

Although we could have conducted the dMaps nonlinear dimensionality

reduction and cWGAN reconstruction in the AA representation, to reduce

the computational cost and improve stability of cWGAN training and deploy-

ment,weelected toconduct these operationswithin a reduced-dimensionalCG
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FIGURE 2 Schematic overview of the multiscale

computational approach to predict the molecular

activation pathways between intermediate states of

the aIIbb3 integrin heterodimer. (a) Training data is

collected from �500 ns all-atom MD simulations

of the aIIbb3 integrin heterodimer within a lipid

bilayer in the bent-closed, Int 1, Int 2, and

extended-open states. To reduce training costs and

improve stability of the cWGAN, we develop 300-

bead coarse-grained representations of the system

from the �1750-residue AA representations and

compute pairwise root mean-square deviations

(RMSDs) between the translationally and rotation-

ally aligned snapshots harvested from each trajec-

tory. (b) The RMSD pairwise distance matrix

serves as an input to the density-adaptive diffusion

maps (dMaps) that learn an embedding of the simu-

lation trajectories into a low-dimensional latent

space that clusters configurations according to struc-

tural similarity within and between the four interme-

diate states. A schematic illustration of the latent

space is presented here. (c) We train a conditional

Wasserstein generative adversarial network

(cWGAN) to learn the inverse mapping from the

low-dimensional latent space to the high-dimen-

sional 300-bead coarse-grained molecular space.

As a deep generative model, the cWGAN can be

used to interpolate/extrapolate beyond the training

data. We use the trained model to predict molecular

structures along pathways connecting various states

within the latent space. As an example, we present

the sequence of molecular configurations ‘‘halluci-

nated’’ by the trained cWGAN along the linear acti-

vation pathway between the Int 1 and bent-closed

states indicated by a dashed line marked by a + in

(b). The a and b subunits are respectively colored

in blue and red. (d) We restore atomistic detail to the cWGAN predicted configurations using targeted molecular dynamics (TMD). These calculations apply

biasing forces to template an all-atom model onto each coarse-grained configuration along the predicted pathway. To see this figure in color, go online.

Dasetty et al.

Please cite this article in press as: Dasetty et al., Data-driven prediction of aIIbb3 integrin activation paths using manifold learning and deep generative modeling,
Biophysical Journal (2024), https://doi.org/10.1016/j.bpj.2023.12.009
mapping. Furthermore, the AA simulations of the bent-closed, Int 1, and Int 2

structures each have 1770 amino acid residues, whereas the extended-open

structure possesses 1748 residues, so developing a CG system representation

also allows us to treat all four systems on an equal footing. Following a coarse

graining procedure previously developed for the construction of an essential

dynamics model of aVb3 integrin, we adopted a 300-bead CG representation

for the 1770 residues in the bent-closed, Int 1, and Int 2 systems (16)

(Table S1). We adapted this 300-bead mapping for the 1748-residue

extended-open system by slightly adjusting the residue-to-bead mapping

within the leg regions of the dimer (Table S2).We verify that theaVb3 integrin

coarse graining is also appropriate to theaIIbb3 integrin studied in thiswork by

confirming that temporal trends in the root mean-square deviation (RMSD)

and positional trends in the root mean-square fluctuation observed in the AA

systems are well preserved under the CGmapping (Fig. S1). The 2450 config-

urations harvested for each intermediate statewere converted into the 300-bead

CG representation and the translationally and rotationally aligned RMSD

computed between each pair of frames in preparation for the application of

dMaps (Fig. 2 a).
Nonlinear manifold learning of a low-dimensional
latent embedding using density-adaptive dMaps

The 3 � 300 ¼ 900-dimensional CG configurational space is large, high

dimensional, and sparsely populated by the simulation data, making it chal-

lenging to plot physically plausible transition pathways between the inter-

mediate states. We employ dMaps (40–45) to learn a unified low-
4 Biophysical Journal 123, 1–14, October 1, 2024
imensional embedding of the gross structure relations between and within

the metastable states of molecular systems (Fig. 2 b). Conceptually, this

nonlinear manifold learning technique performs a spectral decomposition

of a random walk over the high-dimensional data points to learn a low-

dimensional projection into the leading eigenvectors of this discrete diffu-

sion process characterizing the large-scale, slow dynamical motions of the

system (42). Mathematically, Euclidean distances in the low-dimensional

projection approximate diffusion distances measuring the connectivity,

and therefore kinetic proximity under the random walk, of states in the

high-dimensional space. This preservation of the large-scale dynamical mo-

tions within the low-dimensional projection and the imputation of an effec-

tive kinetic proximity makes dMap embeddings particularly well-suited to

the interpolative construction of putative transition pathways between inter-

mediate states within the embedding. To account for the large variability in

the sampling density of training data within and outside of the intermediate

states, we find it useful to employ a density-adaptive variant of dMaps to

smooth out these large fluctuations and to help to learn unified global em-

beddings of the distinct intermediate states (46).

