
Under review as a conference paper

HYRESPINNS: ADAPTIVE HYBRID RESIDUAL NET-
WORKS FOR LEARNING OPTIMAL COMBINATIONS
OF NEURAL AND RBF COMPONENTS FOR PHYSICS-
INFORMED MODELING

Madison Cooley, Robert M. Kirby, Shandian Zhe, & Varun Shankar
Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, UT 84112, USA
mcooley@sci.utah.edu, kirby, shankar, zhe@cs.utah.edu

ABSTRACT

Physics-informed neural networks (PINNs) are an increasingly popular class of
techniques for the numerical solution of partial differential equations (PDEs),
where neural networks are trained using loss functions regularized by relevant PDE
terms to enforce physical constraints. We present a new class of PINNs called
HyResPINNs, which augment traditional PINNs with adaptive hybrid residual
blocks that combine the outputs of a standard neural network and a radial basis
function (RBF) network. A key feature of our method is the inclusion of adaptive
combination parameters within each residual block, which dynamically learn to
weigh the contributions of the neural network and RBF network outputs. Addition-
ally, adaptive connections between residual blocks allow for flexible information
flow throughout the network. We show that HyResPINNs are more robust to
training point locations and neural network architectures than traditional PINNs.
Moreover, HyResPINNs offer orders of magnitude greater accuracy than compet-
ing methods on certain problems, with only modest increases in training costs.
We demonstrate the strengths of our approach on challenging PDEs, including
the Allen-Cahn equation and the Darcy-Flow equation. Our results suggest that
HyResPINNs effectively bridge the gap between traditional numerical methods
and modern machine learning-based solvers.

1 INTRODUCTION

Partial differential equations (PDEs) model a variety of phenomena across science and engineering and
are traditionally solved using numerical methods such as finite difference methods (LeVeque, 2007)
and finite elements (Strang et al., 1974). Physics-informed neural networks (PINNs) are meshless
methods (Raissi et al., 2019; Raissi, 2018) that solve PDEs by training deep feedforward neural net-
works (DNNs) using PDEs as soft constraints. This traditional PINN training method poses challenges
due to complicated loss landscapes arising from the PDE-based soft constraints (Krishnapriyan et al.,
2021). Recent approaches to ameliorating issues include curriculum learning (Krishnapriyan et al.,
2021), novel optimization techniques (Cyr et al., 2020), domain decomposition (X-PINNs) (Jagtap &
Karniadakis, 2020), gradient-enhanced training (G-PINNs) (Yu et al., 2022a), or discretely-trained
PINNs using RBF-FD approximations in place of automatic differentiation (DT-PINNs) (Sharma &
Shankar, 2022). Further significant strides have been made in developing new DNN architectures
to enhance PINNs’ representational capacity, including adaptive activation functions Jagtap et al.
(2020b;a), positional embeddings Liu et al. (2020); Wang et al. (2021b), and innovative architec-
tures Wang et al. (2021a); Sitzmann et al. (2020); Gao et al. (2021); Fathony et al. (2020); Moseley
et al. (2023); Kang et al. (2023).

In addition to architectural choices, certain training pathologies exist including, spectral bias (Ra-
haman et al., 2019; Wang et al., 2021b), unbalanced back-propagated gradients (Wang et al., 2021a;
2022b), and causality violations (Wang et al., 2022a; 2024b). Efforts focused on improving PINNs’

1

ar
X

iv
:2

41
0.

03
57

3v
1

 [
cs

.L
G

]
 4

 O
ct

 2
02

4

Under review as a conference paper

training performance include loss re-weighting schemes (Wang et al., 2021a; 2022b; McClenny &
Braga-Neto, 2020; 2023; Maddu et al., 2022) and adaptive resampling of collocation points, such as
importance sampling (Nabian et al., 2021), evolutionary sampling (Daw et al.), and residual-based
adaptive sampling (Wu et al., 2023).

Combining traditional methods with DNNs is a new line of research which focuses on leveraging the
advantages of both. For example, incorporating a Fourier feature layer to preprocess DNN inputs
enhances their capacity to capture high-frequency functions (Tancik et al., 2020), while also reducing
eigenvector bias in PINNs (Wang et al., 2021b; Raynaud et al., 2022). Fourier neural operators (Li
et al., 2020) utilize Fourier layers in the network architecture and have become a popular approach
for inverse problems. Chrysos et al. (2022; 2020) augment polynomial neural networks with DNNs,
with a direct focus on classification and discriminative problems. Further explorations encompass
alternative objective functions, such as those employing numerical differentiation techniques Huang &
Alkhalifah (2024) and variational formulations inspired by Finite Element Methods (FEM) Kharazmi
et al. (2019); Berrone et al. (2022); Patel et al. (2022), along with additional regularization terms to
expedite PINNs’ convergence Yu et al. (2022b); Son et al. (2021).

