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Abstract. We present polynomial-augmented neural networks (PANNs), a novel machine learn-
ing architecture that combines deep neural networks (DNNs) with a polynomial approximant. PANNs
combine the strengths of DNNs (flexibility and efficiency in higher-dimensional approximation) with
those of polynomial approximation (rapid convergence rates for smooth functions). To aid in both
stable training and enhanced accuracy over a variety of problems, we present (1) a family of orthog-
onality constraints that impose mutual orthogonality between the polynomial and the DNN within
a PANN; (2) a simple basis pruning approach to combat the curse of dimensionality introduced by
the polynomial component; and (3) an adaptation of a polynomial preconditioning strategy to both
DNNs and polynomials. We test the resulting architecture for its polynomial reproduction prop-
erties, ability to approximate both smooth functions and functions of limited smoothness, and as
a method for the solution of partial differential equations (PDEs). Through these experiments, we
demonstrate that PANNs offer superior approximation properties to DNNs for both regression and
the numerical solution of PDEs, while also offering enhanced accuracy over both polynomial and
DNN-based regression (each) when regressing functions with limited smoothness.
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1. Introduction. Recent advancements in machine learning, particularly within
deep neural networks (DNNs), have significantly impacted various scientific fields due
to their broad applicability and flexibility [34, 38, 74]. DNNs are popular primarily
due to their expressiveness, scalability, and efficient optimization with gradient de-
scent methods through the use of automatic differentiation. DNNs are versatile tools
capable of solving diverse problems ranging from classification and regression to PDE
approximation and image recognition. Recently, DNNs have also been applied to
both forward and inverse partial differential equations (PDEs) in the form of physics-
informed neural networks (PINNs), which extend the capabilities of standard DNNs
by incorporating a physics-based loss term into the data loss [61, 62]. DNNs are also
generalizable on diverse data and domain types without requiring a priori knowledge
of solution characteristics [48, 50]. This property is especially beneficial in the con-
text of PINNs, as they eliminate the need for mesh generation that is mandated by
many traditional numerical methods for PDEs. Furthermore, DNNs arguably break
the curse of dimensionality [7, 12, 29, 32], meaning that as the problem dimension
increases, the required network size for accurate approximations does not grow ex-
ponentially with dimension. These traits allow DNNs to approximate complicated
functions effectively [18].

Despite the many advantages of DNNs, their use comes with significant challenges
in model initialization and training [30, 39]. For instance, DNNs encounter issues like
vanishing or exploding gradients during training, where the back-propagated gradients
either approach zero or increase exponentially respectively; this could either result in
very slow training or high generalization errors [28, 57]. Spectral bias is an additional
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challenge, manifesting as quick convergence to the low-frequency components of the
target solution while struggling with high-frequency components [5, 60, 72]—an issue
that also extends to PINNs [70]. Furthermore, DNNs are prone to overfitting the
training data [69], hence compromising their generalizability.

Traditional approximation methods, especially those involving polynomials, re-
main a strong choice for both function approximation and the solution of PDEs. How-
ever, polynomial least-squares methods, while robust in many applications, also face
many challenges. Polynomial least-squares typically require oversampling to achieve
stability [3, 2, 45, 51] even on tensor-product grids. Polynomial approximation can
also be generalized to non-tensor-product grids (and hence irregular domains), but this
requires the use of sophisticated techniques such as on-the-fly basis function recompu-
tation [9, 19, 73] or localization [11, 33, 68]. In addition, naive polynomial approxima-
tion is subject to the curse of dimensionality, where the number of polynomial basis
functions grows exponentially with dimension. Common techniques to combat this
explosive growth of the number of basis functions include compressive sensing [1, 44]
(which induces sparsity in the polynomial coefficients), Smolyak/sparse grids (which
utilize sparse tensor-product grids) [10, 26, 40, 71], or hyperbolic cross approximation
(which utilizes only a subset of the polynomial basis) [20, 21, 67]. In general, (global)
polynomial methods are well-suited to approximating smooth target functions, while
DNNs often perform better approximating non-smooth functions [18, 22], at least
partly due to their connections to piecewise polynomial approximation [54, 55].

Motivated by these observations, we introduce Polynomial-Augmented Neural
Networks (PANNs), which combine the strengths of both DNNs and polynomials.
Specifically, we augment a standard DNN with a preconditioned polynomial layer
containing trainable coefficients, and mutually optimize the two approximations using
a novel family of eight orthogonalization constraints that enforce weak orthogonality
between the polynomial and DNN bases; we also precondition the DNN itself. While a
naive addition of a polynomial layer can re-introduce the curse of dimensionality into
this augmented approximation, we leverage basis truncation to control the number of
polynomial basis terms for increasing dimension and high polynomial degrees. From
the DNN perspective, the PANN architecture can be viewed can be viewed as a
residual block with a set of transformed skip connections containing trainable strength
connection parameters.

We show in this work that the resulting PANN architecture significantly improves
DNN approximations of polynomial target functions (unsurprisingly). More impor-
tantly, we present empirical results showing that the PANN architecture is superior
to either DNNs or polynomials on tasks such as approximating functions with fi-
nite smoothness, high-dimensional function approximation, and approximating noisy
functions drawn from a high-dimensional housing dataset. Further, when PANNs are
used as physics-informed networks for the solution of PDEs (PI-PANNs), we observe
relative ℓ2 errors that are orders of magnitude lower than traditional PINNs. We also
show that the choice of orthogonality constraint can affect approximation quality and
wall-clock training times in an application-dependent fashion.

Other work has explored hybrid approximation techniques. For instance, Π-Nets,
introduced in [14, 15], involve modifying convolutional neural nets to output poly-
nomials of the input variables, represented via high-order tensors. In contrast, our
approach outputs a linear combination of DNNs and polynomials. There are also many
other works that directly replace DNNs with polynomials [13, 27, 35, 43]. Modern
radial basis function-finite difference (RBF-FD) methods combine RBFs and polyno-
mials together with orthogonality constraints that enforce polynomial reproduction.
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There, since closed-form expressions are available for the RBF basis, no training is
required and the orthogonality constraint is enforced by treating the polynomial co-
efficients as Lagrange multipliers [4, 6, 23, 63, 65]. RBF-FD is primarily used to
generate finite difference weights on scattered points, but barring the freedom to han-
dle irregular point sets and domains, does suffer from many of the same issues as
traditional polynomial approximation (for instance, the curse of dimensionality and
difficulties tackling finitely-smooth function data). In contrast, PANNs are global
approximators that must be trained; the presence of a DNN introduces an entire fam-
ily of orthogonality constraints, each presenting different cost-accuracy tradeoffs on
different problems, but the overall method is robust to noise and inherits the benefits
of DNNs.

The remainder of this paper is structured as follows: section 2 provides essential
background and notation. The new PANN architecture, its training, preconditioning,
and the new orthogonality constraints are described in section 3. Then section 4
presents our numerical experiments and findings, including an assessment of compu-
tational cost and accuracy compared to baseline methods. Finally, section 5 discusses
the results and outlines future research directions.

