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Abstract. The shallow water flow model is widely used to describe water flows in rivers, lakes,

and coastal areas. Accounting for uncertainty in the corresponding transport-dominated non-
linear PDE models presents theoretical and numerical challenges that motivate the central ad-

vances of this paper. Starting with a spatially one-dimensional hyperbolicity-preserving, positivity-

preserving stochastic Galerkin formulation of the parametric/uncertain shallow water equations,
we derive an entropy-entropy flux pair for the system. We exploit this entropy-entropy flux pair

to construct structure-preserving second-order energy conservative, and first- and second-order

energy stable finite volume schemes for the stochastic Galerkin shallow water system. The perfor-
mance of the methods is illustrated on several numerical experiments.
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1. Introduction

The one-dimensional Saint-Venant system of shallow water equations (SWE) is a popular model
of water flows where vertical length scales are much smaller than horizontal ones [1]. This system
in conservative form is given by,

Ut + F (U)x = S(U), U = (h, q)⊤ ∈ R2,(1.1)

where U = U(x, t) is the vector of conservative variables; h(x, t) is the water height (a mass-like
variable) and q(x, t) is the water discharge (a momentum-like variable). The flux F and source term
S are given by,

F (U) =

(
q

(q)2

h + gh2

2

)
, S(U) =

(
0

−ghB′
)
.(1.2)

where B(x) is the (assumed known) bottom topography function and g > 0 is the gravitational
constant. The system (1.1) is supplemented with initial and boundary data that we omit for the
time being.

The one-dimensional SWE model (1.1) is hyperbolic system of partial differential equations (PDE)
if h > 0, and hence with the non-zero source S, then (1.1) is a nonlinear hyperbolic balance law.
Because of this, it inherits the standard challenges in developing numerical methods for such mod-
els: solutions generically develop discontinuities in finite time even with smooth initial data, non-
uniqueness of weak solutions should be rectified by an implicit or explicit numerical imposition of
entropy conditions, and implicit time-integration solvers are challenging to implement due to the
nonlinearity [8, 21, 22]. In addition to all this, the SWE has challenges that are somewhat specific
to its particular form: positivity of the water height h should be maintained, and numerical schemes
should accurately capture near-equilibrium dynamics, which is typically achieved by imposing the
well-balanced property [3], i.e., that the PDE equilibrium states are exactly captured at the discrete
level.
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A more nebulous and hence more frustrating challenge is that of uncertainty in the model. For
example, one may have incomplete, partial information about the initial data or the bottom topogra-
phy function B. In such cases, one frequently models this data as a random variable or process, and
hence the solution U to (1.1) is random. We consider the somewhat more simple situation when the
input uncertainty is encoded with a finite-dimensional random variable, in which case (1.1) becomes
a parametric model (with the input random variables serving as the parameters). Even with this
simplification, the parametric or stochastic nature of the solution exacerbates many of the previously
described numerical challenges. A particularly successful approach for handling such problems that
we will employ is the polynomial Chaos (PC) method, wherein U is approximated as a polynomial
function of the input parameters [34, 25, 26].

The class of non-intrusive PC strategies construct the polynomial by collecting an ensemble of
solutions to (1.1) at a collection of fixed values of the parameters. This approach is attractive since it
can exploit existing and trusted legacy solvers for (1.1), for which there are several effective choices
[35, 24, 36, 32, 33, 19, 31, 29, 23, 4, 20, 30, 12, 18]. However, this approach suffers from the disad-
vantage that making concrete statements about the quality or properties of the resulting polynomial
approximation can be challenging. For example, one cannot guarantee that entropy conditions are
satisfied if the polynomial approximation is evaluated away from the parameter ensemble used to
construct the approximation.

This paper is concerned with an alternative intrusive approach, the stochastic Galerkin (SG)
method for PC approximation, which addresses the parametric dependence in a Galerkin fashion,
e.g., by enforcing that certain probabilistic moments of (1.1) vanish. This approach has the potential
to provide pathways to mathematical rigor of numerical methods through weak enforcement of the
parametric dependence. SG methods transform a parametric model (1.1) into a new non-parametric
model of larger system size. Since the new SG formulation is non-parametric, one can apply typical
deterministic numerical methods for systems of PDEs to solve the SG problem. Such approaches
have shown particular success for modeling parametric dependence in elliptic problems; see, e.g.,
[7]. However, the notable drawback of SG methods when applied to (nonlinear) hyperbolic PDEs
is that the new non-parametric SG system need not be a hyperbolic PDE itself, which changes the
essential character of the SG system relative to the original system. Recent work has developed an SG
formulation for the SWE in conservative form that involves a special SG treatment for the nonlinear,
non-polynomial terms [9]. Such an approach can be used to develop a well-balanced, hyperbolicity-
preserving, and positivity-preserving finite volume method to solve the SG SWE system. This
approach has also been extended to two-dimensional SWE systems [10].

1.1. Contributions of this article. We make the following contributions that build on [9]:
• We derive an entropy-entropy flux pair for the spatially one-dimensional hyperbolicity-preserving,
positivity-preserving SG SWE system derived in [9], see theorem 3.1. Entropy-entropy flux pairs
are the theoretical starting point for proposing entropy admissibility criteria to resolve non-
uniqueness of weak solutions.

• Using the entropy-entropy flux pair, we devise second-order energy conservative, and first- and
second-order energy stable finite volume schemes for the SG SWE, all of which are also well-
balanced. See theorems 4.1 to 4.3, with the procedure in algorithm 1. The designed energy
conservative and energy stable schemes are the stochastic extensions of the schemes developed
in [15, 16].

• We provide numerical experiments that explore the simulation capabilities of the new schemes. To
the best of our knowledge, these are the first schemes for any SG SWE system that boast energy
stability, the well-balanced property, while also being positivity- and hyperbolicity-preserving.

An outline of this paper is as follows: Section 2 introduces our notation, along with background
on PC methods and the SG SWE system from [9]. Section 3 provides our entropy-entropy pair
construction for the SG SWE system. Section 4 provides the statement of the energy conservative
and energy stable schemes that we develop, along with proofs of their theoretical properties, as well as
their algorithmic details. Section 5 compiles numerical examples that demonstrate the performance
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of our scheme. Section 6 gives brief summary of the main results and some future research directions.
We summarize our notation in this article in table 1.

K number of terms in PCE expansion,

Û = (ĥ⊤, q̂⊤)⊤ ∈ RK ×RK PCE state vector and its components for 1D SG SWE,

U = (h⊤, q⊤)⊤ ∈ RK ×RK quantities related to cell averages/reconstructed values, etc. of the PCE state vector and its com-
ponents for 1D SG SWE,

(E,H) entropy pair for 1D SG SWE,

û PCE vector for velocity,

u quantity related to cell averages/reconstructed values, etc. of the PCE vector for velocity,

V̂ ,V the PCE vector for the entropic variable and quantities related to cell averages/reconstructed values,
etc. of the entropic variable,

P(·) the operator that maps a PCE vector to a PCE triple-product matrix.

h
i+1

2
arithmetic average of hi and hi+1. Similar notation is applied to other bold letters, e.g, U

i+1
2
.

JhK
i+1

2
first-order jump defined via cell averages,

⟨⟨h⟩⟩
i+1

2
(notationally) second-order jump defined via reconstructed values.

F̂ flux,

F numerical flux,

QEC ,QES1,QES2 energy-conservative flux, 1st-order energy-stable flux, and 2nd-order energy stable flux, respectively,

w±, w̃± scaled variables,

Table 1. Notation and terminology used throughout this article.

2. Preliminaries

2.1. Notation. We use ∥ · ∥ to denote the standard Euclidean (ℓ2) norm operating on vectors. If
f : Rm → R

n for m,n ∈ N, then we write f(x) for x = (x1, . . . , xm), and f(x) = (f1, . . . , fn). We
use the following notation for the gradient:

fx :=
∂f

∂x
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xm

...
...

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xm

 ∈ Rn×m.

When n = 1 (i.e., f is scalar-valued) then ∂2f
∂x2 is the n × n Hessian of f . If A is a square matrix,

then we write A > 0 and A ≥ 0 when A is positive definite and positive semi-definite, respectively.
In work on the SWE system (1.1) it is common to introduce the water velocity (equilibrium)

variable

u :=
q

h
,(2.1)

and we also make use of this variable in what follows.

2.2. Polynomial Chaos Expansion. In this section, we briefly review the results and notation
for polynomial chaos expansion. More comprehensive results can be found in [11, 34, 26], etc.

Let ξ ∈ Rd be a random variable associated with Lebesgue density function ρ. Define the function
space

L2
ρ(R

d) :=

{
f : Rd → R

∣∣∣∣∣
(∫
Rd

f2(s)ρ(s)ds

) 1
2

< +∞

}
.

Assuming finite polynomial moments of all orders for ρ, there exists an orthonormal basis {ϕk}∞k=1

of L2
ρ, i.e.,

⟨ϕk, ϕℓ⟩ρ :=

∫
Rd

ϕk(s)ϕℓ(s)ρ(s)ds = δk,ℓ, ϕ1(ξ) ≡ 1,(2.2)
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for all k, ℓ ∈ N, where δk,ℓ is the Kronecker delta. PCE seeks a representation of a random field
z(·, ·, ξ) ∈ L2

ρ in terms of a series of orthonormal polynomials for ξ,

(2.3) z(x, t, ξ)
L2

ρ
=

∞∑
k=1

ẑi(x, t)ϕi(ξ),

where x, t are the deterministic spatial and temporal variables, and ẑi(x, t) are deterministic Fourier-
like coefficients. The equation (2.3) holds true for all z(x, t; ·) ∈ L2

ρ under mild conditions [13]. In
practice, a finite truncation of (2.3) is usually considered. Let P be a K-dimensional polynomial
subspace of L2

ρ,

P = span {ϕk, k = 1, . . . ,K} ,(2.4)

i.e., we let ϕk be an orthonormal basis for P . We make the common assumption that 1 ∈ P , and
for convenience we assume that,

ϕ1(ξ) ≡ 1.

