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Abstract

Respiratory motion is known to cause beat-to-beat vari-
ation of the ECG. This observation suggests that it may be
possible to use this variation to track position and orien-
tation of the heart. Electrocardiographic Imaging (ECGI)
would benefit from such a reconstruction since one con-
tribution to errors in its solutions is respiratory motion of
the heart. ECGI solutions generally rely on prior com-
putation of a “forward” model that relates cardiac elec-
trical activity to ECGs. However, the ill-posed nature of
the inverse solution leads to large errors in ECGI even for
small amounts of error in the forward model. The current
work is a first step towards reducing those errors using a
nominal forward model and the ECG itself. We describe a
method that can reconstruct cardiac position / orientation
using known potentials on both the heart and torso. Our
current implementation is based on Bayesian Optimization
and efficiently optimizes for the position / orientation of the
heart to minimize error between measured and forward-
computed torso potentials. We evaluated our approach
with synthesized torso potentials under a model of respi-
ratory motion and also using potentials recorded in a tank
experiment on a canine epicardium and the tank surfaces.
Our results show that our method performs accurately in
synthetic experiments and can account for part of the er-
ror between forward-computed and measured ECGs in the
tank experiments.

1. Introduction

Electrocardiographic Imaging (ECGI) is a technology
whose objective is to non-invasively image the electrical
function of the heart. That is, it reconstructs the electri-
cal potentials on the heart from the body surface potential
measurements and a mathematical model of the volume
conductor that relates them. Its purpose is to detect abnor-
mal behavior of the myocardial tissue, such as points of
re-entry or ectopic beats, and has great potential as a tool
for pre-interventional planning in ablation procedures.

ECGI methods rely on the availability of a “forward”

model that relates the electrical activity on the heart to the
body surface ECG measurements. Inverting the relation-
ship described by this model provides solutions to ECGI.
However, its intrinsic ill-posedness causes large errors in
the solutions with even small variations in the measure-
ments or the model itself. In order to provide stable so-
lutions to ECGI, it is necessary to regularize the inverse
solutions or reduce the noise present in the measurements
and the model. In this work, we show a proof-of-concept
approach to reduce effects of model errors that stem from
respiratory movement of the heart.

The relationship between electrical activity on the heart
and body surface ECG measurements can be approximated
using discretized geometries of, at least, the heart and
torso, along with the conductivities of the tissues involved
[1]. Moreover, when the electrical sources on the heart are
characterized by the distribution of potentials on a surface
enclosing it, the relation between heart and body surface
potentials at any time instant t—which we denote as xt
and yt respectively— can be modeled as multiplication by
a “forward” matrix A:

yt = Axt (1)

This forward matrix is numerically computed from the
heart and torso geometries and thus changes with the
movement of the heart. Hence, to characterize the changes
in the measured ECG produced by movements of the heart,
it is necessary to create a forward model that accounts for
the underlying position and orienation of the heart, whose
parameters are collected in the variable q, to generate for-
ward matrices A(q). This model can be used to solve the
problem of estimating the position of the heart using the
electrical measurements on the torso and on the heart:

min
q

T∑
t=1

‖yt −A(q)xt‖22 (2)

Unfortunately, solving this optimization problem can be
computationally too expensive due to the cost of numeri-
cally computing a forward matrix at every iteration (and in
addition running a simulation of the torso potentials when
the heart potentials are not known).
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There has been little work addressing this challenge.
Our group previously presented an algorithm that interpo-
lated the manifold of forward matrices A(q) with a multi-
dimensional function and then optimized Equation 2 using
this function as a surrogate [2]. In parallel Rodrigo et. al.
developed a method that uses an alternative measure to de-
termine the true underlying forward model. They used the
curvature of the L-curve from Tikhonov regularization to
find the geometry that best described the observed data [3].

Here we address this challenge employing a family of
optimization methods known as Bayesian Optimization
(BO). These black-box optimization methods were de-
signed to optimize objective functions that are too costly to
evaluate [4]. They minimize the number of function evalu-
ations needed by choosing the sequentially “best” point at
which to evaluate the objective function at each iteration.

Here we present a proof of concept of the application of
BO methods to finding the true position of the heart. We
assume we know both torso and heart potentials to eval-
uate our method and report tests on a series of synthetic
experiments simulating the movement of the heart due to
respiration and evaluate if this method can correct the dis-
crepancies between measured and synthesized potentials
in a canine tank experiment.

2. Methods

2.1. Bayesian Optimization

The basic assumptions in BO methods is that the objec-
tive function to be optimized (f(q) : <D → <) is not
known and that its evaluations are costly. BO methods
maintain a probabilistic model of the objective function as
well as a “utility function” (UF) that estimates the “bene-
fit” of evaluating any new point in the domain. The basic
procedure of any BO method consists of following these
steps iteratively until convergence:

1. Update probability model of objective function with the
available samples.
2. Update the UF.
3. Determine the most beneficial point to sample (maxi-
mize the UF).
4. Evaluate the objective function at that point.