2. Background. In this section, we define the general optimization problems we
are interested in, along with a brief review of DNNs and certain classes of polynomial
approximation methods. The problem dimension is denoted by d, and ℓ signifies
the polynomial degree used to generate the polynomial bases. The total number
of training points is represented by n, and w refers to the width of the last layer
of a DNN. The total number of polynomial bases, which is also the width of the
polynomial layer, is denoted by m. The DNN basis coefficients are symbolized by aj
for j = 1, ..., w, while the polynomial layer basis coefficients are represented by bk for
k = 1, ...,m. The DNN basis functions are indicated by ψj for j = 1, ..., w, and the
polynomial layer basis functions are represented by ϕk for k = 1, ...,m. In this paper,
we primarily focus on the supervised regression problem with the form,

argmin
θ

Ndata∑
i=1

|uθ(xi)− u(xi)|2,(2.1)

forNdata training points x ∈ Rd such that u is the true solution we aim to approximate
and uθ is the model parameterized by its weights and biases θ. We additionally
concentrate on semi-supervised approaches for solving partial differential equations
(PDE) of the form,

argmin
θ

Ndata∑
i=1

|uθ(xbi )− u(xbi )|2 + λ

NPDE∑
j=1

|F [uθ](xrj)− f(xrj)|2,(2.2)

where F is some (linear or non-linear) differential operator operating on NPDE col-
location points {xri }

NPDE
i=1 from the domain Ω and Ndata points {xbi}Mi=1 from the

boundary of the domain (∂Ω). λ is a Lagrange multiplier that balances the learn-
ing between the data and residual loss terms. Subsequent sections detail extensions
of (2.1) and (2.2), which incorporate custom orthogonalizing regularization terms,
along with polynomial preconditioning.

2.1. Deep Neural Networks. Following the convention of [16], we represent
the family of DNNs, N ∈ Rd → R of width w, as a linear combination of adaptive
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basis functions given by

N (x; a, θh) =

w∑
j=1

ajψj

(
x; θh

)
,(2.3)

where each aj for j = 1, .., w and θh constitute the weights and biases in the last layer
and hidden layers respectively, forming the set of all network parameters θ. Then,
each ψj are non-linear activation functions such as ReLU or Tanh acting on the
outputs of the hidden layers. The parameters θ are computed through some iterative
optimization technique. In this work, we use variants of gradient descent methods
such as ADAM [36] and L-BFGS [47].
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Fig. 2.1. Visual depiction of bases sets using different generation techniques on the
right and the total number of basis function each method produces for increasing problem
dimension.

2.2. Polynomial Methods. We define a family of polynomial models, P ∈
Rd → R, in a similar form to (2.3), as a linear combination of m orthogonal polyno-
mials ϕk and parameters bk. Specifically,

P(x; b) =
m∑

k=1

bkϕk(x),(2.4)

where ϕk for k = 1, ...,m, form a polynomial basis in d dimensions. Various approaches
exist for basis generation, including tensor-product, total-degree, and hyperbolic-cross
methods. Figure 2.1 illustrates each type of basis, comparing their cardinality to the
function space spanned by each. Tensor-product bases grow exponentially by di-
mension, including many highly oscillatory basis functions. Insights from Smolyak
cubature [59] suggest that the influence of highly oscillatory components diminishes
with increased dimension, rendering tensor-product bases less computationally effi-
cient. Conversely, the total-degree method constrains the combined degrees of each
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basis to a certain threshold, thereby ensuring a more gradual increase in size while
including more bases with low oscillation. Hyperbolic-cross bases exhibit the slowest
growth concerning dimensionality, albeit at the expense of expressivity. Weighing
these considerations, we prefer total-degree bases where the combined degree limit is
ℓ. In this work, we employ total-degree Legendre polynomials combined with basis
pruning to ensure a slower growth in the number of basis functions (as a function of
spatial dimension), but our approaches carry over straightforwardly to other polyno-
mial bases also.

3. Polynomial Augmented Neural Networks. This section outlines our en-
hanced neural network architecture incorporating polynomials, expanding on the pre-
conditioning methods in subsection 3.1, and our unique discrete orthogonality con-
straints in subsection 3.2. The algorithmic framework, including the selection and
truncation of polynomial bases, is detailed in subsection 3.3.

We aim to strategically augment a standard DNN with structured polynomials
containing trainable coefficients. Figure 3.1 (left) illustrates our hybrid model, the
Polynomial-Augmented Neural Network (PANN). We define the model’s pre-
diction, uθ, as the sum of the DNN’s output, N (x) (defined in (2.3)), and the output
of the polynomial layer, P(x) (defined in (2.4)) as follows:

uθ(x) = N (x) + P(x) =

w∑
j=1

ajψj

(
x; θh

)
+

m∑
k=1

bkϕk(x),(3.1)

In this paper, we primarily present PANNs through an adaptive basis viewpoint [16].
However, one can interpret PANNs as a type of residual network such that the DNN
output is combined with a set of polynomial transformed skip connections that have
trainable strength parameters, visualized in right figure of Figure 3.1. An intuition for
the PANN architecture in (3.1) can be see in Figure 3.2, which compares the loss land-
scapes of a PANN used as a physics-informed neural network (PINN) and a standard
PINN. For this experiment, we simply perturbed the two dominant eigenvectors (δ,
ν) of the loss Hessian, and evaluated the adjusted loss L′ across a specified range for
α and β such that, L′(α, β) = L(θ+αδ+βν) and α, β ∈ [−α0, α0]× [−β0, β0] [37, 46].
Figure 3.2 clearly reveals that polynomial augmentation smooths the loss landscape,

suggesting that it helps avoid local minima, hence simplifying the optimization process
and possibly boosting model accuracy (which we verify in a later section). We use a
single polynomial layer rather than a “deep” architecture; this was motivated, in part,
by previous findings which demonstrate that depth in polynomial networks does not
equate to enhanced representation capabilities (unlike in the case of DNNs with either
piecewise polynomial or other nonlinear activation functions) [41]. More importantly,
our design benefits from the static nature of the polynomial bases, allowing us to
precompute and store the bases and their derivatives for training efficiency—a detail
we expand upon in subsection 3.3.

3.1. Preconditioning. The convergence rates of many numerical methods rely
on problem conditioning, where ill-conditioned problems typically exhibit slower con-
vergence. Problem conditioning not only influences traditional methods but is also
a critical factor in the training difficulties of DNNs, including PINNs [37]. In this
work, we apply the polynomial preconditioning techniques from [31, 53]. This pre-
conditioning technique was developed for least-squares approximation scenarios with
extensive oversampling, i.e, with far fewer function samples (n) than polynomial basis
functions (m). This preconditioner also attempts to maximize sparsity in the poly-
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Fig. 3.1. Both figures show the proposed neural network architecture with polynomial
layer (PANN). The left figure demonstrates the architecture from the adaptive basis view-
point where each ψi and ai for i = 1, ...w are the DNN bases and coefficients, while ϕj and
bj for j = 1, ...m are the polynomial layer bases and coefficients respectively. uθ is the model
output which is a linear combination of the DNN and polynomial layer bases and coefficients.
Alternatively, the right figure demonstrates the architecture as a residual block with trans-
formed skip connections such that each Hk for k = 1, .., L represent the hidden layers of the
DNN, σ are non-linear activations, P is the polynomial layer and cj for j = 1, ..,m are the
transformed and adaptive skip connections.

nomial coefficients. The optimization problem considered in [31] aims to solve the
inequality-constrained l1-minimization problem defined as:

argmin
θ
||θ||1 such that ||KΦb−Kf ||2 ≤ ϵ.(3.2)

Here, the diagonal matrix K ∈ Rn×n is constructed to improve the l1-minimization
problem’s tractability and aids in recovering sparse solutions. Formally,

(3.3) Kn,n =

√
m∑

i∈Λ ϕ
2
i (x)

,

where Λ is the set of all polynomial bases. In the context of polynomial least-squares
approximation, this preconditioning attempts to rescale polynomial bases with large
norms, leading to a system where each basis contributes more equally.