A popular choice for P is the total degree space, but several other options are possible.
The K-term PCE approximation of a random field z onto P is defined by the projection of (2.3)

onto P :

ΠP [z](x, t, ξ) :=

K∑
k=1

ẑk(x, t)ϕk(ξ).(2.5)

Using the orthogonality of the basis function, the statistics of ΠP [z] can be expressed in terms of
the expansion coefficients. For example, the mean and the variance of ΠP [z] are given by:

(2.6) E[ΠP [z](x, t, ξ)] = ẑ1(x, t), Var[ΠP [z](x, t, ξ)] =

K∑
k=2

ẑ2k(x, t).

Let ẑ = (ẑ1, · · · , ẑk) ∈ RK be the vector of the expansion coefficients in (2.6). Define the linear
operator P : RK → RK×K as

P(ẑ) :=
K∑

k=1

ẑkMk, Mk ∈ RK×K , (Mk)ℓ,m = ⟨ϕk, ϕℓϕm⟩ρ.(2.7)

Fixing ẑ ∈ RK , then P(ẑ) is the (symmetric) quadratic form matrix representation of the bilinear

operator (â, b̂) 7→ ⟨aP zP , bP ⟩ρ, where zP :=
∑K

k=1 ẑkϕk(ξ) and similarly for aP , bP with â, b̂ ∈ RK .

Using the fact that (Mk)ℓ,m is commutative in (k,m) a direct computation shows:

P(â) =
(
M1â, M2â, . . . , MK â

)
,(2.8)

A useful lemma is given as follows.

Lemma 2.1. For any two vectors â, b̂ ∈ RK ,

P(â)̂b = P (̂b)â, b̂⊤P(â) = â⊤P (̂b).(2.9)

The proof is straightforward using (2.7) and (2.8) along with the symmetry of P(·). This result
is a “commutative” property of the operator P(·). For example: For any a, b, c ∈ RK ,

∂

∂c
a⊤P(c)b⊤ = a⊤P(b),(2.10)

A stochastic Galerkin (SG) formulation of a ξ-parameterized PDE corresponds to making the
ansatz that the state variable lies in the space P , and projecting the PDE residual onto the same
space. Straightforward applications of this procedure to (nonlinear) hyperbolic PDEs typically do
not result in hyperbolic SG formulations.
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2.3. Hyperbolic-Preserving Stochastic Galerkin Formulation for Shallow Water Equa-
tion. In [9], we have derived a hyperbolicity-preserving stochastic Galerkin formulation for the
shallow water equations. We briefly recall the results in this section. We make the ansatz that the
solutions to h, q lie in the polynomial space P ,

h ≃ hP :=

K∑
k=1

ĥk(x, t)ϕk(ξ),(2.11a)

q ≃ qP :=

K∑
k=1

(q̂)k(x, t)ϕk(ξ),(2.11b)

and use these to formulate a ξ-variable Galerkin projection of the SWE. We make a special choice
of how the Galerkin projection of the nonlinear, non-polynomial term (q)2/h is truncated, which
results in a new (stochastic Galerkin) system of balance laws whose state variables are the expansion
coefficients in (2.11) [9]:

(2.12) Ût + (F̂ (Û))x = Ŝ(Û),

Here, Û := (ĥ⊤, q̂⊤)⊤ ∈ R2K , where ĥ, q̂ are each length-K vectors of the expansion coefficients in
(2.11). The flux and the source terms are,

F̂ (Û) =

(
q̂

P(q̂)P−1(ĥ)q̂ + 1
2gP(ĥ)ĥ

)
, Ŝ(Û) =

(
0

−gP(ĥ)B̂x

)
,(2.13)

cf. (1.2). The flux Jacobian, written in K ×K blocks, is given by

∂F̂

∂Û
=

(
O I

gP(ĥ)− P(q̂)P−1(ĥ)P(û) P(q̂)P−1(ĥ) + P(û)

)
.(2.14)

We have introduced the term

û = P−1(ĥ)q̂,(2.15)

which we view as the vector of the PCE coefficients of the x-velocity u introduced in (2.1), and is

well-defined if P(ĥ) is invertible.
The deterministic SWE are hyperbolic if the water height h > 0; there is a natural extension of

this property to the SGSWE.

Theorem 2.1 (Theorem 3.1, [9]). If the matrix P(ĥ) is strictly positive definite for every point
(x, t) in the computational spatial-temporal domain, then the SG formulation (2.12) is hyperbolic.

This is proven by identifying a stochastic extension of the known eigenvector matrix for the

deterministic SWE flux Jacobian ∂F
∂U , and using this to show that ∂F̂

∂Û
is similar to a symmetric

matrix and hence (2.12) is hyperbolic [9].

3. An Entropy-Entropy Flux Pair for SGSWE systems

The formulation (2.12) will be considered in what follows. Our goal will be to derive entropy-
entropy flux pairs for these formulations. The first step is for us to recall a known entropy-entropy
flux pair for the deterministic SWE system.

3.1. Entropy-Entropy Flux Pairs for Deterministic Shallow Water Equations. It is well-
known that solutions to systems of conservation/balance laws can develop shock discontinuities
in finite time for generic initial data. Therefore, weak solutions, i.e., solutions in the sense of
distributions, are usually considered. However, weak solutions are not necessarily unique, and to
mitigate this issue, an additional entropy admissibility criteria is imposed [8, 2] to identify the
physically meaningful solution.

For a general balance law in one space dimension

Ut + F (U)x = S(U),(3.1)
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its entropy-entropy flux pair (E(U), H(U)) satisfies a companion balance law

E(U)t +H(U)x = 0(3.2)

where the entropy E(U) is a scalar function that is convex in U , and H is an entropy flux function.
In order to be consistent with the original balance law for smooth U , the entropy-entropy flux pair
(E,H) should satisfy the following compatibility condition,

∂E

∂U
(Fx − S) = Hx,(3.3)

which is simply the condition ensuring that multiplying (3.1) by ∂E
∂U recovers (3.2) when solutions

are smooth. In the case of S ≡ 0 and (E,H) = (E(U), H(U)), equation (3.3) is the usual entropy
condition for conservation laws. For a general system of balance laws in several spatial dimensions,
an entropy-entropy flux pair need not exist. However, for a hyperbolic system of balance laws
emerging from continuum physics, the companion balance law (3.2) is usually related to the Second
Law of thermodynamics, and the total energy of the system often serves as the entropy function. A
variety of examples can be found in [8, Section 3.3]. For the deterministic SWE system in (1.1), the
total energy [15] is

Ed(U) =
1

2
qu︸︷︷︸

kinetic energy

+
1

2
gh2 + ghB︸ ︷︷ ︸

potential energy

.(3.4)

where we recall that u is the velocity defined in (2.1). For any smooth solution U , a direct calculation
yields,

Ed(U)t +Hd(U)x = 0,(3.5)

where

Hd(U) =
1

2
qu2 + gqh+ gqB.(3.6)

This, along with the fact that Ed is convex in U , establishes that (Ed, Hd) is a valid entropy-entropy
flux pair for (1.1). For (weak) solutions with shocks, the entropy admissibility criteria is that energy
should dissipate in accordance with a vanishing viscosity principle,

Ed(U)t +Hd(U)x ≤ 0.(3.7)

In what follows we will identify entropy-entropy flux pairs for the SGSWE model. This amounts
to verifying that (i) such a pair satisfies the companion balance law (an equality for smooth solutions)
and (ii) that the entropy function is convex in the state variable.

3.2. An Entropy-Entropy Flux Pair for the one-dimensional SGSWE. This section is ded-
icated to identifying an entropy-entropy flux pair for the SG system (2.12). In this section, we will

return to the notation Û (containing PC expansion coefficients) for the derivation of an entropy-
entropy flux pair for the SG system. Our main result in this section is the following entropy
entropy-flux pair for the one-dimensional SGSWE:

Theorem 3.1. Define the function,

E(Û) =
1

2

(
(q̂)⊤û+ g∥ĥ∥2

)
+ gĥ⊤B̂,(3.8a)

and also the flux function,

H(Û) =
1

2
û⊤P(q̂)û+ gq̂⊤ĥ+ gq̂⊤B̂,(3.8b)

If P(ĥ) > 0, then (E,H) is an entropy-entropy flux pair for the one-dimensional SGSWE (2.12).
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Recall that û above is defined in (2.15), and contains PC expansion coefficients for the velocity
u defined in (2.1). In the absence of uncertainty, (3.8a) reduces to the deterministic total energy
(3.4). The rest of this section is devoted to proving theorem 3.1, which amounts to showing that, if

P(ĥ) > 0, then E is convex in Û and (E,H) satisfy the companion balance law,

E(Û)t +H(Û)x = 0,(3.9)

for smooth solutions Û . Note that for non-smooth solutions, (3.9) holds with = replaced by ≤. We
prove Theorem 3.1 with three intermediate results. Our first result is a technical condition that
facilitates later computations.