Recent work has investigated deep architectures for solving PDEs through methods such as stacked
DNNs (Howard et al., 2023) and residual blocks with adaptive gating parameters (Wang et al., 2024a).
Wang et al. (2024a) incorporate residual blocks with adaptive skip connections, which dynamically
balance the input and learned residuals at each layer. Specifically, they incorporate adaptive residual
blocks which dynamically balance the contributions of both the input and residual function at each
layer, while the stacked approach of Howard et al. (2023) utilizes transfer learning to improves the
ability of PINNs to handle complex, multi-scale PDEs.

While these deep residual based approaches show much promise, the increased architectural complex-
ity, leads to higher computational costs both in terms of memory and training time—requiring careful
selection of training routines to prevent instabilities or poor convergence. Finally, while Fourier
features help in capturing high-frequency components, they can still struggle with discontinuous
solutions or sharp interfaces, which are challenging for neural networks to approximate due to the
smoothness of typical activation functions.

To address these challenges, we propose a novel class of network architectures termed HyResPINNs,
that combines a standard DNN with a Radial Basis Function (RBF) network within bi-level adaptive
residual blocks, such that the relative contribution of both the DNN and RBF networks are adaptively
learned during training, along with the full residual block outputs. The proposed architecture leverages
the strengths of both smooth and non-smooth function approximators to model complex physical
systems. The standard DNN using smooth activation functions effectively captures the continuous,
global behaviors of the solution, which are common in many physical phenomena. While the RBF
network then captures the localized, discontinuous or sharp features in the target solution. This
representational division ensures that the model can accurately capture both smooth and non-smooth
components of the solution, forming a robust network capable of modeling many types of physical
systems.

Our main contributions are summarized as follows:

• Propose a novel adaptive residual architecture: We introduce a new class of physics-
informed neural networks, HyResPINN, that combine standard neural networks with Radial
Basis Function (RBF) networks within bi-level adaptive residual blocks.

• Demonstrate the superiority of the block structure: We show that our residual block
architecture provides significant improvements over standard approaches in capturing both
smooth and non-smooth features, leading to more accurate modeling of complex physical
systems.

• Highlight the benefits of adaptivity between residual blocks: We demonstrate that the
adaptive learning of contributions between the NN and RBF networks, as well as between
residual blocks, results in superior performance and stability compared to non-adaptive
methods.

• Thorough empirical evaluation: Show our method HyResPINN outperforms standard
PINNs along with state of the art methods in PINNs on an array of baseline problems,
confirming the general applicability of HyResPINNs.

2

Under review as a conference paper

2 BACKGROUND

2.1 PHYSICS-INFORMED NEURAL NETWORK

Given the spatio-temporal domain Ω ⊂ Rd defined on [0, T] × Ω ⊂ R1+d where Ω is a bounded
domain in Rd with regular enough boundary ∂Ω, the general form of a parabolic PDE is,

ut + F [u] = f , (1)

such that F [·] is a linear or nonlinear differential operator, and u(t,x) denotes a unknown solution.

The general initial and boundary conditions can be then formulated as:

u(0,x) = g(x), x ∈ Ω , (2)
B[u] = 0, t ∈ [0, T], x ∈ ∂Ω . (3)

Here, f and g(x) are given functions with certain regularity; B[·] denotes an abstract boundary
operator, representing various boundary conditions such as Dirichlet, Neumann, Robin, and periodic
conditions.

We aim at approximating the unknown solution u(t,x) by a deep neural network uθ(t,x), where
θ denotes the set of all trainable parameters of the network (e.g., weights and biases). If a smooth
activation function is employed, uθ provides a smooth representation that can be queried for any
(t,x). The PDE residuals are defined as,

Rint[uθ](t,x) =
∂uθ

∂t
(t,x) +D[uθ](t,x)− f(x) , (t,x) ∈ [0, T]× Ω , (4)

and spatial and temporal boundary residuals, respectively, by

Rbc[uθ](t,x) = B[uθ](t,x) , (t,x) ∈ [0, T]× ∂Ω , (5)

and

Ric[uθ](x) = uθ(0,x)− g(x) , x ∈ Ω . (6)

Then, we train a physics-informed model by minimizing the following composite empirical loss:

L(θ) := 1

Nic

Nic∑
i=1

∣∣Ric[uθ](x
i
ic)
∣∣2

︸ ︷︷ ︸
Lic(θ)

+
1

Nbc

Nbc∑
i=1

∣∣Rbc[uθ](t
i
bc,x

i
bc)
∣∣2

︸ ︷︷ ︸
Lbc(θ)

+
1

Nr

Nr∑
i=1

∣∣Rint[uθ](t
i
r,x

i
r)
∣∣2

︸ ︷︷ ︸
Lr(θ)

,

(7)

which aims to enforce the neural network function uθ to satisfy the PDEs (1) with initial and spatial
boundary conditions (2)–(3). The training data points {xi

ic}
Nic
i=1, {tibc,xi

bc}
Nbc
i=1 and {tir,xi

r}
Nr
i=1 can

be the vertices of a fixed mesh or points randomly sampled at each iteration of a gradient descent
algorithm.

