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Abstract. Least squares regression is a ubiquitous tool for building emulators (a.k.a. surrogate models) of
problems across science and engineering for purposes such as design space exploration and uncer-
tainty quantification. When the regression data are generated using an experimental design process
(e.g., a quadrature grid) involving computationally expensive models, or when the data size is large,
sketching techniques have shown promise at reducing the cost of the construction of the regression
model while ensuring accuracy comparable to that of the full data. However, random sketching
strategies, such as those based on leverage scores, lead to regression errors that are random and
may exhibit large variability. To mitigate this issue, we present a novel boosting approach that
leverages cheaper, lower-fidelity data of the problem at hand to identify the best sketch among a
set of candidate sketches. This in turn specifies the sketch of the intended high-fidelity model and
the associated data. We provide theoretical analyses of this bifidelity boosting (BFB) approach
and discuss the conditions the low- and high-fidelity data must satisfy for a successful boosting. In
doing so, we derive a bound on the residual norm of the BFB sketched solution relating it to its
ideal, but computationally expensive, high-fidelity boosted counterpart. Empirical results on both
manufactured and PDE data corroborate the theoretical analyses and illustrate the efficacy of the
BFB solution in reducing the regression error, as compared to the nonboosted solution.
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1. Introduction. In forward uncertainty quantification (UQ) involving computationally
expensive models, one often seeks to build emulators or surrogates of the model; popular
examples include polynomial chaos (PC) emulators and Gaussian processes. This paper con-
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214 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

siders the specialized case when one seeks to build an emulator that predicts the output of
a model as a function of its input; in practice the input is frequently a finite-dimensional
parameter \bfitp , which is often modeled as a random vector to account for either uncertainty in
precise values of these parameters or as a means to model variability of parameters in order
to assess robustness of an output [29, 38]. Once an emulator is built, various statistics of the
output (which is random due to the randomness in the input \bfitp ) can be computed by directly
manipulating the emulator.

In the simplest setting, observations of the model (that is, possibly noisy input-output
pairs) are required to train emulators. To mitigate data collection cost, one wishes to use as
few observations or samples of the model as possible. In this context, the goal is to engineer
a ``good"" set of samples, which is the purview of complexity theory and optimal experimental
design. The main goal of this paper is to develop a new strategy for randomized construction
of a sampling design by leveraging access to data from a ``low fidelity"" model, that is, a second
computational model with the same input that is less expensive to query and whose output is
a possibly inaccurate approximation to the original model's output. Such ``bifidelity"" setups
are ubiquitous in UQ and are specializations of more general multifidelity scenarios, in which
even inaccurate low-fidelity models can contain useful information for high-fidelity prediction
[35]. In summary, our proposed procedure combines ideas from sketching of high-fidelity least
squares problems with statistical boosting methods employing low-fidelity data. We show that
this results in a procedure that can leverage low-fidelity (i.e., inexpensive) data to increase
the accuracy of an emulator.

1.1. Problem setup. To formalize concepts, we consider a model \scrT given by a (possibly
nonlinear) parameter-to-output map,

b= \scrT (\bfitp ), \bfitp \in \Omega \subset \BbbR q, \scrT : \Omega \rightarrow \BbbR .(1.1)

A canonical example is when \scrT is a measurement functional (e.g., the spatial average) op-
erating on the solution to an elliptic partial differential equation (PDE) whose formulation
contains random variables \bfitp that parameterize, e.g., the diffusion coefficient. Hence, \scrT is
the composition of a measurement functional with the solution map of a parametric PDE.
By placing a probability distribution on \bfitp that reflects a model of uncertainty, the goal of
forward UQ is to quantify the resulting randomness in b(\bfitp ), frequently via statistics. Since
explicit formulas revealing the dependence of b on \bfitp are typically not available, one resorts to
approximations via emulators.