Lemma 3.1 (Gradient of û). Let q̂ ∈ RK be arbitrary, and let ĥ ∈ RK be such that P(ĥ) is
invertible. Defining û as in (2.15), then

∂û

∂Û
=

[
∂û

∂ĥ
,

∂û

∂q̂

]
=
[
−P−1(ĥ)P(û), P−1(ĥ)

]
(3.10)

Proof. If A(t) is a t-parameterized matrix, then for any t at which A is invertible,

∂

∂t
A−1(t) = −A−1(t)∂A(t)

∂t
A−1(t).

Applying this this to P, we have,

∂P−1(ĥ)
∂ĥℓ

= −P−1(ĥ)∂P(ĥ)
∂ĥℓ

P−1(ĥ) (2.8)
= −P−1(ĥ)MℓP−1(ĥ),(3.11)

and hence,

∂û

∂ĥℓ

=
∂P−1(ĥ)

∂ĥℓ

q̂
(3.11)
= −P−1(ĥ)MℓP−1(ĥ)q̂

(2.15)
= P−1(ĥ)Mℓû.(3.12)

Therefore,

(3.13)
∂û

∂ĥ
=
[
−P−1(ĥ)M1û, · · · − P−1(ĥ)MK û

]
(2.8)
= −P−1(ĥ)P(û),

proving the desired relation for ∂û

∂ĥ
. The relation for ∂û

∂q̂ is immediate from the definition (2.15). □

Lemma 3.2 (Convexity of E(Û)). If P(ĥ) is positive definite, then the function E(Û) defined in

(3.8a) is convex in Û .

Proof. Using the definition (2.15) of û, note that,

E(Û) =
1

2
(q̂)⊤P−1(ĥ)q̂︸ ︷︷ ︸

f1(Û)

+
g

2
ĥ⊤ĥ+ gĥ⊤B̂︸ ︷︷ ︸

f2(Û)

,(3.14)

and therefore in particular,

∂2E

∂Û2
=

∂2f1

∂Û2
+

∂2f2

∂Û2
.(3.15)

We will show that this Hessian is positive definite. Clearly we have,

∂f2

∂Û
=
(
gĥ⊤ + gB̂⊤, 0

)
∈ R1×2K ,

∂2f2

∂Û2
=

(
gI 0
0 0

)
∈ R2K×2K .(3.16)

Using the previous lemma, we can directly compute,

∂f1

∂ĥ
=

1

2
(q̂)⊤

∂û

∂ĥ

(3.10),(2.15)
= −1

2
û⊤P(û), ∂f1

∂q̂
= (q̂)⊤P−1(ĥ) = û⊤,(3.17)
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which in turn implies,

∂2f1
∂q̂2

= P−1(ĥ), ∂2f1

∂ĥ∂q̂

(3.10)
=

(
−P−1(ĥ)P(û)

)⊤
= −P(û)P−1(ĥ),

and finally,

∂2f1

∂ĥ2
=

1

2

∂

∂ĥ

(
−û⊤P(û)

) (3.10)
= P(û)P−1(ĥ)P(û)

Hence, the Hessian of f1 is,

∂2f1

∂Û2
=

(
P(û)P−1(ĥ)P(û) −P(û)P−1(ĥ)
−P−1(ĥ)P(û) P−1(ĥ)

)
.

A direct computation of the quadratic form associated to this Hessian using an arbitrary vector
(w⊤1 , w

⊤
2 )
⊤ ∈ R2K yields,

(w⊤1 , w
⊤
2 )

∂2f1

∂Û2

(
w1

w2

)
= (P(û)w1 − w2)

⊤ P−1(ĥ) (P(û)w1 − w2) ≥ 0.

Finally, combining the above with (3.15) and (3.16) yields,

(w⊤1 , w
⊤
2 )

∂2E

∂Û2

(
w1

w2

)
= g∥w1∥2 + (P(û)w1 − w2)

⊤ P−1(ĥ) (P(û)w1 − w2) ,

which is non-negative since P(ĥ) is positive-definite. Therefore, E is convex, as desired. In addition,
since the above expression vanishes if and only if w1 = w2 = 0, then E is also strictly convex. □

The final piece needed to prove Theorem 3.1 is to establish that the entropy function E along
with the flux function H defined in (3.8b) satisfy the companion balance law.

Lemma 3.3 ((E,H) satisfy the companion balance law). When U is a smooth function, the pair
(E,H) defined in (3.8) satisfies

E(Û)t +H(Û)x = 0.(3.18)

Proof. The compatibility condition we seek to show, equivalent to (3.18), is,

∂E

∂Û

(
∂F̂

∂Û

∂Û

∂x
− Ŝ

)
=

∂H

∂x
,(3.19)

cf. (3.3). To proceed we split both entropy functions into two pieces:

E(Û) = E1(Û) + E2(Û), E1(Û) :=
1

2

(
(q̂)⊤û+ g∥ĥ∥2

)
, E2(Û) := gĥ⊤B̂,(3.20a)

H(Û) = H1(Û) +H2(Û), H1(Û) :=
1

2
û⊤P(q̂)û+ g(q̂)⊤ĥ, H2(Û) = g(q̂)⊤B̂(3.20b)

From (3.14), (3.16), and (3.17), we have already computed the gradient of E:

∂E1

∂Û
=

(
−1

2
û⊤P(û) + gĥ⊤, û⊤

)
,

∂E2

∂Û
=
(
gB̂⊤, 0

)
.(3.21)

Combining these expressions with the flux Jacobian in (2.14) and the source term in (2.13) yields,

−∂E1

∂Û
Ŝ +

∂E2

∂Û

(
∂F̂

∂Û

∂Û

∂x
− Ŝ

)
= gB̂⊤

∂q̂

∂x
+ gq̂⊤B̂x

(3.20b)
=

∂H2

∂x
(3.22a)

Note then that if we are able to show,

∂E1

∂Û

∂F̂

∂Û
=

∂H1

∂Û
,(3.22b)
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then the expressions (3.22) are equivalent to (3.19). Therefore, we are left only to show (3.22b). A
direct computation with (3.21) and (2.14) yields,

∂E1

∂Û

∂F̂

∂Û
=

(
g(q̂)⊤ − û⊤P(q̂)P−1(ĥ)P(û), gĥ⊤ +

1

2
û⊤P(û) + û⊤P(q̂)P−1(ĥ)

)
On the other hand, we have the expressions,

∂

∂ĥ

1

2
û⊤P(q̂)û = û⊤P(q̂)∂û

∂ĥ

(3.10)
= −û⊤P(q̂)P−1(ĥ)P(û),

∂

∂q̂

1

2
û⊤P(q̂)û = û⊤P(q̂)∂û

∂q̂
+

1

2

(
∂

∂q̂
z⊤P(q̂)z

) ∣∣∣
z←û

(2.10),(3.10)
= û⊤P(q̂)P−1(ĥ) + 1

2
û⊤P(û)

and using these to compute ∂H1

∂Û
shows that (3.22b) is true, completing the proof. □

The proof of Theorem 3.1 is complete: Lemmas (3.2) and (3.3) imply that (E,H) as defined in
(3.8) are an entropy-entropy flux pair for (2.12).

Remark 3.1. The quantities,

V̂ :=

(
∂E

∂Û

)⊤
=

(
−1

2
û⊤P(û) + g(ĥ+ B̂)⊤, û⊤

)⊤
, Ψ := V̂ F̂ −H

(2.15),(3.8b)
=

1

2
gû⊤P(ĥ)ĥ,

(3.23)

are called the entropy variable and stochastic energy potential, respectively. These variables serve
important roles in the construction of the energy conservative and the energy stable schemes that we
develop later.

4. Well-Balanced Energy Conservative And Energy Stable Schemes for SG 1D
SWE

In this section, we present several well-balanced energy conservative and energy stable numerical
scheme for SG SWE. The schemes designed below are stochastic extensions of the schemes developed
in [15]. Our entropy-entropy flux pairs developed in Section 3 will be crucial ingredients for energy
conservative and energy stable schemes for the SG formulation (2.12)-(2.15).

We also need to specify the well-balanced property we are interested in: By “well-balanced”, we
mean that the scheme can preserve the stochastic “lake-at-rest” state exactly at the discrete level.

Definition 4.1 (Well-Balanced SGSWE Property, [9]). We say that a solution (hP , qP ) to (2.12)
is well-balanced if it satisfies the stochastic “lake-at-rest” solution,

(4.1) qP (x, t, ξ) ≡ 0, hP (x, t, ξ) + ΠP [B](x, t, ξ) ≡ C(ξ),

where C(ξ) is a random scalar depending only on ξ, ΠP corresponds to a polynomial truncation, cf.
(2.5), and subscripts P refer to the (stochastic) discrete solution on the subspace P . In terms of our
previous notation for P -expansion coefficients, equation (4.1) is equivalent to the following vector
equation

(4.2) q̂ ≡ 0, ĥ+ B̂ ≡ Ĉ, ∀(x, t) ∈ D × [0, T ],

where D is the spatial domain and T is the terminal time.

We emphasize that even without introducing the lake-at-rest definition (4.1), the vector equation
(4.2) itself is a steady state of the SG system (2.12).
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4.1. Energy Conservative Schemes. We consider the semi-discrete form for FV schemes for
(2.12) over a uniform mesh in the x variable:

d

dt
U i = −

Fi+ 1
2
−Fi− 1

2

∆x
+ Si.(4.3)

Here, U i ≈ 1
∆x

∫
Ii Û(x, t)dx is the approximation of the cell averages of Û over cells Ii := [xi−1/2, xi+1/2]

at time t, and ∆x = |Ii| = xi+1/2−xi−1/2. The terms Fi±1/2 are numerical fluxes at the boundaries
of the cells, which are functions of neighboring states, e.g., Fi+1/2 is a function of U i and U i+1.

