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Abstract

Approximating a function with a finite series, e.g., involving polynomials or trigonometric
functions, is a critical tool in computing and data analysis. The construction of such approxi-
mations via now-standard approaches like least squares or compressive sampling does not ensure
that the approximation adheres to certain convex linear structural constraints, such as positivity
or monotonicity. Existing approaches that ensure such structure are norm-dissipative and this
can have a deleterious impact when applying these approaches, e.g., when numerical solving
partial differential equations. We present a new framework that enforces via optimization such
structure on approximations and is simultaneously norm-preserving. This results in a concep-
tually simple convex optimization problem on the sphere, but the feasible set for such problems
can be very complex. We establish well-posedness of the optimization problem through results
on spherical convexity and design several spherical-projection-based algorithms to numerically
compute the solution. Finally, we demonstrate the effectiveness of this approach through several
numerical examples.
Key Words: structure-preserving approximations, high-order accuracy, quadratic program-
ming, geodesic convex optimization

1 Introduction

Approximating an unknown function with a superposition of basis functions (e.g., polynomials or
Fourier series) is a widely-used technique in computing and numerical analysis. For example, when
solving a system of partial differential equations (PDEs), the class of spectral methods proposes such
a superposition ansatz and determines the coefficients through minimization conditions on the PDE
residual. Traditionally, fundamental properties of the approximation, such as stability, accuracy,
and computational efficiency are major considerations for the approximations. However, for certain
problems, approximations are required to preserve certain implicit “structures”, i.e., approximations
should inherit certain desirable qualitative features of the original function. Such structure can
include positivity, monotonicity, conservation of energy, etc. An approximation that fails to be
structure-preserving may lead to numerical instability or even the failure of numerical schemes
[1]. From the broader viewpoint of building predictive emulators from data, this structure can be
crucial to generate a meaningful emulator; for example, emulators built to predict population trends
should not predict negative values. In this manuscript we consider building approximations that
respect general families of linear homogeneous convex inequality constraints (for which positivity and
monotonicity are examples) along with a single quadratic equality constraint (an energy constraint).

Based on the existing framework for linear inequality constraints [2], we impose a new spherical
constraint, i.e., a quadratic constraint in addition to the linear constraints. While a seemingly benign
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addition, this extra constraint substantially changes the optimization problem and its properties.
With a coordinate vector p̂ provided (e.g., a vector of Fourier coefficients), the formulation we
consider in this paper gives rise to an optimization problem of the form,

min
v̂∈RN

‖v̂ − p̂‖22

s.t. gk(v̂, y) ≤ 0, ∀y ∈ ωk, k ∈ [K] (1.1)

‖v̂‖2 = ‖p̂‖2,

where the linear constraints are given by the y-parameterized scalar-valued functions gk(·, y) and
the energy-preserving constraint is given by the equality constraint ‖v̂‖2 = ‖p̂‖2. The parameters y
can take values from a (possibly uncountably infinite) set ωk, and hence the feasible set can be very
complex. Generally, the feasible set in (1.1) is the intersection of a finite collection of homogeneous
convex cones and a sphere. The model (1.1) corresponds to a semi-infinite programming (SIP)
problem [3]. In several SIP algorithms, a discrete approximation to the domain ωk is constructed
(and perhaps refined). For linear constraints corresponding to positivity, this would correspond to
requiring positivity at only a finite collection of points on the domain and hence structure is only
preserved at a discrete set of points instead of on the whole domain. An additional difficulty is that
the feasible set is a subset on the surface of a sphere, which is not a convex set in Euclidean space
and hence the approaches from [2] do not apply. Thus, computationally solving (1.1) can be very
challenging.

1.1 Related problems and approaches

There is existing literature on the study of optimization over ellipsoids (or spheres), which is closely
related to the solution of the subproblems in the class of trust-region methods [4, 5, 6, 7]. However,
in those approaches, the number of linear constraints is finite, and therefore such approaches are
not directly applicable in our setting.

There are existing energy-preserving numerical methods that focus on energy-conservation of a
Hamiltonian system, where a differential equation is discretized in a special way so that the energy
of the discretized system is preserved, see [8, 9, 10, 11]. However, our focus is to preserve the energy
of the approximation to a given function rather than the energy of a differential equation system,
which is a different problem. In addition, methods built for differential equations assume very
particular types of discretizations; the formulation we investigate in this paper applies to general
discretizations.

A number of techniques have been proposed for preserving special kinds of structure for special
choices of basis functions. To ensure positivity preservation, one can simply enforce positivity
at a finite collection of points in the computational domain. The corresponding feasible set is a
convex polytope and there are several algorithms available to computationally solve this problem
[12]. Unfortunately, such techniques do not guarantee positivity of the approximation over the
entire domain (a generally uncountable Euclidean set). An alternative to constraints over a finite
set is to use special mappings. For example, one can approximate

√
f and square the resulting

approximation, or approximate log f and subsequently exponentiate the approximation in order to
guarantee the resulting approximation is positive. However, such mapping functions are not easy to
construct for more complicated constraints, and the introduction of such maps can affect accuracy;
for example, x 7→

√
x is not smooth at x = 0. For univariate polynomial approximation, one can take

advantage of the special representations of nonnegative polynomials (Lukács theorem) to develop
more complicated iterative procedures [13]. Another approach is to use an adaptive construction
scheme for certain kinds of constraints [14]. One can also linearly scale the high order coefficients
of the polynomial to limit the oscillations [1]. Finally we note that there are existing theoretical
investigations for structure-preserving approximation in [15, 16, 17, 18], but these investigations do
not translate into algorithms.

Our approach extends the recent technique in [2], which considers building approximations with
linear structure, in the sense that the constraints are linear with respect to the approximant. In

2



[2], the authors formalize a model for the structure-preserving problem with linear constraints,
which applies to general, nontrivial linear structure. Under a mild condition, the corresponding
function approximation problem can be cast to a semi-infinite convex optimization problem in a
finite-dimensional Euclidean space with a unique solution. In addition, the work in [2] develops
several projection-based algorithms to preserve the desired structures. However, their method, which
amounts to filtering the approximation in a nonlinear manner, does not preserve the L2 norm, and
thus is dissipative. The work of this paper preserves the quadratic (energy) norm through a modified
formulation of the problem. This slight modification results in nontrivial changes to well-posedness
and algorithmic development that we address.

1.2 Contributions of this paper

In this work, we are interested in providing theory and algorithms to address non-dissipative,
structure-preserving function approximation methods of the form (1.1). Using notions of spherical
convexity and spherical projections [19, 20], we show that the corresponding function approximation
problem can be converted to a spherically convex feasibility problem, and establish uniqueness of the
solution under mild conditions, see Theorem 3.1. Based on our theoretical results and by extending
algorithms in [2], we propose three algorithms to solve the spherically convex feasibility problem;
see sections 4.2, 4.3, and 4.4. Our algorithms do not rely on the discretization of the domain and
therefore differ from many existing SIP algorithms [21, 22].

The setup of the general problem is as follows: We first assume that the unconstrained ap-
proximation to the unknown function is available, e.g., an unconstrained projection of the unknown
function onto a finite-dimensional subspace. The unconstrained approximation is then post-processed
via our algorithms so that the linear constraints, such as positivity, are satisfied without augmenting
or reducing the quadratic energy of the approximant.

