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A B S T R A C T   

Simulation models have been utilized in a wide range of real-world applications for behavior predictions of 
complex physical systems or material designs of large structures. While extensive simulation is mathematically 
preferable, external limitations such as available resources are often necessary considerations. With a fixed 
computational resource (i.e., total simulation time), we propose a Gaussian process-based numerical optimiza-
tion framework for optimal time allocation over simulations at different locations, so that a surrogate model with 
uncertainty estimation can be constructed to approximate the full simulation. The proposed framework is 
demonstrated first via two synthetic problems, and later using a real test case of a glass-forming system with 
divergent dynamic relaxations where a Gaussian process is constructed to estimate the diffusivity and its un-
certainty with respect to the temperature.   

1. Introduction 

Due to the increase in computational power, computer-based simu-
lation models have been extensively utilized to predict behaviors or 
design materials for a wide range of real-world applications. However, 
their application can be limited if they are computationally expensive. 
For example, studying the statistics of a random process or optimizing 
the performance over a design space requires a large number of simu-
lation evaluations, and consequently becomes computationally expen-
sive (or even impossible) as a single simulation may require minutes, 
hours or even days to complete [1]. One way to circumvent this issue is 
to construct a computationally cheaper surrogate model based on a 
limited number of simulation evaluations to approximate the behavior 
of the full simulation model. 

Extensive research work has been conducted on surrogate con-
struction. For example, different surrogate models, such as polynomial 
response surfaces [2], radial basis functions [3], Gaussian processes (or 
kriging) [4] and neural networks [5], have been explored to approxi-
mate simulations in different application fields. Provided a surrogate 
model, sampling techniques for locations (where the simulation will be 
implemented and evaluated) are proposed so that the constructed sur-
rogate is more accurate with limited samples [6–10]. Despite the 

significant contribution of the aforementioned work, the comprehensive 
research on the optimal allocation of the computational resources (or 
cost optimization) for a more accurate surrogate construction is missing. 
It would be of great interest to computational scientists to have guidance 
on the proper allocation of a fixed total computational time, including 
the number of simulation evaluations, the locations of simulations in a 
parameter space, and the computational time of each simulation (with 
error estimates). In this work, we will predefine the number of simula-
tion evaluations and their parameter space locations, then focus on the 
optimal allocation of the fixed total computational time to the chosen 
simulations based on Gaussian process (GP). 

Gaussian process (or kriging) has been widely used as a nonlinear 
regression technique to approximate simulations across various appli-
cations [4]. Tremendous research effort has been committed to the 
adaptive point (or sample) selection for Gaussian process so that a 
higher expected improvement can be obtained [8–10]. Our current work 
will fix the points (or samples) and focus on the error of simulations at 
the existing points. 

The proposed GP-based optimal time allocation framework will be 
applied to molecular dynamics (MD) simulations. MD simulations have 
been extensively utilized to compute the estimates of ensemble averages 
of key quantities of interest and hence study the behavior of molecular 
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systems and materials in various areas of science and engineering [11]. 
However, accurate sampling of the evolution of the system can be 
challenging due to the necessity of long-time MD simulations. To over-
come this issue, accelerated molecular dynamics (AMD) methods have 
been proposed to capture the equilibrium states of the system in much 
less computational time using various techniques [11], such as modified 
potentials augmented by bias potentials to accelerate and extend the 
time scale in MD simulations [12,13], parallel replica dynamics based on 
parallel power to boost the time scale [14], hyperdynamics based on 
transition state theory and importance sampling [15], and temperature- 
accelerated dynamics by raising the temperature but allowing only 
events occurring at the original temperature [16]. However, these 
methods require in-depth understanding of the underlying MD processes 
and possible modification of the simulation code [17]. On the other 
hand, non-intrusive computational predictive models have been applied 
to MD simulation to achieve both accuracy and efficiency. For example, 
both deterministic polynomial chaos (PC) expansions based on nonin-
trusive spectral projection and non-deterministic PC expansions based 
on Bayesian inference are constructed to approximate the full MD sim-
ulations as surrogates [18,19]; Bayesian uncertainty quantification 
frameworks with parallelization have been used to deal with the un-
certainty in the parameters of force fields employed in MD simulations, 
and adaptive Kriging models have been proposed to reduce the 
computational cost in [20,21]; function derivatives have been applied to 
quantify and correct uncertainties that originate from Lennard-Jones 
(LJ) two-body pair potential [22]; a multi-fidelity sampling approach 
has been proposed to enhance the convergence of properties predicted 
by MD simulations and hence serve as an accurate surrogate model to 
approximate the quantities of interest [17]. Despite the significant 
contribution to computational saving in MD simulations from the 
aforementioned work, the study on optimal time allocation (or cost 
distribution) for MD simulations over a temperature range for an accu-
rate surrogate construction is missing. With fixed available computa-
tional resources (such as the total simulation time), better choices on 
where and how long to run MD simulations will help to produce a more 
accurate surrogate model. Although the Multi-fidelity sampling 
approach has explored where to run MD simulations to some extent, we 
will specifically focus on the optimal allocation (distribution) of total 
simulation time to MD simulations at fixed locations in our current 
work. 