The term Si ≈ 1
∆x

∫
Ii Ŝ(Û , B̂)dx is a discretization of the source term, which we will design be-

low to be well-balanced. To reiterate our notation: normal typeset capital letters (sometimes with
“hat” notation) refers to degrees of freedom associated to discretizing only the stochastic variable

ξ, i.e., (Û , ĥ, q̂, B̂). Boldface notation with subscripts i refers to degrees of freedom associated to a
subsequent discretization of the spatial variable x over cell Ii, i.e., (U i,hi, qi,Bi). We define the
discrete velocity variable ui in a manner analogous to (2.15):

ui := P(hi)
−1qi.(4.4)

Discrete entropic quantities are derived from the discrete conservative variables U i and velocity

variable ui. I.e., the following are direct generalizations of the definition of E(Û) in (3.8a), and of

(V̂ ,Ψ) in (3.23):

Ei :=
1

2

(
q⊤i ui + g∥hi∥2

)
+ gh⊤i Bi,(4.5a)

V i :=

(
∂Ei

∂U i

)⊤
=

(
−1

2
u⊤i P(ui) + g(hi +Bi)

⊤, u⊤i

)⊤
,(4.5b)

Ψi := V iF̂ (U i)−H(U i) =
1

2
gu⊤i P(hi)hi(4.5c)

We now introduce some notation that is used in [15] for averages and jumps at cell interfaces:

ai+1/2 :=
1

2
(ai+1 + ai), JaKi+1/2 := ai+1 − ai,(4.6)

where ai is the cell average over Ii. The expressions above are equivalent to,

ai = ai+1/2 −
JaKi+1/2

2
= ai−1/2 +

JaKi−1/2
2

,(4.7)

and all these expressions are valid regardless of the size of a (e.g., both row and column vectors are
allowed). We will require some additional technical results for interfacial averages and jumps.

Lemma 4.1. Let ai, bi be any spatially discrete quantities. Then:

P(ai+ i
2
) JaKi+ i

2
=

1

2
JP(a)aKi+ i

2
.(4.8a)

JaK⊤i+ i
2
bi+ i

2
+ JbK⊤i+ i

2
ai+ i

2
=

q
a⊤b

y
i+ i

2

(4.8b)

Proof. Due to linearity of P, then,

P(ai+ 1
2
) JaKi+ 1

2

(2.7)
= P

(
1

2
(ai+1 + ai)

)
(ai+1 − ai)

(2.9)
=

1

2
(P(ai+1)ai+1 − P(ai)ai) =

1

2
JP(a)aKi+ 1

2
,

which proves (4.8a). Similarly, (4.8b) can be proven directly:

JaK⊤i+ 1
2
bi+ 1

2
+ JbK⊤i+ 1

2
ai+ 1

2
=

1

2

(
(ai+1 − ai)

⊤
(bi+1 + bi) + (bi+1 − bi)

⊤
(ai+1 + ai)

)
= a⊤i+1bi+1 − a⊤i bi =

q
a⊤b

y
i+ 1

2

.

□
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We now make particular definitions for energy conservative and energy stable schemes for one-
dimensional systems of balance laws. To provide context, with no source terms (i.e. Si = 0) then
spatial discretizations of the form (4.3) are called conservative schemes since they imply,

d

dt

∑
i∈[M ]

∆xU i(t) =
[
F1/2 −FM+1/2

]
, (vanishing source, Si = 0),(4.9)

and in particular with periodic boundary conditions, then this implies that the cumulative amount

of Û in the system is constant in time.1

To translate this concept to the notion of an energy conservative scheme, note that an entropy-

entropy flux pair (E,H) introduced in section 3 is explicitly a function of the state Û and inputs

in the source term (here, B̂). Hence, the semi-discrete form (4.3) can be transformed into a semi-
discrete form for the companion balance law (3.9). Then we call (4.3) energy conservative if it
implies a conservative scheme for the companion balance law that describes the evolution of the
entropy (energy).

Definition 4.2 (Energy conservative and energy stable schemes). Suppose that the system of balance

laws (2.12) has an entropy-entropy flux pair (E,H) where E(Û) can be interpreted as energy for the
system. Then the semi-discrete FV scheme (4.3) is an Energy Conservative (EC) scheme if it can
be rewritten as the following semi-discrete form for the evolution of the numerical cell averages Ei

of E:

d

dt
Ei(t) = −

1

∆x

(
Hi+1/2 −Hi−1/2

)
, i ∈ [M ],(4.10)

where Hi+1/2 is some numerical entropy flux at the interface location x = xi+1/2. The scheme (4.3)
is called an Energy Stable (ES) scheme if

d

dt
Ei(t) ≤ −

1

∆x

(
Hi+1/2 −Hi−1/2

)
, i ∈ [M ].(4.11)

Note that the definitions above are cell-wise conditions that are stronger than a global condition
such as (4.9).

4.2. An EC scheme for the SGSWE. In this section we present an EC scheme for the one-
dimensional SGSWE system (2.12). We use the conservative scheme (4.3), with the following choices
of flux and source terms:

Fi+1/2 = FEC
i+1/2 :=

 P(hi+ 1
2
)ui+ 1

2

g
2

(
P(h)h

)
i+ 1

2

+ P(ui+ 1
2
)P(hi+ 1

2
)ui+ 1

2

 ,(4.12a)

Si =

 0

− g
2∆x

(
P(hi+ 1

2
) JBKi+ 1

2
+ P(hi− 1

2
) JBKi− 1

2

)
.

(4.12b)

Above, the interfacial averages ui+1/2 are computed as defined in (4.6). Our main result for this
scheme is as follows.

Theorem 4.1 (EC Scheme). Suppose the bottom topography function B is independent of time.
Consider the semi-discrete scheme (4.3) for the SGSWE system (2.12). Suppose that the flux and
source terms are selected as in (4.12). Then, this is a well-balanced EC scheme with local truncation
error O(∆x2).

The remainder of this section is devoted to the proof, which requires some intermediate steps.
First, we show that Si is a well-balanced choice for the source term discretization.

1For non-periodic boundary conditions, the energy would increase/decrease depending on the boundary conditions

and their corresponding impact on the boundary fluxes.
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Lemma 4.2. Suppose Si is chosen as in (4.12b). If the bottom topography B is independent of
time, then (4.3) is a well-balanced scheme in the sense of definition 4.1.

Proof. Given initial data

ui ≡ 0, hi +Bi = const vector, ∀i,(4.13)

the well-balanced property with time-independent bottom topography (see definition 4.1) requires
that, for every i,

d

dt
hi ≡ 0,

d

dt
qi ≡ 0.(4.14)

We first notice that,

(4.15)

(
P(h)h

)
i+ 1

2

−
(
P(h)h

)
i− 1

2

=
1

2

(
JP(h)hKi+ 1

2
+ JP(h)hKi− 1

2

)
(4.8a)
= P(hi+ 1

2
) JhKi+ 1

2
+ P(hi− 1

2
) JhKi− 1

2
.

Note that with initialization (4.13), then ui = 0, and hence ui+1/2 = 0. Therefore the semi-discrete
scheme (4.3) with the flux and source terms in (4.12) yields,

d

dt
hi =−

1

∆x

(
P(hi+ 1

2
)ui+ 1

2
− P(hi− 1

2
)ui− 1

2

)
= 0,(4.16)

d

dt
qi =−

g

2∆x

((
P(h)h

)
i+ 1

2

−
(
P(h)h

)
i− 1

2

)
− g

2∆x

(
P(hi+ 1

2
) JBKi+ 1

2
+ P(hi− 1

2
) JBKi− 1

2

)
(4.15)
= − g

2∆x

(
P(hi+ 1

2
) Jh+BKi+ 1

2
+ P(hi− 1

2
) Jh+BKi− 1

2

)
(4.13)
= 0,

which establishes (4.14). □

Lemma 4.3. The flux and source terms in (4.12) commit a local truncation error of O(∆x2).

The proof is direct, by assuming (U i,Bi) are exact cell averages of spatially smooth functions

(Û , B̂) and then comparing Fi+1/2 and Si to F̂ (Û)
∣∣
x=xi+1/2

and Ŝ(Û)
∣∣
x=xi

, respectively, where F̂

and Ŝ are the exact flux and source functions in (2.13). Therefore we omit most details, pointing
out only the following quantitative approximations in space (ignoring the time variable t):

U i+1/2 = Û(xi+1/2) +O(∆x2), JUKi+1/2 = ∆x Ûx

(
xi+1/2

)
+O(∆x2)

P(hi+1/2) = P(ĥ(xi+1/2)) +O(∆x2), ui+1/2 = û(xi+1/2) +O(∆x2).

Note that the implicit constants hidden in the asymptotic notation above depend on the maximum

singular value of P(ĥxx(x)) and the minimum singular value of P(ĥ(xi+1/2)).
The final result we need is a sufficient condition for a numerical flux to result in an EC scheme.