This paper is structured as follows. In Section 2, we give the theoretical framework of the
structure-preserving function approximation problem as well as formalization of the constraints.
In Section 3, we provide a brief overview of spherical geometry and present the uniqueness result
of the function approximation problem. In Section 4, we discuss projections on the sphere and
develop two algorithms for solving the function approximation problem. Finally, in Section 5, we
demonstrate the efficacy of our algorithms with numerical results for polynomial and Fourier series
approximations. Our energy- and structure-preserving results show similar rates of convergence as
those of the unconstrained approximation as the subspace is refined.

2 Setup

Let Ω ⊆ Rd be a spatial domain. Consider the Hilbert space H formed by scalar-valued functions
over Ω with inner product 〈·, ·〉H ,

H = H(Ω) := {f : Ω→ R | ‖f‖H <∞}, ‖f‖2 := 〈f, f〉H ,

A prototypical example is H = L2(Ω;R). Let V ⊆ H be an N -dimensional subspace spanned by
orthonormal basis functions {vn}n∈[N ],

V = span{v1, · · · , vN}, 〈vj , vk〉H = δj,k, j, k ∈ [N ],

where δj,k is Kronecker delta function, and [N ] := {1, · · · , N}. Our numerical examples will be
restricted to d = 1 or d = 2 on a closed interval or a closed rectangle Ω, respectively, but the
theoretical framework we develop holds for general choices of d and Ω.

We assume throughout this document that V has no common zeros on Ω, i.e., that,

∀x ∈ Ω ∃ v ∈ V such that v(x) 6= 0.

This assumption is true if, for example, V contains constant functions.
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2.1 The Unconstrained Problem – linear measurements

We assume availability of an unconstrained function approximation scheme from H onto V using a
finite collection of data. In this section we briefly mention canonical approaches for accomplishing
this via linear measurements, but our optimization problem is independent of how this unconstrained
approximation is formed.

Let u ∈ H be a function about which we have a finite number of observations {um}m∈[M ] :=
{φm(u)}m∈[M ] ⊂ R, where φ1, · · · , φM are M linear functionals on H, and are bounded on V . The
functionals can be, e.g., vm-projections 〈·, vm〉 or pointwise evaluations δxm

(·), where δxm
is the

Dirac mass centered at xm ∈ Ω. An approximation p ∈ V to u is frequently built by enforcing these
linear measurements:

Find p =
∑

n∈[N ]

p̂nvn satisfying Ap̂ = b, (2.1)

where

(A)m,n = φm(vn), (m,n) ∈ [M ]× [N ], b = [φ1(u), · · · , φM (u)]> ∈ RM . (2.2)

The condition M = N is necessary for the problem (2.1) to be well-posed, and so in practice one
relaxes (2.1) in appropriate ways depending on whether the system is under-/over-determined. For
example, with v̂ the vn-coordinates of an element v ∈ V , one could relax (2.1) in the following ways:

(M > N) p̂ = arg min
v̂∈RN

‖Av̂ − b‖2 (Least squares)

(M = N) p̂ = A−1b (Interpolation)

(M < N) p̂ = arg min
v̂∈RN : Av̂=b

‖v̂‖1 (Compressive sampling)

(2.3)

where ‖ · ‖p is the `p([N ]) norm on vectors. Theory for well-posedness of each of these problems
is mature [23, 24, 25, 26]. The numerical results in this paper utilize the interpolation (M =
N) formulation above for simplicity, but this choice is independent of the theory and algorithms
developed in this paper. The essential idea is that we assume the ability to construct p̂ that, in the
absence of linear inequality or quadratic equality constraints, is considered a good approximation to
the original function u based on available data.

2.2 The Constraints

In many practical situations, we require not only a solution to (2.1), but instead a solution that
also obeys certain physical constraints, such as positivity over Ω. The unconstrained approximation
(2.1) need not obey any such constraints, even if the original function u does obey them, which may
lead to unphysical approximations. We therefore consider the problem of imposing these additional
constraints. We consider simultaneously imposing two types of constraints: a (possibly uncountable)
set of linear constraints, along with a single quadratic constraint.

2.2.1 The Linear Constraints

The constraints we consider in this section are motivated by the following examples of structural
desiderata:

• positivity: p(y) ≥ 0 for all y ∈ Ω,

• monotonicity: p′(y) ≥ 0 for all y ∈ Ω,

• convexity: p′′(y) ≥ 0 for all y ∈ Ω.
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As it is pointed out in [2], these constraints can be characterized by families of linear constraints and
a unique solution to the linearly-constrained problem is guaranteed under some mild assumptions.
Linearity in this context refers to linearity of the constraint with respect to the function p in V . In
the rest of this subsection, we briefly review the abstract formulation introduced in [2].

Assume that there are K types of linear constraints (e.g., K = 2 if we simultaneously impose
positivity and monotonicity). For each k ∈ [K], each type of linear constraint is a family defined by
the condition,

Lk(v, y) ≤ 0, ∀y ∈ ωk, (2.4)

where,

• ωk is a subset of the spatial domain Ω,

• Lk(·, y) is a y-parameterized unit-norm element in the dual space V ∗.

The feasible set of elements v ∈ V that satisfy (2.4) for the family-k constraint is given by

Ek := {v ∈ V | Lk(v, y) ≤ 0, ∀y ∈ ωk}. (2.5)

Positivity, monotonicity, and convexity can be describes by the abstract formulation (2.4). The
linear feasible set E0 is the set of all v ∈ V that satisfy all K constraints simultaneously, and hence
is the intersection of all the Ek,

E0 :=
⋂

k∈[K]

Ek =
⋂

k∈[K]

{v ∈ V | Lk(v, y) ≤ 0, ∀y ∈ ωk}. (2.6)

Note that E0 is always non-empty since it contains 0.
Since V is N -dimensional, we can identify the feasible set E0 in V with a feasible set in the vn-

coordinate space RN . By the Riesz representation theorem, for any L ∈ V ∗, there exists a unique
Riesz representor ` ∈ V such that,

L(v) = 〈v, `〉H , ∀v ∈ V.

The function ` ∈ V can also be written explicitly using the orthonormal basis {vn}n∈[N ],

`(·) =

N∑
n=1

̂̀
nvn(·), ̂̀

n = 〈`, vn〉 = L(vn),

and the following relation holds,

‖L‖V ∗ = ‖`‖V = ‖ ̂̀‖, ̂̀= (̂̀1, · · · , ̂̀N )T.

In what follows we denote the Riesz representor for Lk(·, y) by `k(·, y) and the corresponding coor-

dinate vector by ̂̀k(y) ∈ RN . Since Lk(·, y) is unit-norm, we have

‖Lk(·, y)‖V ∗ = ‖`k(y)‖V = ‖ ̂̀k(y)‖ = 1. (2.7)

Finally, the set Ck ⊆ RN corresponding to the feasible set Ek ⊆ V is given by,

Ck =
⋂

y∈ωk

{
v̂ ∈ RN

∣∣∣ 〈v̂, ̂̀k(y)
〉
≤ 0
}

=:
⋂

y∈ωk

ck(y), k ∈ [K], (2.8)

and the set C0 ⊆ RN corresponding to E0 is

C0 =
⋂

k∈[K]

Ck. (2.9)
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It can be verified that all Ck, k ∈ [K] are closed, convex cones in RN (and that Ek is a closed convex
cone in V ) [2] and thus their intersection C0 is also a convex cone. Note that, although C0 is simply
a convex cone, the geometry of C0 can be very complicated with infinitely many extreme points
since every Ck is the intersection of infinitely many half-spaces ck(y) if the ωk is a set with infinite
cardinality, e.g., ωk is an interval.

