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ABSTRACT

Computational fluid dynamics (CFD) is known for producing high-dimensional spatiotemporal data. Recent advances in machine learning
(ML) have introduced a myriad of techniques for extracting physical information from CFD. Identifying an optimal set of coordinates for
representing the data in a low-dimensional embedding is a crucial first step toward data-driven reduced-order modeling and other ML tasks.
This is usually done via principal component analysis (PCA), which gives an optimal linear approximation. However, fluid flows are often
complex and have nonlinear structures, which cannot be discovered or efficiently represented by PCA. Several unsupervised ML algorithms
have been developed in other branches of science for nonlinear dimensionality reduction (NDR), but have not been extensively used for fluid
flows. Here, four manifold learning and two deep learning (autoencoder)-based NDR methods are investigated and compared to PCA. These
are tested on two canonical fluid flow problems (laminar and turbulent) and two biomedical flows in brain aneurysms. The data reconstruc-
tion capabilities of these methods are compared, and the challenges are discussed. The temporal vs spatial arrangement of data and its influ-
ence on NDR mode extraction is investigated. Finally, the modes are qualitatively compared. The results suggest that using NDR methods
would be beneficial for building more efficient reduced-order models of fluid flows. All NDR techniques resulted in smaller reconstruction
errors for spatial reduction. Temporal reduction was a harder task; nevertheless, it resulted in physically interpretable modes. Our work is
one of the first comprehensive comparisons of various NDR methods in unsteady flows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127284

I. INTRODUCTION

Many fluid mechanics modeling methods deal with, and indeed
require, large amounts of data from experiments or numerical simula-
tions. Recently, well-known techniques in data science and machine
learning (ML) have been applied to complex fluid flow problems to
extract underlying information about the flow structures,1 speed up
numerical simulations,2 and to enable real-time prediction and con-
trol.3 Typical computational fluid dynamics (CFD) simulations even
for laminar flows can produce numerical results with millions of
degrees of freedom in space and thousands of timesteps. However,
such spatiotemporal high-dimensionality is often an artifact of CFD’s
resolution. That is, it is necessary to design high spatiotemporal resolu-
tion strategies to achieve desired accuracy on discrete mesh and time-
points. Interestingly, even some seemingly complex fluid flow prob-
lems live in a hidden low-dimensional manifold, which once identified

and exposed could drastically reduce the high-dimensionality of the
data. Reduced-order models (ROMs) aim to discover such low-
dimensionality and therefore capture the most important flow fea-
tures.4 ROMs have been a fundamental part of the fluid dynamics
research for a long time from classical projection-based ROMs5–9 to
more recent purely data-driven ROMs10–14 and manifold learning
approaches.15

Finding a suitable set of reduced coordinates is a crucial first step
in developing ROMs. The most common approach in fluid dynamics
is finding a new low-dimensional coordinate system using principal
component analysis (PCA) also known as proper orthogonal decom-
position (POD),16 and then deriving the dynamics of the system by
Galerkin projection of the Navier–Stokes equations onto these POD
modes.8,17 Both steps can be improved by using more sophisticated
ML models, instead of POD. Specifically, nonlinear dimensionality
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reduction (NDR) methods, such as manifold learning or autoencoders
(AEs), can be applied.18 Galerkin projection can be replaced by more
generic regression models, such as sparse identification of nonlinear
dynamics (SINDy) or long-short-term-memory (LSTM) neural net-
works (NNs).2 Another closely related data-driven ROMmethod is the
dynamic mode decomposition (DMD),11,19 which has been recently
frequently used for fluid dynamics, but similar to POD it is inherently
linear. DMD in a sense is even more “linear” than POD as not only the
modes are linear but also the evolution equation is linear, whereas
POD with Galerkin projection could produce a nonlinear evolution
model. The main advantage of manifold learning and neural network-
based approaches is that they can uncover the nonlinear flow behavior.

AEs have been extensively applied in recent years for finding
low-dimensional embeddings of CFD data. Various different AE types
and architectures have been studied such as fully connected net-
works,20,21 variational autoencoders (VAE),22–24 convolutional neural
networks (CNN),25–27 3D CNNs,28 graph convolutional neural net-
works (GCNN),29,30 sparse convolutional neural networks (SCNN),31

physics-informed autoencoders,32,33 symmetry-aware autoencoders,34

adversarial autoencoders (AAE),35 and advection-aware autoen-
coders.36 Most of them have been tested on canonical fluid dynamics
problems, for example, flow over a cylinder or turbulent channel flow.
Gruber et al.29 compared a fully connected network, a CNN, and a
GCNN for a 2D flow over a cylinder. Results suggested that the fully
connected network had the best overall performance, GCNN worked
better only when the latent space was relatively high-dimensional (e.g.,
Ref. 64), while CNN did not perform well due to the irregularity of the
domain. The full understanding of the performance of various types of
deep learning models on such problems is still an open question.

Apart from AEs, manifold learning (also known as generalized
principal component analysis–gPCA) methods are also suitable for
nonlinear dimensionality reduction.37,38 These include kernel principal
components analysis (KPCA), locally linear embedding (LLE),
Laplacian eigenmap (LEM), isometric mapping (Isomap), multi-
dimensional scaling (MDS), self-organizing map (SOM), t-distributed
stochastic neighbor embedding (t-SNE), maximum variance unfolding
(MVU) or semidefinite embedding (SDE), uniform manifold approxi-
mation projection (UMAP), local tangent space alignment (LTSA),
diffusion map, Sammon mapping, and curvilinear component analysis
(CCA), among others. However, manifold learning methods have
been less frequently studied in modeling physical systems such as fluid
flow. Pyta and Abel39 compared the Sammon mapping, LEM, and an
AE to POD for the transient 2D lid-driven cavity flow. LEM had the
best performance for this problem; however, surprisingly the improve-
ment of LEMwith respect to POD became less apparent when increas-
ing the nonlinearity of the system, that is, higher Reynolds (Re)
numbers. Ehlert et al.15 used LLE for the transient flow over a cylinder
at Re ¼ 100 and showed that two LLE modes achieved similar perfor-
mance to ten POD modes. Farzamnik et al.40 used Isomap for dimen-
sionality reduction and k-nearest neighbors (k-NN) for data
reconstruction of jets and flow over multiple cylinders. Finally, these
methods have also been explored in experimental fluid mechanics.41,42

Recently, network science has also been exploited for analyzing fluid
flows.43–45 Some of these methods (e.g., Lagrangian transport net-
works) share similarities with manifold learning methods (e.g., LEM,
Isomap) as they both use neighborhood or graph-based techniques for
finding dominant and coherent flow patterns.

The manifold learning methods can also be used for parametric
studies where instead of different time steps, simulations with different
parameters take the place of different snapshots. Parametric steady
transonic flows around an airfoil were studied using Isomap and
LLE.46,47 Halder et al.48 developed a non-intrusive ROM for a para-
metric steady incompressible lid-driven cavity problem where Isomap
was used for dimensionality reduction. Diez et al.49 used KPCA for
parametric mass transport problems. Rovira et al.50 used t-SNE and
UMAP for dimensionality reduction of turbulent reactive flow data.
Instead of the temporal dimension of data, different physical quantities
(e.g., velocity, temperature, and species concentrations) were used for
constructing the data matrix. A similar study was done in Ref. 51 to
compare PCA to Isomap, MDS, and a physically derived reduced-
order manifold method for turbulent jet flames, showing spatial modes
as well. Wu et al.52 used t-SNE for dimensionality reduction of 2D tur-
bulent simulations, where nine different flow features (e.g., turbulence
intensity and Q-criterion) were reduced to two for visualization.

Despite growing interest in ROM modeling of fluid flow, a
detailed understanding of qualitative and quantitative differences
among various NDR methods is lacking. In this study, we provide a
detailed qualitative (mode patterns) and quantitative (reconstruction
error) comparison of these methods. Specifically, PCA is compared to
various NDR techniques (LLE, KPCA, LEM, Isomap, and AE) for two
canonical 2D fluid flow problems (flow over a cylinder and turbulent
channel flow). Additionally, 3D patient-specific blood flow in the
internal carotid artery (ICA) and middle cerebral artery (MCA) aneur-
ysms are also investigated as practical real-world examples. Linear
data-driven ROM approaches have been used to study blood flow
physics53–55 and perform data assimilation56 in cardiovascular flows.

Herein, we demonstrate that with proper settings the NDRmeth-
ods can achieve superior results in terms of data reconstruction. The
spatial vs temporal arrangement of the data and their effect on mode
extraction is also discussed. The first few dominant spatial modes are
visualized and qualitatively compared between the methods, and their
relevance to flow physics is discussed. Finally, the methods are com-
pared quantitatively via the relative reconstruction error. The main
contribution of our work is the detailed comparison of several nonlin-
ear dimensionality reduction techniques applied to unsteady fluid flow
problems.