The developed algorithm will be applied to MD simulations of glass- 
forming liquids since very few reliable algorithms exist that perform 
well with the equilibration of glass-forming liquids at low temperatures 
[23]. We will consider a binary mixture of type A and B molecules that 
interact via a Lennard-Jones potential, which has been known to give a 
glassy system at low temperatures [24,25]; that is, it is not prone to 
crystallization as diffusion of species is diverging. Specifically, the 
composition studied in the current work includes 204 of type A and 820 
of type B molecules, and the diameters of spheres and strength of in-
teractions are slightly different. MD simulations are then conducted at a 
range of different temperatures to extract the diffusion coefficients. 
While extensive simulation is mathematically preferable, external lim-
itations such as available resources are often necessary considerations. 
With a fixed total simulation time, we explore the optimal time alloca-
tion to MD simulations over a set of discrete temperatures so that an 
accurate Gaussian process can be constructed to serve as a surrogate to 
predict the temperature dependence of diffusion coefficients. 

This paper is organized as follows. In Section 2, we provide the 
problem setup including the assumptions and the optimization problem 
for optimal time allocation. Following that, we introduce the basics of 
Gaussian process and propose a GP-based Optimization procedure for 
time allocation in Section 3. In Section 4, the proposed optimization 
procedure is demonstrated using synthetic numerical examples, and 
then applied to molecular dynamics simulations for a glassy system in 
Section 5. A summary is provided in Section 6. 

2. Problem setup 

Let the simulation model M map the parameter ξ ∈ Ξ to the output ̂u, 
which approximates the truth u(ξ) (the simulation output normally de-
viates from the truth due to the uncertainty in the simulation process). 
The objective is to construct a cheaper surrogate ũ to approximate the 
truth u based on a finite number of implementations of the simulation 
model. For the purposes of the current work, a few assumptions are 
made for the simulation model M .  

1. The simulation model is computationally expensive and the total 
computational resource is limited. For example, the total available 
computational time (or the total cost) is bounded by a constant C.  

2. The accuracy of the simulation model output û depends on the 
simulation time. For example, numerical solvers with higher-order 
enrichment and/or finer mesh produce more accurate results but 
take a longer time. Let ∊̂ denote the error in û, ∊̂ depends on the 
simulation time (or cost) c.  

3. The accuracy of the simulation model output û depends on the input 
ξ, i.e., with the same computational time, the errors in û(ξ1) and 
û(ξ2) are different for ξ1 ∕= ξ2. For example, û may have a finer 
structure for ξ1 and consequently require more computational power 
to reach the same accuracy as ξ2. Under this assumption, ∊̂ depends 
on ξ as well.  

4. The heuristic analytical form of the error in the numerical output û 
can be known. Numerical analysis provides a rough estimation for 
the error in the numerical solution from certain numerical schemes. 
For example, the error in the numerical root based on bisection 
method can be estimated. 

With the above assumptions, the simulation model M produces the 
model output û(ξ, c) associated with error ∊̂(ξ, c) for a given input ξ and 
a fixed simulation time (or cost) c. Then the objective becomes the 
optimal allocation of the total computational time C over the domain Ξ 
to construct a surrogate ũ(ξ) such that ‖ũ(ξ) − u(ξ)‖L2(Ξ) is minimized 
subject to 
∫

ξ∈Ξ
c(ξ)dξ = C, c(ξ)⩾0, (1)  

where the surrogate ũ(ξ) is constructed using simulations û(ξ, c). 
In order to employ numerical computation, the problem needs to be 

discretized over the domain Ξ, which means the surrogate is constructed 
based on a finite number of implementations of the simulation model M . 
Let N denote the number of simulations, {(ξ, c)i}

N
i=1 be the N realizations 

of the parameter ξ where the simulations take place and the corre-
sponding simulation times, {(û, ∊̂)i}

N
i=1 = {û(ξi, ci), ∊̂(ξi, ci)}

N
i=1 be the 

output from N simulations and the corresponding simulation errors. The 
objective is then to optimize the number of simulations N, the location of 
simulations ξis, and the time allocation cis among all simulations, i.e., 

min
N,ξi ,ci

‖ũ(û(ξi, ci), ∊̂(ξi, ci), ξ) − u(ξ)‖L2(Ξ), (2)  

subject to 
∑N

i=1ci = C and ci⩾0. 
We start with a simplified problem: the number of implementations 

of the simulation N, and the locations of simulations {ξi}
N
i=1 are pre-

defined. Then the objective function of the optimization problem 
becomes 

min
ci

‖ũ(û(ci), ∊̂(ci), ξ) − u(ξ)‖L2(Ξ), (3)  

∑N

i=1
ci = C, ci⩾0. (4)  

However, the true error in the constructed surrogate (i.e., the quantity 
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inside the 2-norm) is not available due to the lack of the truth. We 
propose to solve this time allocation optimization problem using the 
concept of Gaussian process regression. Specifically, we construct a 
Gaussian process as the surrogate ũ, and use its standard deviation 
function (depending on ξ) to serve as the estimation for its error. The 
details of the proposed method will be provided in the following section. 