Remark 2.1. In [2], an additional rk parameter is introduced to define affine convex cones as
feasible sets. We specialize here to the homogeneous case rk = 0, so that our cones all have vertices
at the origin. If rk 6= 0, the problem we consider in this paper is not necessarily well-posed; see
Example 2.3.

We summarize one example from [2] to demonstrate the notation and how it can be specialized
to familiar types of constraints.

Example 2.1 (Positivity). Let Ω = [−1, 1] and V be anyN -dimensional subspace of L2(Ω)
⋂
L∞(Ω).

We want to impose a positivity-structure for v ∈ V : v(x) ≥ 0,∀x ∈ Ω. Thus, only K = 1 family is
needed and ω1 = Ω. Fixing y ∈ ω1, the corresponding unit-norm linear operator is given by

L1(v, y) := −λ(y)v(y), λ(y) =

(
N∑

n=1

vn(y)2

)− 1
2

, (2.10)

where λ(y) is a y-dependent normalization factor. The corresponding y-parameterized Riesz repre-

sentor `1(·, y) and its coordinate vector ̂̀1(y) are, respectively,

`1(·, y) = −λ(y)

N∑
n=1

vn(y)vn(·), ̂̀
1(y) = [−λ(y)v1(y), · · · ,−λ(y)vN (y)]

>
. (2.11)

Once the orthonormal basis is specified, ̂̀1(y) can thus be explicitly identified.

2.2.2 Constraints that are “determining”

In order to establish uniqueness of the solution to our quadratic-linear constrained problem, we
require an additional condition on the linear constraints (Lk, ωk) defining C0.

Definition 2.1. The set of constraints (Lk, ωk)k∈[K] is V -determining if

v ∈ V and Lk(v, y) = 0 ∀ y ∈ ωk ∀ k ∈ [K] =⇒ v = 0

We will assume V -determining linear constraints, which amounts to a technical assumption about
the geometry of the associatedRN -feasible set C0 that we later exploit. The V -determining condition
precludes certain problem setups, but all the practical situations we consider in this paper are V -
determining. As a simple example, to enforce positivity for every point in Ω as in Example 2.1 we
have that L1(v, y) is a scaled point evaluation at y. Therefore, the V -determining condition requires
that if v ∈ V satisfies v(y) = 0 for every y ∈ Ω then v = 0, which is a quite natural condition.

For more intuition, the following lists some additional examples, with Ω = [−1, 1], K = 1, and
`1 the normalized point-evaluation operator in Example 2.1,

• If V = span{xj | j = 0, . . . , N − 1} and |ω1| ≥ N , then the linear constraint is V -determining

• If V = span{xj | j = 0, . . . , N − 1} and |ω1| < N , then the linear constraint is not V -
determining

• If V = span{xj | j = 1, . . . , N}, and |ω1| ≤ N with 0 ∈ ω1, then the linear constraint set is
not V -determining.

• If V = span{H(x), 1 − H(x)}, with H the Heaviside function, and ω1 = [−1, 0.5], then the
linear constraint set is V -determining.
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• If V = span{H(x), 1 −H(x)}, with H the Heaviside function, and ω1 = [−1,−0.5], then the
linear constraint set is not V -determining.

Note that the V -determining condition is violated only for specialized cases, e.g., either when ω1

has finite cardinality less than N , or when V contains very special types of functions. In all the
numerical examples we consider, the linear constraints are V -determining.

2.2.3 The quadratic energy constraint

In addition to the linear constraints, we further impose a single quadratic norm constraint analogous
to an L2-energy of the function. To be precise, we impose that our constrained solution must have
same norm as the unconstrained solution,

‖v‖H = ‖p‖H , (2.12)

where p is the unconstrained solution with coordinate vector p̂ from solving (2.3). The corresponding
discretized constraint set in RN is a sphere with radius ‖p̂‖,

CH := {v̂ ∈ RN |‖v̂‖RN = ‖p̂‖RN }, (2.13)

where v̂ is the coordinate vector for v.
We can now state the overall procedure we consider in this paper:

1. Given data {um}m∈[M ], solve the unconstrained problem (2.3) to obtain the unconstrained
solution p̂.

2. Post-process the unconstrained solution p by solving the constrained problem

d = arg min
v̂∈C

1

2
‖v̂ − p̂‖2, (2.14)

where C = CH
⋂
C0. This constrained problem optimizes a quadratic function over a subset

C of a sphere in RN .

Our focus is on the theory and algorithms for the second step, post-processing the unconstrained
solution to obtain a structure-preserving solution. We show in Theorem 3.1 that the problem above
has a unique solution. Furthermore, in Section 4, we are able to naturally extend the existing
algorithms proposed in [2] to the new optimization problem. We end this section with two examples
that illustrate why some alternative formulations to the two-step procedure above do not necessarily
result in well-posed problems.

Example 2.2 (An alternative formulation with nonunique solutions). One possible alternative to
our framework proposed above is to instead consider the following constrained problem

d = arg min
v̂∈C

1

2
‖Av̂ − b‖2. (2.15)

with A and b as introduced in Section 2.1. This formulation incorporates the constraints and a least
squares problem simultaneously. However, the solution to this alternative formulation (2.15) is not
necessarily unique. The issue lies in the fact that if the singular values of the full-rank matrix A are
not all equal to 1, then the problem corresponds to optimization over an ellipsoid, which can yield
non-unique solutions.

For example, consider the case when N = M = 2. Let

A =

[
0.4 0
0 1

]
, b =

[
0

0.5

]
, C = {(cos t, sin t) | 0.01 ≤ t ≤ π − 0.01} .

The constrained set C is a spherically convex set (Definition 3.4). The loss/cost function associated
to (2.15) is

cost(t) = 0.4 cos2 t+ (sin t− 0.5)2 = 0.6 sin2 t− sin t+ 0.65,

which has two distinct global minima over the feasible set C at t = arcsin( 5
6 ) and t = π− arcsin( 5

6 ).
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Example 2.3 (Nonhomogeneous cones as in Remark 2.1). In Remark 2.1 we mention that in
previous work [2] an rk parameter is introduced to include more general linear constraints. If
rk 6= 0, then our optimization problem does not necessarily have unique solutions. Consider the
following problem. Let the feasible set

C =
{

(x, y)
∣∣x2 + y2 = 1

}⋂
{(x, y)|y ≤ 4x+ 2, y ≤ −4x+ 2} .

The feasible set consists of two disjoint arcs (red arcs in Figure 1). If the unconstrained solution lies
in the middle of the dark green arc (the black dot), there will be two solutions to (2.14), one from
each red arc.

Figure 1: An illustration to Example 2.3

3 Solution to The Constrained Optimization Problem

In this section, we will study the solution to the constrained optimization (2.14). Specifically, we
will show in Theorem 3.1 that the solution is unique under reasonable conditions.