II. METHODS
A. Dimensionality reduction

All unsteady CFD simulation (or experimental) results can be
arranged in a data matrix X, where the columns xi 2 Rn correspond
to flattened velocity data at different timesteps

Xðn�mÞ ¼
j j … j
x1 x2 … xm
j j … j

2
64

3
75 ¼

��� v1 ���
��� v2 ���

..

. ..
. ..

.

��� vn ���

2
66664

3
77775: (1)

X 2 Rn�m, where n is the number of spatial locations where the
velocity is sampled (i.e., mesh points or measurement locations), and
m is the number of saved temporal snapshots. It is possible to think in
terms of the rows of X as well, where each row vi 2 Rm corresponds
to the temporal evolution of velocity values at a given spatial location.
For simplicity, the magnitude of the velocity vector is used in this
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study, but alternatively, the different velocity components could also
be stacked on top of each other, as discussed in Appendix A1.

In Secs. IIA 1–IIA7, seven dimensionality reduction algorithms
are shortly presented. More detailed descriptions can be found in Refs.
37, 38, and 57. The goal for all methods is to construct a low-
dimensional embedding Y, which captures the most dominant flow
features, then map back to the original high-dimensional space with
the least amount of error. Two broad approaches are possible. We can
reduce the spatial size of the data, leading to an embedding Y
2 Rðr�mÞ where r � n, or reduce the temporal size of the data, result-
ing in an embedding Y 2 Rðn�rÞ where r � m.

To assess the quality of the algorithms, the relative reconstruction
error using the Frobenius norm is used

er X;Xrð Þ ¼ kX � XrkF
kXkF

; (2)

where Xr is the reconstruction of X from an r-dimensional latent
space. More complicated error metrics have been developed,57,58

mostly in the image processing community, but have been rarely used
for physical simulations. The Scikit-learn Python library59 was used
for computing the manifold learning methods, while the AE models
were created in PyTorch.

1. Principal component analysis (PCA)

First, we overview principal component analysis (PCA),60 which
is the standard linear approach. The basic idea behind PCA was devel-
oped in multiple branches of science, and thus, it has many different
names such as Karhunen–Loève transform, Hotelling transform,
empirical orthogonal eigenfunctions, and proper orthogonal decom-
position (POD). The POD terminology is used most frequently in the
fluid dynamics community.8 The underlying mathematical algorithm
is singular value decomposition (SVD), which is one of the most pow-
erful matrix factorization algorithms and a cornerstone of linear alge-
bra. PCA constructs an optimal basis such that the greatest variance of
the data corresponds to the direction of the first coordinate, the second
greatest to the second coordinate, and so on. PCA is an orthogonal lin-
ear transformation, and thus, it cannot identify low-dimensional struc-
tures, which are highly nonlinear.

To compute PCA, first, the temporal mean of the data at each
spatial location is subtracted from each row

~X ¼
ffiffiffiffi
1
m

r
X � �x1ð Þ; (3)

where 1 ¼ ½1; 1…; 1� 2 Rð1�mÞ is a vector of ones and �x

¼ 1
m

Pm
j¼1 Xij 2 Rðn�1Þ is a column vector containing the mean of

each row. The SVD can be written as

~X ¼ URVT ; (4)

where R contains the singular values along its diagonal, U and V are
the left and right singular vectors, and ðÞT denotes the transpose. It is
computationally faster to perform the “thin” or “economy” SVD
instead of the “full” SVD, meaning that the columns of U not corre-
sponding to rows of VT are discarded, assuming m< n.37 Therefore,
the matrices will have the following size: U 2 Rðn�mÞ; R 2 Rðm�mÞ,

and V 2 Rðm�mÞ. PCA is often written in terms of the covariance
matrix C,

Cvj ¼ ~X
T ~Xvj ¼ r2

j vj; (5)

where rj is the jth diagonal entry of R and vj is the jth column of V. C
is also called time-correlation matrix and has a size of

C ¼ ~X
T ~X 2 Rðm�mÞ. The space-correlation matrix can also be

formed, which is called the similarity matrix G

Guj ¼ ~X ~X
T
uj ¼ r2

j uj; (6)

where uj is the jth column of U. The size of G ¼ ~X ~X
T 2 Rðn�nÞ is

usually much larger than C 2 Rðm�mÞ. Therefore, for computational
efficiency, usually C is used for computing the singular values.
However, both approaches lead exactly to the same results. This differ-
ence between spatial vs temporal correlation will be further discussed
later for the NDR methods, where unlike PCA very different results
are obtained for these two choices.

The rank-r PCA approximation of the original data is given by

~Xr ¼ UrRrV
T
r ; (7)

where Ur 2 Rðn�rÞ and Vr 2 Rðm�rÞ contain the first r columns of U
andV, and Rr 2 Rðr�rÞ contains the first r rows and columns of R.

For temporal reduction, the low-dimensional embedding Y
2 Rðn�rÞ can be simply expressed as

Y ¼ UrRr : (8)

The columns of U represent an ordered set of spatial functions, the so-
called modes. The importance of each mode is given by its associated
singular value. These modes can be visualized as velocity values. That
is, each mode uj 2 Rðn�1Þ has the same size as the velocity data in one
snapshot xj 2 Rðn�1Þ. If spatial reduction of the data is sought, the
low-dimensional embedding Y 2 Rðr�mÞ can be expressed with
the right singular vectors

Y ¼ RrV
T
r : (9)

2. Locally linear embedding (LLE)

LLE, first introduced in Ref. 61, lies on the assumption that the
local neighborhood of a data point x 2 Rn can be well approximated
by the linear subspace spanned by the k nearest neighbors (k-NN) of
x. Subsequently, these locally linear approximations can be used to
construct a low-dimensional embedding y 2 Rr , which preserves the
local neighborhood relationships.

The LLE algorithm can be summarized in the following steps:

(1) Find the k-NN for each data point xj 2 Rn, where xj is the jth
column of ~X , that is, the jth velocity snapshot. The neighborhood
of xj will correspond to snapshots that are similar to xj. To calcu-
late the k-NN, the pairwise distances are calculated between xj and
all other data points. The distance measure used for the k-NN can
be chosen, but mostly the L2 norm is used. Then, the k closest
points to xj will be assigned as its k nearest neighbors.

(2) Approximately each data point as a linear combination of its
k-NN with coefficients wij: xj �

Pk
i¼1 wijxi
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• To find the coefficients (or weights), the following minimiza-
tion problem needs to be solved:

min
wij

Xm
j¼1

����xj �Xm
i¼1

wi;jxi

����
2

;

subject to
Xm
i¼1

wij ¼ 1:

(10)

If xi is not a k-NN of xj, then wij ¼ 0.
• The solution to this constrained optimization problem has
the following form for the weights of xj:

~w j ¼
G�1j 1

1TG�1j 1
2 Rk; (11)

where Gj 2 Rðk�kÞ is the local Gram matrix at xj, which is
defined as

Gj ¼ Gj
il ¼ ðxi � xjÞTðxl � xjÞ (12)

with xi and xl being the k-NN of xj. 1 2 Rðk�1Þ is a vector of
ones. Note that wj 2 Rm, but wi;j ¼ 0 when xi is not k-NN
of xj; therefore, ~w j 2 Rk contains the k non-zero compo-
nents of wj.

(3) Compute the low-dimensional embedding Y ¼ ½y1;…; ym�
2 Rðr�mÞ using the weights found in step 2.

• The low-dimensional representation should minimize the
following error:

min
Y

Xm
j¼1

����yj �Xm
i¼1

wijyi

����
2

;

subject to
Xm
j¼1

yj ¼ 0 and
1
m

Xm
j¼1

yjy
T
j ¼ I:

(13)

The first constraint requires the embedding to be centered at
the origin, while the second constraint forces the embedding
to have unit covariance and set the rank arbitrarily to r, the
dimension of the desired latent space.

• The solution to this optimization problem is the r eigenvec-
tors of the matrix

L ¼ ðI�WÞðI�WÞT 2 Rðm�mÞ (14)

corresponding to the second to ðr þ 1Þ smallest eigenvalues.
I 2 Rðm�mÞ is the identity matrix, and W 2 Rðm�mÞ is the
matrix of weights composed by the weight vectors wj as col-
umns. The rows of Y are set to be equal to the eigenvectors
of L. The smallest eigenvalue will be zero with a correspond-
ing eigenvector equal to 1 2 Rm due to the first constraint;
therefore, it is omitted. Note that these eigenvectors are of
size m, which is the number of snapshots. Therefore, these
are not spatial modes as they have been in case of the PCA,
but temporal modes. This means that visualizing these eigen-
vectors in the spatial domain is not possible. This is further
discussed in Sec. II B.