2.2 RADIAL BASIS FUNCTION NETWORKS

The general form of an RBF network for the training data points x = {xi}Ni=1 with corresponding
function values yi is given by,

f(x) =

Nc∑
j=1

cjϕ(||x− xc
j ||), (8)

where xc = {xc
j}

Nc
j=1 are the center points of the radial basis functions (RBFs). Here, ϕ represents

the radial basis function, which are commonly chosen as the Gaussian, multi-quadric, or inverse
multi-quadric functions, each offering different characteristics and benefits. The elements of the
kernel matrix are given by:

Kij = ϕ(||xi − xc
j ||), (9)

3

Under review as a conference paper

W ∈ RNc×p

K(x1, x2, t) ∈ RN×Nc

Weight Layer

σ

Weight Layer

x ∈ RN×d or x ∈ RN×p

+

(1− ψ(α(l)))F
(l)
K (x) ∈ RN×p

ψ(α(l))F
(l)
N (x) ∈ RN×p

σ̄
(
H(x)

)
∈ RN×p

RBF Net NN

Hybrid Residual Block

Figure 1: Illustration of the RBF+PINN hybrid residual block with trainable strength connections between the
RBF and PINN outputs.

where xi represent the data points, and (9) evaluates the RBF based on the distance between the
points. The kernel matrix captures the pairwise interactions between data points through the chosen
RBF, and its structure is typically symmetric and positive-definite, assuming an appropriate choice
of ϕ. The choice of center points can vary depending on the application; in some cases, the center
points may coincide with the data points, but they may also be selected independently of the data
points to optimize approximation accuracy or computational efficiency. The RBFs determine how
much influence each center has on the input, based on the distance between the input and the center.

Gradient descent is sometimes used to optimize both the centers and the unknown weights (cj)
simultaneously. These approaches are referred to as RBF networks, where the radial basis functions
are the hidden layer activations, and the RBF coefficients are the trainable network parameters.
The mean-squared error between the linear combination of the hidden layer outputs and the known
functions values is commonly minimized.

3 HYBRID RESIDUAL PINNS (HYRESPINNS)

In this section, we describe our proposed architecture—HyResPINNs. HyResPINNs are a novel type
of residual network such that each residual block incorporates an RBF kernel along with a standard
DNN.

3.1 HYBRID RESIDUAL BLOCKS

Figure 1 shows the hybrid residual block specifics. We denote the output of the l-th residual block
for the input x(l) as H(l)(x(l)). Formally, the forward pass of each hybrid residual block in the
HyResPINN architecture is,

H(l)(x(l)) = σ
(
ϕ(α(l))F

(l)
R (x(l)) + (1− ϕ(α(l)))F

(l)
N (x(l))

)
, (10)

4

Under review as a conference paper

such that σ is some non-linear activation function, α(l) ∈ R is a trainable parameter, ϕ represents the
sigmoid function, F (l)

R (x(l)) is the output of the RBF network and F (l)
N (x(l)) is the output from a

DNN or PINN within the l-th block.

Hybrid Block Hybrid Block Hybrid BlockInputs ᾱ ᾱ ᾱ DNN Outputs

ϕ(β(1)) ϕ(β(2))

Figure 2: Illustration of the HyResPINN architecture using three blocks.

Adaptive Hybrid Contribution Coefficients The trainable parameter α(l) controls the relative
contributions of the DNN and RBF components to the output—where optimizing α finds the best
balance between these two elements. Since the sigmoid function ϕ constrains its output to the
range [0, 1], the resulting output is a convex combination of the RBF and DNN components. We
further incorporate adaptable residual connection parameters between each hybrid block, denoted as
β(l)—similar to the approaches in (Howard et al., 2023) and (Wang et al., 2024a)

However, unlike (Wang et al., 2024a), where their adaptable parameters are initialized to zero to
force the network to learn non-linearities from scratch, we initialize each α(l) = 0.5, ensuring equal
contributions from both components at the start of training, and each β(l) = 1. When α = 1, only the
RBF network contributes; when α = 0, only the DNN contributes. The optimal choice of α depends
on the problem characteristics. For problems with large regions of smoothness, the model might
favor a lower α, assigning more weight to the DNN components in each residual block. Conversely,
for problems involving sharp transitions or discontinuities, a higher α (favoring the RBF) may be
preferable. In hybrid problems with smooth and non-smooth regions, α will likely fall between 0.4
and 0.6, providing a balanced combination of the two networks.

To encourage smoother solutions and prevent the network from introducing excessive non-linearity,
we add a regularization term to each block’s trainable parameter α. This regularization penalizes
large values of α, effectively controlling the contribution of non-linearity from the RBF components.
Specifically, the total loss function is defined as:

L = λicLic(θ) + λbcLbc(θ) + λrLr(θ) + λp

Nblocks∑
i=1

α2
i , (11)

where Lic and Lbc represent the loss terms for the initial and boundary conditions, Lr represents
the residual loss, and the final term λp

∑Nblocks

i=1 α2
i acts as an L2 regularization on the α parameters.