In this paper we consider building emulators for forward UQ via a nonintrusive least
squares--based strategy. More precisely, we assume an a priori form for an emulator bV ,

b(\bfitp )\approx bV (\bfitp ) :=

d\sum 
j=1

x\ast j\psi j(\bfitp ), V := span\{ \psi 1, . . . ,\psi d\} ,(1.2)

where \psi j are fixed, known functions (in PC approaches they are multivariate polynomial
functions of \bfitp ), and the coefficients x\ast j must be determined. In the context of generalized
linear models, we have assumed that covariates \psi j are identified. We compute the coefficients
x\ast j through regression, i.e., we identify x\ast j through data collected from evaluating the expensive

computer model b on a prescribed design or ensemble of samples \{ \bfitp n\} Nn=1. The coefficients x\ast j
are then chosen as the solution to a least squares problem,
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BIFIDELITY BOOSTING SAMPLING 215

\bfitx \ast = argmin
\bfitx \in \BbbR d

\| \bfitA \bfitx  - \bfitb \| 22, \bfitA (n, j) =
\surd 
wn\psi j(\bfitp n), \bfitb (n) =

\surd 
wnb(\bfitp n),(1.3)

where \bfitA \in \BbbR N\times d is referred to as the design matrix of the problem, and we have introduced
positive weights \{ wn\} Nn=1 that result in a general weighted least squares problem. In (1.3)
we assume (1) that the parameter ensemble is sufficiently dense or space-filling so that \bfitx \ast 

is considered as a sufficiently accurate emulator, and (2) that the vector \bfitb comprises exact
(and not noisy) evaluations of the computational model. In principle one could augment
our analysis to consider \bfitb as containing noisy evaluations; this does not change theoretical
guarantees or practical algorithmic details. However, in this case \bfitx \ast corresponds to regression
coefficients conditioned on the noise realization, with sufficiently small noise so that \bfitx \ast is still
assumed sufficiently accurate for prediction purposes. We reiterate that while \bfitb may contain
noise, we assume in what follows that it is deterministic for simplicity.

For many sampling designs, such as low-discrepancy sequences, the weights in (1.3) can
be taken as uniform; for other sampling designs, such as quadrature rules, the weights wn are
given by the (positive) quadrature weights. Once \bfitx \ast is computed, the emulator bV can be
manipulated and computationally analyzed to compute (approximate) statistics for b or the
sensitivity of b to each entry of \bfitp . The challenge with this approach is that when dim\bfitp = q\gg 
1, then designing an ensemble (or quadrature rule) that yields sufficient accuracy typically
requires N \gg 1 samples of b, which is prohibitively expensive when such evaluations amount
to PDE solutions. (For example, if \bfitp has independent components then a q-dimensional
tensorization of an n-point ensemble in each dimension requires N = nq points.)

Our proposed strategy mitigates this cost in a bifidelity UQ setup via a procedure that
combines statistical boosting with linear sketching (see, e.g., [30, section 7.2] and [40, section
2.3]). Sketching refers to a compression of high-dimensional data into a low-dimensional
space; we restrict our attention to the popular linear sketching techniques, in which case a
linear sketch operating on a high-dimensional vector \bfitb (such as the vector \bfitb in (1.3)) can be
represented by the action of a matrix \bfitS \in \BbbR m\times N with m < N . We then refer to \bfitb \mapsto \rightarrow \bfitS \bfitb as
a sketching operation, and \bfitS as the corresponding sketch matrix. In our context, the sketch
matrix is a random matrix whose characteristics we precisely specify later; see Definition 2.1
and subsections 2.2.2 to 2.2.4. In particular, there are row sketches (having nonzero entries
in only m columns) for which computing \bfitS \bfitb requires knowledge of only m entries of \bfitb , rather
than all N entries required for a general dense \bfitS . (This corresponds to subsampling the full
N data points, generally with replacement, but sketching operators that are not row sketches
are more general than subsampling.) For a given sketch matrix \bfitS , there is a corresponding
sketched least squares problem that is derived from (1.3) by first applying \bfitS to both sides:

\^\bfitx = argmin
\bfitx \in \BbbR d

\| \bfitS \bfitA \bfitx  - \bfitS \bfitb \| 22.