In certain cases, it can be numerically challenging to solve
Eq. (10), as the Gram matrix may be close to singular.62 Therefore, a
small regularization term k is added to the trace of G,

G Gþ kI: (15)

In manifold learning methods, reconstructing the original data
based on low-dimensional embedding is not as simple as in the case of
PCA. The LLE reconstruction is based on the inverse LLE presented in
Ref. 63 and the non-parametric model in Ref. 64. The same method is
used in Refs. 15 and 47 for reconstructing fluid flow data, and in Ref.
51, a simplified version is applied.

Using inverse LLE, first, the k-NN are found for each point yi
2 Rr in the embedded space denoted with yij, where j goes from 1 to
k. Then, the reconstruction weights can be computed by minimizing
the following:

min
wij

����yi �Xk
j¼1

wijyij

����
2

2

;

subject to
Xk
j¼1

wij ¼ 1:

(16)

Equation (16) can be solved similarly to Eq. (10). The k regularization
parameter is also used here to overcome the numerical issues regard-
ing singularity. When the weights wij are obtained, data point xi 2 Rn

can be approximated as

xi �
Xk
j¼1

wijxj: (17)

Therefore, the reconstructed dataXr will be

Xr ¼W~X: (18)

3. Kernel principal component analysis (KPCA)

A nonlinear extension of PCA using kernels is called kernel
PCA.65 This method computes the eigenvectors of the so-called kernel
matrix. The main idea behind KPCA is that the given data may not lie
in a linear subspace, so first the data are embedded in a higher-
dimensional space with dimension D> n such that the data approxi-
mately lie in a linear subspace. Then, PCA is applied to the embedded
data. The high-dimensional embedding U 2 RðD�mÞ is never actually
computed thanks to the “kernel trick.”65 A kernel matrix is defined as

K ¼ UTU; (19)

Ki;j ¼ jðxi; xjÞ; (20)

where j is the kernel function and xi is the ith column of ~X .
Therefore, the kernel matrix has dimensions K 2 Rðm�mÞ. Popular
kernel functions are polynomial jðx; yÞ ¼ ðxTyÞp, radial basis func-
tion (RBF) jðx; yÞ ¼ expð�ckx � yjj2Þ, and hyperbolic tangent
jðx; yÞ ¼ tanhðxTyÞ. In this study, the RBF kernel is used.

The centered kernel matrix ~K can be expressed as

~K ¼ HKH ¼ I� 1
m
11T

� �
K I� 1

m
11T

� �
; (21)

where H 2 Rðm�mÞ is the centering matrix. The eigendecomposition
of the centered kernel matrix and the low-dimensional embedding
Y 2 Rðr�mÞ can be written as

~K ¼ VKVT ; (22)

Y ¼ K1=2
r VT

r ; (23)
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where V and K are matrices containing the eigenvectors and eigenval-
ues and the subscript r refers to the r largest eigenvalues and corre-
sponding eigenvectors. Reconstructing the data from the embedded
space is not trivial as the reverse mapping generally does not exist,
which is known as the pre-image problem.66 Here, a method proposed
in Ref. 67 is used, which relies on kernel ridge regression. A regulariza-
tion ridge parameter a is added to the trace of the kernel matrix, simi-
lar to the k parameter of the LLE method.

It has been shown in Refs. 68 and 69 that LLE, LEM, and Isomap
all can be viewed as KPCA with a specially constructed kernel matrix;
therefore, a unified framework for these nonlinear dimensionality
reduction methods can be constructed.

4. Laplacian eigenmaps (LEM)

A similar manifold learning method to LLE is LEM, introduced
in Ref. 70. LEM is also called spectral embedding due to its close rela-
tion to spectral clustering.71 LEM tries to find a low-dimensional rep-
resentation where nearby points in the original manifold are also
nearby, therefore preserving local information.

The LEM algorithm can be summarized in the following steps:

(1) Find the k-NN of each data point xj 2 Rn. It should also be
noted that instead of finding the k-nearest neighbors, an e-
neighborhood can be computed, where points are considered
neighbors if kxi � xjjj2 � e according to some distance metric.
Both approaches are investigated in Ref. 39 for the lid-driven
cavity problem. This second approach is more geometrically
motivated, but it can lead to severely disconnected graphs, and
choosing e is more difficult than choosing k.

(2) Define a matrix of weights W 2 Rðm�mÞ whose entries wij mea-
sure the affinity between to data points xi and xj. The simplest
approach would be to simply assign wij ¼ 1 if they are neigh-
bors and 0 otherwise. This would correspond to the so-called
adjacency matrix from graph theory

wij ¼
1 if xi is in the k � NNof xj or vice-versa;

0 otherwise:

(
(24)

The more popular technique is to use an RBF kernel for defin-
ing different weights to different point pairs, based on their
distance

wij ¼ e�ckxi�xj jj2 : (25)

These two methods can also be combined as the following:

wij ¼
e�ckxi�xj jj2 if xi is in the k-NNof xj or vice versa;

0 otherwise:

(
(26)

(3) Construct the low-dimensional embedding Y 2 Rðr�mÞ by solv-
ing the following minimization problem:

min
Y

Xm
i¼1

Xm
j¼1

wijkyi � yjjj
2
2 (27)

with appropriate constraints explained below to avoid getting a
Y ¼ 0 trivial solution, where yj is the jth column of Y.

A diagonal degree matrix D 2 Rðm�mÞ can be defined as the
row-wise sum of the weights

dii ¼
Xm
j¼1

wij: (28)

The constraints needed for the optimization problem are
YD1 ¼ 0 and YDYT ¼ I 2 Rðr�rÞ. The first one avoids getting
a constant embedding, and the second one ensures that
rankðYÞ ¼ r. The Laplacian L 2 Rðm�mÞ matrix can be con-
structed as

L ¼ D�W: (29)

The solution to the optimization problem will be the r eigenvec-
tors of L corresponding to the r smallest eigenvalues, excluding
the first one which is equal to zero. The size of these eigenvec-
tors is m, which is equal to the number of snapshots. These
eigenvectors will be the rows of Y 2 Rðr�mÞ.

A possible reconstruction method for LEM was suggested in Ref.
72; however, in this study, the inverse LLE reconstruction method [Eq.
(16)] will be used for LEM as well for simplicity.

5. Isometric mapping (Isomap)

The isometric feature mapping algorithm was developed by
Tenenbaum et al.73 It extends the classical idea of preserving interpoint
distances of the multi-dimensional scaling (MDS) technique74 by using
geodesic distances instead of the Euclidian distance. Note that the clas-
sical MDS with Euclidean distances is a linear subspace learning
method.75 The Isomap algorithm can be summarized as follows:

(1) Construct the k-NN graph of each data point xi 2 Rn and weight
the graph by labeling each edge with its Euclidean length.

(2) Estimate the geodesic distances between all pairs of points by
computing the shortest path distances in the graph and con-
structing the distance matrix R 2 Rðm�mÞ. The two most com-
monly used methods are Dijkstra’s algorithm and the
Floyd–Warshall algorithm.76 Subsequently, create the matrix of
squared distances: Sij ¼ R2

ij.
(3) Construct the low-dimensional embedding based on the matrix

of graph distances using MDS. First, define the double centered
dissimilarity matrix K 2 Rðm�mÞ as

K ¼ � 1
2
HSH; (30)

where H ¼ I� 1
m 11

T 2 Rðm�mÞ is a centering matrix. The
eigenvalue decomposition of the symmetric matrix K can be
written as

K ¼ VKVT ; (31)

where V and K contain the eigenvectors and eigenvalues of K.
The low-dimensional embedding Y 2 Rðr�mÞ can be written as

Y ¼ K1=2
r VT

r ; (32)

where the subscript r refers to the first r largest eigenvalues and
corresponding eigenvectors.
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The LLE reconstruction method is used for the Isomap embedding as
well, similarly to Ref. 47. Constructing the low-dimensional embed-
ding is similar to the KPCA approach, where S takes the role of the
kernel matrix. It is important to note that the LLE and KPCA recon-
struction methods use the original data X as well for the reconstruc-
tion, not just the embedded data Y. This is a significant difference
from PCA and AE, which can reconstruct data just from Y.

Hyperparameters for all manifold learning methods are listed in
Table I in the Appendix.