In this work, the high-dimensional datapoints correspond to the 2450 mo-

lecular configurations in each of the four intermediate states (Fig. 1) that are

sampled via AA MD simulations (13) and featurized with a 300-bead CG

model. We employ RMSD as the similarity metric, as a translationally

and rotationally invariant measure of configurational similarity (Fig. 2 a),

and adopt a diffusion kernel bandwidth of ε ¼ e3:982 and a scaling expo-

nent of a ¼ 0:1 in the density-adaptive dMaps (46). The eigenvalue spec-

trum and pairwise similarity matrix identify four leading eigenvectors

corresponding to the large-scale, long-time configurational dynamical



Prediction of integrin activation paths

Please cite this article in press as: Dasetty et al., Data-driven prediction of aIIbb3 integrin activation paths using manifold learning and deep generative modeling,
Biophysical Journal (2024), https://doi.org/10.1016/j.bpj.2023.12.009
relaxations of the molecular system and inform the construction of a 4D

low-dimensional projection of each 300-bead CG configuration x into the

four leading nontrivial eigenvectors ji¼ 2;3;4;5 (Fig. S2).
Inverse mapping of the low-dimensional latent
space to high-dimensional molecular structure
using cWGANs

A deficiency of dMaps is the absence of an explicit functional mapping be-

tween the high-dimensional ambient space and the learned low-dimensional

embedding (42). The inverse mapping from the low-dimensional latent

space ji¼ 2;3;4;5 to the 300-bead CG configurational space x is required to

interpolate activation pathways between intermediate states. In this work,

we approximate the inverse mapping using a conditional Wasserstein

GAN (cWGAN) with gradient penalty (47–49) (Fig. 2 c). The cWGAN

generator Gðz��ji¼ 2;3;4;5Þ is trained over the CG-MD training data to learn

a conditional distribution of the configuration x using a d-dimensional white

noise vector z conditioned by the projection of x within the latent space

ji¼ 2;3;4;5. The cWGAN critic CðxÞ is co-trained with the generator to learn

the Wasserstein distance between a molecular configuration x from the

training data with a corresponding latent space location ji¼ 2;3;4;5 and a syn-

thetic configuration produced by the generator Gðz��ji¼ 2;3;4;5Þ. The net-

works representing the generator and critic are co-trained in an

adversarial fashion to minimize the loss function,

LWGAN ¼ Ez�Pz;ji
½CðGðzjji ¼ 2;3;4;5ÞÞ�

�Ex�Ptraining data
½Cðx;ji ¼ 2;3;4;5Þ� þ lEx̂�Px̂

�ð k Vx̂Cðbx;ji ¼ 2;3;4;5Þk2 � 1Þ2�: (1)

The first term, Ez�Pz ;ji
½CðGðz��ji¼ 2;3;4;5ÞÞ� is the expectation of the critic

Cð~xÞ with ~x generated from the generator Gðz��ji¼ 2;3;4;5Þ. The second term

Ex�Ptraining data
½Cðx;ji¼ 2;3;4;5Þ� is the expectation of the critic Cðx;ji¼ 2;3;4;5Þ

given a real molecular configuration x from the training data with latent

space coordinates ji¼ 2;3;4;5. Minimizing the loss function minimizes the

Wasserstein distance between the distributions of synthetic and real molec-

ular configurations. The third term is a regularizing penalty to stabilize

cWGAN training (48), the strength of which is controlled by the hyperpara-

meter l and which enforces the L2-norm of the gradient of the critic

(k Vx̂Cðbx;ji¼ 2;3;4;5Þk2) to unity for input molecular configurations bx. These
input molecular configurations bx � PðbxÞ are drawn uniformly at random

along straight lines connecting a training configuration x and a generated

configuration ~x with latent space coordinates j2;3;4;5.