One hopes that \^\bfitx is ``close"" to \bfitx \ast . One may wonder why making a deterministic choice of \bfitS is
not utilized: Without a priori knowledge of \bfitb , a deterministic sketch with m<N generally is
not robust to adversarial vectors \bfitb that result in a large residual for \^\bfitx relative to the residual
for \bfitx \ast . However, in general scenarios one can identify constructive probabilistic models for \bfitS 
where sketches of near-optimal size, m\gtrsim d logd/(\epsilon \delta ), ensure

\| \bfitA \^\bfitx  - \bfitb \| 2 \leq (1 + \epsilon )\| \bfitA \bfitx \ast  - \bfitb \| 2 with probability \geq 1 - \delta .
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216 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

Since \bfitS is random, then \^\bfitx is random, and hence the accuracy of \^\bfitx relative to \bfitx \ast has a random
distribution; in particular, the guarantees above reveal the possibility of ``failure"" events of
nonzero probability \delta . The idea of boosting is to generate and use several, say L, realizations
of \^\bfitx to identify a ``boosted"" approximation for \^\bfitx with a more favorable accuracy distribution.
The most transparent and simple example is to boost by choosing the realization with the
highest accuracy among the L realizations. Thus, a naive boosting strategy would generate
L i.i.d. samples of \{ \^\bfitx i\} i\in [L], and the boosted choice would correspond to

argmin
\bfity \in \{ \^\bfitx i\} i\in [L]

\| \bfitA \bfity  - \bfitb \| .

However, even using row sketches, computing these residuals essentially requires full knowledge
of \bfitb , which we wish to avoid when each component of this vector is an expensive PDE solve.
Our approach attacks this problem in the sketch selection boosting phase by replacing \bfitb 
with an approximate, low-fidelity version (that we subsequently introduce as \widetilde \bfitb ) from which
collecting a large number of samples is computationally feasible. Once a ``good"" sketch is
identified in the boosting phase using low-fidelity (inexpensive) data, we solve a single sketched
least squares problem involving high-fidelity (expensive) data \bfitb . In summary, our approach
boosts the randomness of the sketching operator \bfitS , using a relatively large number (N) of
low-fidelity model evaluations in a boosting phase to identify a favorable sketch operator,
and subsequently using a relatively small number (m) of high-fidelity model evaluations to
compute regression coefficients using the favorable sketch operator.

1.2. Contributions of this article. The contributions of this article are as follows:
\bullet We propose a new bifidelity boosting (BFB) algorithm to compute an approximation

to \bfitx \ast . The procedure, given in Algorithm 3.1, computes the solution of a sketched
least squares problem, where the sketch matrix is identified by a boosting procedure
on a low-fidelity data vector \widetilde \bfitb . The sketching approach reduces the required sample
complexity from N evaluations of \bfitb to \sim d logd samples of \bfitb , which can be a significant
saving. The boosting procedure requires \sim Ld logd evaluations of the low-fidelity
model \widetilde \bfitb , where, in the language of statistical learning, L is the number of weak
learners used in the boosting procedure. When \widetilde \bfitb costs substantially less than \bfitb , this
cost for collecting the boosting data is negligible.

\bullet We provide a theoretical analysis of BFB under certain assumptions, which provides
quantitative bounds on the residual of the BFB solution \^\bfitx BFB relative to the full,
computationally expensive solution \bfitx \ast (see Theorems 3.2 and 3.4). This in particular
reveals a relationship between L and a type of correlation between \bfitb and \widetilde \bfitb that
provides guidance for when BFB is useful. (See the discussion following Theorem
3.4.) We also provide some asymptotic bounds on the correlation between the low-
and high-fidelity solutions in a certain sense (see Theorem 3.5). Finally, we provide
concrete computational strategies to ensure that the required assumptions of BFB
hold (see Theorem 3.11).

\bullet We investigate the numerical performance of BFB when combined with several differ-
ent sampling strategies and compare the performance to the corresponding sampling
strategies without boosting. We also demonstrate using real-world problems that the
assumptions required for BFB's theoretical analysis frequently hold in practice.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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BIFIDELITY BOOSTING SAMPLING 217

The idea of sketching for least squares solutions has a substantial history in the computer
science and numerical linear algebra communities [30, 40]. Our use of sparse row sketches of
size \sim d is identical to existing methods for leverage score--based [30], Gaussian sketch--based
[32], and volume-maximizing sketching [8, 9]. In addition, boosting for least squares problems
is also not a new idea [21]. However, our combination of these approaches in a bifidelity setting
is new, to the best of our knowledge, and our analysis in this bifidelity context provides novel,
nontrivial insight into the algorithm performance.