6. Autoencoder (AE)

Another approach for nonlinear dimensionality reduction is the
use of neural networks, namely, autoencoders (AE). They have a spe-
cific architecture, where the output is designed to be the same as the
input, but there is a so-called bottleneck layer in the middle, which has
significantly fewer neurons than the input. This forces the network to
learn a meaningful low-dimensional representation of the data. It was
shown that a shallow AE with only one fully connected hidden layer
and a linear activation function leads to an embedding that spans the
same subspace as PCA.1,77 Deep AEs with nonlinear activation func-
tions can outperform PCA for fluid flow problems,25 since they usually
involve complex nonlinear behavior. Here, a fully connected deep neu-
ral network, also called multilayer perceptron (MLP), will be used for
dimensionality reduction. A clear advantage of AEs over the manifold
learning methods is that reconstructing the data is straightforward
through the decoder network. In most cases, the encoder and decoder
networks share the same structure, but this is not a requirement.

7. Mode decomposing autoencoder (MDAE)

To obtain interpretable spatial modes, a special AE structure was
introduced by Murata et al.78 The main idea was that after obtaining
the low-dimensional representation in the bottleneck layer, separate
decoders are then connected to each of the latent vectors and their
final output is summed. It was called mode decomposing autoencoder

(MDAE), even though the “modes” or decomposed fields attained this
way are inherently different from modes obtained from temporal data
reduction. The main distinction is that the decomposed fields here are
time-dependent, while modes obtained by other methods are not.
Nevertheless, these temporal decomposed fields can still help us
understand the inner workings of the AE as they are physically mean-
ingful. For the 2D flow over a cylinder case, it was shown that by per-
forming POD on two decomposed fields, the orthogonal bases
corresponding to the first six POD modes of the original data can be
recovered.78 The method has also been applied to 3D data.79 In the
original paper, a CNN architecture was used; however, here a fully
connected network is utilized.

In all AE and MDAE cases, the temporal mean of the data was
subtracted and the data were rescaled to ½0; 1�. The ReLU activation
function was used to impose nonlinearity. The Adamax optimizer was
selected. Recently, it was suggested in Ref. 80 that this optimizer is the
best-suited choice for AEs, which was confirmed by tests on the fluid
datasets used during this study. A variable learning rate was chosen
using a learning rate scheduler. The initial learning rate was 10�3, and
then, it was reduced by a factor of 0.1 after reaching 1/3 and 2/3 of the
final number of 9000 epochs, leading to a final learning rate of 10�5.
The network structure and other hyperparameters are listed in Tables
II–V in the Appendix for the different test cases. An overview of the
AE andMDAE architectures is shown in Fig. 1.

B. The choice of data arrangement

The conventional way to look at dimensionality reduction of
fluid flow data is to take the columns of ~X , corresponding to velocity
snapshots xi 2 Rn as data points.2 Therefore, dimensionality reduc-
tion will lead tom samples of embedded vectors yi 2 Rr , where r< n.
This is shown in the top part of Fig. 1 for the AE and MDAE architec-
tures. This is the established way for creating ROMs17 by modeling the
dynamics of the system in the low-dimensional representation, then
mapping back to the original space. However, in general, this does not
lead to interpretable spatial modes, since the latent space is inherently

FIG. 1. AE architectures are shown. Top
row: spatial dimensionality reduction using
AE and MDAE. Bottom row: temporal
dimensionality reduction leading to spatial
modes in the latent space. For simplicity,
a latent space of size r¼ 2 is shown.
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smaller than the physical domain as the spatial size of the data is
reduced from Rn to Rr . It is only a special property of PCA that
allows achieving both spatial modes (using the left singular vectors)
and it is also suitable for ROMs (with the embedding obtained from
the right singular vectors). Nevertheless, if velocity snapshots xi are
used as input, the NDR methods will not provide flow structures that
can be visualized as a scalar or vector field.

To overcome this difficulty, the rows of ~X are taken as data
points vi 2 Rm (or equivalently the columns of ~X

T
). This arrange-

ment is shown at the bottom part of Fig. 1 for the AE case. Usually,
the number of snapshots is much smaller than the number of spatial
points where velocity is sampled m� n, so the resulting matrices for
eigenvector calculation will be ðn� nÞ instead of ðm�mÞ, resulting
in significantly higher computational requirements. Traditionally,
these manifold learning methods are tested and presented on datasets
of images, where a data matrix X 2 Rn�m containsm images of n pix-
els each.38,57 In that case, it is straightforward that different data points
should be different images. However, in the case of fluid flow, the dif-
ferent data points can also be thought of as temporal velocity values at
a fixed spatial location. In this context, two “neighboring” data points
vi; vj 2 Rm would have similar velocities over time, even though they
are not necessarily close in the physical domain. This approach corre-
sponds to reducing the temporal size of the data to r<m but keeping
the spatial size fixed at n. Thus, the results of the dimensionality reduc-
tion can be visualized as spatial modes. In PCA, this approach simply
corresponds to swapping the left and right singular vectors and keep-
ing the singular values unchanged.

This duality issue is briefly addressed in Ref. 39. Additionally, in
Refs. 81 and 82, this duality is called the duality between data and fea-
ture manifold structures, and it is argued that both views make sense
and contain valuable information. Gu and Zhou81 developed a co-
clustering algorithm that tries to leverage information from both
manifolds. In the context of fluid dynamics, the feature manifold cor-
responds to the velocity values at different spatial locations and the
data manifold is spanned by the different snapshots.

Typically, the spatial reduction of data is preferred as dimension-
ality reduction is used as a first step toward ROMs (e.g., Refs. 46–48).
In some other studies (e.g., reactive flows with multiple thermochemi-
cal variables50,51), the second approach was used and the number of
scalar field variables was reduced while keeping the spatial size con-
stant, therefore obtaining visual modes. In this study, both approaches
are considered and compared. The spatial reduction can lead to pow-
erful low-dimensional representations suitable for ROMs, while physi-
cally interpretable modes and coherent structures can be found
through temporal reduction.

C. Test cases

Four test cases were investigated with varying complexity to
assess the efficiency of the dimensionality reduction methods for
unsteady fluid flow modeling. The first problem is the 2D flow over a
cylinder at Re ¼ 100, which is a canonical benchmark problem for
unsteady fluid flows. It has been widely studied for developing low-
dimensional models83 and extensively used as benchmark for data-
driven unsteady fluid flow models (e.g., Refs. 15, 22, 24, and 25).
Second, a 2D slice of 3D turbulent channel flow is considered, which is
another widely used benchmark case of notably higher complexity
(e.g., Refs. 26–28). Finally, pulsatile blood flow in internal carotid

artery (ICA) and middle cerebral artery (MCA) brain aneurysms are
considered as real-world examples of unsteady fluid flow. These test
cases are summarized in Fig. 2.

1. Flow over a cylinder

The first test case is 2D incompressible flow over a cylinder at
Re ¼ 100, which is larger than the critical value for the onset of vortex
shedding. The cylinder is centered at (0, 0) with a diameter of D¼ 1.
The length of the domain is 50D, and the width is 20D. The domain
spans �10 � x � 40 and �10 � y � 10. The no-slip boundary con-
dition is enforced on the cylinder. At the front and lateral sides of the
domain, a uniform incoming flow uin ¼ ð1; 0Þ is applied. At the out-
flow boundary, a zero traction condition is employed. The Reynolds
number was set to Re ¼ juinjD� ¼ 100 by choosing the viscosity to be
� ¼ 0:01. The initial condition was set to zero.

The Navier–Stokes equations were solved using the finite-
element method with FEniCS.84 The total number of triangular cells

FIG. 2. (a) Flow over a cylinder case is shown. The domain and mesh are shown
on the left. The cropped and downsampled region is shown in red, and a sample
velocity snapshot is shown on the right. (b) A velocity snapshot of the turbulent
channel flow is shown. (c) ICA and (d) MCA aneurysm cases with 3D streamlines,
2D streamlines in a cross section, inlet flow waveform, and mesh are shown. The
cropped and downsampled region of interest is shown in red.
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was 102k (second-order elements). The solution was computed until
t¼ 200, with a time step size of Dt ¼ 0:01. The initial transient phase
was discarded. After the fully developed vortex shedding started, 1000
snapshots were saved uniformly in t 2 ½100; 200Þ. The spatial domain
was cropped to�5 � x � 15 and�5 � y � 5 and downsampled to a
coarser mesh, containing 3961 points [highlighted in red in Fig. 2(a)].
Sample flow results depicting the von K�arm�an vortex street are shown
at the first saved snapshot on the right side of Fig. 2(a). For further
analysis, the magnitude of the velocity vector is used, and the data
matrix Xðn�mÞ for this case is of size 3961� 1000.