The key elements in a BO method are the probabilistic
model and the UF. Any probability distribution over func-
tions can be used as the probabilistic model. Gaussian Pro-
cesses (GPs) are the most commonly used priors since they
characterize smooth functions and offer easy-to-compute
closed form solutions. The UFs are measures of “evalu-
ation benefit” derived from this probability model. There
are many utility functions proposed in the literature, in-
cluding probability of improvement, entropy search, and
expected improvement. However the UF that has attracted

most attention is expected improvement (EI)[4]. EI mea-
sures the expectation that the function value of a new point
will improve with respect to the best point observed (f ′):

EI(q) =

∫ f ′

− inf

(f ′ − f(q))p(f(q))df(g) (3)

A common approach to combining a probabilistic model
and a UF is to use a GP with EI. The advantage of this
combination is that the equation for the EI simplifies to:

EI(q) =(f ′ − µ(q))Φ(f ′;µ(q), σ(q))+

σ(q)N (f ′;µ(q), σ(q)),
(4)

where µ(q) is the mean and σ(q) is the variance the GP
model and Φ(·) the cumulative distribution function for a
normal distribution. This UF can be cheaply evaluated at
every point of the domain q and expressions to compute its
gradient are known. One limitation of BO is that all UF are
are highly non-linear and, when the dimensionality of the
problem is high, its optimization becomes computationally
challenging in itself. This limitation introduces an inherent
trade-off between the computational cost of evaluating the
objective function and the time spent optimizing the UF.
The general formulation of BO does not provide strategies
to find solutions to this trade-off, but it is possible to use
domain-specific knowledge about the application to facili-
tate it.

2.2. Optimizing the Position of the Heart

In this work, we use BO method to reconstruct the posi-
tion of the heart from ECG measurements. The objective
function that we use to solve this problem is Equation 2
and, in practice, it is evaluated as follows:
1. Move the heart to the coordinates q ∈ <6 determined by
EI (here, 3 coordinates for translation and 3 for rotation).
2. Compute a forward model (A(q)) using a numerical
method (in this work we used the Boundary Element
Method (BEM)).
3. Evaluate the fitting error from Equation 2
Although our objective function is non-linear and non-
convex, there is a dominant basin of attraction that con-
tains the global minimum. Thus we take advantage of this
characteristic and combine BO with conjugate gradient de-
scent. The conjugate gradient approach reduces the search
space dimension at each step from 6D to 1D, and the BO
reduces the number of evaluations needed in each iteration.

The complete algorithm, described in Algorithm 1, se-
quentially solves a BO problem in each dimension using
a GP model combined with EI. The algorithm is consid-
ered to have converged when the best observed heart posi-
tion qopt is stable between consecutive iterations or a pre-
determined maximum number of function evaluations is
reached.
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Algorithm 1 Heart position / orientation reconstruction al-
gorithm

1: Initialize samples Q = {q} and Y = {f(q)}
2: while ∼convergence do
3: for d ∈ [1 . . . D]: do
4: qopt = minq Y (q)
5: Update GP model with samples X and Y
6: Update EI with µ(q) and σ(q) from GP
7: qnewd = minqd EI(qd), where qd ∈ < is one

dimension of qopt

8: Update dth dimension of qopt with qnewd

9: X = [QQopt]

Figure 1: Left: Relative error between synthesized and true
ECG versus the respiration phase in the synthetic exper-
iment. The blue curve shows the relative error between
synthesized and true ECG. For comparison, the red curve
shows the relative error between the ECG generated with
the heart placed at the (uncorrected) at maximum exhale
and the true ECG. The yellow curve shows the difference,
that is the improvement using BO. Right: Same as on left
but showing RMS error of the heart position.

3. Experiments and Results

To evaluate the algorithm we used the geometry and
electrical measurements on both the heart and tank surface
in a torso-tank experiment. It was originally acquired at the
Cardiovascular Research and Training Institute (CVRTI),
University of Utah, with applicable IACUC approval. The
experiment consisted of the placement of an excised ca-
nine heart within a torso shaped tank filled with conduct-
ing medium, while electrical recording were taken on the
surface of the tank (192 electrodes) and the heart ventricles
(247 electrodes). In this work, we used this dataset in two
different ways. First, we took the geometries and the heart
potentials measured for one heartbeat and generated a se-
ries of synthetic ECG examples mimicking the effects of
respiration. Second, we used the real electrical measure-
ments on both the heart and tank surface to estimate the
unknown position of the heart within the tank.