In this work, we employ fully connected, feedforward neural networks

for both the generator and the critic. The generator is modeled by a 132-

256-256-256-900 network employing a 128D Gaussian noise vector z �
PzðzÞ ¼ N ð0; 1Þ and a 4D conditioning vector ji¼ 2;3;4;5. The critic is

modeled by a 904-256-256-256-1 network, where the input contains the

900D flattened coordinates of the 300-bead CG configuration translation-

ally and rotationally aligned to a reference structure corresponding to Int

2 state observed at t ¼ 20 ns in AA MD simulations (13) and a 4D condi-

tioning vector ji¼ 2;3;4;5. Inputs to both networks were normalized to [–1,1]

(50). Sigmoid-weighted linear unit activations or swish functions (51) were

employed in all hidden layers, and a tanh activation function was applied to

the output of the generator. Batch normalization (52) was applied to each

hidden layer of the generator. The generator and critic comprise, respec-

tively, 393,000 and 363,000 trainable parameters. Training was performed

using RMSprop (53) with a learning rate of 0.00005, momentum of 0.1,

batch size of 100, and regularization parameter of l ¼ 10. Training was

conducted for 1000 epochs over all 4 � 2450 ¼ 9800 CG snapshots har-

vested over the four intermediate states, and the critic was updated five

times for each generator update to balance training of the two networks.
Models were constructed and trained using PyTorch lightning (54,55).

Training curves for the cWGAN are illustrated in Fig. S3 illustrating

convergence to an equilibrium at which the critic is unable to distinguish

the synthetic molecular configurations produced by the generator from

the training data. At this point, the generator has learned an excellent

approximation for the inverse mapping from the 4D latent space to the

300-bead CG configurational space over the training data collected in the

intermediate states.
CG to AA backmapping using TMD

The 300-bead CG configurations produced by the trained cWGANwere up-

graded to AA resolution using TMD (56) (Fig. 2 d). Given a CG configura-

tion produced by the cWGAN, we began from a candidate AA

configuration, typically the Int 1 or extended-open state taken from Tong

et al. (13), and we applied a moving harmonic biasing potential to minimize

the RMSD between the AA configuration and the CG target (56,57). The

RMSD between the configurations was computed under the CG mapping

detailed in Tables S1 and S2 using the central residue for both this calcula-

tion and the application of the biasing forces. The potential bias can be ex-

pressed as V ¼ ðkðtÞ =2ÞðRMSD � RMSDcenterðtÞÞ2, where kðtÞ refers to
the harmonic potential force constant at time t, and the RMSDcenterðtÞ indi-
cates the reference RMSD at time t. In this work, we linearly scale kðtÞ from
0 to 20,000 kJ/mol/nm2 and RMSDcenterðtÞ from the initial RMSD to�0 nm

in a total time of 2.5 ns. We find that applying identical moving harmonic

potentials to the a and b subunits separately performs better than applying a

single moving harmonic potential for the entire aIIbb3 integrin. An example

application of the TMD procedure is illustrated in Fig. S4.

The AA simulations were conducted using GROMACS 2021.6 (58,59)

patched with the PLUMED 2.8.1 plugin (60). Integrin was modeled using

the CHARMM36m (61) force field with its default CHARMM-modified

TIP3P water model (62). In contrast to Tong et al. (13), a lipid bilayer

was not added to the system. Cubic boxes of dimensions 12.7 � 12.7 �
26.0 nm3 for the Int 1 state and 14.8 � 15.0� 42.5 nm3 for the extended-

open state were employed. Sodium counterions were added to neutralize

the net charge. In total, the Int 1 and extended-open AA systems contained,

respectively, 132,794 and 310,258 water molecules and 61 and 59 sodium

counterions. Real space cutoffs of 1.2 nm were employed for both van der

Waals and Coulomb interactions (61). The force-switch modifier was em-

ployed to smoothly switch van der Waals forces between a cutoff of

1 nm and 1.2 nm. Long range electrostatic interactions were computed us-

ing the particle mesh Ewald method (63). Energy minimization and equil-

ibration were performed as described in Tong et al. (13). In brief, steepest

descent energy minimization was followed by NVT equilibration to 300 K

and then NPTequilibration to 300 K and 1 bar using a Berendsen thermostat

and barostat (64). TMD production runs were performed in the NPT

ensemble at 300 K and 1 bar for 2.5 ns using the same leapfrog algorithm

(65) utilized in equilibration runs with a time step of 2 fs. Hydrogen atom

positions were constrained using the LINCS algorithm (66). A velocity-

rescale thermostat (67) with a time constant of 1 ps and Parinello-

Rahman barostat (68) with time constant of 5 ps and compressibility of

4.5 � 10�5 bar�1 were employed to regulate temperature and pressure.
RESULTS AND DISCUSSION