2. Turbulent channel flow

The second test case is a direct numerical simulation (DNS) of
turbulent channel flow,85 obtained from the Johns Hopkins turbulence
databases.86 In this dataset, incompressible turbulent channel flow was
simulated in a domain of size 8p� 2� 3p, using 2048� 512� 1536
nodes. The friction Reynolds number was Res � 1000, and 4000 snap-
shots were saved. A 2D slice in the spanwise (z direction) midplane of
the dataset was used for this study. Data were downsampled by taking
every eighth data point in both spatial directions, leading to a grid of
256� 64¼ 16 384 points. In the temporal dimension, every second
snapshot was used, adding up to a total of 2000 snapshots. An example
snapshot can be seen in Fig. 2(b), colored by velocity magnitude. For
the dimensionality reduction algorithms, the magnitude of the velocity
vector is used; therefore, the data matrix Xðn�mÞ is of size 16 384
� 2000 for this case.

3. ICA brain aneurysm

An internal carotid artery (ICA) brain aneurysm model is
selected as the third test case. The geometry is taken from the
Aneurisk dataset87 (Aneurisk model ID: C0035). The meshing and
CFD simulation was carried out with SimVascular.88 The mesh con-
sisted of 6.6M elements with a boundary layer mesh. A population-
averaged pulsatile inflow waveform89 was used for the inlet, scaled
according to Ref. 90. The inlet flow rate Q is shown in Fig. 2(c). Split-
resistance boundary condition was applied for the outlets using
Murray’s law. No-slip condition was applied for the vessel walls, which
were considered rigid. Newtonian blood rheology model was assumed
with a density of q ¼ 1060 kg/m3 and dynamic viscosity of l ¼ 0:004
kg/ms. The Reynolds number using the average inlet velocity and inlet
diameter is Re ¼ 322. The simulation time step is chosen to divide
each cardiac cycle into 10 000 timesteps. The simulation was run for
three cardiac cycles, and 1000 snapshots were saved from the last cycle.
Finally, results were cropped and downsampled to coarser mesh con-
sisting of 40 500 points, while keeping the no-slip condition at the
wall. This region is highlighted in red in Fig. 2(c). Blood flow stream-
lines are also shown in Fig. 2(c) for the first saved time step. The plane
shown in the middle of Fig. 2(c) is chosen for visualizing the modes
later on. The velocity magnitude is used for the data-driven methods,
and the data matrix Xðn�mÞ is of size 40 500� 1000.

4. MCA brain aneurysm

A middle cerebral artery (MCA) brain aneurysm model is taken
as the last test case (Aneurisk dataset, model ID: C0051), as shown in
Fig. 2(d). While the ICA case was a lateral aneurysm caused by the

high curvature of the vessel, the MCA case is a bifurcation type aneu-
rysm near a branching point. The simulation was prepared using
SimVascular, and all settings were identical to the ICA case. The only
difference was the inlet flow profile, which was taken from Ref. 91 as
shown in Fig. 2(d). The Reynolds number using the average inlet
velocity and inlet diameter is Re ¼ 432. The mesh consisted of 7.3M
elements with a boundary layer mesh. For the dimensionality reduc-
tion, the results are cropped and downsampled to a coarser mesh of
10 167 points, as shown in Fig. 2(d). The blood flow streamlines are
also shown. The plane shown in the middle of Fig. 2(d) will be used
for visualizing the modes later on. The velocity magnitude is used for
the data-driven methods, and the data matrix Xðn�mÞ is of size
10 167� 1000.

III. RESULTS

The deep learning cases were run on a GPU (Tesla V100-
SXM2–16GB, A100, and P100-PCIE-16GB models for different runs)
with average computational times ranging between 0.2 and 5h for
each case. The manifold learning cases were run on a single CPU
where spatial reduction needed only up to 5min of computing time,
while temporal reduction took up to 8 h. The precise run times depend
on the test case (i.e., input size) and hyperparameters (e.g., nearest
neighbors). For manifold learning, the reconstruction error can be
computed for different number of modes without the need for recom-
puting the embedding, while for the autoencoders each case with a dif-
ferent latent space size required a completely separate run.

The different dimensionality reduction methods were applied to
the four test cases considering both data arrangement scenarios, lead-
ing to spatial and temporal reduction of the data. To assess the com-
plexity of each flow, the PCA singular values are shown in Fig. 3 where
for a better comparison each data matrix was normalized. It is clear
that the singular values of the turbulent channel flow problem decay
significantly slower than the other cases, while the cylinder flow shows
the fastest decay. The normalized cumulative energy is defined as the
cumulative sum of singular values normalized by the sum of all singu-
lar values. The flow over a cylinder case reaches a normalized cumula-
tive energy value close to 100% after less than 50 singular values, while
for the turbulent case even 200 modes only correspond to around 80%
of the energy. Note that for the turbulent channel flow case, there are
2000 modes in total, but only the first 1000 are shown. The two brain
aneurysm cases show similar complexity. Even though the Reynolds
number is higher for the MCA case (Re ¼ 432) than the ICA
(Re ¼ 322), the ICA case shows slightly slower decay in singular val-
ues. This could be because of a more complex temporal behavior due
to the larger ratio of systolic to diastolic inlet velocities. In Secs.
IIIA–III C, a detailed comparison between NDR modes and data
reconstruction is presented.

A. Flow over a cylinder

The relative reconstruction error for the flow over a cylinder is
shown in Fig. 4 as a function of mode numbers on a semi-log plot.
Spatial and temporal reduction cases are shown. MDAE can only be
used for spatial reduction; therefore, it is absent from the temporal
reduction figures. The PCA curve shows a near log-linear decrease in
relative reconstruction error with an increasing number of modes.
However, none of the nonlinear methods follow this behavior. For the
spatial reduction [Fig. 4(a)], KPCA, LEM, and Isomap have a sharp
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drop in error at two modes but then adding subsequent modes does
not result in significantly better reconstruction. The two AEs can
achieve the best performance with only two modes, but with more
than six modes LLE outperforms them. LLE shows a sharp drop at
four modes, and adding higher modes further reduces the reconstruc-
tion error up to eight modes. In spatial reconstruction, all nonlinear
techniques outperform PCA with a fewer number of modes.

The relative reconstruction error for the temporal reduction is
shown in Fig. 4(b). The reconstruction error is calculated on the same
dataset that is used for identifying the NDR models, as the main inter-
est here is not model evolution (extrapolation), but rather mode
extraction. Note that for PCA there is no difference between the spatial
and temporal arrangement of the data; therefore, the PCA results are
exactly the same as in Fig. 4(a). For both data arrangement scenarios,

the temporal-mean-subtracted data are used. All the nonlinear meth-
ods achieve inferior performance in this case compared to the spatial
arrangement. The AE is distinctly better than the other methods, but
LLE, KPCA, and Isomap have comparable results to PCA. The LEM
algorithm has the worst performance and does not reach the accuracy
of PCA at any number of modes.

The benefit of the temporal arrangement of the data is that inter-
pretable spatial modes could be obtained, which facilitate the under-
standing of the underlying flow structures. These modes are shown in
Fig. 5. For each method, four representative modes are chosen.
Sometimes these modes come in pairs, with similar structures but
opposite signs; therefore, only modes with distinct patterns are shown.
Higher order modes are less significant, so only the first eight modes
are chosen for visualization. The AE modes are not ranked and come

FIG. 3. (a) Singular values for different
principal components (modes). (b)
Singular values on a semi-log plot for bet-
ter visualization. (c) Normalized cumula-
tive energy, defined as the cumulative
sum of singular values normalized by the
sum of all singular values.

FIG. 4. Relative reconstruction error with a different number of modes for (a) spatial and (b) temporal reduction of the flow over a cylinder case. Note that MDAE is only used
for spatial reduction.
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in an arbitrary order; for example, mode 1 is not necessarily more sig-
nificant than mode 4; therefore, their arrangement in the figure is arbi-
trary and is just numbered from 1 through 4. Additionally, in the AE,
each setup with different latent space sizes results in different modes.
The two modes of an AE with a latent space of size two might not be
the same as the first two (or any two) modes of an AE with a latent
space of different sizes. In Fig. 5, modes are shown from an AE with a

latent space of size 4 for the convenience of visualization. In MDAE,
the modes are time dependent; therefore, these decomposed fields are
shown for an MDAE model with a latent space size of two during two
different timesteps (snapshot numbers 900 and 1000 as indicated in
each subfigure). The color scale has a different range for each method
and mode, but these values are omitted since the focus is only on the
qualitative structure of the modes.