Lemma 4.4. Let Si be chosen as in (4.12b). Suppose that Fi+1/2 satisfies

JV K⊤i+ 1
2
Fi+ 1

2
= JΨKi+ 1

2
+ g JBK⊤i+ 1

2
P(hi+ 1

2
)ui+ 1

2
.(4.17)

Then the corresponding FV scheme (4.3) is an EC scheme, i.e., satisfies (4.10), where the numerical
energy flux is given by,

Hi+ 1
2
:= V

⊤
i+ 1

2
Fi+ 1

2
−Ψi+ 1

2
− g

4
JBK⊤i+ 1

2
P(hi+ 1

2
) JuKi+ 1

2
.(4.18)

Proof. Multiplying (4.3) by V ⊤i and using the definition of V i in (4.5b), we obtain,

d

dt
Ei =−

1

∆x

(
V ⊤i Fi+ 1

2︸ ︷︷ ︸
(A1)

−V ⊤i Fi− 1
2︸ ︷︷ ︸

(A2)

−∆xV ⊤i Si︸ ︷︷ ︸
(B)

)
(4.19)
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The first term, labeled (A1), can be expanded to,

(A1)
(4.7)
= V

⊤
i+1/2Fi+1/2 −

1

2
JV K⊤i+1/2 Fi+1/2

(4.17)(4.18)
= Hi+ 1

2
+Ψi+ 1

2
+

g

4
JBK⊤i+ 1

2
P(hi+ 1

2
) JuKi+ 1

2
− 1

2
JΨKi+ 1

2
− g

2
JBK⊤i+ 1

2
P(hi+ 1

2
)ui+ 1

2

(4.7)
= Hi+ 1

2
+Ψi −

g

2
JBK⊤i+ 1

2
P(hi+ 1

2
)ui

In an analogous computation, the term labeled (A2) is given by,

(A2) = Hi− 1
2
+Ψi +

g

2
JBK⊤i− 1

2
P(hi− 1

2
)ui

Finally, a direct computation shows that term (B) is,

(B)
(4.12b),(4.5b)

= −g

2
u⊤i P(hi+ 1

2
) JBKi+ 1

2
− g

2
u⊤i P(hi− 1

2
) JBKi− 1

2

Using the expressions for terms (A1), (A2), and (B) derived above in (4.19) establishes that the
scheme satisfies (4.10), i.e., is an EC scheme. □

We now have all the ingredients necessary to prove theorem 4.1.

Proof of theorem 4.1. Lemmas 4.2 and 4.3 verify that the scheme is well-balanced and second-order.
We therefore need only show that it is EC. To do this, we must verify the condition in lemma 4.4.
We accomplish this with direct computation:

JV K⊤i+ 1
2
FEC

i+ 1
2

(4.5b),(4.12a)
=

(
g
(
JhKi+ 1

2
+ JBKi+ 1

2

)
− 1

2
JP(u)uKi+ 1

2

)⊤
P(hi+ 1

2
)ui+ 1

2

+ JuK⊤i+ 1
2

(
g

2

(
P(h)h

)
i+ 1

2

+ P(ui+ 1
2
)P(hi+ 1

2
)ui+ 1

2

)
(4.8a)
= g

(
JhKi+ 1

2
+ JBKi+1/2

)⊤
P(hi+ 1

2
)ui+ 1

2
+

g

2
JuK⊤i+ 1

2

(
P(h)h

)
i+ 1

2

(4.8a)
=

g

2
JP(h)hK⊤i+ 1

2
ui+ 1

2
+ g JBK⊤i+ 1

2
P(hi+ 1

2
)ui+ 1

2
+

g

2
JuK⊤i+ 1

2

(
P(h)h

)
i+ 1

2

(4.8b)
=

g

2

q
u⊤P(h)h

y
i+ 1

2

+ g JBK⊤i+ 1
2
P(hi+ 1

2
)ui+ 1

2

= JΨKi+ 1
2
+ g JBK⊤i+ 1

2
P(hi+ 1

2
)ui+ 1

2
,

which verifies (4.17), and hence lemma 4.4 is applicable, showing that this is an EC scheme. □

4.3. A first-order ES scheme. The scheme determined by (4.12) numerically preserves the energy
of the PDE system (1.1). However, it may lead to spurious oscillations since the energy should
dissipate in the presence of shocks. The issue can be resolved by introducing appropriate numerical
viscosity [27, 28, 14, 15, 16]. Our numerical diffusion operators are a straightforward stochastic
extension of the energy-stable diffusion operators proposed in [14, 15].

For context of the approach, the introduction of a traditional Roe-type diffusion for a conservation
law involves augmenting an EC flux as follows:

FRD
i+1/2 := FEC

i+1/2 −
1

2
QRoe

i+1/2 JUKi+1/2 ,

where QRoe is a positive semi-definite matrix defined through a diagonalization of the interfacial
flux Jacobian at a Roe-averaged state:

QRoe
i+ 1

2
:= TRoe|ΛRoe|

(
TRoe

)−1
,

∂F̂

∂Û
(U i+1/2) = TRoeΛRoe

(
TRoe

)−1
.(4.20)
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Then the semi-discrete scheme (4.3) using the numerical flux Fi+1/2 = FRD
i+1/2 would behave like,

d

dt
U i(t) = −

1

∆x

(
FEC

i+1/2 −F
EC
i−1/2

)
+

1

2∆x

(
QRoe

i+1/2 JUKi+1/2 −QRoe
i−1/2 JUKi−1/2

)
+ Si

≈ − 1

∆x

(
F̂ (Û)

∣∣
x=xi+1/2

− F̂ (Û)
∣∣
x=xi−1/2

)
+∆xQÛxx

∣∣
x=xi

+ S(Û)
∣∣
x=xi

,

where Q is a positive-definite matrix, and hence this introduces diffusion into an EC scheme. While
the above approach works in terms of adding a diffusion-like term, a convenient way to ensure energy
stability is to employ a numerical diffusion term that operates on the entropic variables V instead
of the conservative variables U :

FES
i+ 1

2
:= FEC

i+ 1
2
− 1

2
QES

i+ 1
2

JV Ki+ 1
2
,(4.21)

where QES
i+ 1

2
is a positive definite matrix that will be identified in a Roe-type way from the two

adjacent states U i and U i+1 at the cell interface x = xi+ 1
2
. The term V i is as given in (4.5b), and

is a second-order approximation to the cell-average of the entropy variable V̂ . We are interested in
the Roe-type energy-stable operator defined as,

Qi+1/2(U i,U i+1) := T |Λ|T⊤ ≥ 0,(4.22)

where the matrices T and Λ are matrices from the eigendecomposition of the flux Jacobian (2.14)
evaluated at a Roe-type average state:

∂F̂

∂Û
(Ũ i+1/2) = TΛT−1, Ũ i+1/2 :=

(
hi+1/2

P(hi+1/2)ui+1/2

)
.(4.23)

Note in particular that qi+1/2 ̸= P(hi+1/2)ui+1/2, so that Ũ i+1/2 ̸= U i+1/2. The focal scheme

of this section uses the numerical flux (4.21), where Q is given by the Roe-type diffusion matrix
introduced above,

QES1
i+ 1

2
:= Qi+1/2(U i,U i+1) = T |Λ|T⊤,(4.24)

where we refer to this scheme as “ES1” because we will show it is first-order accurate. Our main
result for this scheme is as follows.

Theorem 4.2 (ES1 scheme). Consider the finite volume scheme (4.3) with source term (4.12b) and
diffusive numerical flux (4.21), selecting the diffusion matrix as,

QES
i+1/2 = QES1

i+1/2,(4.25)

The resulting scheme is a first-order, well-balanced ES scheme.

Proof. We omit some details that are similar to the proof of theorem 4.1. We have already established
in Theorem 4.1 that FEC

i+1/2 is second-order accurate. That this ES1 scheme is first-order is direct

from the definition of V i in (4.5b), resulting in the approximation

JV Ki+1/2 ≈ ∆xV̂x(xi+1/2).

which implies that the diffusive augmentation in (4.21) commits a first-order local truncation error.
To establish that this scheme is well-balanced, we assume the stochastic lake-at-rest initial data

(4.13), and this coupled with the definition of V i in (4.5b) implies JV Ki+1/2 = 0. Since the EC

flux and source are well-balanced (lemma 4.2), then this implies that this ES1 scheme is also well-
balanced.

Finally, we seek to show the ES property. We define the ES1 energy flux,

HES1
i+ 1

2
= Hi+ 1

2
− 1

2
V
⊤
i+ 1

2
QES1

i+ 1
2

JV Ki+ 1
2
.
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with Hi+1/2 as defined in (4.18). As in lemma 4.4, we multiply (4.3) by V ⊤i ; after manipulations
that are similar to those in the proof of lemma 4.4, we have,

d

dt
Ei(t) =−

1

∆x

(
HES1

i+ 1
2
−HES1

i− 1
2

)
− 1

4∆x

(
JV K⊤i+ 1

2
QES1

i+ 1
2

JV Ki+ 1
2
+ JV K⊤i− 1

2
QES1

i− 1
2

JV Ki− 1
2

)
.

Since QES1
i+1/2 is positive semi-definite, then this scheme satisfies (4.11), and hence is an ES scheme.

□

4.4. ES1 diffusion vs Roe diffusion. We provide in this section a result that motivates and
justifies our particular form of the ES1 diffusion modification defined in (4.24) and (4.25). This
result states that if the bottom topography function vanishes (i.e., we are in the specialized case of
a conservation law), then our chosen Roe-type ES1 diffusion in (4.22) and (4.23) coincides with a
standard Roe-type diffusion term. Hence, in specialized scenarios our diffusive augmentations using
entropic variables are equivalent to more standard Roe-type diffusion.