Nonlinear manifold learning of a low-dimensional
latent space embedding of aIIbb3 intermediate
states

As the first step in our pipeline, we compute a low-dimen-
sional embedding of the four states of the aIIbb3 integrin het-
erodimer. In Fig. 3 a, we illustrate the pairwise RMSD
matrix between the 300-bead CG representations of the
Biophysical Journal 123, 1–14, October 1, 2024 5



FIGURE 3 Nonlinear manifold learning of a low-

dimensional embedding of the intermediate states of

aIIbb3 CG integrin using density-adaptive dMaps. (a)

Pairwise RMSD matrix within and between the

300-bead CG representations of the 2450 configura-

tions harvested from AA MD simulations in each of

the four states—bent-closed, Int 1, Int 2, and

extended-open. RMSD values are denoted by color

corresponding to the scale bar. (b) Representative

300-bead CG configurations of each intermediate

state. The a and b subunits of the aIIbb3 integrin het-

erodimer are colored blue and red, respectively. (c)

Learned 4D embedding of the 4 � 2450 ¼ 9800

CG snapshots into the four leading nontrivial diffu-

sion map eigenvectors ðj2;j3;j4;j5Þ visualized in

all 2D projections. The snapshots corresponding to

the bent-closed, Int 1, Int 2, and extended-open states

are colored in gray, orange, green, and black, respec-

tively (see legend), and exhibit a clear clustering

within the low-dimensional projection. To see this

figure in color, go online.
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2450 configurations harvested from the AAMD simulations
in the bent-closed, Int 1, Int 2, and extended-open states in
Tong et al. (13). Representative CG structures from each in-
termediate state are presented in Fig. 3 b. The pairwise dis-
tance matrix exhibits a clear block structure evincing much
closer configurational similarity of configurations within
each intermediate state relative to between the states. The
mean within-state pairwise RMSD across the four states is
0.92 nm compared with 4.4 nm between the states. This ma-
trix structure is a consequence of the absence of any transi-
tions between the four states in the simulation data wherein
configurations within each state dynamically interconvert,
whereas those between states do not. This suggests that
we should anticipate gaps between the four states in our
low-dimensional dMap embedding.

In Fig. 3 c, we present the projection of the 4 � 2450 ¼
9800 snapshots into the 4D latent space learned using den-
sity-adaptive diffusion maps and spanned by the leading
four nontrivial eigenvectors ðj2;j3;j4;j5Þ. The embedding
demonstrates a clear clustering of the four states reflecting
the closer structural similarity of configurations within
each state relative to between states. We hypothesize, how-
ever, that the dMaps have learned a structurally meaningful
embedding between the four states that will allow us to pre-
dict putative activation pathways between the states. Specif-
ically, the j2 projections of the embedding illustrate a clear
separation of the bent-closed state from the other three states
(Fig. 3 c (i–iii)), implying that the collective variable j2 cap-
tures primarily the differences in the bent and extended con-
6 Biophysical Journal 123, 1–14, October 1, 2024
figurations. The Int 1, Int 2, and extended-open states are
themselves separated out along the j3 axis (Fig. 3 c (i, iv,
and v)), and j4 separates the Int 2 state from the other three
(Fig. 3 c (ii, iv, and vi)). j5 appears to offer little interstate
separation but provides an axis over which the clusters
spread out to accentuate intrastate differences between the
constituent configurations (Fig. 3 c (iii, v, and vi)).

We gain further insight into the physical interpretation of
some of the leading dMap eigenvectors by coloring the
latent space with candidate physical observables. We find
that j2 is strongly correlated with the distance dbpropeller �bTD

between the bpropeller and bT domains (Fig. S5) and the dis-
tance dhead� tail between the ectodomain headpiece and cyto-
plasmic tail helices (Fig. S6). This is consistent with our
previous observation that j2 characterizes differences be-
tween the bent-closed state and the more extended states.
We observe a moderate correlation between j3 and the dis-
tance between the cytoplasmic tail helices dahelix � bhelix

(Fig. S7) and between the a-b subunits daunit �bunit (Fig. S8)
exposing its role in characterizing the separation of the a

and b subunits of aIIbb3 integrin.
Generative decoding of CG configurations of
aIIbb3 intermediate states from the learned latent
space