3.1 Spherical geometry

We introduce some definitions and relevant results for the spherical geometry in this subsection.
We refer to [19, 20] for technical details. We largely focus on the unit sphere in this section, i.e.,
CH = SN−1. In section Section 4, we will use the more general origin-centered sphere of nonzero
radius.

The intrinsic distance on SN−1 is defined to be the great circle distance between two points,
which corresponds to the angle between the two unit vectors in the ambient space.

Definition 3.1 (Intrinsic distance on the sphere). Given u,w ∈ SN−1, the intrinsic distance between
them is

d(u,w) = arccos〈u,w〉. (3.1)

If S is an origin-centered sphere with radius r > 0, then the intrinsic distance between u,w ∈ S is

dr(u,w) = r arccos 〈u/‖u‖,w/‖w‖〉 . (3.2)

Note that the intrinsic distance between two points on a sphere of radius r 6= 1 is given by the
intrinsic distance between the unit-normalized points, scaled by the radius.
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Definition 3.2 (Geodesics on a sphere). A geodesic on the unit sphere SN−1 is a great circle,
i.e, the intersection curve of the sphere and a hyperplane in RN through the origin. The unique
arclength-parameterized geodesic segment from u to w, where u,w ∈ SN−1 and u 6= ±w, is given
by

γuw(t) = csc d(u,w) [u sin(d(u,w)− t) + w sin t] , t ∈ [0, d(u,w)]. (3.3)

The (non-unique) geodesic segments joining u and −u, starting at u with velocity v satisfying
‖v‖ = 1 at u, is given by

γu{−u} := cos(t)u + sin(t)v, t ∈ [0, π]. (3.4)

For a general sphere S centered at the origin with radius r, the geodesic segments can be defined
via rescaling (3.3) or (3.4).

Definition 3.3 (Exponential Mapping). The exponential mapping at u is defined to be

expu : TuSN−1 → SN−1, v → u cos(‖v‖) +
v

‖v‖
sin(‖v‖), (3.5)

which maps an element on the tangent plane TuSN−1 at u to the endpoint of the geodesic segment
of length ‖v‖ starting at u in the direction of v. In (3.3), the geodesic segment can be expressed as
γuw(t) = expu(tγ′uw(0)). For a general sphere S centered at the origin with radius r, the geodesic
as well as the exponential mapping can be defined via rescaling (3.5).

Definition 3.4 (Spherically convex set). A subset C ⊆ SN−1 is said to be spherically convex if for
any s, t ∈ C, all the geodesic segments joining s and t are contained in C.

Proposition 3.1 ([19], Proposition 2). Let C ⊆ SN−1. C is a spherically convex set if and only if
the cone

KC = {zs | s ∈ C, z ∈ [0,+∞)} (3.6)

is convex (in Euclidean sense) and pointed, i.e., KC

⋂
(−KC) = {0}.

Proposition 3.2. A closed hemisphere is not spherically convex.

Proof. Noticing the existence of the antipodal points on a closed hemisphere, then there is a non-
trivial v such that v,−v ∈ KC . Therefore KC ∩ (−KC) contains at least one nontrivial point, and
Proposition 3.1 yields the conclusion.

One major utility of convex sets on the sphere is the ability to perform projections.

Definition 3.5 (Spherical projection onto a closed convex set). Let C ⊂ SN−1 be a spherically
convex, closed set. The projection of z ∈ SN−1 onto C is defined to be:

Ps
C(z) =

{
t ∈ SN−1 | d(t, z) ≤ d(t, r),∀r ∈ C

}
, (3.7)

i.e., the nearest intrinsic distance projection.

The definition above does not immediately reveal uniqueness or computability for this type
of projection, but the following proposition proved in [19] shows the relation between spherical
projection onto a closed spherically convex set and the Euclidean projection onto the convex cone
spanned by the spherical convex set.

Proposition 3.3 ([19], Proposition 8). Let C ⊆ SN−1 be a spherical convex set. Take z ∈ SN−1.
Let u = PKC

(z), be the Euclidean projection of z onto KC , the latter of which is defined in (3.6).
If u 6= 0, then the spherical projection of z onto C is unique, and is given by,

Ps
C(z) =

u

‖u‖
= expzv,

where

v =

(
−z cot θ +

u

‖u‖
csc θ

)
θ, θ = d(z,u/‖u‖).
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3.2 Uniqueness of the solution to the (3.8)

In this subsection, we present the uniqueness theorem for the solution to (3.8) (thus to (2.14)).To
start, we provide an equivalent formulation to (2.14).

Lemma 3.1. The constrained optimization problem (2.14) is equivalent to finding the spherical
projection of p̂ onto the feasible set C,

d = arg min
v̂∈C

d(v̂, p̂). (3.8)

Proof. The proof is direct,

arg min
v̂∈C

1

2
‖v̂ − p̂‖2 = arg min

v̂∈C

(
1

2
(‖v̂‖2 + ‖p̂‖2)− 〈v̂, p̂〉

)
= arg max

v̂∈C
〈v̂, p̂〉,

= arg min
v̂∈C

d(v̂, p̂).

(3.9)

Using Lemma 3.1, we are able to show the following uniqueness theorem.

Theorem 3.1. Assume the following hold for the constraint set C = CH
⋂
C0 defined by (2.8)-(2.9)

and (2.13):

(a) The set of constraints (Lk, ωk)k∈[K] are V -determining.

(b) The Euclidean projection onto the linearly-constrained set satisfies PC0 p̂ 6= 0.

(c) The set CH in (2.13) is SN−1, i.e., ‖p̂‖ = 1.

Then the solution to (3.8) (or equivalently, (2.14)) is unique.

Proof. We first show that C is a closed spherically convex set. A subsequent application of Propo-
sition 3.3 will prove the result.

Since ck(y) are closed half-spaces, CH ∩ ck(y) are closed hemispheres and

C = CH
⋂
C0 =

⋂
y∈ωk,k∈[K]

(CH ∩ ck(y))

is closed. On the other hand, from Proposition 3.1, the set C is spherically convex if and only if
the cone KC (see also Proposition 3.1 for the definition) is convex and pointed. Direct calculation
shows that KC = C0, which has been shown to be a closed convex set in [2]. Define

W := C0
⋂
{−C0} =

{
v
∣∣∣ 〈̂̀k(y),v

〉
= 0,∀y ∈ ωk, k ∈ [K]

}
. (3.10)

Take x ∈ W ⊆ C0. By assumption (a) and Definition 2.1, the only element v of V satisfying
Lk(v, y) = 0 for every y ∈ ωk and k ∈ [K] is v = 0. Thus, W = {0} and therefore KC = C0 is
pointed. By Proposition 3.3 set C is a spherical convex set and the solution to (3.8) (or equivalently,
(2.14)) is unique.

Corollary 3.1. The conclusions in Theorem 3.1 hold with loosening assumption (c) to ‖p̂‖ > 0.

The proof is direct since all arguments hold unchanged via scaling by ‖p̂‖ > 0.
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4 Algorithm: Spherical Projections

Having established the well-posedness of the problem (3.8), we proceed to discuss algorithms for
solving the problem. In particular, we extend some procedures from [2] to the spherical optimization
problem (3.8). We will shift our focus back to a general sphere centered at the origin with radius
r 6= 0, equipped with the intrinsic distance dr(·, ·) (Equation (3.2)). Here, r = ‖p̂‖ 6= 0 is the norm
of the unconstrained solution.