FIG. 5. Representative set of spatial modes visualized for the flow over a cylinder case. The inset number refers to the mode number, where higher number modes are less
significant. The exceptions are the AEs, where the obtained modes are in an arbitrary order of importance. In MDAE, the snapshot number is specified. The color bar range is
different for each mode, but only the qualitative structure of the modes is important.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 117119 (2022); doi: 10.1063/5.0127284 34, 117119-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


In Fig. 5, similar patterns can be observed throughout the differ-
ent methods; for example, PCA-1, LLE-4, KPCA-1, LEM-3, Isomap-1,
AE-2,4, and MDAE-1,2-t1000 all show the main underlying structure
behind the vortex shedding, that is, alternating regions of low and high
velocity, which are anti-symmetric along the horizontal mid-plane.
Interestingly, LLE starts worse than PCA for 1–3 modes (in terms of
reconstruction), but shows a sharp drop in error at four modes, corre-
sponding to the common mode described, which suggests the impor-
tance of this pattern. Some of the higher order modes are also
comparable; for example, PCA-7, LLE-6, KPCA-7, LEM-7, and
Isomap-8 show thinner vertical regions alternating between low veloc-
ity and high velocity. In the case of the nonlinear techniques, the bor-
ders between high velocity and low velocity are often complicated and
not just straight lines as in the case of PCA. The AE modes (especially
1 and 3) are more complicated than the other methods, which seems
to be contributing to the one order of magnitude better reconstruction.
LLE modes 1 and 2 resemble the AE modes 1 and 3, all showing a zig-
zag pattern of low and high velocities. Similar structures can be seen
for the MDAE decomposed fields at snapshot t900. Another interesting
feature is that KPCA-3 and LEM-1 modes seem to separate the cylin-
der wake region from the other parts of the domain; therefore, they
provide little information regarding the phase of the limit cycle.

B. Turbulent channel

The relative reconstruction error is plotted in Fig. 6 for the 2D
turbulent channel flow up to 100 modes. Similarly to the flow over a
cylinder case, all nonlinear methods perform better than PCA for the
turbulent case in spatial reduction [Fig. 6(a)]. The differences here are
even larger due to the highly nonlinear nature of turbulent flows. It
has to be noted that, unlike PCA, the nonlinear dimensionality reduc-
tion methods do not necessarily show a monotonically decreasing
behavior with an increasing number of modes. For example, the LLE,
KPCA, Isomap, and AE curves all show non-monotonic behavior.

For a fewer number of modes, the AE provides the smallest error,
while for a higher number of modes, the LLE gives the best results for
spatial reduction. Unlike the flow over cylinder case where LEM had
the highest reconstruction error out of the manifold learning methods,
LEM performed well for the turbulent channel flow case. One reason
behind this could be the high temporal resolution of the turbulent
channel flow, meaning that nearby snapshots are very similar to each
other, which makes the embedding and reconstruction easier for LEM.

In the case of the temporal reduction, the results are shown in
Fig. 6(b). LEM and Isomap give similar results to PCA until 20 modes,
but unlike PCA further modes do not produce significantly better
reconstructions. LLE seems to achieve worse reconstruction than
PCA; however, it gets better with more modes. KPCA is better than
PCA, and finally, the AE results have notably smaller errors than all
the other methods. It is important to note that the AE used for spatial
reduction achieved an order of magnitude better results than the AE
for temporal reduction. The spatial modes are visualized in Fig. 7. The
overall observations made for the cylinder case hold here as well. The
MDAE decomposed fields are not shown here since they failed to
uncover any features and the two modes were simply decomposing
the velocity field in half. For PCA, KPCA, LEM, and Isomap, it can be
seen that the first modes capture the large-scale coherent structure and
the higher order modes capture the smaller scales. Similar patterns can
be identified in PCA-1, KPCA-1, LEM-1, Isomap-1, and AE-2 modes.
In general, PCA, LEM, and Isomap have similar reconstruction errors
for less than ten modes; therefore, it is no surprise that the modes are
similar. The KCPA modes are also similar to these, even though they
produce smaller reconstruction errors. This might be because of the
different reconstruction method used for KPCA. The LLE modes are
dissimilar to all of the other modes and seem to capture much smaller
scales. Interestingly, they have the largest reconstruction error, so these
modes are not able to sufficiently represent the flow dynamics. It is
interesting to note that the AE modes are visually not extremely dis-
tinct from the PCA, KPCA, LEM, and Isomap modes, even though

FIG. 6. Relative reconstruction error with different number of modes for (a) spatial and (b) temporal reduction of the turbulent channel case. Note that MDAE is only used for
spatial reduction.
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they achieve an order of magnitude better spatial reconstruction. This
suggests that the AE reconstruction using neural networks is much
more powerful than the other methods.

C. Brain aneurysms

Reconstruction results for the ICA and MCA brain aneurysm
cases are shown in Fig. 8 for the first 40 modes. In the ICA case for
spatial reduction [Fig. 8(a)], KPCA achieves quite similar reconstruc-
tions to PCA, while LLE, LEM, and Isomap have significantly better
results. LLE, LEM, and Isomap have a sharp drop in error at 2–3
modes, but additional higher modes lead to only minor improvements
in reconstruction error. AE and MDAE outperform the other meth-
ods. The temporal reduction results for the ICA aneurysm case are
plotted in Fig. 8(b). Initially, LEM and Isomap give better reconstruc-
tion than PCA, but higher modes worsen their results. LLE performs
better than PCA, but the AE gives the smallest reconstruction error
among all methods. To visualize the changes in reconstruction error
during the cardiac cycle, Figs. 8(c) and 8(d) plot the reconstruction
error throughout one cardiac cycle as a function of time, reconstructed
with eight modes for the spatial and temporal ICA cases, respectively.

It can be seen that for some NDR cases, the error follows the shape of
the inlet waveform (e.g., LLE, Isomap, and LEM in the spatial case),
while in other cases, it is more constant (e.g., PCA, KPCA, and MDAE
in the spatial case). In the temporal case, all curves except the AE have
a similar shape. In the MCA case, similar patterns were observed in
the variation of error in time, and therefore, the results are not shown
for brevity.

Results for the MCA aneurysm case are shown in Figs. 8(e) and
8(f). In spatial reconstruction, KCPA has the worst performance in
nonlinear methods with only marginally better results than PCA. LLE,
LEM, and Isomap perform well with a few modes, but further modes
do not significantly improve their reconstruction. AE achieves the best
performance but a latent space size of 16 and 32 does not bring
improvement over a size of 8. Even though the singular value decay in
Fig. 3 suggested that the ICA data have higher complexity than MCA,
the manifold learning methods perform better in the ICA case. In the
temporal data arrangement scenario, KPCA and LEM do not provide
a notable improvement over PCA. Isomap gives good results with a
latent space size of around 10, but reconstruction worsens with a high
number of modes. AE has an order of magnitude better results than all

FIG. 7. Representative set of spatial
modes visualized for the turbulent channel
case. The inset number refers to the
mode number, where higher number
modes are less significant. The exceptions
are the AEs, where the obtained modes
are in an arbitrary order of importance.
The color bar range is different for each
mode, but only the qualitative structure of
the modes is important.
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FIG. 8. Relative reconstruction error with a different number of modes is shown for (a) spatial and (b) temporal reduction of the ICA aneurysm case. Relative reconstruction error
in the ICA case as a function of time is shown for (c) spatial and (d) temporal reduction using eight modes. Relative reconstruction error is shown for the MCA aneurysm for the (e)
spatial and (f) temporal case. Note that MDAE is only used for spatial reduction. The temporal changes in error are not shown for the MCA case for the sake of brevity.
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the other methods. Contrary to the spatial reduction, increasing latent
space in AE leads to increasingly better reconstruction.

The spatial modes are shown in Fig. 9 for the ICA aneurysm. A
representative plane [same as shown in Fig. 2(c)] is chosen for visuali-
zation of the modes. Two decomposed fields are shown for an MDAE
model with a latent space size of two with two different snapshots (t0
and t101). PCA-1 highlights the main incoming jet creating an anti-
clockwise vortex structure in the aneurysm. The same structures are
shown in LLE-1, KPCA-1, LEM-2, Isomap-1, AE-1, and MDAE-2-t1.
The core of the vortex is often emphasized, sometimes with low values
(PCA-1, LLE-4, KPCA-1), other times with high values (LEM-3,
Isomap-4). LEM-1 is highly distinct from all other modes as it sepa-
rates the near-wall regions from the inside of the aneurysm.
Interestingly, the AE modes 2–4 are not significantly different from
each other, and they are similar to the AE-1 patterns with an opposite
relative magnitude. The spatial modes are shown in Fig. 10 for a 2D
cross section of the MCA aneurysm. In MDAE, the decomposed fields
are shown for snapshot number 1 and 201. Flow enters the aneurysm
on the left side of the cross section and creates a clockwise vortex. This
vortex is highlighted in PCA-1, LLE-1, KPCA-1, Isomap-1, and AE-2.
Interestingly, PCA-1 has the opposite relative magnitude pattern com-
pared to the others. Similarly to the ICA case, LEM-1 distinguishes
between the near-wall regions and the interior of the aneurysm. Some
of the higher modes show more detailed flow structures (e.g., PCA-8,
LLE-5,6, KPCA-5,6, and Isomap-3), which are harder to interpret,
especially since they are 2D slices of 3D features.