The regularization helps balance the contributions of the smooth neural network and non-linear RBF
components, promoting smoother solutions and more stable training.

Adaptive RBF Block Kernel The output of the RBF kernel F (l)
R (x(l)) can be described as,

F
(l)
R (x(l)) = K(x)W, (12)

such that the kernel matrix K is defined as (9) where the kernel matrix K is based on the Wendland
C4 kernel in 2D. In this work, we focus on isotropic version of the Wendland kernel.

The isotropic Wendland C4 kernel for input x and the i-th center is defined as:

ϕi(x) =

(
1− ∥x− xc

i∥
τi

)6

+

(
35

(
∥x− xc

i∥
τi

)2

+ 18
∥x− xc

i∥
τi

+ 3

)
, (13)

where xc
i is the center of the i-th RBF, τ is a scaling parameter, and ∥x−xc

i∥ represents the Euclidean
distance between x and xc

i . The Wendland kernel is compactly supported, meaning ϕi(x) = 0 for
∥x − xc

i∥ ≥ τi, which leads to sparse kernel matrices and computational efficiency. Each τi is a
trainable parameter in the network and optimize through gradient descent along with all other network
parameters. Figure 3 demonstrates learned scale parameters within an optimized RBF kernel.

5

Under review as a conference paper

Figure 3: 2D Allen-Cahn equation: Comparison of (a subset of) the learned RBF kernels for a
standard RBF network (top row) and the proposed hybrid RBF+NN residual block approach (bottom
row). Each subplot shows the RBF value corresponding to different learned RBF centers in the input
domain, marked by red crosses.

Block Neural Network Following the convention of Cyr et al. (2020), we represent the output of
the DNN F

(l)
N (x(l)) F

(l)
N ∈ Rd → R of width w, as a linear combination of adaptive basis functions

given by

F
(l)
N (x; a, θh) =

w∑
i=1

aiσi
(
x; θh

)
, (14)

where each aj for j = 1, .., w and θh constitute the weights and biases in the last layer and hidden
layers respectively, forming the set of all network parameters θ. Then, each σj are non-linear smooth
activation functions such as Tanh acting on the outputs of the hidden layers. We choose to use a
standard DNN architecture, but any DNN architecture such as ResNets, would work. The parameters
θ are computed through some iterative optimization technique. In this work, we use variants of
gradient descent methods such as ADAM Kingma & Ba (2015) and L-BFGS Liu & Nocedal (1989).

Figure 2 shows a visualization of our full model architecture with adaptive residual block skip
connections, along with the input block structure used to lift the inputs to the desired higher dimension,
and the output neural network block used to project each block’s output down to the output dimension.

Problem Domain Boundary Cond. PINN ResPINN Expert Stacked PirateNet HyResPINN
Allen-Cahn 1D Space/Time Periodic 0.526 0.0027 0.00386 0.00587 0.00022 9.62× 10−5

DarcyFlow 2D Annulus Neumann 0.00075 0.00046 0.0005 0.0009 8.71× 10−5 5.44× 10−5

(smooth coefficients) Dirichlet 0.0020 0.0014 0.00012 0.0041 0.00017 6.0× 10−5

3D Annulus Neumann 0.0022 0.012 0.021 0.054 0.039 0.0012

Dirichlet 0.0085 0.0061 0.0011 0.039 0.0013 0.0011

(rough coefficients) 2D Box Neumann 6.85× 10−5 2.69× 10−5 0.00011 0.00015 5.44× 10−5 1.05× 10−5

Table 1: Relative L2 test error results for various PDE problems and baseline methods.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we demonstrate the effectiveness of the proposed HyResPINNs architecture across a
diverse collection of benchmark problems compared to the leading baseline methods. We show that
HyResPINNs consistently produce lower relative L2 errors between the predicted and ground truth
solutions for the same training set size when compared to the applicable baselines trained under the
same experimental procedures and hyperparameters. We compare each method on the 1D non-linear
hyperbolic Allen-Cahn equation and the Darcy Flow equation in two and three dimensions with both
Dirichlet and Neumann boundary conditions. Our main results are summarized in Table 1.

6

Under review as a conference paper

0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
HyResPINN

0.0 0.5 1.0

PINN

0 1

RBFNet

0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Abs. Error

0.0 0.5 1.0

Abs. Error

0 1

Abs. Error

1 0 1
x

1.0

0.8

0.6

0.4

0.2

0.0

u

t = 0.25

Exact
HyResPINN
PINN
RBFPINN

1 0 1
x

t = 0.50

1 0 1
x

t = 0.99

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Figure 4: 2D Allen-Cahn equation: Comparison
of the predicted solutions for the Allen-Cahn equa-
tion using HyResPINN, standard PINN, and RBF
network models. The top row shows the predicted
solutions at for HyResPINN (left), standard PINN
(center), and RBF network (right). The second row
illustrates the absolute error between the predicted
solutions and the exact solution. The bottom row
shows the predicted solutions for three time steps
comparing the exact solution (green), HyResPINN
(orange), and standard PINN (dashed blue). The
HyResPINN model effectively captures both the
smooth and sharp features of the solution, while
the standard PINN struggles with sharp transitions,
leading to larger errors in these regions.