Having learned a low-dimensional projection of the four
states, we now train a cWGAN to learn the inverse mapping
from the 4D latent space to the 300-bead CG configurational
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space. We train the cWGAN over all 4 � 2450 ¼ 9800 CG
snapshots harvested from the four states, and in Fig. 4 a, we
illustrate its performance within the training set by
comparing the pairwise RMSDs between each MD configu-
ration and a corresponding synthetic cWGAN configuration
generated by conditioning the trained cWGAN on the 4D
latent space coordinates ðj2;j3;j4;j5Þ of the training
sample. The generation procedure is stochastic and only
conditioned on the CG information contained in the four di-
FIGURE 4 Generative decoding of aIIbb3 integrin heterodimer 300-bead CG

learned by density-adaptive dMaps. (a) Histograms of the pairwise RMSD b

bent-closed, (ii) Int 1, (iii) Int 2, and (iv) extended-open—and synthetic config

coordinates of each training configuration. The low pairwise RMSD scores wi

can accurately reproduce configurations in the training data for all four intermed

configurations from the MD simulations (gray) conducted in each intermediate

ated using the latent space coordinates of the training sample. (c) Projection of t

each of the four states into a space spanned by two physical collective variables q

distance between the bpropeller and bT domain dbpropeller �bTD . (iii) Illustration of

dahelix �bhelix and dbpropeller �bTD on a molecular snapshot of bent-closed state. (d) C

configurations in the 2450 training configurations harvested from the MD simul

figurations generated by conditioning the cWGAN on latent space coordinates ge

and bandwidth fitted to the projection of the training data for each intermediate

trates the capacity of the trained cWGAN to generate novel synthetic configura
mensions of the dMap embedding, so while we should not
expect the cWGAN to generate exact copies of the training
points, a well-trained generator should be capable of pro-
ducing synthetic 300-bead configurations with the same
gross structural configurations as the training data and low
pairwise RMSDs. The four histograms of the pairwise
RMSDs pertaining to each state demonstrate that the
cWGAN has learned to approximate the inverse mapping
and can accurately recapitulate the training data with a
structures conditioned on location within the 4D latent space embedding

etween the 2,450 300-bead CG training configurations in each state—(i)

urations generated by the trained cWGAN conditioned on the latent space

th means of the distribution centered at < 1 nm indicate that the cWGAN

iate states. (b) Comparison of selected representative 300-bead CG training

state with the corresponding cWGAN synthetic configuration (cyan) gener-

he (i) 2450 MD configurations and (ii) 2450 cWGAN reconstructions from

uantifying the distance between tail cytoplasmic helices dahelix �bhelix and the

the structural regions corresponding to the two intramolecular distances

omparison of the distribution of the pairwise RMSD between each pair of

ations in each intermediate state and an identical number of synthetic con-

nerated from a 4D Gaussian mixture model with two components and mean

state into the latent space (Fig. S9). The similarity of the distributions illus-

tional ensembles by interpolation. To see this figure in color, go online.
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FIGURE 5 Interpolative paths between the four intermediate states of the

aIIbb3 integrin heterodimer within the 4D dMaps latent space. Ten interme-

diate points are generated using linear interpolation fromwhich to seed con-

ditional generation of synthetic molecular configurations using the trained

cWGAN. The bent-closed, Int 1, Int 2, and extended-open state are colored

gray, orange, green, and black, respectively. The image presents the paths

within the j2 � j3 projection of the latent space; projections into all other

2D latent space elevations are presented in Fig. S10. To see this figure in

color, go online.
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mean pairwise RMSD of 0.86 nm. Moreover, the cWGAN
performs well in all four states, indicating that the model
has not overfit to any one structural ensemble and suggest-
ing that it may be capable of predictively interpolating the
structural ensembles between the states. In Fig. 4 b, we pre-
sent a comparison of representative MD training configura-
tions and the corresponding synthetic cWGAN structures
along with the pairwise RMSD scores. In Fig. 4 c, we pre-
sent a projection of the 2450 MD configurations and 2450
cWGAN reconstructions in each state into a space spanned
by two physical collective variables quantifying the distance
between tail cytoplasmic helices dahelix �bhelix and the distance
between the bpropeller and bT domain dbpropeller � bTD . The good
agreement between the two projections into these two key
intramolecular distances that separate the four states pro-
vides further support that the cWGAN produces physically
plausible molecular configurations.