3. Method 

3.1. Gaussian process regression basics 

A Gaussian process f(x) is a collection of random variables, any finite 
number of which have a joint Gaussian distribution [4]. It can be 
completely determined by its mean m(x) and covariance functions k(x,
x′

), where 

m(x) = E[f (x)], (5)  

k(x, x′

) = E[(f (x) − m(x))(f (x′

) − m(x′

)]. (6)  

In Gaussian process regression models, the mean m(x) is unknown and 
normally assumed to be 0 as a prior. Then for a number of input points x, 
the corresponding output is a random Gaussian vector f ∼ N (0,K(x,x)), 
where the element K(i,j) = k(xi,xj). Gaussian process regression models 
can be used for prediction given observations. Normally, one does not 
have access to the true function to obtain the exact function values as 
observations, instead, noisy versions of the function output are obtained 
y = f(x) + τ. With the assumption of additive independent distributed 
Gaussian noise τ with variance σ2, the prior covariance on noisy ob-
servations becomes 

cov(y) = K(x, x)+ Iσ2. (7)  

Let x* be the collection of test points for prediction. The joint distribu-
tion of the observations y and the function values f * at the test locations 
under the prior is 
[

y
f *

]

∼ N

(

0,
[

K(x, x) + Iσ2 K(x, x*)

K(x*, x) K(x*, x*)

])

. (8)  

The derived posterior distribution of the function values f * is 

f *|x, y, x* ∼ N (f *, cov(f *)), (9)  

where 

f * = K(x*, x)[K(x, x) + Iσ2]
− 1y, (10)  

cov(f *) = K(x*, x*) − K(x*, x)[K(x, x) + Iσ2]
− 1K(x, x*). (11)  

3.2. Optimization procedure of time allocation 

Let the constructed surrogate ũ be a Gaussian process with prior 
distribution ũ(ξ) ∼ N (0, k(ξ, ξ

′

)). The covariance function kernel is 
chosen to be the squared exponential due to its popularity. There are 
other kernels in the literature and the impact of choosing different 
kernels on our optimization will be discovered in our future work. The 
formula for the squared exponential kernel is 

k(ξ, ξ
′

) = aexp

(
− |ξ − ξ

′

|
2

2b

)

, (12)  

where the hyper-parameters a and b represent the prior standard devi-
ation and the correlation length, respectively. To estimate the hyper- 
parameters, we run N simulations at the fixed locations ξ = {ξ1,…, ξN}

with fixed small initial simulation time c0≪C/N for all simulations, 
which produce the initial observations û0, and error ∊̂0. The hyper- 
parameters can then be obtained by maximizing the likelihood based 

on the initial observations. 
As mentioned in Section 2, the true error in the surrogate ũ is not 

available due to lack of the truth u, the posterior standard deviation of 
the Gaussian process surrogate ũ will be adopted to serve as the esti-
mation of its error. To obtain the posterior distribution, we extract the 
observational data from N simulations û = {ûi} = {û(ξi, ci)} at known 
fixed locations ξ = {ξ1,…, ξN} with unknown corresponding simulation 
time (cost) c = {c1,…, cN} (to be decided in the optimization). The 
simulation errors are obtained from the error function ∊̂ = {∊̂i} = {∊̂(ξi,

ci)}. Let the test points be M equally-distanced points ξ* = {ξ*,1,…, ξ*,M}

in space Ξ, and ̃u* be the corresponding surrogate output. With Eq. (11), 
the variance of the function output ũ* is obtained as the diagonal of 
matrix cov(ũ*), denoted as e2. 

e2 = var(ũ*) = diag(cov(ũ*)), (13)  

where 

cov(ũ*) = K(ξ*, ξ*) − K(ξ*, ξ)[K(ξ, ξ) + I ∊̂2
]
− 1K(ξ, ξ*), (14)  

Our goal is to minimize the 2-norm of vector e2 with respect to the un-
known simulation time allocations cis as 

min
ci

‖e2(c)‖2, (15)  

∑N

i=1
ci = C, ci⩾0. (16)  

The algorithm of the Gaussian process-based optimal time allocation 
procedure (we name it GP-based Optimization) is outlined below. 

1. Specify the total simulation time (total cost) C, the number of sim-
ulations N, the locations of simulations ξ = {ξ1,…,ξN}.  

2. Obtain the heuristic analytical form of simulation error ∊̂, which 
depends on simulation location ξ and simulation time c, i.e., the 
function ∊̂(ξ, c).  