Baseline Methods. We compare the proposed
HyResPINN against a suite of baseline methods
under exactly the same hyper-parameter settings
in each example. Baselines include the standard
PINN as originally formulated in (Raissi et al.,
2019) (PINN), a PINN based on the architectural
guidelines proposed in Wang et al. (2023) (Ex-
pertPINNs), PINNs with residual connections
(ResPINNs), PirateNets Wang et al. (2024a),
and the stacked PINN approach of (Howard
et al., 2023) (StackedPINNs). To ensure a fair
comparison, we implemented the approaches de-
tailed in (Raissi et al., 2019; Wang et al., 2024a;
2023; Howard et al., 2023) following the archi-
tectural details provided in each.

Experimental Setup. We follow similar exper-
imental design procedures as those described
in Wang et al. (2022a; 2023; 2024a). A full de-
scription of the experimental setups are included
in Appendix A, and exact hyper-parameter set-
ting are detailed in Table 2. We train all models
on Nvidia A100 GPU running Centos 7.2. Code
for our methods and all compared baseline ap-
proaches is written in libtorch 1.11 (the C++
version of PyTorch) and will be made publicly
available upon publication.

4.1 1D ALLEN-CAHN

We first focus on the Allen-Cahn equation, a
challenging benchmark for conventional PINN
models that has been extensively studied in re-
cent literature (Wight & Zhao, 2020; Wang
et al., 2022a; Daw et al.). For simplicity, we
consider the one-dimensional case with a peri-
odic boundary condition with t ∈ [0, 1], and
x ∈ [−1, 1]:

ut − 0.0001uxx + 5u3 − 5u = 0 ,

u(0, x) = x2 cos(πx) ,

u(t,−1) = u(t, 1) , ux(t,−1) = ux(t, 1) .

The Allen-Cahn PDE is an interesting benchmark for PINNs as it introduces periodic boundary
conditions, and because it is a “stiff” PDE that challenges PINNs to approximate solutions with sharp
space and time transitions.

Hybrid residual blocks improve prediction accuracy. We first demonstrate that the hybrid
residual block structure introduced in our method enhances the ability to capture both smooth
and sharp features in the 2D Allen-Cahn solution. As shown in Figure 4, the proposed approach
outperforms competing baselines, which struggle to accurately represent the sharp transitions in
the solution. This difficulty arises from the smoothness constraints of standard neural network
architectures. In contrast, our method effectively captures these sharp transitions by leveraging a
combination of smooth neural networks and adaptive non-smooth RBF kernels, allowing the model
to balance between global smooth behavior and localized discontinuities. Figure 3 shows a random
subset of the learned RBF kernels captured by the proposed hybrid approach. Specifically, it captures
similar RBF structures (to a standard RBF network), but benefits from the additional flexibility
provided by the NN component, allowing for more nuanced function approximation in regions
requiring a balance of smoothness and sharp transitions. This is likely apparent in the on average
smaller smaller kernels learned by the hybrid block.

7

Under review as a conference paper

4 6 8 10 12
Number of Hidden Layers

10 3

10 2

M
ea

n
Re

la
tiv

e
L2 E

rro
r

ResPINN
HyResPINN

PiratePINN
StackedPINN

Figure 5: Allen-Cahn equation:
Comparison of the mean relative
L2 error using various methods
as a function of the number of
hidden layers.

Stacking structure of residual blocks improve prediction accu-
racy. We next show that the stacking structure employed by the
HyResPINN in each hybrid residual block structure introduced
here further helps to capture the smooth and sharp features in
the Allen-Cahn solution. Figure 5 shows the predicted solutions
between the proposed method and the competing baselines. The
competing methods need help accurately capture the sharp tran-
sitions in the solutions. In contrast, our approach more accurately
captures these sharp transitions due to the conjunction of the
smooth neural network architecture and the learned non-smooth
RBF kernels.

We next evaluate the effect of network depth on predictive accu-
racy for different architectures. Figure 5 HyResPINN consistently
achieves the lowest error across different network depths. The
performance of other methods shows varying sensitivity to the
number of hidden layers, with HyResPINN offering the most
robust performance. Further, the left plot in Figure 6 shows that

HyResPINN and PiratePINN achieve the lowest error over iterations, with HyResPINN consistently
reducing the error more effectively than the other methods. The right plot demonstrates that—
although HyResPINN has a slightly higher training cost—it significantly outperforms other methods
in accuracy, particularly for long training times. These results highlight the robustness and efficiency
of HyResPINN in solving complex PDEs.