To simulate a realistic movement of the heart, we used a
model of a respiration process obtained in previous work,
where we tracked the movement of the heart from a series
of MRI scans [5]. With this model, we moved the heart

to positions and orientations that correspond to multiple
phases of the respiration cycle. Specifically, we simulated
half of a respiratory cycle by positioning the heart at 10
equally spaced respiration phases between maximum in-
hale and maximum exhale. For each step of the cycle,
we computed a forward matrix using the BEM code in
the SCIRun software package [6] and multiplied the heart
potentials by it to synthesize the corresponding ECG per
each beat. Finally, we added white Gaussian noise with
sufficient power to create synthetic measurements with
SNR = 30dB 1.

The torso-tank experiments were provided to us with
a geometry that included a nominal position of the heart.
However, the ECG synthesized with this geometry and that
measured on the tank surface have a relative error between
0.4 and 1.3. Our hypothesis is that a significant part of this
error is due to a misplacement of the heart in the nomi-
nal geometry. To evaluate this hypothesis, we applied the
geometry reconstruction method to 35 heartbeats with the
heart paced at 6 different locations.

For both synthetic and real experiments, we applied the
BO algorithm separately to each heartbeat and estimated
the position of the heart. We computed the relative er-
ror between simulated and measured ECG and —when the
ground truth was available— we also computed the RMS
error between all nodes in the reconstructed versus the true
hearts.

The relative error in the synthetic experiment is shown
in Figure 1(left). The red and blue curves compare the rel-
ative error of the ECG generated after moving the heart
to the reconstructed position (blue curve) to the error ob-
tained with an ECG generated with the heart fixed at the
maximum exhale position (red curve). As expected, when
the heart moves with respiration, the reference error in-
creases until reaching its maximum at the maximum inhale
position —when the heart is furthest from the fixed exhale
position. On the other hand, reconstruction obtained with
our method is capable of reducing the error to almost the
levels of the SNR introduced with additive noise. These
results match the observations of the error in position of
the heart shown in Figure 1(right). Again, the blue curve
corresponds to the RMSE for the heart reconstructed with
our algorithm and the red curve to the RMSE for the heart
fixed at the maximum exhale position. The method is ca-
pable of finding the position of the heart with an an RMSE
below 10mm.

To evaluate if this method can account for the errors
observed between synthesized ECG and measured on the
tank surface, we computed the difference between rela-
tive error using the nominal geometry and the geometry
after “correcting” the position of the heart. Figure 2 shows

1Here SNR is computed as SNR(dB) = 20log10(
Vsignal

Vnoise
), where

V is variance
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Figure 2: Histogram of the differences between the error
of the ECG synthesized with the heart fixed at the original
position and that of the ECG synthesized with the recon-
structed heart position

the histogram of this difference for all 35 measured heart-
beats. As expected, all heartbeats show some improvement
in ECG fit. In some cases, the change in position of the
heart can only account for 0.125 of relative error, which
suggests that the nominal placement of the heart was cor-
rect. On the other hand, many measured heartbeats show
a reduction in relative error that accounts for up to 0.5, in-
dicating that the nominal geometry has considerable error.

4. Discussion

In the synthetic experiments, the position of the heart
was correctly estimated with an error below 10mm and the
algorithm was capable of explaining up to 0.5 of the rela-
tive error observed in the torso-tank experiments. The fact
that simple translation and rotation of the heart can account
for part of the error in the real experiments is encouraging
and needs to be further explored with the other potential
sources of error. All these results combined suggest that
the position of the heart can be reliably reconstructed from
ECG measurements by solving the optimization problem
in Equation 2

The computational costs of solving this optimization
problem could be daunting for forward models with
densely discretized geometries, multiple organs or includ-
ing cardiac simulations. BO algorithms can overcome this
limitation by smartly sampling the objective function. This
smart sampling reduces the number of function evaluations
needed and, with it, the computational costs of this prob-
lem. Moreover, BO algorithms can be adapted to include
domain-specific knowledge of the problem being solved
and thus further decrease the computational costs at no loss
of accuracy.

This work is a proof-of-concept of BO applied to re-
construct the position of the heart. There are various lim-
itations of this study that need further research. The cur-
rent approach is restricted to experimental settings where

the potentials of the heart are being measured. In the real
clinical environment that is not the case and this algorithm
should be combined with inverse methods or simulations
of cardiac activation. An alternative approach to solving
the clinical problem is to apply this optimization method
to other objective functions as in [3].

5. Conclusions

Errors in positioning of the heart introduce a consider-
able amount of noise in ECGI solutions. We presented
an algorithm that takes advantage of novel Bayesian Op-
timization methods to efficiently reconstruct the position
of the heart from the ECG measurements. Our approach
combines classic optimization methods and BO to improve
the computational efficiency while maintaining the accu-
racy of the solutions. The results obtained suggest that this
method will yield accurate solutions in a feasible time.
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