IV. DISCUSSION

Nonlinear dimensionality reduction techniques have the capabil-
ity of outperforming linear methods, such as PCA, for fluid flow
data.15,25,39,78 In this manuscript, we provided a detailed comparison
of these methods in reconstructing unsteady fluid flow data. For the
spatial reduction, AE and LLE achieved the best overall performance
among all data sets. There were methods, like LEM, which performed
well on one data set (turbulent channel flow) but poorly on others
(cylinder flow). On the other hand, an evident advantage of PCA over
nonlinear methods is the lack of hyperparameters.

Designing neural network architectures requires careful planning
and investigation of multiple options (e.g., network size and depth, acti-
vation function, optimizer, and weight initialization). Manifold learning
methods also have at least a few hyperparameters (e.g., number of near-
est neighbors, kernel parameters, and regularization parameters). Each
physical problem requires its own hyperparameter tuning. There have
been methods proposed for the automatic choice of these parameters,92

but well-developed and standard techniques are missing. These hyper-
parameters can affect the results presented in this study. For example,
in AEs, if they are not sufficiently deep, manifold learning methods can
achieve better performance. Also, different latent space sizes might lead
to different optimal hyperparameters in AEs; therefore, the network
has to be tuned separately for each latent space. Nevertheless, with
proper parameter setup, the nonlinear methods can find better low-
dimensional embeddings that describe the dynamics with fewer modes.

In spatial dimensionality reduction, all NDR methods achieved a
smaller error compared to PCA for all test cases. For the flow over a
cylinder case, KPCA, LEM, and Isomap seem to identify the previously
reported underlying dynamics corresponding to a limit cycle.83

However, an increase in the number of modes does not lead to better

reconstruction errors. The same behavior was reported in Ref. 93 for
LLE applied to the 1D Burgers’ equation. This is a significant differ-
ence between PCA and NDR methods. In PCA, the reconstruction
error decreases strictly monotonically (if all singular values are non-
zero). However, in nonlinear methods, the reconstruction is not exact,
even with the maximum number of modes. This ties back to the pre-
image problem described in Ref. 66, which is usually an ill-defined
problem, and only approximate solutions can be used.94,95 Therefore,
in some manifold learning techniques (NDR methods), a robust
reconstruction method often cannot be achieved.

Our results show that the temporal reduction of unsteady fluid
flow data seems to be a harder task compared to spatial reduction. In
some cases, there is an order of magnitude difference in relative recon-
struction error between temporal and spatial reconstruction. To
achieve reasonable results for the neighborhood-based methods (LLE,
LEM, and Isomap), the number of k-nearest neighbors used for the
embedding had to be significantly higher (at least double, but in some
cases an order of magnitude larger) than in the case of spatial reduc-
tion. This is because the number of spatial points in fluid flow data
derived from computational fluid dynamics is usually much higher
than the number of snapshots n� m.

Due to their high flexibility, the AE models had the best overall
performance for all cases. LLE appeared to be comparable with AE for
the 2D models (cylinder and channel flows), especially at a higher
number of modes, but not for the 3D brain aneurysm cases. The AE
model could even be further improved by using more recently pro-
posed AE architectures.29 Other extensions of manifold learning meth-
ods have also been developed (e.g., Hessian LLE,96 discriminant kernel
LLE (DKLLE),97 landmark MDS using the Nystrom method,98 and
successive 1D LEM99). The relative success of these methods in fluid
flow data still needs to be investigated. Additionally, most studies use
the Euclidean distance to measure similarity between data points in
manifold learning; however, other distance metrics can also be applied,
which can influence the NDR methods’ results.100 More physically
inspired similarity metrics could also be used (e.g., kinematic similar-
ity101) for constructing the adjacency matrix, especially in the case of
temporal dimensionality reduction.

Even though the temporal approach to dimensionality reduction
leads to inferior results compared to spatial reduction, it has the
immense advantage of producing visualizable modes, which were
rarely leveraged for nonlinear methods in the past.51,78 In fluid flow,
these spatial modes highlight the main underlying coherent structures
and flow features, which facilitate physical understanding and inter-
pretability. All of the methods successfully captured the main dynam-
ics of the flow around the cylinder as previously reported.15,78 AE and
LLE find notably more complicated structures than PCA. For the tur-
bulent case, most methods (except LLE) produce visually similar
modes, where higher order modes correspond to the smaller scale fea-
tures. The differences in relative reconstruction error are likely due to
the different reconstruction methods used. In the brain aneurysm
cases, most methods identify the main flow structures, namely, the
incoming blood stream and the intra-aneurysmal vortex.

NDR methods also have several drawbacks and limitations,
which makes the use of these methods challenging in practice. As was
discussed earlier, they need extensive hyperparameter tuning, data
reconstruction can be difficult for certain methods, and they are com-
putationally more expensive than PCA. For all cases, the velocity data
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FIG. 9. Representative set of spatial
modes visualized for the ICA aneurysm
case. The inset number refers to the
mode number, where higher number
modes are less significant. The exceptions
are the AEs, where the obtained modes
are in an arbitrary order of importance. In
MDAE, the snapshot number is specified.
The color bar range is different for each
mode, but only the qualitative structure of
the modes is important.
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FIG. 10. Representative set of spatial
modes visualized for the MCA aneurysm
case. The inset number refers to the
mode number, where higher number
modes are less significant. The exceptions
are the AEs, where the obtained modes
are in an arbitrary order of importance. In
MDAE, the snapshot number is specified.
The color bar range is different for each
mode, but only the qualitative structure of
the modes is important.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 117119 (2022); doi: 10.1063/5.0127284 34, 117119-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


obtained from the CFD simulations had to be downsampled to a
coarser mesh in order to make the algorithms work in reasonable com-
putational time, as also seen in other studies.28 This is especially the
case for temporal data arrangement and reduction, where the matrices
obtained for eigenvector calculation are of size n� n, where n is the
number of mesh points. Another disadvantage compared to PCA is
that NDR methods do not produce orthogonal modes, which could be
an issue in a certain class of sparse data-driven modeling techniques
(e.g., compressed sensing) that require the orthogonality property.102

Ideas to overcome this issue for AEs and obtain near-orthogonal modes
were presented in Ref. 103. In the case of AEs, another limitation is that
the spatial modes come in an arbitrary order not sorted by importance
as in the other methods. This was addressed in Ref. 104 by using a hier-
archical AE to rank the modes. Finally, with the exception of autoen-
coders,105 it is not clear how the other NDR methods could be used
along with the governing equations to extrapolate the training data.

In conclusion, unsupervised learning models were presented and
tested on reducing the spatial and temporal size of CFD simulation
data. NDR methods clearly achieved better reconstruction error than
traditional PCA for spatial reduction. However, reducing the temporal
size proved to be more challenging and computationally demanding,
where only AEs resulted in significantly improved embeddings. On
the other hand, the temporal arrangement of the data led to spatial
modes, which were qualitatively compared and physically interpreted.
Some NDR methods discovered more complex mode structures com-
pared to PCA. Our study presented one of the first comprehensive
comparisons of various NDR methods for fluid flow datasets. The
results encourage further studies to investigate the practical utility of
these methods in data-driven ROMmodeling of unsteady fluid flow.
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APPENDIX A: VECTOR DATA AND HYPERPARAMETERS

1. Vector data arrangement
In Sec. II A, the dimensionality reduction methods were pre-

sented and used with a data matrix Xmag 2 Rn�m containing the
velocity magnitudes at each mesh point. However, we can define
the data matrix for vectorial data differently

Xmag ¼

ku11k ku12k …

ku21k ku22k …

..

. ..
. . .

.

2
6664

3
7775; Xcol ¼

u11 u12 …

v11 v12 …

u21 u22 …

v21 v22 …

..

. ..
. . .

.

2
66666664

3
77777775
;

Xrow ¼

u11 v11 u12 v12 …

u21 v21 u22 v22 …

..

. ..
. ..

. ..
. . .

.