0 50000 100000 150000 200000 250000 300000
Iterations

10 4

10 3

10 2

10 1

100

M
ea

n
Re

la
tiv

e
L2 E

rro
r

103 104 105 106 107

Mean Training Time (s)

10 4

10 3

10 2

10 1

100

M
ea

n
Re

la
tiv

e
L2 E

rro
r

PINN StackedPINN ResPINN PiratePINN ExpertPINN HyResPINN

Figure 6: Allen-Cahn equation: Comparison of mean relative L2 error
across various methods, plotted against the number of training iterations
(left) and the mean training time (right). Vertical bars in right plot indicate
the time for which each method achieved an error of 10−2.

Remark While
attempting to replicate
the results of (Wang
et al., 2024a), us-
ing the reported
hyperparameters
and implementation
details, we observed
a slight performance
gap between the
results obtained in
our implementation
and those listed in
their paper. The
observed discrepancy
in the final model’s
performance could
stem from several factors such as subtle variations in the implementation environment—such as
hardware differences, software library versions, or random seed initialization. Despite the differences
between our replication results and those reported in (Wang et al., 2024a), the comparison between
our architecture and the replicated version of their approach remains fair, as both were tested under
identical conditions using the same dataset, hyperparameters, and training setup (including hardware
and software environment). Our findings indicate that our architecture outperforms the replicated
version of their model in many cases, along with all other replicated baseline methods.

4.2 DARCY FLOW

In this section, we describe the Darcy Flow problem, an elliptic boundary value problem given by,

−∇ · µ∇ϕ = f in Ω (15)

ϕ = u on ΓD

n · µ∇ϕ = g on ΓN

where ΓD and ΓN denote Dirichlet and Neumann parts of the boundary Γ, respectively, µ is a
symmetric positive definite tensor describing a material property and f , u and g are given data.

8

Under review as a conference paper

In important applications such as porous media flow, heat transfer, and semiconductor devices,
the flux u = −µ∇ϕ is the variable of primary interest. Specifically, during the fabrication of
semiconductor devices, impurities are introduced into the silicon substrate to alter its electrical
properties—a process known as doping. The diffusion of dopants can be described by equations
that are similar in form to Darcy’s law, where the dopant concentration gradient drives the diffusion
process. In semiconductor doping, impurities are introduced into the substrate to change its electrical
properties. This involves diffusion, where the concentration gradient drives the movement of dopant
atoms into the semiconductor material. While Darcy’s law governs fluid flow through porous media
based on pressure gradients, the diffusion of dopants in semiconductors is guided by concentration
gradients, analogous to how fluids move through porous materials in Darcy’s law.

103 104

Training Set Size

10 4

10 3

10 2

10 1

M
ea

n
Re

la
tiv

e
L2 E

rro
r

Dirichlet Boundaries

103 104

Training Set Size

10 4

10 3

10 2

10 1

M
ea

n
Re

la
tiv

e
L2 E

rro
r

Neumann Boundaries

PINN
ResPINN

PiratePINN
StackedPINN

ExpertPINN
HyResPINN

104

Training Set Size

10 3

10 2

10 1

M
ea

n
Re

la
tiv

e
L2 E

rro
r

Dirichlet Boundaries

104

Training Set Size

10 3

10 2

10 1

M
ea

n
Re

la
tiv

e
L2 E

rro
r

Neumann Boundaries

PINN
ResPINN

PiratePINN
StackedPINN

ExpertPINN
HyResPINN

Figure 7: 2D and 3D Smooth Darcy Flow equation: Comparison of the mean relative L2 errors
across each baseline method for the 2D Darcy Flow problem (left) and the 3D Darcy flow problem
(right) plotted against the number of training collocation points. Solid lines show the solution error,
while dashed lines show the x-directional flux errors.

4.2.1 ANNULUS DOMAIN WITH SMOOTH COEFFICIENTS

We initially showcase the convergence rate of our method by employing smooth manufactured
solutions. We consider two scenarios: one within an annular 2D domain, and another within a 3D
domain formed by extruding the 2D geometry in the z-direction, resulting in a cylinder with a height
of two. We present a convergence study analyzing the error rate as the number of points increases.
The exact solutions are set as,

u(x, y) = sin(x) sin(y), u(x, y, z) = sin(x) sin(y) sin(z), (16)

for the 2D and 3D cases, respectively. By substituting these exact solutions into the model problem
we define the source term and the boundary data. We solve the discrete problem with either Dirichlet
or Neumann boundary conditions. Convergence results are shown in Figure 7 for the two and three
dimensional problems and demonstrate that HyResPINNs remain robust to boundary condition type,
size of training set (achieves lowest errors compared to the baselines for fewer training points), and
problem dimension.

4.2.2 2D BOX DOMAIN WITH ROUGH COEFFICIENTS

A defining feature of methods for solving the Darcy Flow equation 4.2, lies in their proficiency in
accurately depicting the flux variable in scenarios where the coefficients µ are discontinuous. In these
instances, the flux’s normal component maintains continuity across material interfaces, whereas the
tangential component may exhibit discontinuities. In contrast, collocated methods like Galerkin, stabi-
lized Galerkin, and least-squares finite elements often fail to replicate this physical behavior, typically
resulting in oscillations at the interface. In this section, we demonstrate that HyResPINNs success-
fully provides physically accurate flux approximations for problems characterized by discontinuous
coefficients.