The rest of this article is organized as follows. Section 2 introduces the notation we use and
provides some background material on various sketching approaches in least squares approx-
imation. Section 3 presents the BFB algorithm along with its theoretical analysis. Section 4
contains numerical experiments which illustrate various aspects of the BFB approach. Sec-
tions SM1 and SM2 in the supplementary material describe sketching strategies and contain
a discussion of the algorithmic sketching approach in [31] used here. Sections SM3 to SM6
contain some proofs of auxiliary technical results.

2. Preliminaries. This section introduces notation and describes four sketching strategies
for the least squares problem (1.3), namely, column-pivoted QR, leverage scores, volume
maximization, and Gaussian sketching.

2.1. Notation. Matrices are denoted by bold uppercase letters (e.g., \bfitA ), vectors are
denoted by bold lowercase letters (e.g., \bfitx ), and scalars are denoted by lowercase regular and
Greek letters (e.g., a and \alpha ). Entries of matrices and vectors are indicated in parentheses.
For example, \bfitA (i, j) is the entry on position (i, j) in \bfitA and \bfita (i) is the ith entry in \bfita . A
colon is used to denote all entries along a mode of a matrix. For example, \bfitA (i, :) is the ith
row of \bfitA represented as a row vector. For a set of indices \scrJ , \bfitA (\scrJ , :) denotes the submatrix
(\bfitA (j, :))j\in \scrJ and \bfita (\scrJ ) denotes the subvector (\bfita (j))j\in \scrJ .

The compact SVD of a matrix \bfitA takes the form \bfitA = \bfitU \bfSigma \bfitV T , where \bfitU and \bfitV have
rank(\bfitA ) columns and \bfSigma is of size rank(\bfitA ) \times rank(\bfitA ). The pseudoinverse of \bfitA is denoted
by \bfitA \dagger \mathrm{d}\mathrm{e}\mathrm{f}

= \bfitV \bfSigma  - 1\bfitU T . For a matrix \bfitU with orthonormal columns, we use \bfitU \bot to denote an
orthonormal complement of \bfitU , i.e., \bfitU \bot is any matrix such that [\bfitU , \bfitU \bot ] is square and has
orthonormal columns. We use \bfitP \bfitA 

\mathrm{d}\mathrm{e}\mathrm{f}
= \bfitA \bfitA \dagger = \bfitU \bfitU T to denote the orthogonal projection onto

range(\bfitA ), where \bfitU = orth(\bfitA ) is a(ny) matrix whose columns are an orthonormal basis for
range(\bfitA ), e.g., via the compact SVD or QR decomposition of \bfitA . The determinant of \bfitA is
denoted by det(\bfitA ). For a positive integer n, we use the notation [n]

\mathrm{d}\mathrm{e}\mathrm{f}
= \{ 1,2, . . . , n\} . We use

\bfita \scrP to denote a vector \bfita \not = \bfzero rescaled to unit length, \bfita \scrP = \bfita 
\| \bfita \| 2

.
We also introduce two notions of correlation: for given deterministic vectors \bfita ,\bfitb \not = \bfzero , we

define the correlation between them as the cosine of the angle separating them: corr(\bfita ,\bfitb )
\mathrm{d}\mathrm{e}\mathrm{f}
=

\langle \bfita ,\bfitb \rangle 
\| \bfita \| 2\| \bfitb \| 2

, where \langle \cdot , \cdot \rangle denotes the Euclidean inner product. We will also require Pearson's

correlation coefficient, which is widely used in statistics. For two (nonconstant) random
variables X and Y with bounded second moments defined on the same probability space, their
correlation is defined as corr(X,Y )

\mathrm{d}\mathrm{e}\mathrm{f}
= \BbbE [(X - \BbbE [X])(Y - \BbbE [Y ])]\surd 

\BbbV [X]\BbbV [Y ]
, where \BbbE [\cdot ] and \BbbV [\cdot ] are, respectively,

the mathematical expectation and variance operators. Note that our notation corr(\cdot , \cdot ) is
overloaded, operating differently on vectors and (random) scalars. The context of use in what
follows should make it clear which definition above is used.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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218 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