Proposition 4.1. Define the Roe diffusion matrix as in (4.20), but using the flux Jacobian evaluated

at Ũ i+ 1
2
,

∂F̂

∂Û
(Ũ i+ 1

2
) = TRoeΛRoe

(
TRoe

)−1
.(4.26)

where we have evaluated the flux jacobian at Ũ i+1/2 instead of at U i+1/2. Assume Bi = 0 for all
i ∈ [M ]. Then,

QRoe
i+ 1

2
JUKi+ 1

2
= QES1

i+ 1
2

JV Ki+ 1
2
.(4.27)

Proving this result requires some setup: Under the assumptions of proposition 4.1 we consider

the SGSWE (2.12) with flat bottom, i.e., B̂ = 0, together with entropy Eflat(Û) = 1
2 (q̂)

⊤û+ g
2∥ĥ∥

2

and the entropy variables,

V̂ flat = ∂ÛE =

(
− 1

2P(û)û+ gĥ

û

)
.(4.28)

Our main tool will be some results of the proof of Theorem 3.1 in [9]; in particular, while we have
provided the flux Jacobian for this system in (2.14), we will need the explicit similarity transform
that accomplishes its symmetrization.

Lemma 4.5 ([9], Theorem 3.1). Assume P(ĥ) > 0. Define G =

√
gP(ĥ) as the positive definite

square root matrix of gP(ĥ). Then,

∂F̂

∂Û
(Û) = RDR−1,

where D is the symmetric matrix,

D(Û) =
1

2

(
2G+ P(û) + gG−1P(q̂)G−1 P(û)− gG−1P(q̂)G−1

P(û)− gG−1P(q̂)G−1 P(û) + gG−1P(q̂)G−1 − 2G

)
,(4.29)

and

R(Û) =
1√
2g

(
I I

P(û) +
√

gP(ĥ) P(û)−
√
gP(ĥ)

)
.(4.30)

The second lemma reveals the relation between the cell interface jump of V flat (the spatial ap-

proximation corresponding to the cell-averaged entropy variable V̂ flat in (4.28)) and U .
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Lemma 4.6. Recall the definition of Ũ i+ 1
2
in (4.23):

Ũ i+ 1
2
=

(
hi+ 1

2

P(hi+ 1
2
)ui+ 1

2

)
which is an intermediate state defined by the arithmetic average of h and u across the cell interface
x = xi+ 1

2
. Denote, V flat to be the corresponding spatial approximation of the cell-averaged entropy

variable defined in (4.28). Then,

(1) The jump JUKi+ 1
2
is a rescaling of the jump

r
V flat

z

i+ 1
2

, i.e.,

JUKi+ 1
2
= (V flat

U )i+ 1
2

r
V flat

z

i+ 1
2

,(4.31)

where

(V flat
U )i+ 1

2
:=

1

g

(
I P(ui+ 1

2
)

P(ui+ 1
2
) P2(ui+ 1

2
) + gP(hi+ 1

2
)

)
,

r
V flat

z

i+1/2

(4.28)
=

(
− 1

2 JP(u)uKi+ 1
2
+ g JhKi+ 1

2

JuKi+ 1
2

)
(2) Let Ri+ 1

2
denote the matrix that symmetrizes the flux Jacobian at the state Ũ i+ 1

2
,

Ri+ 1
2
:= R

(
Ũ i+ 1

2

)
=

1√
2g

(
I I

P(ui+ 1
2
) +

√
gP(hi+ 1

2
) P(ui+ 1

2
)−

√
gP(hi+ 1

2
)

)
,

cf. (4.30). Then,

Ri+ 1
2
R⊤i+ 1

2
= (V flat

U )i+ 1
2
.(4.32)

Proof. Part (2), i.e., (4.32), is a straightforward matrix algebra calculation that we omit. For part
(1), we first recall that (4.8a) implies,

1

2
JP(u)uKi+ 1

2
= P(ui+ 1

2
) JuKi+ 1

2
.(4.33)

Second, we use the linearity of P(·), the property (4.6) for arithmetic averages, and the commutation
property (2.9), to conclude,

(4.34) P(ui+ 1
2
) JhKi+ 1

2
+ P(hi+ 1

2
) JuKi+ 1

2
= JP(h)uKi+ 1

2
= JqKi+ 1

2
.

Therefore,

(V flat
U )i+ 1

2

r
V flat

z

i+ 1
2

=
1

g

 − 1
2

JP(u)uKi+ 1
2
+ g JhKi+ 1

2
+ P(ui+ 1

2
) JuKi+ 1

2

− 1
2
P(ui+ 1

2
) JP(u)uKi+ 1

2
+ gP(ui+ 1

2
) JhKi+ 1

2
+
(
P2(ui+ 1

2
) + gP(hi+ 1

2
)
)

JuKi+ 1
2


(4.33)(4.34)

===

(
JhKi+ 1

2

JqKi+ 1
2

)
= JUKi+ 1

2
.

□

Now we are in position to show (4.27) in proposition 4.1.

Proof of proposition 4.1. Let Di+ 1
2
be the symmetric matrix defined in (4.29) evaluated at U i+ 1

2
,

and Di+ 1
2
= Li+ 1

2
Λi+ 1

2
L⊤i+ 1

2
be its eigenvalue decomposition. Then,

∂F̂

∂Û
(Ũ i+ 1

2
) = Ri+ 1

2

(
Li+ 1

2
Λi+ 1

2
L⊤i+ 1

2

)
R−1

i+ 1
2

(4.35a)

=: T i+ 1
2
Λi+ 1

2
T−1

i+ 1
2

,(4.35b)
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is an eigendecomposition of the Jacobian matrix ∂F̂

∂Û
(Ũ i+ 1

2
), where we have used the fact that

L−1
i+ 1

2

= L⊤i+ 1
2
due to the symmetry of Di+ 1

2
. The Roe-diffusion operator evaluated at the location

Ũ i+ 1
2
as indicated in (4.26) is then given by,

QRoe
i+ 1

2

(4.20)
= T i+ 1

2
|Λi+ 1

2
|T−1

i+ 1
2

Therefore,

(4.36)

QRoe
i+ 1

2
JUKi+ 1

2
= T i+ 1

2
|Λi+ 1

2
|T−1

i+ 1
2

JUKi+ 1
2
,

(4.35),(4.31)
=

(
Ri+ 1

2
Li+ 1

2

)
|Λi+ 1

2
|
(
Ri+ 1

2
Li+ 1

2

)−1
(V flat

U )i+ 1
2

r
V flat

z

i+ 1
2

,

(4.32)
=

(
Ri+ 1

2
Li+ 1

2

)
|Λi+ 1

2
|
(
Ri+ 1

2
Li+ 1

2

)−1
Ri+ 1

2
R⊤i+ 1

2

r
V flat

z

i+ 1
2

,

= Ri+ 1
2

(
Li+ 1

2
|Λi+ 1

2
|L⊤i+ 1

2

)
R⊤i+ 1

2

r
V flat

z

i+ 1
2

,

= T i+ 1
2
|Λi+ 1

2
|T⊤i+ 1

2

r
V flat

z

i+ 1
2

(4.24)
= QES1

i+ 1
2

r
V flat

z

i+ 1
2

.

□

4.5. A second-order ES scheme. To develop a second-order accurate energy-stable scheme, we
use jump operators with O(∆x2) accuracy. A natural choice is to use the jumps obtained by
non-oscillatory second-order reconstructions of the entropy variable. However, attaining a provable
energy-stable scheme requires the more subtle reconstruction procedure in [16] that we follow. The
new idea for second-order diffusions is to use reconstructions in order to compute jumps. To that
end, we let V +

i and V −i+1 be second-order reconstructions from the right and left, respectively, of
the entropy variable V (x) at location x = xi+1/2. We will describe later in this section how these
reconstructions are computed.

Assuming we have these reconstructions in hand, we can compute second-order accurate jumps
of the entropy variables:

⟨⟨V ⟩⟩i+ 1
2
= V −i+1 − V +

i ,(4.37)

The overall scheme is similar as the previous section, but uses a second-order diffusive augmentation
of a conservative flux,

FES2
i+ 1

2
:= FEC

i+ 1
2
− 1

2
QES2

i+ 1
2
⟨⟨V ⟩⟩i+ 1

2
.(4.38)

We choose the matrix QES2 as for the ES1 scheme,

QES2
i+1/2 = QES1

i+1/2 = Qi+1/2(U i,U i+1) = T i+1/2|Λi+1/2|T⊤i+1/2,(4.39)

where we recall that the eigendecomposition matrices T , Λ are computed from the Roe-type average
of the flux Jacobian, cf. (4.22), (4.23). One could alternatively select QES2 by using second-order
reconstructions of U as input to Q, e.g.,

QES2
i+1/2 = Qi+1/2(U

−
i ,U

+
i ),

for some second-order reconstructions U±i .
What remain is to describe how V ±i are computed in a way that ensures the energy stable property.

The main idea is to design V ±i through a second-order reconstruction of scaled (transformed) versions
of the entropy variables:

w±i := T⊤i±1/2V i,(4.40)
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where the matrices T i±1/2 are as in (4.39). Once these have been computed, we perform a second-
order total variation-diminishing (TVD) reconstruction on the w variable at the interfaces:

w̃±i := w±i ±
1

2
ϕ
(
θ±i
)
◦ ⟨⟨w⟩⟩i±1/2,(4.41)

where ◦ is the Hadamard (elementwise) product on vectors, and θ±i are difference quotients,

θ±i := ⟨⟨w⟩⟩i∓1/2 ⊘ ⟨⟨w⟩⟩i±1/2,

where ⊘ is the Hadamard (elementwise) division between vectors. We select the function ϕ to be
the minmod limiter,

ϕ(θ) =


0, if θ < 0,

θ. if 0 ≤ θ ≤ 1,

1, otherwise.