In this work, we consider a more general form of (3.3) such that the objective
function constrains both the preconditioned error norm and parameter norm. Further,
we apply this preconditioning to both the DNN and the polynomial bases. The
updated optimization problem considered is, therefore,

min
a,b,θ

||KΨa+KΦb−Kf ||22 + λr||θ||1,(3.4)

where λr is a prescribed Lagrange multiplier.

3.2. Discrete orthogonality constraints. We now present a novel family of
orthogonality constraints designed to induce a “weak” orthogonality between the DNN
basis and the polynomial layer within the PANN. This orthogonality was inspired
by a philosophically similar approach utilized in modern radial basis function-finite
difference (RBF-FD) methods [4, 24], where RBF expansions are computed in such
a way that they are orthogonal to some polynomial bases (typically total-degree);
this orthogonality constraint endows RBF-FD weights with polynomial reproduction
properties, thereby controlling their convergence rates.

While deriving this constraint in RBF-FD methods is straightforward, it is signifi-
cantly more challenging in the context of PANNs, which require training to determine
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Fig. 3.2. Loss landscapes of a physics-informed PANN (left) and standard PINN (right)
on a 2D Poisson problem.

not only polynomial coefficients, but DNNs coefficients and bases. Fortunately, enforc-
ing orthogonality is nevertheless possible. For instance, a continuous orthogonality
constraint between the DNN output N (x) and the polynomial layer P(x) can be ex-
pressed as

∫
Ω
N (x)P(x) = 0. While it is generally impossible to compute this integral

analytically, it can be approximated to arbitrary accuracy by a suitable quadrature
formula provided the DNN is sufficiently smooth (or even continuous) [17]. However,
this approach does not generalize straightforwardly to irregular domains or higher
dimensional problems without sacrificing the meshless nature of DNNs.

Our approach involves replacing the continuous orthogonality constraint with
discrete alternatives that obviate the need for quadrature. To see how, consider more
carefully the continuous constraint

∫
Ω
N (x)P(x) = 0. This constraint yields many

equivalent forms, some of which include,∫
Ω

w∑
j=1

ajψj

(
x; θh

)
P(x) = 0⇐⇒

∫
Ω

m∑
k=1

bkϕk(x)N (x; θ) = 0.(3.5)

One straightforward way for these integrals to be zero is to enforce that the integrands
themselves be zero. This can be enforced by forcing the summands to be zero, which
in turn can be done by enforcing that each term in the summands be zero. This chain
of reasoning leads to two distinct families of discrete constraints:

ajψj(x)P(x) = 0, j = 1, . . . , w,(3.6)

bjϕk(x)N (x) = 0, k = 1, . . . ,m.(3.7)

It is important to note that the discrete “index-wise” constraints in (3.6) and (3.7)
imply that the continuous constraint holds, but the converse does not necessarily hold
true.

Expanding both the polynomial and DNN approximations leads to a family of
orthogonality constraints, highlighted in Table 3.1. Intuitively, constraint CA is the
weakest of our constraints, only enforcing that the products of the DNN and poly-
nomial in the PANN be zero. The stronger constraints CB , CC , and CD ensure that
during any training epoch, for a given DNN N (x), we find weights bk and functions
ϕk(x) in the polynomial P such that their projection onto N (x) is zero. In a similar
vein, the constraints CE , CF , and CG ensure that for a given polynomial P(x), we
determine weights aj and functions ψj(x) in the neural net N such that their projec-
tion onto P(x) is zero. Constraint CH imposes the strictest orthogonality, ensuring
a higher level of independence between all pairs of polynomial and DNN bases but
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Table 3.1
A family of orthogonality constraints

Method Objective

CA N (x)P(x)
CB N (x)bkϕk(x) for all k = 1, ...,m
CC N (x)ϕk(x) for all k = 1, ...,m
CD N (x)bk for all k = 1, ...,m
CE P(x)ajψj(x) for all j = 1, ..., w
CF P(x)ψj(x) for all j = 1, ..., w
CG P(x)aj for all j = 1, ..., w
CH ajψj(x)bkϕk(x) for all k = 1, ...,m and j = 1, ..., w

at a greater computational cost. Constraints CB and CD also help regularize polyno-
mial basis coefficients, which is beneficial when the polynomial bases contain excessive
terms. These constraints, coupled with our basis truncation routine, address the curse
of dimensionality by eliminating unneeded bases during training.

In our experiments, however, we found that stringently enforcing any of these
constraints often results in difficulties in training PANNs and is also computationally
expensive in high-dimensional settings. Therefore, in this work, this discrete orthog-
onality is “weakly” enforced through an additional regularization loss term optimized
during gradient descent in conjunction with the error norm as,

min
θ
||KΨa+KΦb−Kf ||22 + λr||θ||1 + λc||C||F ,(3.8)

where C is some constraint listed in Table 3.1, λc is a Lagrange multiplier modulating
the strength in which the orthogonality constraint is enforced, and ∥.∥F is the Frobe-
nius norm. We empirically evaluate and compare each constraint listed in Table 3.1
on both real and synthetic, high-dimensional problems in section 4 and show that
solution accuracy is generally improved through their use with minor computational
expense.

3.3. Algorithm. We now outline key implementation details of the PANN opti-
mization procedures that enhance efficiency in dynamic back-propagation frameworks
like PyTorch.

Poisson Example. To illustrate our algorithmic details, we consider the Poisson
equation defined by f = ∆u. The following loss function describes the forward pass
of our algorithm:

L =

Nb∑
i=0

||u(xi)−
w∑

j=1

ajψj

(
x; θh

)
−

m∑
k=1

bkϕk(xi)||22

+

Nr∑
i=0

||f(xi)−∆

w∑
j=1

ajψj

(
x; θh

)
−∆

m∑
k=1

bkϕk(xi)||22,(3.9)

where aj and ψj represent the neural network basis coefficients and functions, re-
spectively, while bk and ϕk denote the polynomial basis coefficients and functions, as
detailed in (3.1).