3. Determine the hyper-parameters a and b in the prior covariance 
matrix based on initial observations û0, ∊̂0, which is obtained from N 
base simulations at ξ with simulation time c0 for each simulation.  

4. Minimize the variance of the obtained Gaussian process e2 for the 
optimal time allocation c.  

5. Run simulations at locations ξ with obtained optimal simulation time 
c to obtain observational data û, ∊̂. Then the Gaussian process mean 
can be generated using Eq. (10). 

The initial observations in step 2 are considered as extra information 
and c0 does not count as part of the total simulation time C. In the case 
that one has to choose c0 for initial observations, equal values can be 
assigned to each element (i.e., c0 = [c0,c0,…,c0]) for simplicity and the 
summation of c0 should be much smaller than the total computational 
resources C. The large error in initial observations will be considered in 
the optimization process through the observational error {∊̂(ξi, c0)}

N
i=1. 

4. Synthetic numerical examples 

In this section, the proposed optimal time allocation procedure 
(based on a Gaussian process) will be demonstrated using two synthetic 
numerical examples with a polynomial function and an exponential 
function. For the purpose of comparison, we also perform the intuitive 
(or naive) way of optimizing time allocation (we name it Naive Opti-
mization): minimizing the 2-norm of the discrete N simulation errors 
{∊̂(ξi, ci)}

N
i=1 with respect to inputs c = {ci}

N
i=1. The optimization 

formulation is provided as follows. 

min
ci

‖∊̂(c)‖2
2 = min

ci
{∊̂2

(c1)+⋯+ ∊̂2
(cN)}. (17) 
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4.1. Example of polynomial function 

Let the true function u(x) be a third-order polynomial, and û(x) be 
the simulation output with noise τi, which has zero mean and standard 
deviation ∊̂(xi, ci). 

u(x) = 1+
x
2
+

x2

4
+

x3

8
, û(xi, ci) = u(xi)+ τi, (18)  

τi ∼ N (0, ∊̂2
(xi, ci)), ∊̂(x, c(x)) =

1
100

⎛

⎜
⎜
⎜
⎝

1 +
(x− 1)2

5
(

0.1 +
(c(x)− 0.1)

5

)2

⎞

⎟
⎟
⎟
⎠
. (19)  

From the formula ∊̂, one can observe that the simulation error is mini-
mum for x = 1, and gets larger as x increases with fixed simulation time 
(or cost c); and the error is also larger for a smaller simulation time for a 
fixed x. 

The fixed simulation locations and the fixed total simulation time are 
specified as: 

x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], (20)  

C = 8. (21)  

Our goal is to construct a Gaussian process surrogate ũ(x) to approxi-
mate the truth u(x). 

To have relatively meaningful prior information, we estimate the 
hyper-parameters in the covariance matrix based on initial observa-
tional data, which is produced by N = 11 simulations at x = 0,…,10 
with the fixed initial simulation time c0 = [0,…,0]. 

The proposed GP-based Optimization is implemented to find the 
optimal time allocation among the N = 11 simulations. From Fig. 1, one 
can observe that the simulation time is distributed to simulations at x =

0,1,3,5,8,10, and the simulations at larger x(> 1) are allocated longer 
times in general since they have larger errors compared to those at 
smaller x(> 1) with the same simulation time. The allocated times to the 
boundaries x = 0 (which has more error than x = 1) and x = 10 (which 
has more error than x = 8) are reduced since their correlation with other 
locations in the Gaussian process is weaker. Compared to the proposed 
GP-based Optimization method, the Naive Optimization allocates the 
monotonically increasing simulation times to the simulations ordered 
based on their simulation errors (i.e., from smaller to larger x with the 

exception of the boundary x = 0). From the results, one can conclude 
that the Naive Optimization allocates the simulation time based only on 
the simulation error, while GP-based Optimization allocates the simu-
lation time based on both simulation error and the correlation between 
x-locations. 

With the obtained optimal time allocations, the Gaussian processes ̃u 
from the two methods are generated and plotted in Fig. 2(a). The red 
color is for Naive Optimization while the blue color is for GP-based 
optimization. The dots and stars denote the simulation output and the 
simulation error at N = 11 locations with the optimal simulation times, 
based on which, the Gaussian process surrogates are then constructed. 
The constructed GP surrogate means from both methods are compared 
to the true function depicted by the black solid curve. The comparison 
shows that the red curve (from Naive Optimization) is slightly deviated 
from the black curve (truth) while the blue curve (from GP-based 
Optimization) aligns with the black curve to a greater extent. Note: 
Based on the design principle of Naive Optimization (i.e., minimizing 
the L2 norm of errors for 11 discrete simulations), one can expect that 
the overall 11 discrete simulations will have small errors as shown in 
Fig. 2(a). However, it does not necessarily result in a more accurate 
(continuous) mean curve comparing to GP-based Optimization, which 
takes into account the spacial information and produces less errors for 
the chosen locations at x = 1,3,5,8,10. 