(4.42)

which operates elementwise on vector inputs. Note that other slope limiter functions ϕ may be
selected, but minmod is the only valid limiter in this context that also satisfies the TVD property
[16, Section 3.4]. Finally, the desired reconstructions for V ±i are defined by inverting the w-to-V
map,

T⊤i±1/2V
±
i := w̃±i(4.43)

The full scheme has now been described, and satisfies the following properties.

Theorem 4.3 (ES2 scheme). The FV scheme (4.3) choosing the flux Fi+1/2 = FES2
i+1/2 defined in

(4.38) is a second-order, well-balanced, ES scheme.

We focus the remaining discussion in this section on sketching the proof of the above result.
The second-order property results from the fact that the jumps are computed using second-order
accurate reconstructions; the well-balanced property can be proven in exactly the same way as is
done for the ES1 scheme in the proof of theorem 4.2. To show the ES property, we exercise one of
the major results in [16] that we reproduce below.

Lemma 4.7 ([16], Lemma 3.2). For each i, if there exists a positive diagonal matrix Πi+1/2 ≥ 0
such that the second-order jump satisfies,

⟨⟨V ⟩⟩i+ 1
2
= (T⊤i+ 1

2
)−1Πi+ 1

2
T⊤i+ 1

2
JV Ki+ 1

2
,(4.44)

then the scheme (4.3) with flux term Fi+1/2 = FES2
i+1/2 is an ES scheme.

Hence, showing the ES property for our scheme only requires us to establish (4.44). To accomplish
this, note that the definition (4.41) implies,

⟨⟨w̃⟩⟩ℓi+ 1
2
=

(
1− 1

2
ϕ((θ−i+1)

ℓ)− 1

2
ϕ((θ+

i )
ℓ)

)
⟨⟨w⟩⟩ℓi+ 1

2
,(4.45)

I.e., we have,

⟨⟨w̃⟩⟩i+ 1
2
= Πi+ 1

2
⟨⟨w⟩⟩i+ 1

2
,

(
Πi+1/2

)
ℓ,ℓ

:=

(
1− 1

2
ϕ((θ−i+1)ℓ)−

1

2
ϕ((θ+

i )ℓ)

)
(4.46)

and in particular Πi+1/2 is a diagonal matrix and positive semi-definite since 0 ≤ ϕ(θ) ≤ 1. Since the
jump operators ⟨⟨·⟩⟩ and J·K are linear in their arguments, then combining (4.45) with the relations
(4.40) and (4.43) that connect wi and w̃i to V i and V ±i yields the relation (4.44) with a positive-
definite diagonal matrixΠi+1/2. Hence, this is an ES scheme, and completes the proof of theorem 4.3.
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Finally, we remark that the implementation of the diffusion term in the ES2 flux (4.38) does not
require explicit construction of V ±i . I.e., we have,

1

2
QES2

i+ 1
2
⟨⟨V ⟩⟩i+ 1

2

(4.22),(4.44)
=

1

2
T i+ 1

2
|Λi+ 1

2
|T⊤i+ 1

2
(T⊤i+ 1

2
)−1Πi+ 1

2
T⊤i+ 1

2
JV Ki+ 1

2

=
1

2
T i+ 1

2
|Λi+ 1

2
|Πi+ 1

2
T⊤i+ 1

2
JV Ki+ 1

2

(4.40)
=

1

2
T i+ 1

2
|Λi+ 1

2
|Πi+ 1

2
⟨⟨w⟩⟩i+ 1

2
,

(4.46)
=

1

2
T i+ 1

2
|Λi+ 1

2
|⟨⟨w̃⟩⟩i+ 1

2
,

and hence one need only compute w̃±i in order to directly evaluate the diffusion part of the ES2
flux.

4.6. Algorithmic details. Our overall scheme is the semi-discrete form (4.3), which we pair with
a numerical time-stepping scheme. We provide pseudocode in this section that describes a fully
discrete SGSWE time-stepping algorithm. This full pseudocode introduces some additional details
for the scheme that were devised in [9], many of which are based on standard procedures used in
schemes for deterministic SWE models [18]. We very briefly describe these additional details in the
coming sections; more comprehensive discussion can be found in [9]. The full algorithmic pseudocode
is given in algorithm 1.

4.6.1. Velocity desingularization. Computing ui requires inversion of the matrix P(hi), which is
assumed (and enforced in the scheme) to be symmetric and positive-definite. However, this matrix
may be ill-conditioned. To ameliorate numerical artifacts associated with this ill-conditioned oper-
ation, we employ a desingularization procedure, introduced for the deterministic SWE in [20]. We
describe here the stochastic variant of the desingularization procedure, proposed in [9]. If P(hi) has
the eigenvalue decomposition,

P(hi) = QΠQ⊤, Π = diag(π1, . . . , πK),

where πk > 0 are the eigenvalues of P(hi), then the desingularization process approximates P(hi)
−1qi

by regularizing the matrix inverse procedure:

ui = QΠ̃
−1

QTqi, Π = diag(π̃1, . . . , π̃K), π̃k =

√
π4
k +max{π4

k, ϵ
4}√

2πk

,(4.47)

where ϵ > 0 is a small constant; we choose it to be ϵ = ∆x. Note that if πk ≥ ϵ1/4, then π̃k = πk,
and hence regularization is performed only in the presence of small eigenvalues. Compared to (4.4).
This procedure to compute ui is a stabilized way to compute velocities.

For scheme consistency, if the desingularization above is activated, then we recompute the dis-
charge variable:

qi ← P(hi)ui.

4.6.2. Hyperbolicity preservation. The SGSWE PDE (2.12) is hyperbolic and has an entropy pair

if P(ĥ) > 0, i.e., Theorems 2.1 and 3.1, respectively. To ensure this holds at the discrete level,
we require the condition P(hi) > 0 for every cell i. To enforce this, we employ [9, Theorem 3.4,
Corollary 3.5], which state that a sufficient condition for P(hi) > 0 is that for every m = 1, . . . ,M ,

ĥi(ξm) > 0, ĥi(ξ) :=

K∑
k=1

hi,kϕk(ξm), hi = (hi,1, . . . ,hi,K)⊤,(4.48)

where {ξm}Mm=1 is a nodal set in Rd for a positive-weight quadrature rule having sufficient accuracy
relative to the ξ-polynomial space P defined in (2.4). The functions ϕk are the basis of P in (2.4)

for which hi are coordinates. The function ĥi(ξ) is the SGSWE approximation to the Ii-cell average
of ĥ(x, t, ξ) at the current time. Hence, the computational vehicle we use to enforce hyperbolicity
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of the underlying PDE in our scheme is to enforce the above positivity-type condition on the hi

variable.

4.6.3. Positivity-preservation. We enforce the positivity condition (4.48) by restricting the timestep
size. We assume that the current time value of hi satisfies (4.48). If Forward Euler with a stepsize
∆t is used to discretize (4.3), then (4.48) is true at the next time step if,

∆t < λ := min
i

min
m=1,...,M

∣∣∣∣∣ ∆x ĥi(ξm)

F̂h
i+1/2(ξm)− F̂h

i−1/2(ξm)

∣∣∣∣∣ ,(4.49)

where F̂h
i+1/2(·) is the SG approximation of the ĥ-variable flux:

F̂h
i+1/2(ξ) :=

K∑
k=1

Fh
i+1/2,kϕk(ξ), Fi+1/2 =

((
Fh

i+1/2

)⊤
,
(
Fq

i+1/2

)⊤)⊤
∈ R2K .

Hence, we enforce positivity preservation by ensuring a small enough timestep so that the positivity
condition (4.48) is respected globally over all spatial cells. We must also restrict ∆t to satisfy the
wave speed CFL condition; see [9, Equation (4.16)].

4.6.4. Adaptive time-stepping. The time step restriction (4.49) works for Forward Euler time-stepping.
To extend this to a higher-order temporal scheme, we employ a third-order strong stability-preserving
scheme, which is a convex combination of Forward Euler steps [17]. However, the intermediate stages
of a(ny) time-stepping scheme need not obey the positivity-preserving property, even if ∆t is chosen
to obey the condition (4.49) determined at the initial step.

To address this issue, we employ the adaptive time-stepping strategy proposed in [5, Remark 3.6].
We refer the reader to that reference for details, and present here only a high-level description of the
procedure: λ is initialized as the initial stage value of λ, as shown in (4.49). At intermediate stages,
new intermediate values of λ are computed. If an intermediate-stage value of λ is smaller than the
current value of λ, then we restart the entire time-step using the new, smaller-λ restriction on ∆t.

5. Numerical Experiments

Below we present several numerical examples to illustrate properties of the developed schemes.
We refer to the second order energy-conservative scheme, the first order energy-stable scheme, and
the second order energy-stable scheme as the EC, ES1, and ES2 schemes, respectively. We introduce
the relative change in energy quantity,

relative energy =
E(t)− E(0)

E(t)
,(5.1)

where E(t) is computed as
∑

i ∆xEi(t). This provides a way to visualize the relative change in the
discrete energy for different numerical schemes, namely for the EC, ES1 and ES2. In all tests below
we consider a single (scalar) random variable ξ that is a uniformly distributed random variable on
[−1, 1]; hence our choice for the functions ϕk are orthonormal Legendre polynomials on [−1, 1]. We
use K = 9 for the dimension of the PC space P . Instead of visualizing the conservative variable
h corresponding to water height, we will plot the water surface w, defined as w = h + B, with
the bottom topography B superimposed on the same graph; plots of (w,B) are more physically
interpretable than directly plotting the water height h.