Precomputation of Polynomial Bases. The central idea is to exploit the fact that
polynomial basis functions ϕk for k = 1, . . . ,m remain constant throughout training,
although the coefficients bk may change. We enhance efficiency by precomputing and
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storing evaluations of these polynomial basis functions and their derivatives at the
training points. Specifically, prior to the onset of training, given the set of collocation

points xr ∈ RNr×d and boundary points xb ∈ RNb×d, we store the polynomial bases

evaluations Φr ∈ RNr×m and Φb ∈ RNb×m. We additionally compute and store the
PDE-specific derivatives, which for the Poisson problem include ∆Φr ∈ RNr×m and

∆Φb ∈ RNb×m. Each Legendre bases evaluation uses the classical three-term recur-
rence relation for Legendre polynomials [25]. For classical regression problems that do
not incorporate network derivatives in the forward pass, this precomputation routine
is consistent across various problems. However, in the context of PDE approximation,
the precomputation of polynomial bases is tailored to specific problems.

Custom Automatic Differentiation. We have developed custom forward and back-
ward passes for the PANN architectures, specifically designed to utilize the precom-
puted basis functions and their derivatives. The pseudocode for these custom routines,
tailored for the Poisson problem as discussed, is presented in Algorithms 3.1 and 3.2.
In these algorithms, we identify the specific gradient computations to be handled by
the automatic differentiation system in blue. Specifically, line 6 of Algorithm 3.1 and
lines 6, 7, 8, and 10 of Algorithm 3.2. All other gradients are precomputed, thereby
streamlining the computational process and enhancing the efficiency of the training
phase.

Algorithm 3.1 Custom Forward Pass for PANN Optimization

1: function ForwardPass(xr, xb, Φr, Φb, ∆Φr, ∆Φb)
2: L ← 0 ▷ Initialize the loss function
3: ub

nn ← Ψb(xb; θh)a ▷ NN outputs for all boundary points
4: ub

poly ← Φbb ▷ Polynomial outputs for all boundary points

5: L ← L+ ∥ub − (ub
nn + ub

poly)∥
2
2 ▷ Squared norm for boundary points

6: frnn ← ∆Ψr(xr; θh)a ▷ NN PDE approximations for all collocation points
7: frpoly ← ∆Φrb ▷ Polynomial PDE approximations for all collocation points

8: L ← L+ ∥fr − (frnn + frpoly)∥
2
2 ▷ Squared norm for collocation points

9: return L ▷ Return the computed loss
10: end function

Algorithm 3.2 Custom Backward Pass for PANN Optimization

1: function BackwardPass(xr, xb, Φr, Φb, ∆Φr, ∆Φb)
2: Initialize ∇θh,∇a,∇b to zeros
3: gb ← 2(ub − (Ψb(xb; θh)a+Φbb)) ▷ Gradients w.r.t. boundary outputs
4: ∇a← −(Ψb(xb; θh))T gb ▷ Gradient w.r.t. NN coefficients at boundaries
5: ∇b← −(Φb)T gb ▷ Gradient w.r.t. polynomial coefficients at boundaries
6: Update gradients of θh based on gb and derivative computations for Ψb

7: gr ← 2(fr − (∆Ψr(xr; θh)a+∆Φrb)) ▷ Gradients w.r.t. collocation PDE residuals
8: ∇a← ∇a− (∆Ψr(xr; θh))T gr ▷ NN coefficients gradients at collocations
9: ∇b← ∇b− (∆Φr)T gr ▷ Polynomial coefficients gradients at collocations

10: Update gradients of θh based on gr and derivative computations for ∆Ψr

11: return ∇θh,∇a,∇b ▷ Return gradients for updating parameters
12: end function

Basis Truncation. We apply L1 regularization to both the DNN coefficients aj
and the coefficients of the polynomial layer bases bk, truncating any coefficients that
fall below a specified threshold t. Specifically, we set the coefficients defined by
{aj , bk | aj < t for j = 1, ..., w and bk < t for k = 1, ...,m} to zero, along with
their corresponding basis functions. This truncation strategy is critical given the po-
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tentially large number of basis functions m in high-dimensional problems, as demon-
strated in Figure 2.1. These precomputations are particularly beneficial in applica-
tions such as solving PDEs, where the nth derivatives of each polynomial basis are
required. By pre-computing and storing these derivatives, we significantly reduce the
computational load during each training iteration, thus enhancing overall efficiency.

Computational Complexity. Focusing specifically on Legendre polynomials, the
recursive evaluation of the mth Legendre polynomial (or its derivative) at a single
point has a computational complexity of O(m), and O(Nm) for N points. In (3.9), if
we set N = max(Nr, Nb), the additional computational cost of polynomial augmenta-
tion in both the forward and backward passes is O(Nm). While the precomputation
strategy’s asymptotic computational cost remains O(Nm), it reduces the constant
factors within O(Nm) by almost half, resulting in significant practical improvements.
Additionally, implementing the parallel computing methods described in [8] for O(1)
computation of Legendre polynomials could improve complexity to just O(N). The
basis coefficient truncation strategy defined above further reduces the number of active
bases while enhancing computational efficiency during training.

PyTorch C++. We remark that our code was written in C++ using the PyTorch
C++ library [58], which offers several compelling benefits over other pure Python
methods for developing machine learning and deep learning applications. PyTorch
C++ inherits many of the strengths of the Python version of PyTorch, such as its
dynamic computational graph, while bypassing Python’s often slow interpretation.
The PyTorch C++ library, as of this writing, is an underutilized tool in the research
community despite being significantly faster than its Python counterpart. Therefore,
all C++ source code for our methods (and baselines) is open-source and publicly
available1, facilitating extensions and further investigation for the research commu-
nity.

4. Numerical Experiments. In this section, we explore the effectiveness of
PANNs through a series of detailed numerical experiments that compare them to a
range of established methods. Our evaluation includes comparisons with deep neural
networks (DNNs) utilizing Tanh, ReLU, and RePU activations. Additionally, we
examine the performance of a standalone polynomial layer (PL) trained via gradient
descent, which serves as a simplified version of PANN, as well as polynomial least
squares using Legendre polynomials (L2). Table 4.1 lists the specific advantages
and disadvantages of each baseline method. Furthermore, the appendix includes the
benchmark results against various conventional regression models.

We assess model performance using the relative ℓ2 error, defined as ∥y−ŷ∥2

∥y∥2
=

√∑n
i=1(yi−ŷi)2√∑n

i=1 y2
i

, where ŷ is the predicted solution and y is the true solution. This

metric is beneficial in scientific computing applications where the magnitude of the
data plays an important role, helping to understand the error’s significance relative
to the data’s scale.

All tests involving PANN and the polynomial layer (PL) incorporate precondi-
tioning and basis truncation. All L2 projection tests also utilize preconditioning. We
perform five random trials for each synthetic dataset and report the mean ℓ2 errors
and the standard deviations. We also include wall-clock training times for each ex-
periment, expressed in seconds. We conduct a four-fold cross-validation for real-world
data applications and present the mean ℓ2 errors and standard deviations. The appen-

1pending publication
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Table 4.1
Comparative analysis of various function approximation methods, delineating their objectives,

advantages, and disadvantages

Method Objective Pros Cons

a. Neural
Network (Tanh
Activation)

Minimize mean
squared error
(MSE).

Efficient training (less
risk of vanishing
gradients);
handles high-dimensional
data well.