Since it is difficult to visually compare data due to the large span of 
the values in the y-axis, we focus on the region inside the black-dashed- 
box and the close-up figures for both mean curves and 95% confidence 
intervals (curves) are provided in Fig. 2(b,c). One can easily observe that 
the surrogate constructed from the GP-based Optimization is closer to 
the true mean, and that the GP-based Optimization produces a more 
precise surrogate with less variance. 

To further compare the two methods, the L2 norms of the error in the 
means of the Gaussian process surrogates and the variance are calcu-
lated for both methods. From Table 1, one can conclude that GP-based 
Optimization performs much better in this example of a polynomial 
function. 

4.2. Example of exponential function 

Let the true function u(x) be an exponential function, and the 
simulation output û(xi) have the same noise τi as in the first synthetic 
example. Again, the simulation error is minimum at x = 1, and gets 
larger as x increases with fixed simulation time c, and the error is also 
larger for a smaller simulation time for a fixed x. 

u(x) = exp(x), û(xi, ci) = u(xi)+ τi, (22)  

τi ∼ N (0, ∊̂2
(xi, ci)), ∊̂(x, c(x)) =

1
100

⎛

⎜
⎜
⎜
⎝

1 +
(x− 1)2

5
(

0.1 +
(c(x)− 0.1)

5

)2

⎞

⎟
⎟
⎟
⎠
. (23)  

The fixed simulation locations and the fixed total simulation time are 
specified as: 

x = [0, 1, 2, 3, 4, 5], (24)  

C = 8. (25)  

Similarly, our goal is to construct a Gaussian process surrogate ũ(x) to 
approximate the truth u(x). 

We first generate observational data at x = 0,…,5 with specified 
initial simulation time c0 = [0,…, 0], based on which we estimate the 
hyper-parameters in the covariance matrix. Then we implement both 
GP-based Optimization and Naive Optimization for the optimal time 
allocations among the N = 6 simulations. From Fig. 3, one can observe 
that Naive Optimization allocates more simulation time to simulations 
that have more simulation error, while GP-based Optimization allocates 

Fig. 1. The optimal time allocation for the example of polynomial function: 
(top) GP-based Optimization, and (bottom) Naive Optimization. 
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more simulation time to x with a balance between larger simulation 
error and more influence on other locations. 

With the obtained GP-based optimal time allocation, the simulation 
output and the error can be calculated for the N = 6 locations {xi}

5
i=0. 

Based on which, the Gaussian process surrogate is then constructed (see 
Fig. 4(a) for the mean curve). To compare the two different optimization 
frameworks, the close-up (with range [0.4, 0.95]) mean curves and the 
95% confidence interval curves are provided in Fig. 4(b), which shows 
that the GP-based Optimization provides slightly better results (more 
accurate mean and less variance) for this exponential example. 

Similarly, the L2 norms of the error in the mean of the Gaussian 
process surrogate and the variance are calculated for both methods (see 
Table 2). The quantitative comparison also verifies the better perfor-
mance of the GP-based Optimization method. 

Fig. 2. The comparison of (a) the constructed Gaussian process surrogate; (b) close-up Gaussian processes mean curves with range [2,3]; and (c) the 95% confidence 
intervals with range [2, 3]. 

Table 1 
The comparison of GP-based Optimization and Naive Optimization 
regarding the error in mean surrogate and the variance for the 
example of a polynomial function.   

GP-based Optimization Naive Optimization 
L2 Error in ũ  2.3064 5.9305 

L2 of Variance  0.9768 3.5601  

Fig. 3. The optimal time allocation for the example of exponential function: 
(top) GP-based Optimization, and (bottom) Naive Optimization.. 

Fig. 4. The constructed Gaussian process for the example of exponential 
function: (a) the mean curve based on GP-based Optimization, and (b) the 
comparison of GP-based Optimization and Naive Optimization. 
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5. Molecular dynamics simulations 

5.1. Molecular dynamics simulation model 

As a real application example, in the current work, we consider a 
binary mixture of type A and B molecules that interact via a Len-
nard–Jones potential U(r) = 4∊[(σ/r)12