5.1. Flat-Bottom Dam Break. In the first experiment, we consider a stochastic water surface,

h(x, 0, ξ) +B(x, 0, ξ) = w(x, 0, ξ) =

{
2.0 + 0.1ξ x < 0

1.5 + 0.1ξ x > 0
, q(x, 0, ξ) = 0,

with a flat bottom B(x, t, ξ) ≡ 0. This is a stochastic modification of the deterministic “dam break
test” problem from [15]. In fig. 1, we use a uniform grid size ∆x = 400 over the physical domain
x ∈ [−1, 1], and compute up to the time t = 0.4. We test the example using different numerical
methods (EC, ES1, ES2), Section 4.
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Algorithm 1 The fully discrete SGSWE schemes proposed in this paper; we ignore specifying the
handling of boundary conditions.

Input scheme type: scheme = EC, ES1, or ES2
Input: Bottom topography B, initial data U(t = 0), polynomial index set Λ
Input: Terminal time T
Initialize: U i, t = 0
repeat

Compute Bi from B for all i
Compute ui in (4.47) for all i
Compute FEC

i+1/2 for all i, given by (4.12)

if scheme is EC then for all i:
Set Fi+1/2 ← FEC

i+1/2.

else for all i:
Compute entropy variable V i using (4.5b).
Compute T i+1/2, Λi+1/2 through (4.23).
if scheme is ES1 then:

Compute QES1
i+1/2 using (4.23),(4.24) with T i+1/2, Λi+1/2.

Compute Fi+1/2 ← FES
i+1/2 in (4.21) using FEC

i+1/2, V i, and QES
i+1/2 ← QES1

i+1/2.

else if scheme is ES2 then:
Construct QES2

i+1/2 as in (4.39) with T i+1/2, Λi+1/2.

Construct V ±i through (4.40), (4.41), and (4.43).

Compute Fi+1/2 ← FES2
i+1/2 in (4.38) and (4.37) using QES2

i+1/2, V
±
i , and FEC

i+1/2.

end if
end if
Initialize λ and ∆t as shown in (4.49).
Adaptively determine ∆t using the procedure discussed in section 4.6.4.
Use a third-order SSP method to take a time step of size ∆t, updating hi and qi.
Set t← t+∆t.

until t ≥ T

From fig. 1, similar to the results presented in [15, Figs. 1 and 4], we observe that the water surface
with uncertainties develops a leftward-going rarefaction wave and a rightward-going shock. Similar
to [15], EC computes such solutions accurately, but at the expense of large post-shock oscillations
as observed on fig. 1 (right plot). These oscillations are expected since the EC scheme preserves
energy, and hence energy is not dissipated across the shock as it should. We also demonstrate on
fig. 2 (middle and right plots) the numerical energy conservation for the EC scheme. We note that
the energy conservation errors due to time discretization are reduced significantly by decreasing the
time step/CFL constant (right figure), similar to the results reported in fig. 1 in [15]. The presented
results in fig. 1 and fig. 2 (left figure) also illustrate that ES2 produces less smearing than the ES1 at
both the rarefaction and the shock waves. The schemes ES1 and ES2 are both designed to dissipate
energy which is also confirmed by the numerical experiments as presented in fig. 2 (middle plot), with
the energy dissipation in the ES2 being lower than in the ES1 scheme. In addition, the numerical
results seem to indicate that the ES2 scheme is better able to capture large variance spikes compared
to the ES1 scheme. Finally, the employment of the the numerical diffusion operators in ES1 and ES2
schemes, removes oscillations present in the numerical solution using the EC scheme. The observed
results are also in agreement with the results of the deterministic model reported in [15].

5.2. Stochastic Bottom Topography. Next, we consider the shallow water system with deter-
ministic initial conditions,

w(x, 0) =

{
1 x < 0

0.5 x > 0
, q(x, 0) = 0,
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Figure 1. Results for section 5.1. Top: water surface, Bottom: discharge: Left:
ES1. Middle: ES2. Right: EC. Mesh nx = 400 and PC basis functions K=9.
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Figure 2. Results for section 5.1. Comparison: Left - water surface mean ES1
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change in EC under different time step/CFL constant. Mesh nx = 400 and PC
basis functions K=9.

and with a stochastic bottom topography,

(5.2) B(x, ξ) =

{
0.125(cos(5πx) + 2) + 0.125ξ, |x| < 0.2

0.125 + 0.125ξ, otherwise.

This test example was presented previously in [9]. Initially, the highest possible bottom barely
touches the initial water surface at x = 0, see fig. 3-fig. 5. In fig. 3-fig. 5, we use a uniform grid
size ∆x = 400, 800, 1600 over the physical domain x ∈ [−1, 1], and compute up to time t = 0.0995
(Immediately after this time, the EC scheme fails for an nx=400 due to spurious oscillations near
sharp gradients of the solution). In fig. 4-fig. 5 we compare only performance of ES1 and ES2 at
t = 0.0995 since EC fails on those meshes even earlier. Again, the numerical results indicate that
the ES2 scheme can more easily resolve large, spatially-concentrated variance values compared to
the ES1 scheme, but under mesh refinement both schemes converge to similar numerical solutions.
In fig. 6, we show numerical solution obtained using ES1 and ES2 at the final time t = 0.8 and on
mesh nx = 800. For both schemes, the 99% confidence region of the water surface stays above the
99% confidence region of the bottom function in fig. 6, and both methods produce similar numerical
solutions. The presented results are comparable to the results in [9, Section 5.1]. In fig. 7, we again
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observe as expected that the EC scheme numerically conserves energy, while ES1 and ES2 dissipate
energy with larger dissipation produced by ES1 method.
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Figure 3. Comparison of the results for section 5.2 using different schemes. Top:
water surface. Bottom: discharge. Left: ES1, Middle: ES2, Right: EC. Mesh
nx = 400 with K = 9 at earlier time T = 0.0995.

5.3. Perturbation to Lake at Rest. As a final example, we consider the shallow water system
with stochastic water surface,

(5.3) w(x, 0, ξ) =

{
1 + 0.001(ξ + 1) |x| ≤ 0.05

1 otherwise
, q(x, 0, ξ) = 0,

and with a deterministic bottom topography

(5.4) B(x) =


0.25(cos(5π(x+ 0.35)) + 1), − 0.55 < x < −0.15

0.125(cos(10π(x− 0.35)) + 1), 0.25 < x < 0.45

0, otherwise.

The test is from [6] and is similar to the deterministic tests of the perturbation of lake at rest solution,
for example to the one presented in [15]. From presented results in fig. 8, fig. 9 and fig. 10, we make
conclusions similar to previous sections: Both ES1 and ES2 capture small stochastic perturbations
of the lake at rest solution quite well (with both leftward- and rightward- going waves present in the
numerical solutions). The first order ES1 scheme exhibits much more dissipation in the left and the
right going waves than the ES2 scheme, which produces a more accurate solution, as shown in fig. 8,
fig. 9 (left and middle figures), fig. 10. The results of EC scheme is also shown in fig. 9 (right figure).
The EC scheme resolves the left and the right going water waves with heights higher than in both
ES1 and ES2 methods, but again there are oscillations present near both waves in EC numerical
solution as expected since EC does not dissipates energy across shocks. The relative energy change
for this example produced by EC, ES1 and ES2 methods is illustrated in fig. 11. The presented
results are also comparable to the results reported in [15] and in [6].

6. Conclusion

In this work we derived an entropy-entropy flux pair for the spatially one-dimensional hyperbolicity-
preserving, positivity-preserving SG SWE system developed in [9]. Such entropy-entropy flux
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Figure 4. Comparison of the results for section 5.2 using different schemes. Top:
water surface. Bottom: discharge. Left: ES1, Right: ES2. Mesh nx = 800 with
K = 9 at earlier time T = 0.0995.

pairs are the theoretical starting point for proposing entropy admissibility criteria to resolve non-
uniqueness of weak solutions. Next, using the proposed entropy-entropy flux pair, we designed
second-order energy conservative, and first- and second-order energy stable finite volume schemes
for the SG SWE. The proposed schemes are also well-balanced. We provided several numerical
experiments to illustrate performance of the methods. As a part of future research, we plan to
extend such methods to models in two spatial dimensions, to explore alternative constructions of
the diffusion operators, and to investigate other reconstruction approaches for the entropy variables.
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Figure 6. Comparison of the results for section 5.2 using different schemes. Top:
water surface. Bottom: discharge. Left: ES1, and Right: ES2. Mesh nx = 800
with K = 9 at the final time T = 0.8.
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Figure 8. Results for section 5.3. Top: water surface mean, Bottom: discharge
mean: Left: ES1 vs. ES2 on mesh nx = 400. Middle: ES1 vs. ES2 on mesh
nx = 800. Right: ES1 vs. ES2 on mesh nx = 1600. PC basis functions K=9.
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Figure 9. Comparison of the results for section 5.3 using different schemes. Top:
water surface. Bottom: discharge. Left: ES1, Middle: ES2, Right: EC. Mesh
nx = 400 with K = 9 at time T = 0.8.
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Figure 10. Comparison of the results for section 5.3 using different schemes. Top:
water surface. Bottom: discharge. Left: ES1, Right: ES2. Mesh nx = 1600 with
K = 9 at time T = 0.8.
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