High computational load
with larger networks or
dimensions.

b. Neural
Networks (ReLU
Activation) [52]

Minimize mean
squared error
(MSE).

Efficient training;
handles complex,
high-dimensional
problems.

Risk of
vanishing/exploding
gradients. Requires
careful initialization and
optimization methods.

c. Neural
Networks (RePU
Activation) [42,
66]

Minimize mean
squared error
(MSE).

Excels at approximating
smooth functions.

Works poorly for
non-smooth functions.

d. L2 Projection
with orthogonal
Polynomials

Solve
⟨f − f̂ , v⟩ = 0 for
all v in V , using
quadrature.

Provides high accuracy
for smooth functions;
efficient for regular
domains and
low-dimensional
problems.

Not suited for
non-smooth
functions [18, 22];
requires exponentially
more points with
increasing dimensions.

e. Single
Polynomial
Layer (PL) with
Legendre Basis

Minimize mean
squared error
(MSE).

Adaptable to a broad
range of problems; no
structured point
requirements;
optimized through
gradient descent.

Possibly less precise than
method ‘d’; may struggle
with very
high-dimensional data.

dix includes detailed information on each experiment’s implementation and training
specifics.

4.1. Legendre Polynomial Approximation. In assessing the effectiveness of
PANNs, it is critical to accurately recover polynomial functions, especially when evalu-
ating whether the additional DNN component of the architecture impacts the solution
accuracy of the polynomial layer. High-order Legendre polynomials, such as the tenth
order, are highly oscillatory—a condition known to challenge DNNs as previously
mentioned. However, polynomial methods equipped with sufficient bases can recover
polynomial solutions exactly. To illustrate this, we introduce a test scenario where
the ground truth is a two-dimensional, tenth-order Legendre polynomial, defined as:

u(x) = u(x, y) = P10(x)P10(y),(4.1)

such that P10 is the 10th Legendre polynomial given by

P10(z) =
46189

256
z10 − 109395

256
z8 +

90090

256
z6 − 30030

256
z4 +

3465

256
z2 − 63

256
.

In this test, effective basis truncation within PANN is essential. If the polynomial
bases adequately span the true solution, then truncating 100% of the DNN bases
and 99.7% of the polynomial bases should leave just one active polynomial base, ex-
pected to be ϕ = P10(x)P10(y) with a coefficient b = 1. This experiment demonstrates
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Fig. 4.1. (Left) Relative ℓ2 errors and (right) wall clock time in seconds for different network
types using the Tanh (top), RePU (middle), and ReLU (bottom) activation function. PL and L2

projection results are repeated in each figure for easy comparison.

PANNs’ improved ability to reproduce polynomials, such that with the proper orthog-
onality constraints and our basis truncation technique, PANNs can achieve polynomial
solutions with near-machine precision. This confirms that the DNN component does
not compromise the approximation accuracy.

We evaluate the relative ℓ2 errors in the solution as a function of the number
of training points N , with N values set at 256, 1024, 4096 and 16384. We sample
points using the efficient Poisson sampling technique, as outlined in [64] in the domain
[−1, 1]. For experiments involving PANN, the single polynomial layer (PL), and L2
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Table 4.2
Suite of total degrees ℓ and corresponding count of polynomial terms m in polynomial bases

used in the exact solution recovery (u(x, y) = P10(x)P10(y)) example. The total degree is set to
ℓ = 2(⌈cN⌉+ 8).

c = 0.001 c = 0.002 c = 0.003
N 256 1024 4096 16384 256 1024 4096 16384 256 1024 4096 16384
ℓ 18 20 26 50 18 22 34 82 18 24 42 116
m 190 231 378 1326 190 276 630 3486 190 325 946 6903

projection, we varied the total degree of Legendre bases by the number of training
samples. Specifically, for constants c = 0.001, 0.002, and 0.003, we determine the total
degree is ℓ = 2(⌈cN⌉+ b) where b = 8. Detailed configurations of total degrees ℓ and
the corresponding widths of the polynomial layer m are documented in Table 4.2.
Note that the total degree of the true solution u is ℓ = 20, meaning for ℓ < 20, the
polynomial bases do not contain the true solution which occurs for N = 256/c =
0.001, 0.002. For both the standard DNNs and the DNN component of PANN, we
use three hidden layers each with 100 neurons, and compare RePU, ReLU, and Tanh
activation functions. We also apply orthogonality constraint CE in PANN. Table A.1
in the Appendix presents the error results compared to various popular regression
models.

The results presented in Figure 4.1 confirm that PANNs can either exactly or
almost exactly recover polynomial functions, particularly when using the Tanh and
RePU activation functions. This success likely stems from the smooth nature of
both activations and the true solutions. The discrepancy in the performance of
PANNs when employing ReLU, as opposed to Tanh or RePU, is likely attributed to
the employed orthogonality constraint CE . Given that the true solution necessitates
a negligible contribution from the DNN component and solely a single polynomial ba-
sis, stringent coefficient regularization (and thus truncation) is required. Constraint
CE seeks a DNN weight aj and a corresponding basis function ψj that collectively
project to zero onto the polynomial output. This particular problem hints that the
emphasis on DNN basis function optimization might over-complicate the learning by
trying to match non-smooth DNN bases with a smooth target, thereby compromising
the optimization of the polynomial layer.

In general, when equipped with smooth activation functions and an adequate
number of polynomial bases (that is, when ℓ > 20), PANNs can almost perfectly
replicate the true solutions. Notably, with Tanh and RePU activations, PANNs out-
performs the accuracy of L2 projection, with a larger number of training points and
polynomial total degrees. The higher error in the L2 projection method is likely due
to numerical issues related to the large number of unnecessary polynomial bases. Im-
plementing basis truncation could reduce errors to negligible levels, as seen in the
PL results. Remarkably, optimizing coefficients using gradient descent in the PL
method achieves comparable accuracy to traditional L2 projection methods despite
using Poisson-distributed points instead of quadrature points. This suggests that
gradient descent optimization can deliver solutions as precise as projection meth-
ods without requiring structured training points. Consequently, this opens up the
possibility for more flexible extensions to irregular domains and higher-dimensional
problems, though it may come at a more significant computational cost. These re-
sults indicate that jointly optimizing both the DNN and polynomial coefficients in
PANNs through gradient descent is a valid approach. The spike in training time for
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the PL method when N = 1024 and c = 0.001 is likely due to resource contentions
within the system. The standard DNNs exhibit relatively high errors irrespective of
the activation function, underscoring the inherent challenges they face in approximat-
ing highly-oscillatory solutions.

The subsequent tests will extend this comparison to include each orthogonality
constraint alongside various activation functions. We anticipate demonstrating that
PANNs with ReLU activations, when paired with orthogonality constraints that de-
emphasize DNN basis optimization (such as CB or CG), can also achieve nearly exact
recovery of the ground truth solutions. This would further validate the flexibility and
robustness of PANNs in accurately approximating polynomial functions.