4.1 Spherical Projection Onto A Closed Hemisphere

To start, we first compute the spherical projection of a point on the sphere onto a closed hemisphere
ck(y)

⋂
CH , which later serves as an ingredient of our main algorithms. Note that Proposition 3.3 is

not directly applicable since a closed hemisphere is not spherically convex The proof in this section
is elementary but we provide it in order to make our work self-contained.

Theorem 4.1. Let p̂ be given, and fix (k, y). If ̂̀k(y) is not parallel to p̂, then the spherical
projection of p̂ onto the closed hemisphere CH ∩ ck(y) is unique, i.e., the solution ck(p̂; y) to

ck(p̂; y) = arg min
v̂∈CH∩ck(y)

dr (v̂, p̂) , (4.1)

is unique, and is given by

ck(p̂; y) =

{
p̂, p̂ ∈ CH ∩ ck(y),

PLp̂
‖PLp̂‖‖p̂‖, p̂ 6∈ CH ∩ ck(y),

(4.2)

where PL is the Euclidean projection operator onto the subspace L, with the latter defined as,

L := ∂ck(y) =
{
s
∣∣∣ 〈̂̀k(y), s

〉
= 0
}
.

Proof. For simplicity, we will suppress k, p̂, and y notationally in the proof, i.e., c := ck(p̂; y), and̂̀ := ̂̀
k(y). Since CH ∩ ck(y), is non-empty and compact, there is at least one solution to (4.1).

Following similar computations to the proof to Lemma 3.1, it can be shown that

c = arg max
v̂∈CH∩ck(y)

〈v̂, p̂〉, (4.3)

is equivalent to (4.1). If p̂ ∈ CH ∩ ck(y), then c = p̂ is the unique solution to (4.3) by the Cauchy-
Schwarz inequality, which verifies part of (4.2). Thus, the remainder of the proof assumes p̂ is not
in the feasible set. Let ĉ be any solution to (4.3). Since ĉ lies in ck(y) and since p̂ lies in CH but is
not feasible, then we have〈

ĉ, ̂̀〉 ≤ 0,
〈
p̂, ̂̀〉 > 0.

By the above inequalities, any solution ĉ to (4.3) satisfies,

〈ĉ, p̂〉 = 〈PLĉ,PLp̂〉+ 〈(I − PL)ĉ, (I − PL)p̂〉 = 〈PLĉ,PLp̂〉+
〈
ĉ, ̂̀〉 〈p̂, ̂̀〉 ,

(i)

≤ 〈PLĉ,PLp̂〉
(ii)

≤ ‖PLĉ‖ ‖PLp̂‖
(iii)

≤ ‖ĉ‖ ‖PLp̂‖ = ‖p̂‖ ‖PLp̂‖

The choice ĉ = c in (4.2) is the unique solution that achieves equality in (i), (ii), and (iii) above.
To see this, first note that c is feasible since it lies in both CH and ck(y), and is well-defined since

p̂ is not parallel to ̂̀k(y) and hence PLp̂ 6= 0. Equality in (i) and (iii) can be established by noting

that c ∈ L, so that
〈
c, ̂̀〉 = 0 and PLc = c. Equality in (ii) is achieved if and only if PLc = c has

the same direction as PLp̂, which the choice (4.2) satisfies. This also shows that c is the only vector
that achieves this equality, and hence (4.3) (equivalently, (4.1)) has a unique solution (4.2).

11



Remark 4.1. The solution (4.2) implies that when p̂ is not feasible and is not parallel to ̂̀k(y), the
solution to (4.1) can be computed by first computing a Euclidean projection onto the hyperplane L,
and the simply rescaling this projection to have norm ‖p̂‖. We exploit this fact in algorithms.

4.2 A Greedy Approach

We first introduce a new notation for the spherical projection

ck(p̂; y) := Ps
ck(y)

p̂, (4.4)

which by Theorem 4.1 is well-defined for every p̂ that is not a multiple of ̂̀k(y).
A greedy procedure, in the spirit of the greedy algorithm of [2], iteratively updates p̂ by repeatedly

identifying most-violated constraints. Defining p̂0 = p̂, and using p̂j to denote the iterate at step j,
we seek to compute,

p̂j+1 = Ps
ck∗ (y∗)p̂

j , (k∗, y∗) := arg max
k∈[K],y∈ωk

dr(p̂j , ck(y)), (4.5)

for j ≥ 1. Lemma 4.1 first allows us to conclude that the set of (k, y) such that dr(p̂, ck(y)∩CH) > 0
is equal to the set of (k, y) such that p̂ 6∈ ck(y).

Lemma 4.1. Let p̂ be the solution to the current iteration, then

dr(p̂, ck(y) ∩ CH) > 0⇔ p̂ 6∈ ck(y), (4.6)

where r = ‖p̂‖.

Proof. Let dist(·, ·) be the Euclidean distance function, then

dist(p̂, ck(y)) = min
s∈ck(y)

‖p̂− s‖2 = ‖p̂− PLp̂‖2 = ‖p̂‖ sin θk(y), (4.7)

where L := ∂ck(y) is the boundary of the half-space ck(y), and θk(y) = arccos 〈p̂/r, ck(p̂; y)/r〉 is
the angle between p̂ and its spherical projection ck(p̂; y) onto the half-space ck(y). The last equality
in (4.7) is true since PLp̂ and ck(p̂; y) have the same direction (Theorem 4.1). The angle θk(y) is
the angle between the vector p̂ and the plane L, thus θk(y) ∈ [0, π/2].

For any (k, y), a direct calculation using the Pythagorean theorem and the definition of the
intrinsic distance dr(·, ·) yields

p̂ 6∈ ck(y)⇔ dist(p̂, ck(y)) > 0,

⇔ ‖p̂‖ sin θk(y) > 0,

⇔ θk(y) > 0,

⇔ dr(p̂, ck(y) ∩ CH) > 0,

The proof to Lemma 4.1 motivates the following relation

(k∗, y∗) = arg max
k∈[K],y∈ωk

dr(p̂, ck(y))

= arg max
k∈[K],y∈ωk

(dist(p̂, ck(y)))

= arg min
y∈ωk,k∈[K]

sdist(p̂, ck(y)),

(4.8)
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where the Euclidean signed distance between p̂ and the Euclidean half-space ck(y) can be computed
by (see [2])

sdist(p̂, ck(y)) = −〈 ̂̀k(y), p̂〉. (4.9)

Equations (4.8)-(4.9) imply that, to determine the parameters for the geodesically farthest hemi-
sphere, we only need to determine the parameters for the Euclidean-farthest hyperplane, which is a
much easier computational task.

Algorithm 1 summarizes the above iterative procedure of computing the solution to (3.8) through
greedy spherical projection.

Algorithm 1: Iterative greedy spherical projection to compute the solution to (4.1).

Input: the matrix A and the observational vector b, tolerance parameter δ ≥ 0

Input: constraints {( ̂̀k(y), ωk)}k∈[K]

1 Compute the unconstrained solution p̂, e.g. via solving (2.3).;

2 while sdist(p̂, ck(y)) ≤ −δ for some k ∈ [K], y ∈ ωk do

3 compute (y∗, k∗) via (4.8);

4 update p̂ via (4.5).