The initial example presented is the well-documented "five strip problem" Nakshatrala et al. (2006);
Masud & Hughes (2002), which serves as a conventional manufactured solution test to evaluate
a method’s capability to preserve the continuity of normal flux. The prescribed exact solution on
domain Ω = [0, 1]2 is given by,

ϕex = 1− x, and ΓN = Γ, (17)

9

Under review as a conference paper

such that Ω is divided in five equal strips,

Ωi = {(x, y) | 0.2(i− 1) ≤ y ≤ 0.2i ; 0 ≤ x ≤ 1}, i = 1, ..., 5 (18)

with different µi on each Ωi such that µ1 = 16, µ2 = 6, µ3 = 1, µ4 = 10, µ5 = 2. We solve
the discrete problem with Neumann boundary conditions. Convergence results are shown in Figure 8
and show that HyResPINNs provide accurate solutions, albeit with larger training sizes.

5 CONCLUSION

102 103 104

Training Set Size

10 5

10 4

10 3

10 2

M
ea

n
Re

la
tiv

e
L2 E

rro
r

Neumann Boundaries

PINN
ResPINN

PiratePINN
StackedPINN

ExpertPINN
HyResPINN

Figure 8: 2D Rough Darcy Flow equation: Com-
parison of the mean relative L2 errors across vari-
ous methods, plotted against the number of training
collocation points. Solid lines show the solution
error, while dashed lines show the x-directional
flux errors.

In this work, we introduced HyResPINNs, a
novel class of physics-informed neural networks
that incorporate adaptive hybrid residual blocks
combining the strengths of standard neural net-
works and radial basis function (RBF) networks.
Our architecture effectively captures continu-
ous and discontinuous features by leveraging
smooth and non-smooth function approximators.
The adaptive combination parameters within
each block allow the model to balance the con-
tributions of neural and RBF components dur-
ing training. Furthermore, including Wendland
kernels enhances the model’s ability to handle
sharp transitions while maintaining computa-
tional efficiency. Our experiments demonstrate
that HyResPINNs outperform traditional PINNs
and state-of-the-art methods in accuracy and ro-
bustness, particularly for problems involving
mixed smooth and non-smooth regions. This
work increases the flexibility and generalizabil-
ity of PINNs by bridging the gap between clas-
sical numerical methods and DNN-based ap-
proaches for solving PDEs.

REFERENCES

Stefano Berrone, Claudio Canuto, and Moreno Pintore. Variational physics informed neural networks:
the role of quadratures and test functions. Journal of Scientific Computing, 92(3):100, 2022.

Grigorios G Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Jiankang Deng,
and Stefanos Zafeiriou. P-nets: Deep polynomial neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7325–7335, 2020.

Grigorios G Chrysos, Markos Georgopoulos, Jiankang Deng, Jean Kossaifi, Yannis Panagakis, and
Anima Anandkumar. Augmenting deep classifiers with polynomial neural networks. In European
Conference on Computer Vision, pp. 692–716. Springer, 2022.

Eric C Cyr, Mamikon A Gulian, Ravi G Patel, Mauro Perego, and Nathaniel A Trask. Robust training
and initialization of deep neural networks: An adaptive basis viewpoint. In Mathematical and
Scientific Machine Learning, pp. 512–536. PMLR, 2020.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Rethinking the importance of
sampling in physics-informed neural networks.

Suchuan Dong and Naxian Ni. A method for representing periodic functions and enforcing exactly
periodic boundary conditions with deep neural networks. Journal of Computational Physics, 435:
110242, 2021.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
In International Conference on Learning Representations, 2020.

10

Under review as a conference paper

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive
convolutional neural networks for solving parameterized steady-state pdes on irregular domain.
Journal of Computational Physics, 428:110079, 2021.

Amanda A Howard, Sarah H Murphy, Shady E Ahmed, and Panos Stinis. Stacked networks improve
physics-informed training: applications to neural networks and deep operator networks. arXiv
preprint arXiv:2311.06483, 2023.

Xinquan Huang and Tariq Alkhalifah. Efficient physics-informed neural networks using hash
encoding. Journal of Computational Physics, 501:112760, 2024.

Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics, 28(5):2002–2041, 2020.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Locally adaptive activation
functions with slope recovery for deep and physics-informed neural networks. Proceedings of the
Royal Society A, 476(2239):20200334, 2020a.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020b.

Namgyu Kang, Byeonghyeon Lee, Youngjoon Hong, Seok-Bae Yun, and Eunbyung Park. Pixel:
Physics-informed cell representations for fast and accurate pde solvers. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 8186–8194, 2023.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

Ziqi Liu, Wei Cai, and Zhi-Qin John Xu. Multi-scale deep neural network (mscalednn) for solving
poisson-boltzmann equation in complex domains. arXiv preprint arXiv:2007.11207, 2020.