The following denotes the minimum of the least squares objective in (1.3):

r(\bfitA ,\bfitb )
\mathrm{d}\mathrm{e}\mathrm{f}
=min

\bfitx 
\| \bfitA \bfitx  - \bfitb \| 2 = \| \bfitA \bfitx \ast  - \bfitb \| 2,(2.1)

where \bfitx \ast is defined as in (1.3).
Finally, we assume the availability of and leverage a low-fidelity model \widetilde b(\bfitp ) that is an

approximation to b(\bfitp ) defined in (1.1). For example, \widetilde \bfitb may correspond to using a discretized
PDE solver with a mesh coarser than the one which produces accurate realizations of \bfitb , or
to model approximations such as Reynolds-averaged Navier--Stokes solvers, or to solutions
computed with arithmetic in lower precision compared to samples for \bfitb . Although \widetilde \bfitb may be
untrusted as a replacement for \bfitb , it can be used to extract some useful information about
\bfitb , as is done in the now standard multifidelity approaches [35]. Throughout this paper, we
assume the bifidelity setup, i.e., two levels of fidelity, and also that the cost of evaluating \widetilde \bfitb is
much less than the corresponding cost for \bfitb ; both of these are common practical assumptions
[11, 33, 42, 18, 34].

2.2. Sketching of least squares problems. Solving problem (1.3) using standard methods
(e.g., via the QR decomposition) costs \scrO (Nd2).1 When N is large, this may be prohibitively
expensive. A popular approach to address this issue is to apply a sketch operator \bfitS \in \BbbR m\times N ,
where m\ll N to both \bfitA and \bfitb in (1.3) in order to reduce the size of the problem:

\^\bfitx 
\mathrm{d}\mathrm{e}\mathrm{f}
= argmin

\bfitx \in \BbbR d

\| \bfitS \bfitA \bfitx  - \bfitS \bfitb \| 2 .(2.2)

This approach has two benefits: (i) If \bfitS is a row sketch, i.e., has only a small number of
nonzero columns, then \bfitS \bfitb requires knowledge of only a small number of entries of \bfitb , and (ii)
the cost of solving this smaller problem is \scrO (md2), a substantial reduction from \scrO (Nd2) when
m\ll N . Analogously to (2.1), we will use the following to denote the least squares objective
value for the approximate solution:

r\bfitS (\bfitA ,\bfitb )
\mathrm{d}\mathrm{e}\mathrm{f}
= \| \bfitA \^\bfitx  - \bfitb \| 2.(2.3)

The goal is for the approximation \^\bfitx to yield a residual ``close"" to the optimal residual of the
full problem (1.3), i.e., r(\bfitA ,\bfitb ) \approx r\bfitS (\bfitA ,\bfitb ), which is achieved if m is ``large enough."" The
following definition makes this more precise.

Definition 2.1 ((\bfitvarepsilon ,\bfitdelta ) pair condition). Let \bfitS \in \BbbR m\times N be a random matrix. Given \bfitA \in \BbbR N\times d,
\bfitb \in \BbbR N , and \varepsilon , \delta > 0, the distribution of \bfitS is said to satisfy an (\varepsilon , \delta ) pair condition for (\bfitA ,\bfitb )
if, with probability at least 1 - \delta , both conditions

rank(\bfitS \bfitA ) = rank(\bfitA ) and r\bfitS (\bfitA ,\bfitb )\leq (1 + \varepsilon ) r(\bfitA ,\bfitb )(2.4)

hold simultaneously, where r(\bfitA ,\bfitb ) and r\bfitS (\bfitA ,\bfitb ) are defined as in (2.1) and (2.3), respectively.

Such a condition can be satisfied with m < N samples; sections 2.2.2, 2.2.3, and 2.2.4
provide three explicit examples satisfying (2.4) that we employ in our simulations. We also

1In our context, we have N \geq d; see Assumption 3.1.
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BIFIDELITY BOOSTING SAMPLING 219

present a deterministic sketching strategy in subsection 2.2.1 that is of practical interest due
to its simplicity and effectiveness, but does not satisfy (2.4).