5 end

6 return p̂

4.3 An averaging approach

The greedy procedure above can lead to oscillatory behavior of the iteration trajectory. To mitigate
this behavior, we introduce an averaging projection approach to suppress potential oscillatory be-
havior of iterates in the previous greedy approach. The notion of an average position of a collection
of points on the sphere is defined by the Karcher mean, which is a natural extension of the Euclidean
weighted average.

Definition 4.1. [Karcher mean] Let S ⊂ RN be the sphere centered at the origin with radius r. Let
q1, · · · , qJ be J points lying on S associated with nonnegative convex weights w1, · · · , wJ ∈ [0, 1].
The Karcher mean is given by the solution to

q = arg min
x∈S

(
1

2

n∑
i=1

wi · d2r(x, qi)

)
:= arg min

x∈S
f(x). (4.10)

The Karcher mean as defined above is unique under mild assumptions.

Theorem 4.2 ([27], Theorem 1). With S the radius-r origin-centered sphere in RN , suppose that
given points q1, · · · , qJ all lie in a closed hemisphere H ⊂ S, with at least one point qj in the interior
of H with wj > 0. Then f(x) defined in (4.10) has a single critical point q in the interior of H, and
this point q is the global minimum of f , hence the unique Karcher mean.

The definition of the Karcher mean in (4.10) can be extended to a collection of infinitely many
points by integration, and our averaged projection algorithm is based on this generalized Karcher
mean. Let p̂0 = p̂ be the first iterate in the algorithm. To compute the next iterate, the averaging
algorithm first identifies all the parameters (y, k) for which the associated linear constraints are
violated,

ωj
k− = {y ∈ ωk | sdist(p̂j , ck(y)) < 0}. (4.11)

Instead of projecting onto the most violated constraint (as in the previous section) we seek a point
that minimizes the Karcher mean objective over all violated constraints. With r = ‖p̂‖, the averaged
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position p̂j+1 at the next iteration is given by

p̂j+1 = arg min
x∈CH

1

2

∑
k∈D−

j

∫
ωj

k−

d2r(x, ck(p̂j ; y))wk(p̂j , y)dy

 , (4.12)

where D−j = {k ∈ [K] | ωj
k− 6= ∅} is the set of the indexes where the corresponding constraints are

violated at jth iteration, and the weight,

wk(p̂j ; y) :=

 d2r(p̂j , ck(p̂j ; y))∑
`∈D−

j

∫
ωj

`−
d2r(p̂j , c`(p̂

j ; z))dz

 (4.13)

is introduced for each spherical projection ck(y) in order to prioritize updates that mitigate the
impact of the more violated constrained sets. In practice, we approximate the integral (4.12) via
quadrature with positive weights, i.e.,

p̂j+1 = arg min
x∈CH

1

2

∑
k∈D−

j

Qk∑
q=1

wk,qd
2
r(x, ck(p̂j ; yk,q))

 , (4.14)

whereQk is the number of the quadrature points associated with the kth constraint, and {wk,q}k∈[K],q∈[Qk]

are the product of the (positive) quadrature weight with an approximations to the weight (4.13) at
the quadrature points {yk,q}k∈[K],q∈[Qk].

All the discussion above is provided in the context of assuming that the hemisphere condi-
tion in Theorem 4.2 holds. The following lemma shows that all the candidate spherical projection
ck(p̂j ; yk,q) indeed lie on the same hemisphere.

Lemma 4.2. The spherical projections ck(p̂; y) defined by (4.2) with ̂̀= ̂̀
k(y), k ∈ [K] are always

on the hemisphere

H = {x | ‖x‖ = ‖p̂‖, 〈p̂,x〉 ≥ 0}, (4.15)

for any y and k.

Proof. Since ‖ck(p̂; y)‖ = ‖p̂‖, we only need to verify the second condition in (4.15). Using (4.2), a
direct computation yields,

〈p̂, ck(p̂; y)〉 = ‖p̂‖‖Pck(y)p̂‖ ≥ 0.

All the above is almost sufficient to guarantee that the algorithm described by (4.14) has a

unique solution. The last obstacle we have yet to overcome is to ensure that the points ck(p̂j ; yk,q)
are uniquely defined. To ensure this, we make the following assumption.

Assumption 4.1. ̂̀k(y) is not parallel to p̂j for all (k, y) pairs for y ∈ ω−k .

Assumption 4.1 is necessary to ensure unique existence of the spherical projections ck(p̂j ; yk,q).
Although we cannot yet theoretically justify of Assumption 4.1, in all of our numerical experiments,
Assumption 4.1 holds. Under this assumption, we can prove uniqueness of the update (4.14).

Proposition 4.1. Under Assumption 4.1, the solution p̂j+1 to (4.14) is unique.

Proof. Under Assumption 4.1 and Lemma 4.2, the candidate points ck(p̂j ; yk,q) are all in the interior

of H. Therefore, from Theorem 4.2, the solution p̂j+1 to (4.14) is unique and furthermore lies in
the interior of H.

Algorithms that compute the average spherical projection by solving the optimization problem
(4.14) can be adapted from [27, Algorithms A1 or A2] or [28, Equation 10].
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4.4 A Hybrid Approach

We propose a final algorithm: the averaging algorithm of the previous section results in less oscil-
latory iterate trajectories, but moves relatively slowly. The algorithm in this section combines the
ideas of the greedy and averaging approach. First we denote the greedy update (4.5) at the jth

iteration by p̂j+1
g and the average update (4.12) by p̂j+1

a . The hybrid update we propose moves in

the direction of the averaged update p̂j+1
a , but with a distance defined by the greedy update p̂j+1

g .
Specifically, at the jth iteration,

i. Compute the geodesic projection p̂j+1
g and the average projection p̂j+1

a via (4.5) and (4.14),
respectively.

ii. If dr(p̂j , p̂j+1
g )/r < 10−6, i.e., the most violated constraint is very close to the current update,

we simply perform the greedy update, setting p̂j+1 = p̂j+1
g .

iii. Otherwise, we compute p̂j+1 by moving p̂j along the unique geodesic from p̂j to p̂j+1
a by

a distance given by the intrinsic distance between p̂j and p̂j+1
g . Let p̃j , p̃j

a, and p̃j
g be the

unit-norm versions of p̂j , p̂j+1
a , and p̂j+1

g , respectively. Then the update we propose is

p̃j+1 = expp̃j

(
d(p̃j , p̃j+1

g )v
)
,

p̂j+1 = ‖p̂j‖p̃j+1, (4.16)

where v is the unit-speed velocity at the base point p̃j of the geodesic segment leading to p̃j+1
a ,

i.e., v = γ′
p̃j p̃j+1

a
(0).

We use the greedy update in step 2 above since in this case we are relatively close to the solution,
and so typically the greedy procedure converges very quickly.

5 Numerical Experiments

Throughout this section, we take M = N observations, and the observation functionals {φn}n∈[N ]

are chosen to be the projection functionals φn(·) := 〈·, vn〉 onto the given subspace V . We denote
the unknown function by u, the H-best projection onto V by v, the norm-constrained solution (the
solution to (2.14)) by vNC, and the linearly-constrained solution by vLC. I.e., vLC is the solution to
(2.14) but with only the linear inequality constraints,

vLC :=
∑

n∈[N ]

wnvn, w := arg min
v̂∈C0

1

2
‖v̂ − p̂‖2 .