4.1.1. Orthogonality Constraint Comparisons. We examined the impact of
each discrete orthogonality constraint described in Table 3.1 on solution accuracy and
computational overhead against baselines using no constraints (labeled ‘None’) and
L1 coefficient regularization. Our experiments use N = 4096 training points, a poly-
nomial layer with ℓ = 26, and width m = 378. Introducing orthogonality constraints
generally improves solution quality, as demonstrated in Figure 4.2. Specifically, the
Tanh activation yielded lower relative ℓ2 errors with constraints CE and CH , while
ReLU is more accurate with constraints CA and CB . The relative performance be-
tween ReLU and Tanh using other constraints was marginal. ReLU activation paired
with constraint CF did not converge, potentially due to ReLU’s properties and the
constraint overemphasizing the independence between the polynomial solution and
DNN bases that are not well-suited to the target function. Conversely, constraint
CG achieved the highest accuracy across all activations and reduced training times,
suggesting that judicious constraint selection can expedite convergence. Moreover,
constraint CG exactly recovers the intended basis functions through truncation; Ta-
ble 4.3 shows that 100% of the DNN bases were truncated, and 99.7% of the poly-
nomial bases were truncated. This suggests that the chosen constraints contribute to
models that closely resemble the intended solution, outperforming both L1 normal-
ization and scenarios devoid of constraints.
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Fig. 4.2. (Left) Barplot showing the relative ℓ2 errors for each orthogonality constraint and
activation, compared to using no constraint (None) and using standard L1 regularization. The
(right) barplot shows the wall clock training times of the associated method in seconds.

While the RePU activation performs best across all constraint variants, it often
incurs slightly higher training times, and interestingly, does not recover the same
bases sets as the true solution. This indicates that the polynomial activations in
the DNN and the polynomial layer both model different portions of the target, and
the improved error results of all constraint variations (over L1 normalization and no
constraints) indicates that the orthogonality aids optimization even in settings where
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Table 4.3
The percentage of truncated NN and polynomial bases coefficients in the form %NN/%PL. Bold

values represent methods who truncated the expected number of bases.

Act. CG CE CF CA CB CC

Tanh 100/99.7 97.6/99.7 52.4/99.7 51.8/99.7 52.8/99.6 50.0/99.7

ReLU 100/99.7 100/73.8 — 59.0/99.7 58.6/99.7 60.6/92.9

RePU 100/99.7 53.4/99.7 46.8/99.7 51.0/99.7 53.2/99.7 50.0/99.7

Act. CD L1 None
Tanh 52.0/99.7 47.8/99.4 47.4/97.1

ReLU 71.8/99.7 49.4/99.6 50.6/84.2

RePU 53.8/99.7 46.2/99.7 48.2/99.6

the DNN and polynomial expressivity are comparable.

4.2. Approximating Non-Smooth Functions. The previous experiment de-
monstrated that PANNs can recover polynomial solutions as effectively as traditional
methods, known for their robust handling of smooth functions. It also confirmed
that the DNN component within PANNs does not compromise polynomial solution
recovery. Given the known flexibility of DNNs to handle complex and nonlinear func-
tions, this test aims to explore the converse of our previous findings. Specifically, we
want to ensure that the polynomial layer in PANNs, typically less adept at managing
non-smooth functions, does not hinder the DNN portion’s ability to effectively ap-
proximate these types of functions. Furthermore, we seek to show that the integrated
approach of PANNs, in fact, reduces approximation errors compared to standard
DNNs alone. Therefore, we evaluate the performance of PANNs against baseline
methods by approximating a manufactured two-dimensional non-smooth function:

u(x, y) = x2 sin(1/y),(4.2)

which belongs to the function space C1 (R2). This function poses a significant chal-
lenge due to its discontinuity at y = 0, testing the capability of PANNs to handle
complexities beyond those that traditional polynomial and neural network methods
typically address. We use a consistent experimental setup to subsection 4.1, but var-
ied the total degree of the Legendre bases by ℓ = ⌈cN⌉+ b for b = 8. All total degree
and polynomial layer width configurations are documented in Table 4.4.

Table 4.4
Suite of total degrees ℓ and corresponding count of polynomial terms m in polynomial bases

used in the non-smooth function (u(x, y) = x2 sin(1/y)) approximation example.

c = 0.001 c = 0.002 c = 0.003
N 256 1024 4096 16384 256 1024 4096 16384 256 1024 4096 16384
ℓ 9 10 13 25 9 11 17 41 9 12 21 58
m 55 66 105 351 55 78 171 903 55 91 253 1770

As depicted in Figure 4.3, the L2 projection method struggles to find accurate
solutions and obtains a minimum error of 1e−2 when using 16, 384 quadrature points
and a Legendre bases with total degree set to ℓ = 58 with m = 1, 770 total polyno-
mial bases. The standard DNNs also struggle to find accurate solutions when using
Tanh activations, though obtains superior accuracy over L2 projection for training
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Fig. 4.3. (Left) Relative ℓ2 errors and (right) wall clock time in seconds for different network
types using the Tanh (top), RePU (middle), and ReLU (bottom) activation function. PL and L2

projection results are repeated in each figure for easy comparison.

set/quadrature point sizes under 16, 384 when using ReLU and RePU. PANN demon-
strates superior predictive performance, especially notable when using ReLU activa-
tion across moderate and large training set sizes. Even under conditions with smaller
sets, PANN maintains improved accuracy over the L2 projection method, suggesting
a robust ability to approximate C1 functions with ReLU more effectively than other
tested methods, including those listed in Table A.2. Despite the computational over-
head, polynomial layers (PLs) show less accuracy for the same computational cost as
PANN, and standard DNNs fail to match the performance improvements observed
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with PANN, regardless of increases in training data volume. These findings advo-
cate for the integrated approach of PANN, where neither PLs nor DNNs capture the
solution adequately when used as distinct approaches.

4.3. High-Dimensional and Noisy Target Functions. In the previous two
sections, we have demonstrated the validity of PANNs in low-dimensional prob-
lems. This section shows results for a high-dimensional synthetic problem and a
high-dimensional real-world problem. We show that with our implementation and
optimization techniques, PANNs can achieve better accuracy in these cases compared
to standard regression and DNN methods, further validating our enriched DNN ap-
proach.

4.3.1. High-Dimensional Synthetic Example. In this section, we explore
the capabilities of PANN and DNNs using Tanh, ReLU, and RePU activations, and
polynomial layers (PLs), in approximating high-dimensional synthetic functions of the
form:

u(x) = 5π2 sin(2πx0)

d∏
i=1

sin(πxi),(4.3)

across dimensions ranging from two to six. We set the number of training points to
N = 1536, 3072, 6144, 12288, and 26576, corresponding to each dimension. For the
PANNs, we consistently applied preconditioning and the orthogonality constraint CE ,
with a fixed total degree for the polynomial bases set at ℓ = 8. This corresponds to
polynomial layers of widthm = 45, 165, 495, 1287, 3003 for dimensions two through six
respectively. For both the standard DNNs and the DNN component of PANN, we use
three hidden layers each with 100 neurons. Additionally, Table A.3 in the Appendix
presents the error results compared to various popular regression models. Due to the
prohibitive computational complexity of traditional L2 projection methods in high
dimensions—mainly from the need to generate extensive quadrature point sets—we
excluded these from our comparisons. Our focus remains on straightforward, scalable
methodologies that require minimal preprocessing and are suitable for various high-
dimensional contexts.