In particular, sketching operators \bfitS that sample a subset of the rows are of particular
interest in UQ since \bfitS \bfitb in (2.2) then requires knowledge of only a subset of entries in the
vector \bfitb , meaning that fewer samples need to be collected. Our sketches in subsections 2.2.1
to 2.2.3 are row subsampling sketches, whereas the Gaussian sketch in subsection 2.2.4 samples
all rows of \bfitb . We are very brief in our discussion since these sketching techniques are well
known (see, e.g., [23, 30, 40, 32]), and refer the reader to section SM1 for a more detailed
discussion of known guarantees for random sketches.

2.2.1. Sampling via column-pivoted QR decomposition. The following is a deterministic
and heuristic method for defining a sketching operator that corresponds to subselecting rows
(without replacement) of the least squares problem. Let \bfitA T\bfitP =\bfitA (\scrJ , :)T =\bfitQ \bfitR be a column-
pivoted QR (CPQR) decomposition where \scrJ is a length-N permutation vector. Choosing the
first m rows as indices from the permutation vector \scrJ has been explored to subsample from
either tensor product quadratures [37] or random samples (approximate D-optimal design)
[22, 10, 20].

However, \bfitA is an N \times d matrix and so when m > d, the entries \scrJ (d + 1 : N) have no
particular meaning (i.e., can be arbitrarily ordered). Our heuristic to circumvent this issue is
to remove rows \scrJ (1 :m) from \bfitA , and to subsequently perform another CPQR on the resulting
(N - m)\times d submatrix of \bfitA , which can provide another m meaningful indices. One can repeat
this process until d total indices have been chosen. The formal procedure along with some
extra discussion is provided in Algorithm SM1.1 and subsection SM1.1, respectively.

This approach, being deterministic, cannot satisfy guarantees in Definition 2.1, but if
m= d, one can prove bounds on the condition number of \bfitA (\scrJ (1 : d), :); see [37, Lemma 2.1].

2.2.2. Leverage score sampling. Let \bfitA =\bfitU \bfSigma \bfitV T be a compact SVD; the leverage scores
\ell i of \bfitA , and corresponding normalized probability values pi are defined as

\ell i(\bfitA )
\mathrm{d}\mathrm{e}\mathrm{f}
= \| \bfitU (i, :)\| 22, pi(\bfitA )

\mathrm{d}\mathrm{e}\mathrm{f}
=

\ell i(\bfitA )\sum 
i\in [N ] \ell i(\bfitA )

for i\in [N ].(2.5)

The matrix \bfitU can be replaced with any matrix whose columns form an orthonormal basis for
range(\bfitA ) [40, section 2.4]. Let \{ Fj\} j\in [m] be an i.i.d. collection of [N ]-valued random variables
such that \BbbP \{ Fj = i\} = pi(\bfitA ). The leverage score sampling sketch \bfitS \in \BbbR m\times N is defined
elementwise via

\bfitS ji =
Ind\{ Fj = i\} \sqrt{} 
mpFj

(\bfitA )
for (j, i)\in [m]\times [N ],(2.6)

where Ind\{ A\} is the indicator function which is 1 if the random event A occurs and zero
otherwise. Algorithms and theory for leverage score sampling have been developed in a number
of papers; see, e.g., [13, 14, 15, 30, 28] and references therein. The distribution for the leverage
score sketch in (2.6) satisfies an (\varepsilon , \delta ) condition for (\bfitA ,\bfitb ) if m \gtrsim d log(d/\delta ) + d/(\varepsilon \delta ); see
Theorem 3.11 for a more detailed and slightly stronger statement, and subsection SM1.2 for
more discussion on leverage scores.

Computing a matrix \bfitU used to define leverage score sampling can be expensive when
\bfitA is large---our simulations utilize an algorithm for quickly and exactly computing leverages
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220 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

for certain types of structured matrices [31]. Leverage score sampling is a row subsampling
procedure, with replacement.