For other choices of observation functionals, e.g., pointwise observations (collocation-based approx-
imations), our theory and algorithms can be generalized naturally.

For our univariate examples, we consider the Sobolev spaces on a general interval [a, b] as our
Hilbert spaces H,

Hq([a, b]) :=
{
u : [a, b]→ R

∣∣ ‖u‖2Hq <∞
}
, ‖u‖2Hq :=

q∑
j=0

∫ b

a

[
u(j)(x)

]
dx, (5.1)

and choose the subspace V according to the choice of the pair (a, b),

if (a, b) = (−1, 1), then V = V poly := span
{
{xn}N−1n=0

}
,

if (a, b) = (0, π), then V = V cos := span
{
{cosnx}N−1n=0

}
.

(5.2)

We will test our algorithms for H0(= L2), H1, and H2 using the linear constraint sets,

15



• (Positivity) U0 := {u ∈ H | u(x) ≥ 0 ∀x ∈ [a, b]}

• (Monotonicity) U1 := {u ∈ H | u′(x) ≥ 0 ∀x ∈ [a, b]}

• (Convexity) U2 := {u ∈ H | u′′(x) ≥ 0 ∀x ∈ [a, b]}

Although our theoretical result in Theorem 3.1 does not guarantee the uniqueness of the solution
when a boundedness constraint imposed, we still test our algorithms with imposing the constraint,

• (Boundedness) G0 := {u ∈ H | u(x) ≤ 1 ∀x ∈ [a, b]},

for some of our tests. When a boundedness constraint is imposed, the hyperplane is an affine plane.
In this case, we first project the current iteration to the affine hyperplane, then rescale the point
with respect to the vertex r0 of the cone (the projection of the origin onto the affine plane) to the
sphere, i.e., the projection (4.4) is replaced by

c = Ps
H p̂ := r0 +

√
‖p̂‖2 − ‖r0‖2√
‖PH p̂‖2 − ‖r0‖2

(PH p̂− r0).

We will also introduce a metric to measure the change between the constrained solutions and
the unconstrained solution:

η∗ =
‖v − v∗‖H
‖v − u‖H

, (5.3)

where asterisk “∗” on the subscript of v can be either “LC” (the linearly-constrained approximation
using the dissipative formulation in [2]) or “NC” (the non-dissipative procedure in this article). Since
v − u is H-orthogonal to V , the Pythagorean theorem implies,

‖v∗ − u‖H =
√

1 + η2‖v − u‖2H .

The quantity
√

1 + η2 can therefore be used to measure the error in a constrained solution relative to
error in the unconstrained solution (which in this case is the H-best approximation from V ). Values
of η that areO(1) indicate that the error committed by the constrained solution is comparable to that
of the unconstrained solution. It is also interesting to measure the difference between the linearly-
constrained solution and the norm-constrained solution ‖vLC − vNC‖. In all of our experiments, the
norm-constrained solution vNC differs only slightly from the linearly-constrained solution vLC.

Algorithm 1 is the greedy algorithm, but it is also the template for the average algorithm. To
apply the average algorithm, one only needs to replace the update of p̂ with (4.14). In line 5 of
Algorithm 1, δ is set to be 10−10. In addition, we restrict the maximum number of iterations to be
10, 000 to avoid infinite loops.

5.1 Performance Comparison of Algorithms

In this section, we present the comparison of solutions from the linearly-constrained optimization in
[2] and the norm-constrained optimization proposed in our work. We consider the case (a, b) = [−1, 1]
and degree-(N − 1) polynomial approximations with V = V poly. The test functions are chosen as a
step function and its antiderivatives:

uj+1(x) := cj+1

∫ x

−1
uj(t)dt, u0(x) =

{
0, x ≤ 0,

1, x > 0,
(5.4)

where cj+1 is a normalized constant that ensures the uj+1(1) = 1. We provide a summary of
the performance of our three proposed approaches for norm-preserving optimization Table 1. We
observe that, compared to greedy approach, there is a slight decrease in the number of iterations.
Both greedy approach and the hybrid approach are much faster than the average approach. The
relative error of the three proposed approaches are comparable.
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N = 6 N = 31
I η I η

Greedy 17 1.1479 23 0.9859
Average 87 1.1483 220 0.9856
Hybrid 15 1.1494 22 0.9885

Table 1: Comparison of number of iterations (I) and relative errors (η) on the test function u = u2
with positivity-constraint imposed for different values of N and different algorithms. The ambient
Hilbert space is H = L2([−1, 1]).

5.2 Polynomial Space Approximation Example

In this section, we continue to consider the approximation using (a, b) = (−1, 1) and V = V poly. In
our first experiment, we test the capability of our algorithms for approximating the step function
u0(x) in (5.4) and the similarity between vLC and vNC. We compute the approximation for N = 6
and N = 31 Figure 2 and consider three choices of linear constraint sets E0 introduced in (2.6):

(i) (positivity) E0 = U0,

(ii) (positivity and monotonicity) E0 = U0

⋂
U1, and

(iii) (positivity, monotonicity, boundedness) E0 = U0

⋂
U1

⋂
G0.

We note that, for (i) and (ii), the norm-constrained solutions are simply slight adjustment of the
linearly-constrained solution, both visually and quantitatively. The discrepancy is more obvious in
case (iii). Increasing the order in the polynomial approximation further decreases the discrepancy
between vLC and vNC. We also note that, the Gibbs’-type oscillations presented in the left column of
Figure 2 can be alleviated by enforcing the monotonicity and the boundedness constraint. All com-
puted ηNC values are order 1, which shows that our norm-preserving approximations are comparable
to the H-best approximation.

In the second experiment of this section, we investigate how the choice of ambient Hilbert space H
affects the accuracy of the approximation. We approximate the function u2(x) with linear constraint
set E0 = U0

⋂
U1

⋂
U2 for N = 6 and N = 31 on different Hilbert spaces H = H0, H1, and H2.

We observe relatively large values of both ηNC and ηLC, but increasing the regularity of the Hilbert
space and/or increasing the order of the polynomial can reduce these relative errors. Similar to
the previous test, the discrepancy between vLC and vNC decreases as the order of polynomial order
increases. It increases as the complexity of the linear constraint set increases. Nevertheless, both
approximations are qualitatively good for N = 31.

Quantitatively, we find that the minimum values of vNC , v
′
NC , and v′′NC converge slowly for some

examples with less regular Hilbert space H = H0, H1. Among our three proposed approach, the
greedy approach and the hybrid approach performs slightly better than the average approach. For
different choices of the ambient Hilbert spaces, we report in Table 2 the minimum values of vNC , v

′
NC ,

and v′′NC using average approach at 10, 000 iterations. The “converge” in Table 2 indicates that the
procedures achieve the desired tolerance levels. We note that, by increasing the regularity of the
ambient Hilbert space, our procedures can identify a feasible solution much faster. We emphasize
that the simplicity of this example belies the complexity and difficulty of the geometry of the
problem, which is evidenced by algorithms requiring more iterations to complete. In the remaining
examples of this paper, all the algorithms identify an element of the feasible set (to within precision
tolerances).