− (σ/r)6
] with parameters for 

self-interactions ∊AA = 0.5 kcal/mol, ∊BB = 1.0 kcal/mol, ∊AB = 1.5 
kcal/mol and σAA = 3.4214 Å, σBB = 3.8880 Å and σAB = 3.1104 Å. The 
systems were comprised of 204 of type A and 820 of type B molecules 
and simulated in a cubic box with periodic boundary conditions. This 
composition is known to not be prone to crystallization, instead it has 
the diffusion of species diverging, and gives an amorphous glassy system 
at low temperatures [26]. Therefore, it can be used to represent systems 
in which the characteristic dynamic relaxations/properties are 
diverging with lowering the temperature and hence requiring longer and 
longer simulations to get reliable statistics. In addition, the system may 
require a long time to reach equilibrium/stationary state especially at 
low temperatures, and consequently the MD simulations take a long 
time to produce meaningful statistical results. Therefore, it is important 
to construct fast predictive models based on a limited amount of MD 
simulations at a number of different temperatures to serve as a surrogate 
to approximate the full MD simulations. In this section, we employ the 
GP-based Optimization framework to explore the optimal allocation of 
the available computational resources to MD simulations at a set of 
discrete temperatures, and then construct an accurate Gaussian process 
surrogate based on the limited amount of initial MD simulations. To 
simplify the problem, we fixed the temperatures in the 180–250 K range 
(T = 180; 185; 190; 195; 200; 210; 220; 230; 250 K) at which the MD 
simulations will be launched to produce diffusion coefficients as model 
output. 

5.2. Initial data 

We first collect initial data over t = 2ns (or cost c = 2ns) at each 
temperature for the estimation of hyper-parameters of the covariance 
matrix. At a high temperature (T = 250 K), molecules move fast and 

hence we can reach equilibrium and sample properties of the system 
very quickly. Initial 2ns equilibration of the system was conducted in the 
NPT ensemble, energy and dimensions reached stationary values very 
quickly. To prepare initial systems for other temperatures in the 
180–250 K range, we performed consecutive steps of dropping the 
temperature and equilibrating for 2ns (i.e., from 250 to 230 K with 2ns 
simulation at 230 K; then from 230 to 220 K with 2ns of simulation at 
220 K), which corresponds to an effective cooling rate of 5 degrees per 
ns. After 2ns equilibration, we simulated each system for an additional 
2ns to sample the mean squared displacements (MSD) which we use to 
acquire self-diffusion coefficients D = limt→∞(MSD/6t). Note: Based on 
the diameter of type A particles (3.4214 Å) and type B particles (3.8880 
Å), one can specify the minimum simulation time (denoted as t0) that 
allows the molecules to move at least over their own dimensions, and 
consequently to be considered as an onset for the time required for the 
molecule to start a diffusive motion. The diffusion coefficients D may be 
extracted more accurately for higher temperatures with 2ns trajectory; 
however, they are extracted less accurately (if extractable) for lower 
temperatures. This is illustrated in Fig. 5, where we show MSD at T =

220, 200, and 185 K. Note that MSD was fit from the time where MSD =

10 up until half of the trajectory length. For 220 K we show that MSD 
from the 2ns and 10ns trajectories are almost identical and hence the D 
obtained from the 2ns data is already well-converged. For 200 K we see a 
noticeable difference between the 2ns and 90ns runs and hence the D 
extracted from the 2ns data will be less accurate. For 185 K, we only 
show the 220ns trajectory length as the 2ns simulation would not result 

Table 2 
The comparison of GP-based Optimization and Naive Optimization regarding 
the error in mean surrogate and the variance for the example of exponential 
function.   

GP-based Optimization Naive Optimization 
L2 Error in ũ  20.3904 20.5355 

L2 of Variance  13.3907 13.5871  

Fig. 5. MSD at T = 220, 200, and 185 K.  

Fig. 6. (a) VF model (log(1/D) versus T) fit to the higher temperature data 
(from 2ns of initial trajectory length); (b) Visualization of best fit VF model in D 
versus T. 
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in any meaningful MSD that could be used for the extraction of a 
diffusion coefficient. 

Since type A particles move faster and make it possible to extract D 
for more temperatures under consideration, we will focus on the analysis 
of type A particles in the current work. With 2ns of initial trajectory 
length, we can extract the diffusion coefficients D at T = 250,230,220,
210, 200 K. For the remaining temperatures, we utilize the Vogel- 
Fulcher (VF) model, which is known to describe the dependence of 
transport properties on the temperature in glass-forming liquids: 

log
(

1
D

)

= α+
β

T − T0
, (26)  

where T0 is the temperature where diffusion is diverging and it is usually 
very close to the glass transition temperature [27–29]. Ultimately pre-
dicting this temperature is one of the important objectives of such 
simulations. Fitting the VF model to the extracted D values provides the 
estimation of the unknown parameters, 

α = − 0.2445, β = 118.50, T0 = 159.57. (27) 

The best fit VF model are plotted in Fig. 6 (in both log scale and 
normal scale). The black stars represent the higher temperature data 
(from 2ns of initial trajectory length) used to fit the model while the red 
stars represent the estimated data from the fit (VF model) at lower 
temperatures. 

Then the complete initial diffusivity data D (associated with t = 2ns) 
is provided in Table 3, where the ones corresponding to temperature T <

200 K (indicated by *) are the estimation from the VF model rather than 
a simulation value. 

As mentioned earlier, the initial preparation simulations (i.e. cooling 
+2ns equilibration simulation steps) and the subsequent 2ns of sampling 
(at each of the nine temperatures) for the initial data set are considered 
as extra information and the dedicated computational time does not 
count as part of the total simulation time for optimal allocation. 