As illustrated in Figure 4.4, PANN with Tanh activation consistently delivered
the lowest relative ℓ2 errors across all tested dimensions, albeit with a modest increase
in both error and computational time as the problem dimension increased. In con-
trast, PANN equipped with RePU activation demonstrated higher errors and more
significant increases in computational time, making it less suited for scaling to larger
dimensions.

4.3.2. Noisy Real-World Example. We next evaluate PANNs’ effectiveness
in predicting housing prices from the California housing dataset [56], which includes
features such as the number of bedrooms, occupancy rates, and median house values
across 20, 640 instances with eight total features. We compare each orthogonality
constraint described in Table 3.1, assessing their performance under preconditioned
and non-preconditioned settings. Additionally, we compare PANNs with DNNs em-
ploying ReLU and Tanh activation functions, excluding RePU due to its failure to
converge in preliminary tests. This convergence issue likely arises from the inability
of the polynomial components in both DNNs and PANNs to accurately model sharp
transitions in the data. For both the standard DNNs and the DNN component of
PANN, we use three hidden layers each with 100 neurons. Each feature was normal-
ized to the range [−1, 1], and our results are derived from a four-fold cross-validation



18 MADISON COOLEY, SHANDIAN ZHE, ROBERT M. KIRBY, AND VARUN SHANKAR

2 3 4 5 6
Problem Dimension

10 2

10 1

100

101

Re
la

ti
ve

 
2 

er
ro

r

2 3 4 5 6
Problem Dimension

101

102

103

W
al

l C
lo

ck
 T

im
e 

(s
)

PANN (Tanh)
PANN (ReLU)
PANN (RePU)

DNN (Tanh)
DNN (ReLU)
DNN (RePU)

PL

Fig. 4.4. (Left) Relative ℓ2 error by problem dimension and (right) wall clock time in seconds
by problem dimension for DNNs and PANNs using Tanh, ReLU, and RePU activation functions
compared to the polynomial layer (PL).

process, with each fold comprising 15, 480 training samples and 5, 152 test samples.
We provide comparisons to popular regression models in Table A.4 in the Appendix.

The results, displayed in Table 4.5, show that preconditioning generally im-
proves the performance of PANNs by reducing the relative ℓ2 error. Notably, this
improvement is generally consistent across both ReLU and Tanh activations, indi-
cating that the benefits of preconditioning transcend the choice of the activation
function. Interestingly, using preconditioning with constraint CH increased errors for
both activations compared to using no preconditioning. Among the tested configura-
tions, PANN employing the CE constraint with ReLU activation and preconditioning
demonstrated the most effective error reduction. This suggests that the smaller poly-
nomial bases efficiently capture general data trends, while the DNN components, con-
strained by CE , effectively model the residual complexities, possibly including noise
and non-linear transitions. PANN generally surpasses traditional DNNs in terms
of error when comparing similar activations, likely due to its enhanced capacity for
modeling intricate relationships within the data. Several PANN configurations with-
out preconditioning achieve greater efficiency and superior performance than standard
DNNs, underscoring their viability in scenarios where both computational efficiency
and predictive accuracy are desired. Moreover, the analysis of polynomial layer (PL)
variants indicates a notably higher error and longer training durations, suggesting
these configurations might be less appropriate for this dataset.

4.4. Physics-Informed PANNs. In this section, we exhibit the simplicity for
which our methods extend to other settings such as PDE solution approximation.
As mentioned previously, our goal is to augment the Physics-Informed Neural Net-
work (PINN) N (x), with the polynomial bases P(x) resulting in a new approximation
method which we call Physics-Informed Polynomial-Augmented Neural Net-
works (PI-PANNs) uθ(x) as in (3.1). We present results comparing PI-PANNs to
a variety of standard PINNs on the 2D Poisson and 2D (steady-state) Allen-Cahn
problems.

The linear Poisson equation given by ∆u(x) = f(x) for x ∈ Ω and u(x) = g(x)
for x ∈ ∂Ω. The steady-state Allen-Cahn equation—a non-linear elliptic problem—is
given by ∆u + u(u2 − 1) = f(x) for x ∈ Ω and u(x) = g(x) for x ∈ ∂Ω, where
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Table 4.5
Relative ℓ2 errors and training times for PANNs for each constraint with and without precon-

ditioning, DNNs and polynomial layers (PLs) under various settings.

Network Act Precond Relative ℓ2 Error Wall-clock Time (s)

PANN-CA

ReLU
False 0.2256± 0.002 165.5032± 272.636
True 0.2126± 0.002 1075.4628± 1861.269

Tanh
False 0.2249± 0.019 126.4284± 187.072
True 0.2202± 0.003 1546.4286± 2925.925

PANN-CB

ReLU
False 0.2164± 0.006 152.2832± 242.852
True 0.2139± 0.003 1084.5254± 1884.902

Tanh
False 0.2200± 0.009 114.0070± 196.716
True 0.2209± 0.003 1063.0726± 1855.294

PANN-CC

ReLU
False 0.2213± 0.004 151.7962± 246.296
True 0.2124± 0.002 238.2235± 4.155

Tanh
False 0.2639± 0.003 132.9082± 206.539
True 0.2239± 0.004 231.4235± 2.245

PANN-CD

ReLU
False 0.2615± 0.006 160.4952± 266.624
True 0.2120± 0.003 241.8500± 1.410

Tanh
False 0.2645± 0.003 142.3642± 225.477
True 0.2183± 0.004 233.1430± 2.675

PANN-CE

ReLU
False 0.2122± 0.003 190.5806± 322.992
True 0.2118± 0.005 242.8420± 3.402

Tanh
False 0.2319± 0.013 128.1918± 190.995
True 0.2225± 0.006 239.5772± 1.154

PANN-CF

ReLU
False 0.2153± 0.002 44.3470± 0.790
True 0.2123± 0.003 242.0880± 3.468

Tanh
False 0.2291± 0.002 157.4134± 260.070
True 0.2288± 0.004 233.9955± 4.150

PANN-CG

ReLU
False 0.2450± 0.020 92.6790± 143.156
True 0.2126± 0.001 233.2752± 4.080

Tanh
False 0.2189± 0.004 133.5222± 221.093
True 0.2214± 0.003 225.1395± 2.406

PANN-CH

ReLU
False 0.2120± 0.004 360.6397± 465.925
True 0.2123± 0.006 330.7845± 5.975

Tanh
False 0.2253± 0.004 278.8388± 345.442
True 0.2268± 0.001 323.1293± 3.634

DNN
ReLU False 0.2132± 0.003 317.4062± 23.341

Tanh False 0.2157± 0.003 291.6603± 7.065

PL (l = 2) — True 0.2538± 0.003 206.6065± 2.536

PL (l = 4) — True 0.2654± 0.029 258.8638± 7.315

PL (l = 6) — True 0.8696± 0.170 331.7095± 13.724

Ω = [−1, 1]2. f and g are given in both problems where the goal is to recover u. For
testing the 2D Poisson equation, similar to subsection 4.1, we manufacture a solution
where the ground truth is u(x, y) = P10(x)P10(y), the tenth Legendre polynomial,
from which we derive f and g. Then, to investigate how our method performs on
non-linear PDEs, we set the true solution u in the 2D Allen-Cahn equation to be
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u(x, y) = x3y3 + 5x cos(2πx) cos(2πy).
We tested each using three architecture settings; three hidden layers with 50

nodes, three hidden layers with 100 nodes, and five hidden layers with 50 nodes.
We trained each model using 64, 256, 1024 and 4096 collocation points, and 400
boundary points on both randomly sampled and equispaced points on the interval
[−1, 1]2. For PI-PANNs, we varied the polynomial complexity by the number of
training points based on two different functions of the N , and we apply orthogonality
constraint CE . Specifically, for c = 0.003, 0.004, the total degree of the Legendre bases
is ℓ = 2(⌈cN⌉ + 8); detailed configurations of total degrees ℓ and the corresponding
widths of the polynomial layer m are documented in Table 4.6.