We now assess the out-of-training generative capacity of
the trained cWGANby generating novel synthetic configura-
tions over the latent space. In Fig. 4 d, we compare for each of
the four states the distribution of pairwise RMSD scores be-
tween each pair of configurations in the 2450 training config-
urations harvested from theMD simulations in each state and
an identical number of synthetic configurations generated by
conditioning the cWGAN on latent space generated from a
4D Gaussian mixture model with two components and
mean and bandwidth fitted to the projection of the training
data for each state into the latent space (Fig. S9). The similar-
8 Biophysical Journal 123, 1–14, October 1, 2024
ity of the two distributions in each case demonstrates that the
trained cWGAN is capable of generating configurational en-
sembles of synthetic configurations within each state that are
in good accord with those harvested from theMD simulation
trajectories. Finally, we observe that generation of the
cWGAN synthetic configurational ensembles is also compu-
tationally cheap, requiring only �0.01 CPU-seconds to pro-
duce the 2450 novel configurations.
Prediction of integrin activation pathways
between intermediate states

Having learned a low-dimensional latent space embedding
of the four states and having trained a cWGAN to generate
physically plausible 300-bead CG configurations within
each state, we now seek to use these two models to chart
pathways between the four states in the latent space and to
generate configurations along these putative activation path-
ways that are challenging to access by both conventional
molecular simulations and experiment. To do so, we first
generate 10 intermediate points in the 4D latent space be-
tween every pair of states using linear interpolation. Fig. 5

shows the

�
4

2

�
¼ 6 interpolation pathways within the

j2 � j3 projection of the latent space. Projections into all
other 2D latent space projections are presented in Fig. S10.

Next, we use the intermediate points along the 4D inter-
polative pathways in the dMaps latent space to condition
the generation of 300-bead CG configurations using the
trained cWGAN. We illustrate the resulting interpolated
configurations between each pair of the four states in
Fig. 6. These interstate interpolations represent putative
activation pathways between the states that can be examined
to infer possible activation mechanisms. We pause here to
caution against over-interpretation of these pathways: in
the absence of the underlying free energy landscape, the
actual (possibly nonlinear) minimum free energy route
taken by each path through the latent space is not known,
the preferred forward and backward pathways may not be
coincident, and the accuracy of the cWGAN far from the
training data cannot be assessed without collecting addi-
tional simulation data. We return to these issues and how
the proposed paths may be used to seed additional more
detailed, and more computationally burdensome, calcula-
tions in the conclusion. With these caveats in mind, we
view the paths largely as model-guided interpolations be-
tween the states and examine them as putative activation
pathways that can shed light on possible transition mecha-
nisms without the application of artificial biasing forces,
can make contact with the hypothesized switchblade and
deadbolt mechanisms, and can be used to seed more detailed
future studies.

Fig. 6 a illustrates a putative activation pathway between
the bent-closed and Int 1 state that evinces a smooth



FIGURE 6 Synthetic 300-bead CG configurations generated at 10 evenly spaced intervals along interpolative paths connecting each pair of the four states

in the 4D dMaps latent space. (a–f) The symbols annotating each row of synthetic configurations correspond to those marking the interpolative pathways in

Fig. 5. The a and b integrin subunits are illustrated in blue and red, respectively. To see this figure in color, go online.
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extension of the ectodomain headpiece while the a and b

subunits remain associated. Similarly, the pathway between
the bent-closed and Int 2 state shown in Fig. 6 b exhibits
extension of the ectodomain headpiece but now accompa-
nied by a separation of the a and b subunits to ultimately
form a cross shape. The Int 1 and Int 2 states are largely
differentiated by the separation of the ectodomain headpiece
that can be quantified by the distance between the bpropeller
and bT domain dbpropeller �bTD (cf. Fig. 4 c) and a crossing of
the cytoplasmic tail helices. The putative activation pathway
between Int 1 and Int 2 is illustrated in Fig. 6 c. In Fig. 6 d,
we present the pathway between the Int 1 and extended-
open state. These structures show that the extended-open
state can be realized from Int 1 by simultaneous changes
in the separation of the headpiece and tail helices of the a
and b subunits. On the other hand, the Int 2 state already
contains a separated headpiece and, as illustrated in Fig. 6
e, transitions to the extended-open state along its putative
activation pathway by a gradual separation of tail helices.
Although the activation pathway between the bent-closed
and extended-open states is anticipated to pass through in-
termediate metastable states, for the sake of completeness,
we illustrate the putative direct pathway between these
two states in Fig. 6 f. Despite the large structural differences,
our approach generates what appear to be physically plau-
sible intermediate configurations that involve an extension
of the headpiece followed by separation of both headpiece
and tail helices of the a and b subunits. We compare each
of the intermediate configurations along this direct pathway
to the Int 1 and Int 2 states to assess the degree to which this
Biophysical Journal 123, 1–14, October 1, 2024 9
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path may pass through these previously characterized inter-
mediates. As illustrated in Fig. S11, none of the intermediate
configurations possess an RMSD to the Int 1 and Int 2 con-
figurations lower than, respectively, 3.64 nm and 2.96 nm.
This analysis indicates that the Int 1 and Int 2 states do
not appear to be intermediates on the direct bent-closed to
extended-open pathway reported in Fig. 6 f.