2.2.3. Leveraged volume sampling. Fixing m, volume sampling chooses a row subset of
size m according to a distribution where the probability of choosing index set \scrJ \subset [N ] is
\BbbP (\scrJ ) \propto det(\bfitA (\scrJ , :)T\bfitA (\scrJ , :)); see, e.g., [7, 8]. That is, volume sampling is a determinantal
point process. Volume sampling algorithms have at-best linear-in-N complexity, which can
be prohibitive in quadrature sampling since N can be very large.

Leveraged volume sampling [9] augments the standard volume sampling procedure and
results in N -independent sampling algorithms with a sketch distribution that satisfies an (\varepsilon , \delta )
condition for (\bfitA ,\bfity ) if m \gtrsim d log(d/\delta ) + d/(\varepsilon \delta ), like leverage score sampling. We implement
leveraged volume sampling using a combination of the techniques in [8, 31]. See subsection
SM1.3 for a more precise algorithmic description along with a complexity discussion. Like
leverage score sampling, this procedure subsamples rows with replacement.

2.2.4. Gaussian sketching operator. The Gaussian sketching operator \bfitS \in \BbbR m\times N has
entries that are i.i.d. Gaussian random variables with mean zero and variance 1/m. The
Gaussian sketch satisfies an (\varepsilon , \delta ) condition if m \gtrsim (d/\varepsilon ) log(d/\delta ). These results also extend
to the case when the entries of \bfitS are sub-Gaussian; see Theorem 3.11 for further details.

The main benefit of the Gaussian sketching operator is that it allows for simple and precise
theoretical analysis of procedures that use sketching as a subroutine [32, Remark 8.2]. This is
our motivation for considering the Gaussian sketch in this paper. Computationally, it is not
efficient to use Gaussian sketching for least squares problems: Computing \bfitS \bfitA costs \scrO (mNd),
which is more than the \scrO (Nd2) cost of solving the original least squares problem (recall that
m>d). Additionally, in bifidelity estimation computing \bfitS \bfitb requires knowledge of all elements
of \bfitb , which is prohibitively expensive when that vector contains high-fidelity data.

2.3. Bifidelity problems. The main goal of this paper is to propose a strategy that im-
proves the accuracy of sketching via a boosting procedure that employs a full vector \~\bfitb corre-
sponding to an inexpensive low-fidelity approximation to \bfitb .

Bifidelity frameworks assume the availability of a low-fidelity simulation \widetilde \scrT ; that is, a map\widetilde \scrT : \BbbR q \rightarrow \BbbR such that \widetilde \scrT is parametrically ``correlated"" with \scrT in some sense, but need not
be close to \scrT in terms of sampled values. Such properties arise, for example, in parametric
PDE contexts when \widetilde \scrT results from a discretized PDE solution operator on a spatial mesh
that is coarser (and hence less trusted) than the mesh corresponding to \scrT . The decreased
accuracy/trustworthiness of \widetilde \scrT is balanced by its decreased cost, so that employment of \widetilde \scrT 
may not furnish precise high-fidelity information, but may provide useful knowledge in terms
of dependence on the parameter \bfitp with substantially reduced cost.

In the context of constructing our emulator (1.3), our core assumption is that the low-
fidelity operator \widetilde \scrT is cheap enough so that exploration of the response over the full ensemble
\{ \bfitp i\} i\in [N ] is more computationally feasible, resulting in a vector \~\bfitb \in \BbbR N defined as

\~\bfitb (n) =
\surd 
wn \widetilde \scrT (\bfitp n).(2.7)

Of course, one may propose constructing the emulator \scrT in (1.3) by simply replacing \bfitb by \~\bfitb ,
but this restricts the accuracy of the emulator \scrT to the potentially bad accuracy of \widetilde \scrT . In this
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BIFIDELITY BOOSTING SAMPLING 221

paper, we propose a more sophisticated use of \~\bfitb , in conjunction with a single sparse sketch of
\bfitb , that retains some accuracy characteristics of \bfitx \ast .