5.3 Constrained Approximation as a Nonlinear Filter

As pointed out in [2], the original linearly-constrained optimization can be viewed as a nonlinear
filter when the linear constraint set C0 contains the origin. Our norm-constrained optimization can
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Figure 2: Greedy algorithm results: Comparison of different methods: degree 5 polynomial
positivity-preserving approximation to the step function for different constraints and different poly-
nomial spaces. Left: constraint U0. Middle: constraint U0

⋂
U1. Right: U0

⋂
U1

⋂
G0. Top:

N = dimV = 6. Bottom: N = dimV = 31.

Figure 3: Comparison of different approximations to u2(x) for different ambient Hilbert spaces and
different polynomial spaces. The red curves (vLC) are covered by the black curves (vNC). See also
Table 3. The constraint is U0

⋂
U1

⋂
U2. Left: H = H0. Middle: H = H1. Right: H = H2. Top:

N = dimV = 6. Bottom: N = dimV = 31.
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N = 6 N = 31
vNC v′NC v′′NC vNC v′NC v′′NC

H0 -1.05e-6 9.35e-5 -1.86e-4 -2.18e-7 -2.35e-3 -3.06e-2
H1 converge converge converge -1.33e-8 -3.84e-7 -1.51e-3
H2 converge converge converge converge converge converge

Table 2: Comparison of the minimum values of vNC , v
′
NC , and v′′NC using average approach at

10, 000 iterations. “Converge” indicates the corresponding procedure finds a feasible solution before
the maximum number of iterations is reached.

also be viewed as a nonlinear filter in the sense that it modifies oscillations to preserve structure.
However, we preserve the energy of the approximation, so that it is non-dissipative. In this section, we
compare the spectral energy of the approximations v, vLC, and vNC using the examples in Section 5.2.
From Figure 4, the imposed monotonicity constraint significantly reduces the high-order coefficients
in both vLC and vNC, while the low-order coefficients remain unchanged or are increased. When
boundedness constraint imposed, the discrepancy between the coefficients of vNC and vLC versus v
increases significantly. For most cases in Figure 4, the difference between coefficients of vNC and vLC
are only slight, which matches the discrepancy between them shown in Figure 2. From Figure 5,
we find that the increase in the regularity of the ambient Hilbert spaces will increase the low-order
coefficients in both vLC and vNC.

Figure 4: Companion to Figure 2. Bar plots showing the magnitudes of the unconstrained projection
coefficients |v̂j |, the linearly-constrained coefficients |v̂LCj |, and the norm-constrained coefficients
|v̂NCj |. The x-axis is the index of a coefficient. Left: constraint U0. Middle: constraint U0

⋂
U1.

Right: U0

⋂
U1

⋂
G0. Top: N = dimV = 6. Bottom: N = dimV = 31.

5.4 Convergence Rate

In this subsection, we compare the rates of convergence between the unconstrained solution and
the norm-constrained solution. We consider u = u0(x) and u = u2(x) using V = V poly. The
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Figure 5: Companion to Figure 3. Bar plots showing the magnitudes of unconstrained projection
coefficients |v̂j |, the linearly-constrained coefficients |v̂LCj |, and the norm-constrained coefficients
|v̂NCj |. The x-axis is the index of a coefficient. Left: H = H0. Middle: H = H1. Right: H = H2.
Top: N = dimV = 6. Bottom: N = dimV = 31.

ambient Hilbert space is H = L2([−1, 1]). We compute the rate of convergence on the constrained
sets U0, U0

⋂
U1, and U0

⋂
U1

⋂
G0. We observe from Figure 6 that our norm-constrained solutions

have a similar rate of convergence to the unconstrained (H = L2-optimal) solution u (even when a
boundedness constraint is imposed).

5.5 Approximation to A Highly-Oscillatory Function

In this section, we will approximate the function

u(x) = x2 sin2

(
1

0.01 + x2

)
, (5.5)

using the polynomial subspace V = V poly with positivity constraint U0 imposed. We present the
results in Figure 7. From Figure 7, as the dimension N of V increases, the approximations capture
the oscillatory behavior of the original function better. In all subfigures, the red curves (vLC) are
covered by the black curves (vNC). In general, the discrepancy between the two solutions remain
small and decreases as the order of the polynomial increases.

N 6 16 31 51 76 151
‖vLC − vNC‖ 8.51e-4 7.48e-5 3.38e-7 8.3e-6 1.61e-6 8.22e-8

Table 3: The decrease in the discrepancy ‖vLC − vNC‖ with N increasing
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Figure 6: Rate of convergence. Approximations to u = u0(x) (top) and u = u2(x) (bottom) with
U0 (left), U0

⋂
U1 (middle), and U0

⋂
U1

⋂
G0 (right) imposed. The x-axis indicates the dimension

of the polynomial space V = V poly. The ambient Hilbert space is H = L2([−1, 1]).

Figure 7: Comparison of the approximations to (5.5) with different N . Constraint: U0, positivity-
preserving. Top (from left to right): N = 6, 16, 31. Bottom (from left to right): N = 51, 76, 151.
The red curves (vLC) are covered by the black curves (vNC). See also Table 3.
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5.6 M-shape Function Using Cosine Basis

In this section, we will choose V = V cos for approximating an M-shape function defined on [0, π],

u(x) =


−
(
x− π

8

)(
x− π

2

) π

8
≤ x < π

2
,

−
(
x− π

2

)(
x− 7π

8

)
π

2
≤ x < 7π

8
,

0 otherwise,

(5.6)

with positivity constraint U0 imposed. For a cosine polynomial, the difficult part for applying our
algorithm is to determine the y-parameter corresponding to the most violated constraint (or the
negative y-region), which requires to find the zeros of a trigonometry polynomials. Fortunately, this
difficulty can be resolved by taking advantage of the Chebyshev polynomials.

Figure 8: Comparison of the approximations to (5.6) with different N . Constraint: U0, positivity-
preserving. From left to right: N = 6, 16, 31.

5.7 Two-dimensional cylinder indicator function

In our last example, we consider the approximation to a cylinder

u(x, y) =

{
1 if

√
(x− 0.5)2 + (y − 0.5)2 < 0.5,

0 otherwise.
(5.7)

The computational domain is [−1, 1] × [−1, 1], and the polynomial space is the tensor product
space V poly ⊗ V poly, where N is chosen to be 15. The positivity constraint U0 is imposed. The
computation requires to find the global minimum of a two-dimensional nonconvex function (4.9) (see
also (2.10)-(2.11)). We use Matlab’s optimization function fmincon, using the sequential quadratic
programming option, and approximate the global minimum by solving the optimization with several
randomly initialized starting points. The constraints we set for fmincon are the boundaries for the
computational domain.

The results are shown in Figure 9. The numerical results show that our norm-constrained ap-
proximation can preserve both the positivity and the norm by “correcting” the linearly-constrained
solution. The function is entirely non-negative for both the linearly constrained solution (bottom
middle, Figure 9) and the norm-constrained solution (bottom right, Figure 9).
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Figure 9: Comparison of different approximations to (5.7), greedy procedure. Constraint: U0,
positivity-preserving. Top: mesh plot. Bottom: negative region indicator function, where the
black region represent the region where the approximation is negative. Left: unconstrained solution
u. Middle: linearly-constrained solution vLC . Right: Norm-constrained solution vNC . ηLC =
0.1229, ηNC = 0.1230, ‖vLC − vNC‖ = 0.0030.
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