2
6664

3
7775:

(A1)

The structure used in this paper based on velocity magnitude
(Xmag 2 Rn�m) could be seen in the left side of Eq. (A1), where uij
corresponds to velocity vector at spatial location i and time step j. The
velocity vector u ¼ ðu; v;wÞ can also be used by stacking the velocity
components below each other in the same column, resulting in a data
matrix Xcol 2 Rdn�m, where d 2 f2; 3g is the dimensionality of the
velocity data. The structure of this matrix is shown in Eq. (A1) for
d¼ 2. This is a well-established way of dealing with vectorial data
using POD or DMD,106 but it cannot be simply extended for all cases
of manifold learning. When the goal is temporal dimensionality reduc-
tion, the rows of the data matrix are compared for finding the neigh-
borhood relations. However, if vectorial data are stacked below each
other, some rows will contain u velocities, while others v velocities;
therefore, this will not lead to a fair comparison. To overcome this
issue, the velocity components could be stacked row-wise to get a
matrix Xrow 2 Rn�dm, shown on the right side of Eq. (A1) for d¼ 2.
This will lead to a fair comparison of the manifold learning methods,
but after temporal dimensionality reduction, the u and vmodes will be
mixed, without a simple way to separate them. Therefore, this arrange-
ment will not be suitable either.

The other option is to simply perform dimensionality reduc-
tion separately for u and v data, and this approach was previously
used, for example, in Refs. 31 and 48. Here, we present a compari-
son of these different approaches in the case of PCA for flow over a
cylinder as shown in Fig. 11. Namely, we compare the results based
on the velocity magnitude analysis as performed in Sec. III of this
paper [Fig. 11(a)], the results based on column-wise stacked velocity
component [Fig. 11(b)], and the results based on a separate PCA
analysis done on different components [Fig. 11(c)]. The top section
of the figure shows the mode magnitude obtained by assembling
the u and v modes shown in the bottom rows into a data array and
calculating the magnitude.

The first difference observed between the velocity magnitude
and vector-based modes is the background. In Fig. 11(a), the black
background corresponds to zero velocity, and there are both posi-
tive and negative velocity features. In the other two columns, the
gray background corresponds to zero, which is the lowest value
since this is a magnitude calculated from the u and v modes; there-
fore, all features have a positive sign. To account for the difference
in scale of the u and v modes, the singular vectors were multiplied
with their corresponding singular values before plotting. The two
velocity vector cases have almost identical mode structures, and
some modes are shifted (e.g., mode u-3). However, the velocity
magnitude-based modes are clearly distinct from the vector-based
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modes. The kuk-based modes are dominated by the u velocity,
while the vector-based modes are influenced more by the v velocity.

Stacking the velocity components column-wise is very conve-
nient and can be tied to shared matrix factorization.107

Nevertheless, it is not logical for most nonlinear methods during
temporal dimensionality reduction.

2. Hyperparameters

In this section, the hyperparameters used in different NDR
methods are presented. Table I lists the parameters used in the dif-
ferent manifold learning approaches, while Tables II–V list the
autoencoder parameters for different test cases.

FIG. 11. The first four odd-numbered PCA modes for flow over a cylinder, (a) using the velocity magnitude, (b) using the velocity vector and stacking the components column-
wise, (c) using the u and v velocity components separately. The top part shows the mode magnitudes, and the bottom part shows the u and v modes.
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TABLE I. Manifold learning hyperparameters: k—number of nearest neighbors, k and a—regularization parameters, c—RBF kernel parameter.

NDR
LLE KPCA LEM Isomap

Parameters k k c a k c k k k

Cylinder—spatial 30 10�9 10 10�3 30 100 10�9 50 10�9

Cylinder—temporal 300 10�9 5 10�3 200 100 10�9 200 10�9

Turbulent—spatial 15 10�9 20 1 15 10 10�9 30 10�6

Turbulent—temporal 700 10�9 5 1 103 100 10�9 800 10�9

ICA—spatial 30 10�9 6� 10�4 10�6 20 0.01 10�9 15 10�6

ICA—temporal 300 10�6 10�3 10�3 100 10�3 10�6 50 10�6

MCA—spatial 50 10�9 10�3 10�6 20 0.01 10�9 15 10�6

MCA—temporal 100 10�6 10�3 10�3 50 10�3 10�6 50 10�6

TABLE II. AE hyperparameters—cylinder case. Case name: AE type (AE/MDAE)—
spatial (S) or temporal reduction (T)—latent space size, layers: encoder layers—
bottleneck layers (always 1)—decoder layers.

Case Encoder structure Layers Batch size

AE-S-2 3961-1024-256-64-8-2 5-1-5 128
AE-S-4 3961-1024-256-64-16-4 5-1-5 128
AE-S-8 3961-1024-256-64-8 4-1-4 128
MDAE-S-2 3961-1024-256-64-2 4-1-4 128
MDAE-S-4 3961-1024-256-64-4 4-1-4 128
MDAE-S-8 3961-1024-256-64-8 4-1-4 128
AE-T-2 1000-256-64-16-8-2 5-1-5 256
AE-T-4 1000-256-64-16-4 4-1-4 256
AE-T-6 1000-256-64-16-6 4-1-4 256
AE-T-8 1000-256-64-32-8 4-1-4 256
AE-T-12 1000-256-64-32-12 4-1-4 256

TABLE III. AE hyperparameters—turbulent channel case. Case name: AE type (AE/
MDAE)—spatial (S) or temporal reduction (T)—latent space size, layers: encoder
layers—bottleneck layers (always 1)—decoder layers.

Case Encoder structure Layers Batch size

AE-S-2 16 384-4096-1024-256-32-8-2 6-1-6 256
AE-S-4 16 384-4096-1024-256-32-4 5-1-5 256
AE-S-8 16 384-4096-1024-256-32-8 5-1-5 256
AE-S-16 16 384-4096-1024-256-64-16 5-1-5 256
AE-S-32 16 384-4096-1024-256-32 4-1-4 256
AE-S-64 16 384-4096-1024-256-64 4-1-4 256
MDAE-S-2 16 384-4096-1024-256-64-16-2 6-1-6 256
MDAE-S-4 16 384-4096-1024-256-64-16-4 6-1-6 256
MDAE-S-8 16 384-4096-512-128-32-8 5-1-5 256
AE-T-2 2000-1000-500-128-16-2 5-1-5 256
AE-T-4 2000-500-200-100-32-4 5-1-5 256
AE-T-8 2000-500-200-100-32-8 5-1-5 256
AE-T-16 2000-1000-500-256-128-64-32-16 7-1-7 256
AE-T-32 2000-1000-500-256-128-64-32 6-1-6 256
AE-T-64 2000-1000-500-256-128-64 5-1-5 256

TABLE IV. AE hyperparameters—ICA case. Case name: AE type (AE/MDAE)—
spatial (S) or temporal reduction (T)—latent space size, layers: encoder layers—
bottleneck layers (always 1)—decoder layers.

Case Encoder structure Layers Batch size

AE-S-2 40 500-2048-512-64-8-2 5-1-5 128
AE-S-4 40 500-8192-2048-512-128-32-8-4 7-1-7 128
AE-S-8 40 500-8192-2048-512-128-32-8 6-1-6 128
AE-S-16 40 500-8192-2048-512-128-32-16 6-1-6 128
AE-S-32 40 500-8192-2048-512-128-64-32 6-1-6 128
MDAE-S-2 40 500-4096-1024-256-64-16-2 6-1-6 128
MDAE-S-4 40 500-8192-2048-512-128-32-8-4 7-1-7 128
MDAE-S-8 40 500-8192-2048-512-128-32-8 6-1-6 128
AE-T-2 1000-512-128-32-8-2 5-1-5 256
AE-T-4 1000-512-256-128-64-32-16-8-4 8-1-8 256
AE-T-8 1000-512-256-128-64-32-16-8 7-1-7 256
AE-T-16 1000-512-256-128-64-32-16 6-1-6 256
AE-T-32 1000-512-256-128-64-32 5-1-5 256

TABLE V. AE hyperparameters—MCA case. Case name: AE type (AE/MDAE)—
spatial (S) or temporal reduction (T)—latent space size, layers: encoder layers—
bottleneck layers (always 1)—decoder layers.

Case Encoder structure Layers Batch size

AE-S-2 10 167-2048-512-128-32-8-2 6-1-6 128
AE-S-4 10 167-2048-512-128-32-4 5-1-5 128
AE-S-8 10 167-2048-512-64-8 4-1-4 128
AE-S-16 10 167-2048-512-128-16 4-1-4 128
AE-S-32 10 167-2048-512-128-32 4-1-4 128
MDAE-S-2 10 167-4096-1024-256-64-16-2 6-1-6 128
MDAE-S-4 10 167-4096-1024-256-64-16-4 6-1-6 128
MDAE-S-8 10 167-2048-512-64-8 4-1-4 128
AE-T-2 1000-512-128-32-8-2 5-1-5 256
AE-T-4 1000-512-256-128-64-32-16-8-4 8-1-8 256
AE-T-8 1000-512-256-128-64-32-16-8 7-1-7 256
AE-T-16 1000-512-256-128-64-32-16 6-1-6 256
AE-T-32 1000-512-256-128-64-32 5-1-5 256
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