5.3. Error estimation for MD simulations 

The error in the time-dependent diffusion coefficient from molecular 
dynamics simulation has been studied by Kim et al. [30]. Their results 

showed that the error bars are proportional to the square root of the 
trajectory lengths or time (for example, increasing the trajectory length 
by a factor of 4 will reduce the error bar by a factor of 2). Define the 
simulation error to be ∊̂0 for the extracted D at 2ns simulation, then the 
error after c + 2ns simulation can be estimated as 

∊̂(T, c) =
̅̅̅̅̅̅̅̅̅̅̅

2
c + 2

√

∊̂0(T). (28)  

The initial simulation error ∊̂0 is estimated based on the results in Fig. 7, 
which shows that trajectory length has to be on the order of (50 − 100)t0 
in order to converge. For this particular system, we also observe that it 
takes about 75t0 for diffusion to reach reasonable values (within 10% of 
the converged value). 

We then define the initial error for 2ns simulation as 

∊̂0(T) = λ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
75t0(T)

2

√

10%. (29)  

Since the initial error is estimated based on the trajectories at higher 
temperatures, a scalar λ is introduced in the initial error formula for a 
range of temperatures from 180 K to 250 K. In our current work, we set 
λ = 0.1. Note: In general, it is difficult (if not impossible) to obtain the 
exact simulation error without knowing the true function, one needs to 
estimate the simulation error based on the available knowledge/infor-
mation. In the current work, the formula for simulation error is only an 
estimation based on the prior analysis of the MD simulation. We will 
directly use this estimation in the process of optimizing the time allo-
cation, leaving the sensitivity analysis of optimal time allocation with 
respect to the estimation of the error function as our future work. 

5.4. Data for validation 

In order to validate our method, we also conduct MD simulations for 
a prolonged time to collect converged data (which can be considered as 
gold standard). Table 4 includes the simulation time, minimum time t0 

to reach MSD = 10 Å
2
, and the collected diffusion coefficients D. 

Since 200ns of simulation time (or trajectory) does not yield 75t0 for 
T = 180 K, 185 K, the extracted D may not have converged for these 
temperatures. Therefore we use the diffusion coefficients corresponding 
to the first 7 temperatures to fit the Vogel–Fulcher model as 

log
(

1
D

)

= − 0.9936+
212.5

T − 144.5
, (30)  

which corresponds to the reduced temperature T* = kBT
∊AA

= 0.574 andwill 

Table 3 
Diffusivities at different temperatures for 2ns simulation.  

T (K) 250  230  220  210  200  195*  190*  185*  180*  

D 
(

Å
2

ps

) 0.0870 0.0362 0.0184 0.00825 0.00203 7.94e− 4 2.24e− 4 3.84e− 5 2.78e− 6  

Fig. 7. Diffusion coefficients D normalized by the Dlong extracted from the 
longest trajectory as a function of trajectory length (time) measured in units 
of t0. 

Table 4 
Diffusivities at Various Temperatures for Sufficient Simulation.  

T(K) Simulation time (ns) t0(ps)  DA (Å
2
/ps)  

250 2 17 0.0870 
230 2 44 0.0362 
220 20 87 0.01553 
210 40 225 0.00559 
200 90 878 0.0014 
195 70 2563 5.418e− 4 
190 180 5425 2.266e− 4 
185 220 7050 1.9467e− 4 
180 180 34985 3.808e− 5  
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serve as the truth to validate our method. 

5.5. Results and discussion 

We assume the fixed total computational resource C = 100ns. The 
goal is to obtain an optimal time allocation over the 9 simulations at T =

250, 230, 220, 210, 200, 195, 190, 185, 180 K so that an accurate 
surrogate can be constructed based on the simulation results. 

Using the initial data in Table 3 and the initial error (Eq. (29)), the 
prior information of the Gaussian process (i.e., the initial estimation of 
the hyper-parameters of the covariance matrix) is obtained. Then the 
proposed GP-based Optimization framework is employed to optimize 
the time allocation. To solve the optimization numerically, a set of 100 
randomly generated distributions of C = 100ns over 9 locations are 
considered as initial guesses (see Fig. 8). 

The optimization for all of the initial guesses converges to the same 
optimal time allocation (see Fig. 9(a)): 60ns for simulation at T = 185 K 
and 40ns for simulation at T = 200 K. On the other hand, Naive Opti-
mization assigns monotonically decreasing simulation time to the 
simulation with increasing temperatures as expected (see Fig. 9(b)). For 
the purpose of comparison, we also generate a time allocation randomly 
as in Fig. 9(c). 

Based on the three sets of optimal time allocations, MD simulations at 
9 different temperatures are performed up to the assigned simulation 
times (+2ns initial time). The diffusion coefficients are extracted and 
provided in Table 5, where the entries with “–” indicate that the diffu-
sivity values from the 2ns simulation, read from Table 3, are used. 