To make contact with the proposed switchblade and dead-
bolt activation models (25,23), we now project the training
configurations and those generated by the cWGAN into the
2D space spanned by the physical distances dbpropeller �bTD and
dahelix �bhelix (16) (Fig. 7). In the switchblade model, inside-
out activation of the extended-open conformation is realized
from the bent-closed conformation first by separation of
extended legs followed by opening of the head ectodomains
of both a and b subunits bent at the genu or linker regions.
This mechanism, similar to opening of a pocketknife, can be
traced as first a horizontal transition in dahelix � bhelix followed
by vertical transition in dbpropeller � bTD . In contrast, the deadbolt
model requires progressive loss of interactions between the b-
T domain (the deadbolt region) and the b-I domain (lock re-
gion) in the b subunit before the separation of the legs. This
can be traced as first a vertical transition in dbpropeller � bTD and
then a horizontal transition in dahelix �bhelix . This deadbolt path
passes through both the extended-intermediate structures.
300-bead decoded CG structure at 10 evenly spaced intervals along three cubic B

space. One B�ezier curve corresponds to the switchblade mechanism passing alon

curves correspond to the deadbolt mechanism passing first along the bent-closed

(17 blue points). The a and b integrin subunits in the snapshots are illustrated
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(As described in Hanein and Volkmann (28), these intermedi-
ates could also be part of the light switchmechanism involving
subtler rearrangements of the cytoplasmic tail helix of the b
subunit by the weakened cytoplasmic tail helix interactions
when inserted into themembrane.)Using the trained cWGAN,
we use the synthetic configurations generated over the 4D
ðj2;j3;j4;j5Þ latent space and projected into the 2D
dahelix �bhelix -dbpropeller � bTD space to trace structures along the
switchblade and deadbolt paths and create putative activation
pathways (Fig. 7). These pathways are generated by construct-
ing cubic B�ezier curves following the general trends of the
switchblade and deadbolt paths within this 2D physical space
(16). Visual analysis of these paths exposes plausible struc-
tures for the switchblade and deadbolt models. In particular,
the generated structures along the switchblade path illustrate
a gradual separation of the cytoplasmic tails followed by the
opening of the head ectodomains of both a and b subunits
from the leg regions and separation of a and b subunits.
This partly follows the plausible intermediate structures
generated between the bent-closed and extended-open states
(Fig. 6 f), but the separation of legs precedes the extension
and separation of headpieces ofa and b subunits. On the other
hand, the generated structures along the deadbolt path effec-
tively combine the plausible intermediate structures generated
between bent-closed and Int 1 state (Fig. 6 a), Int 1 and Int 2
FIGURE 7 Synthetic 300-bead CG configurations

generated along interpolative paths in the

dahelix �bhelix -dbpropeller �bTD space following the proposed

switchblade and deadbolt activation pathways. The

switchblade path describes inside-out activation

from the bent-closed to extended-open state

following first a horizontal excursion along

dahelix �bhelix (separation of legs) followed by a vertical

transition in dbpropeller �bTD (ectodomain opening). The

deadbolt path, in contrast, first follows a vertical path

in dbpropeller �bTD (unlocking of deadbolt region), passes

through the extended-intermediate structures Int 1

and Int 2, and then moves horizontally in

dahelix �bhelix (separation of legs). Gray, orange, green,

and black colored markers correspond to training

configurations in the bent-closed, Int 1, Int 2, and

extended-open states. The light purple colored

markers correspond to the projection into the

dahelix �bhelix -dbpropeller �bTD space of 90,000 randomly

sampled locations in the learned 4D dMaps latent

space, each of which may be used to condition the

cWGAN to generatively decode a 300-bead CG

structure. Since the sampling of these points was per-

formed randomly, their distribution in this space

cannot be interpreted as exposing thermodynami-

cally preferred regions of space. Snapshots are

rendered at the blue markers in the intermediate

space along the arrows highlighting potential switch-

blade and deadbolt paths and are arranged around the

plot in order. The blue markers are selected as the

closest light purple point and its corresponding
�ezier polynomials trained using four points selected within this 2D physical

g the bent-closed state to extended-open state (10 blue points). Two B�ezier
state to the Int 1 state followed by the Int 1 state to the extended-open state

in blue and red, respectively. To see this figure in color, go online.
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state (Fig. 6 c), and Int 2 and extended-open state (Fig. 6 e).
This involves first a gradual separation of head ectodomain
headpiece from the leg regions, a minor separation of a and
b subunits with a simultaneous change in the arrangement of
a tail helices to a cross shape, and finally the separation of
tail helices to result in the extended-open state.