Suryanarayana Maddu, Dominik Sturm, Christian L Müller, and Ivo F Sbalzarini. Inverse dirichlet
weighting enables reliable training of physics informed neural networks. Machine Learning:
Science and Technology, 3(1):015026, 2022.

Arif Masud and Thomas JR Hughes. A stabilized mixed finite element method for darcy flow.
Computer methods in applied mechanics and engineering, 191(39-40):4341–4370, 2002.

Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a
soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

Levi D McClenny and Ulisses M Braga-Neto. Self-adaptive physics-informed neural networks.
Journal of Computational Physics, 474:111722, 2023.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Under review as a conference paper

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
networks (fbpinns): a scalable domain decomposition approach for solving differential equations.
Advances in Computational Mathematics, 49(4):62, 2023.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, 2021.

KB Nakshatrala, DZ Turner, KD Hjelmstad, and Arif Masud. A stabilized mixed finite element
method for darcy flow based on a multiscale decomposition of the solution. Computer Methods in
Applied Mechanics and Engineering, 195(33-36):4036–4049, 2006.

Ravi G Patel, Indu Manickam, Nathaniel A Trask, Mitchell A Wood, Myoungkyu Lee, Ignacio Tomas,
and Eric C Cyr. Thermodynamically consistent physics-informed neural networks for hyperbolic
systems. Journal of Computational Physics, 449:110754, 2022.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations.
The Journal of Machine Learning Research, 19(1):932–955, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Gaétan Raynaud, Sébastien Houde, and Frédérick P. Gosselin. Modalpinn: An extension of physics-
informed neural networks with enforced truncated fourier decomposition for periodic flow recon-
struction using a limited number of imperfect sensors. Journal of Computational Physics, 464:
111271, 2022. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2022.111271. URL https:
//www.sciencedirect.com/science/article/pii/S0021999122003333.

Ramansh Sharma and Varun Shankar. Accelerated training of physics-informed neural networks
(PINNs) using meshless discretizations. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=NYpU9BRODos.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Hwijae Son, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. Sobolev training for physics
informed neural networks. arXiv preprint arXiv:2101.08932, 2021.

Gilbert Strang, George J Fix, and DS Griffin. An analysis of the finite-element method. 1974.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature networks:
From regression to solving multi-scale pdes with physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 384:113938, 2021b.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022a.

12

https://www.sciencedirect.com/science/article/pii/S0021999122003333
https://www.sciencedirect.com/science/article/pii/S0021999122003333
https://openreview.net/forum?id=NYpU9BRODos

Under review as a conference paper

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022b.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learning
with residual adaptive networks. arXiv preprint arXiv:2402.00326, 2024a.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024b.

Colby L Wight and Jia Zhao. Solving allen-cahn and cahn-hilliard equations using the adaptive
physics informed neural networks. arXiv preprint arXiv:2007.04542, 2020.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022a.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022b.

13

Under review as a conference paper

A EXPERIMENTAL DESIGN

We use mini-batch gradient descent, where collocation points are randomly sampled during training
iteration, for all Allen-Cahn experiments, and we use full-batch gradient descent (but varying training
set size) for all other experiments. We use the Adam optimizer Kingma & Ba (2015), and follow
the learning rate schedule of Wang et al. (2023) which starts with a linear warm-up phase of 5, 000
iterations, starting from zero and gradually increasing to 10−3, followed by an exponential decay at a
rate of 0.9. Following the best practices described in Wang et al. (2023), we also employ a learning
rate annealing algorithm Wang et al. (2021a; 2023) to balance losses and causal training Wang
et al. (2022a; 2023) to mitigate causality violation in solving time-dependent PDEs and apply exact
periodic boundary conditions Dong & Ni (2021) when applicable. We use the hyperbolic tangent
activation functions and initialize each network’s parameters using the Glorot normal scheme, unless
otherwise specified. We ran five random trials for each test, and report the mean values achieved in
each plot and table.

Parameter Value

Architecture
Number of layers 9
Number of channels 128
Activation Tanh
Fourier feature scale 2.0
Random weight factorization µ = 1.0, σ = 0.1

Learning rate schedule
Initial learning rate 10−3

Decay rate 0.9
Decay steps 5× 103

Warmup steps 5× 103

Training
Training steps 3× 105

Weighting
Weighting scheme Gradient Norm Wang et al. (2022b; 2023)
Causal tolerance 1.0
Number of chunks 32

Table 2: Hyper-parameter configurations for experiments.

14

	Introduction
	Background
	Physics-informed neural network
	Radial Basis Function Networks

	Hybrid Residual PINNs (HyResPINNs)
	Hybrid Residual Blocks

	Experimental Results and Discussion
	1D Allen-Cahn
	Darcy Flow
	Annulus Domain with Smooth Coefficients
	2D Box Domain with Rough Coefficients

	Conclusion
	Experimental Design