Using the collected diffusion coefficients from the MD simulations 
with the obtained optimal time allocations, the hyper-parameters of the 
covariance matrix are updated. Due to the nonnegativity constraint on 

the diffusion coefficient (i.e., D⩾0), nonnegativity-enforced Gaussian 
process surrogates are constructed [31]. The Gaussian processes with 
95% CI regions are provided in Fig. 9(d–f). To visualize the difference 
between Gaussian process mean curves obtained by three different ap-
proaches, we have plotted the curves in log-scale and compared to the 
VF model (Eq. (30)) in Fig. 10(a). From the figure, one can easily observe 
that GP-based Optimization outperforms the Naive Optimization and the 
Random Generation. 

To further compare the two methods and the random generation 
quantitatively, the L2 norms of the error in the mean of the Gaussian 
process surrogate (compared to Eq. (30)) and the variance are calculated 
(see Table 6). The quantitative comparison of the surrogate mean error 
also verifies the better performance of the GP-based Optimization 
method. Due to the enforcement of nonnegativity and update of hyper- 
parameters, the GP-based Optimization method produces a slightly 
larger L2 norm of variance over the whole temperature range than 
Random Generation. However, focusing on the lower temperature range 
(see Fig. 10(b)) that is of more interest from practical applications point 
of view, the produced Gaussian process variance at [180,190]K is smaller 
for the GP-based Optimization method. 

As mentioned earlier, predicting the temperature T0 in the VF model 
is one of the important objectives of MD simulations. Therefore, we fit 
the VF model to the constructed Gaussian process mean values for the 
estimation of the unknown parameters α, β and T0 in VF model. Table 7 
shows that the GP-based Optimization method provides the closest 
estimation of T0 to the one obtained from the true data-fit VF model. 

All the results are obtained based on the assumption of a limited total 
simulation time C = 100ns. Due to the simulation error and surrogate 
approximation error, the best GP mean curve obtained from GP-based 
Optimization still slightly deviate from the truth especially towards 

Fig. 8. The 100 randomly generated initial guesses for optimization.  
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the lower temperature region, and the closest estimations for VF pa-
rameters are also slightly different from the true data-fit VF parameters. 
To have a possible better approximation of temperature-diffusion curve 
and consequently more accurate estimation of VF model parameters, 
one may increase the total simulation time C to decrease the simulation 
error when additional computational resource becomes available. 

6. Summary and conclusion 

In this work, we propose a Gaussian process-based numerical opti-
mization framework for optimal time allocation over simulations at 
different locations, so that a surrogate model with uncertainty estima-
tion can be constructed to approximate the full simulation with a fixed 
total simulation time. Specifically, the L2 norm of the (continuous) 

Fig. 9. The obtained time allocations from: (a) GP-based Optimization, (b) Naive Optimization, and (c) Random Generation; and the Gaussian process fits with 95% 
CI regions from: (d) GP-based Optimization, (e) Naive Optimization, and (f) Random Generation. 

Table 5 
Diffusivities (in Å

2
/ps) at Various Temperatures with Optimally Allocated 

Simulation Time.  

T(K) GP-based Naive Random 

250 – – – 
230 – – – 
220 – 1.64e− 2 1.674e− 2 
210 – 4.26e− 3 3.66e− 3 
200 1.519e− 3 1.783e− 3 1.654e− 3 
195 – 5.67e− 4 6.4e− 4 
190 – 5.27e− 4 6.35e− 4 
185 2.65e− 4 2.96e− 4 2.93e− 4 
180 – 5.253e− 5 6.891e− 5  
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variance of the Gaussian process is minimized with respect to the cost 
(simulation time) distribution over the simulations at discrete locations. 

The GP-based optimal time allocation framework is demonstrated 
using two synthetic numerical examples. Compared to a naive (intuitive) 
optimization setup, where the L2 norm of the (discrete) errors defined at 
the fixed simulation locations is minimized, our proposed framework 
produces a more accurate mean function with less variance. 

Despite its strong predictive power, MD simulations can be compu-
tationally expensive. With a fixed total simulation time, the GP-based 
optimal time allocation framework is applied to MD simulations for a 
glass-forming system with divergent dynamic relaxations to construct an 
accurate but cheaper surrogate model, which maps the temperature to 
diffusion coefficients. Specifically, the proposed framework provides 
guidance on how long to run MD simulations at predefined temperatures 
so that the variance of the obtained Gaussian process surrogate is 
minimized. Compared to both the Naive Optimization framework and a 
randomly assigned time allocation (or distribution), our GP-based 
optimal time allocation framework produces a mean function closest 
to the Vogel-Fulcher model fitted from converged data (considered as 
gold standard) and the best estimation of T0. 

7. Data availability 

The raw data required to reproduce these findings are provided in 
Tables 3 and 4. The processed data required to reproduce these findings 
are provided in Table 5. 
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