Table 4.6
Suite of total degrees ℓ and corresponding count of polynomial terms m in polynomial bases

used in the PDE approximation examples.

c = 0.003 c = 0.004
N 64 256 1024 4096 64 256 1024 4096
ℓ 18 18 24 42 18 20 26 50
m 190 190 325 946 190 231 378 1326

Figures 4.5 and 4.6 compare the relative errors for the Poisson and Allen-Cahn
problems, respectively, as achieved by different methods. The standard PINNs consis-
tently fail to train under all settings, with relative errors not dropping below 0.53 for
the Poisson problem and 0.34 for the Allen-Cahn problem as shown in Figure 4.5. This
lack of training effectiveness underscores the standard PINNs’ sensitivity to hyperpa-
rameters and training routines, in contrast to the more robust PI-PANNs. In contrast,
PI-PANNs achieve relative errors around 7e− 05 in both the Allen-Cahn and Poisson
examples using 4046 collocation points in the Allen-Cahn example and only 256 in
the Poisson example. Interestingly, the results also suggest that PI-PANNs may have
a slight preference for equispaced training points but provide consistently good per-
formance across both point sampling techniques, albeit at an increased computational
training time.

5. Conclusion and Future Work. This paper proposes an effective and ap-
plicable method of augmenting neural networks with a trainable polynomial layer.
Additionally, we provide a suite of novel discrete orthogonality constraints enforced
through the loss function during optimization. Through a suite of numerical ex-
periments, we show that—although simple—our methods result in higher accuracy
across a broad range of test problems and apply to many domains, such as predicting
solutions to PDEs. The experiments show that while our methods increase accu-
racy, including the polynomial preconditioning increases training times. Investigating
efficient polynomial preconditioners for polynomials used in neural network architec-
tures would be an interesting future research direction. Additionally, investigating
PI-PANNs to solve space-time PDEs is left for future work.

Appendix A. Experimental Settings and Additional Numerical Results.
In this section, we detail the specific experimental settings used in each experiment,
along with additional numerical results for the standard benchmark methods on the
regression examples.

A.1. Experimental Details. The experiments were conducted on a GeForce
RTX 3090 GPU with CUDA version 12.3, running on Ubuntu 20.04.6 LTS. We used
total degree Legendre polynomial bases in all relevant models. The orthogonality
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Fig. 4.5. (Left) Relative ℓ2 errors and (right) wall clock time in seconds solving the Poisson
problem for different network types using equispaced collocation points (top), and randomly spaced
collocation points (bottom). Note that the scale of the plots is intentionally maintained to ensure
clarity and comparability of the results across different model configurations. Adjusting the scale to
include outlier values from PINN results obscures critical differences among error values.

strength (λc) in PANNs is 0.001, and the basis coefficient truncation threshold is
0.0001. We optimized each model using 20, 000 Adam iterations with an initial learn-
ing rate of 0.001, and 400 LBFGS iterations with and an initial learning rate set
to 1.0. We also employed the cosine learning rate annealing method [49]. We used
Gauss-Legendre quadrature for all L2 projection experiments.

A.2. Benchmarking Methods. We compared our results against a variety of
standard regression models to benchmark performance. These models include: Ad-
aBoost, Bagging, Bayesian Ridge, Elastic Net, Gradient boosting, Huber regression,
linear SVR, MLP, Nu SVR, SVR, and kNeighbors regression. Tables A.1 to A.4 list
the models whose relative errors fall below at least 0.6 for each example.

Table A.1
Relative ℓ2 errors and standard deviations of baseline methods for predicting the two-

dimensional Legendre function problem in subsection 4.1

Model 64 256 1024 4096 16384
Bagging 0.916± 0.076 0.854± 0.014 0.881± 0.021 0.734± 0.020 0.433± 0.017
kNeighbors 1.064± 0.000 0.972± 0.000 0.876± 0.000 0.619± 0.000 0.333± 0.000
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Fig. 4.6. (Left) Relative ℓ2 errors and (right) wall clock time in seconds solving the Allen-Cahn
problem for different network types using equispaced collocation points (top), and randomly spaced
collocation points (bottom).

Table A.2
Relative ℓ2 errors and standard deviations of baseline methods for predicting the non-smooth

synthetic function in subsection 4.2.

Model 64 256 1024 4096 16384
Bagging 1.190± 0.220 0.462± 0.084 0.180± 0.022 0.073± 0.003 0.033± 0.006
Grad Boost 0.846± 0.010 0.572± 0.003 0.240± 0.001 0.184± 0.000 0.217± 0.000
MLP 0.778± 0.068 0.864± 0.191 0.528± 0.164 0.359± 0.077 0.313± 0.042
Nu SVR 0.418± 0.000 0.151± 0.000 0.077± 0.000 0.069± 0.000 0.060± 0.000
SVR 0.690± 0.000 0.346± 0.000 0.217± 0.000 0.190± 0.000 0.170± 0.000
kNeighbors 0.776± 0.000 0.189± 0.000 0.081± 0.000 0.041± 0.000 0.018± 0.000

Table A.3
Relative ℓ2 errors and standard deviations of baseline methods for increasing dimensions

from subsection 4.3.1.

Model 2 3 4
Bagging 0.122± 0.004 — 0.750± 0.265
Bayesian Ridge 1.005± 0.010 0.237± 0.329 —
Elastic Net 1.000± 0.000 0.550± 0.606 —
kNeighbors 0.175± 0.000 — 0.479± 0.035

Acknowledgments. We acknowledge the use of large language models (LLMs)
for manuscript editing.
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Table A.4
Relative ℓ2 errors and standard deviations of baseline methods for the real-world dataset

from subsection 4.3.2.

Model Relative ℓ2 Error Model Relative ℓ2 Error
Adaboost 0.368± 0.016 MLP 0.474± 0.084
Bagging 0.225± 0.003 Nu SVR 0.263± 0.003
Elastic Net 0.487± 0.002 SVR 0.264± 0.003
Grad Boosting 0.225± 0.004 Theil Sen 0.511± 0.263
Huber 0.342± 0.012 Tweedie 0.320± 0.011
Linear SVR 0.287± 0.005 kNeighbors 0.255± 0.001
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