Finally, we backmap the 300-bead CG pathways generated
in Fig. 6 to AA resolution using TMD simulations to anneal
an AA model to each CG target configuration. As is typically
the case with all backmapping approaches, the AA configura-
tions generated by this procedure are unlikely to be fully
energetically relaxed, but they do serve two valuable pur-
poses in providing higher structural resolution of the putative
activation pathways and in furnishing initial AA structures
FIGURE 8 Prediction of intermediate AA structures of integrin generated wit

the latent space that are shown in Fig. 6. (a–f) The symbols annotating each row

pathways in Fig. 5. The a and b integrin subunits are illustrated in blue and red
for subsequent molecular simulations. We present in Fig. 8
the backmapped AA structures corresponding to each of
the intermediate 300-bead CG structures shown in Fig. 6.
The relatively high resolution of the CG model means that
the additional structural insights obtained from the AA back-
mapping are largely limited to the relative arrangements of
the different domains in the a and b subunits of integrin.
For example, the backmapped AA structures between bent-
closed and Int 1 state (Fig. 8 a) provide insights into the pro-
gressive loss of contacts between the headpiece (b-I and
hybrid domains) and lower leg regions (linker and b-T do-
mains) in the b subunit and a gradual extension of the head-
piece (b-propeller and thigh domain) in the a subunit
indicating their plausible role in bent-closed and Int 1 state
h the trained cWGAN between every pair of the four intermediate states in

of synthetic configurations correspond to those marking the interpolative

, respectively. To see this figure in color, go online.
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transition mechanism. Similarly, the gradual changes in the
curvature of the ectodomain (headpiece and lower leg) of a
subunit, loss of contacts between linker region in b subunit
and genu or thigh domain of a subunit, and rearrangement
of cytoplasmic tail helical domains are revealed in the back-
mapped AA structures between Int 1 and Int 2 state (Fig. 8 c).
Although we do not do so here due to the high computational
expense, these AA structures can be utilized to launch new
atomistic simulations to perform high-resolution exploration
of the thermodynamics and dynamics of aIIbb3 integrin acti-
vation using unbiased or biased sampling. To facilitate this
and enable further research into integrin activation mecha-
nism, we make both the trained cWGAN model as well as
the predicted CG and AA intermediate structures available
at GitHub: https://github.com/Ferg-Lab/integrin_molgen.git.
CONCLUSION

In this work, we have developed a computational method to
interpolate between conformational states of the aIIbb3 integ-
rin heterodimer as a large multimolecular system for which
direct molecular simulation of the transition process is a
computationally prohibitive rare event and experimental mea-
surement is challenging due to the transient nature of the acti-
vated states. The method integrates MD, nonlinear manifold
learning, and deep generative models to learn a unified low-
dimensional embedding capturing the gross structural rela-
tionships between the states and interpolate putative activation
pathways between them. We train the models over unbiased
simulation data, generate these pathways at both 300-bead
CG and AA resolution, develop mechanistic insight into the
putative activation paths, and relate them to the hypothesized
switchblade and deadbolt activation mechanisms. This work
reports, to the best of our knowledge, the first proposed contin-
uous activation pathways of the integrin dimer without the use
of artificial biasing forces that can deformanddistort the struc-
tures along the putative activation path. The degree to which
the proposed pathways follow the preferredminimum free en-
ergy routes through configurational space can, however, only
be determined with additional simulations, and it is a natural,
although computationally very demanding, extension of this
work to seed new CG or AA simulations to refine the path-
ways. In particular, we propose that the string method is
very well-suited to relaxing these initial pathways into the
free energy minimum channel (69,70). We anticipate that
the structures along the putative pathways may also offer use-
ful guidance to experimental work seeking to isolate meta-
stable states of the integrin dimer along its activation course.
Finally, we demonstrated our approach for dynamical inter-
conversion of various metastable states of the aIIbb3 integrin
heterodimer, but we anticipate that our approach offers a
generic and transferable multiscale technique to predict tran-
sition pathways for other biomolecular systems for which in-
termediate states are well characterized but transition regions
are not.
12 Biophysical Journal 123, 1–14, October 1, 2024
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