3. Bifidelity boosting in sketched least squares problems. In practice, one often requires
the probability of successfully obtaining a good approximation \bfitx \ast associated with a random
sketch from section 2.2 to be sufficiently close to 1, and one way to achieve this with fixed
sketch size is through a boosting procedure. With L sketching matrices \{ \bfitS \ell \in \BbbR m\times N\} \ell \in [L],
one computes the residual for the \bfitS \ell -sketched solution (i.e., \| \bfitA (\bfitS \ell \bfitA )\dagger (\bfitS \ell \bfitb ) - \bfitb \| 2) for each
\bfitS \ell and then selects the one that yields the smallest residual for use. Even if each sketch
sparsely samples rows, this straightforward procedure inflates the required sampling cost of
the forward model \scrT by the factor L, which may be computationally prohibitive. To ameliorate
this boosting cost, we employ a bifidelity strategy.

In section 3.1 we present our proposed bifidelity boosting algorithm. Sections 3.2 and 3.3
give our preasymptotic and asymptotic analysis results, respectively. We collect some prelim-
inary technical results in section 3.4 and prove our preasymptotic results in section 3.5. The
asymptotic result is proven in section SM5. Section 3.6 provides results for random sketches
achieving the (\epsilon , \delta ) condition in Definition 2.1.

3.1. Proposed algorithm. We propose a modified boosting procedure, bifidelity boosting
(BFB), where the boosting phase of a sketched least squares problem replaces high-fidelity
data with low-fidelity data to find the ``best"" sketching operator and then employs this sketch
to compute an approximate least squares solution with high-fidelity data.

Recall that full information of the high-fidelity data \bfitb is unaffordable to collect, but full
information about a low-fidelity approximation \~\bfitb may be feasible to collect, and the bifidelity
procedure is sensible if \bfitb is ``correlated"" in some sense with \~\bfitb (this is codified via the parameter
\nu introduced later in Theorem 3.2). The BFB procedure is outlined in Algorithm 3.1.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone . Bifidelity boosting (BFB).

\bfI \bfn \bfp \bfu \bft : design matrix \bfitA , low-fidelity vector \~\bfitb , method for computing entries of the high-
fidelity vector \bfitb , collection of sketches for boosting \{ \bfitS \ell \} \ell \in [L]

\bfO \bfu \bft \bfp \bfu \bft : an approximate solution \^\bfitx BFB to (1.3)
1: \bff \bfo \bfr \ell \in [L] \bfd \bfo 
2: compute the \ell th sketched solution \^\bfitx \ell using the low-fidelity data:

\^\bfitx \ell = argmin
\bfitx \in \BbbR d

\bigm\| \bigm\| \bigm\| \bfitS \ell \bfitA \bfitx  - \bfitS \ell \~\bfitb 
\bigm\| \bigm\| \bigm\| 
2

(3.1)

3: \bfe \bfn \bfd \bff \bfo \bfr 
4: find the best low-fidelity sketch index \ell \ast using boosting:

\ell \ast = argmin
\ell \in [L]

\| \bfitA \^\bfitx \ell  - \~\bfitb \| 2(3.2)

5: use sketch \bfitS \ell \ast to compute an approximate solution to (1.3):

\^\bfitx BFB = argmin
\bfitx \in \BbbR d

\| \bfitS \ell \ast \bfitA \bfitx  - \bfitS \ell \ast \bfitb \| 2 (Requires computing m entries of \bfitb )(3.3)
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222 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

The oracle sketch in this scenario is the one identified by the boosting strategy operating
directly on the high-fidelity least squares problem, which is computationally unaffordable:

\ell \ast \ast = argmin
\ell \in [L]

\| \bfitA \^\bfitx \ell  - \bfitb \| 22, where \^\bfitx \ell = argmin
\bfitx \in \BbbR d

\| \bfitS \ell \bfitA \bfitx  - \bfitS \ell \bfitb \| 2.(3.4)

In the coming sections we will theoretically investigate the sketch transferability between high-
and low-fidelity boosting, i.e., when the residual associated to \^\bfitx BFB, the solution produced by
Algorithm 3.1, is comparable to the residual associated to \^\bfitx \ell \ast \ast .

We divide our analysis into two cases: Our first analysis frames performance of Algorithm
3.1 in terms of an optimality coefficient, defined in (3.5), which measures the quality of the least
squares residual for a particular sketch \bfitS ; we provide preasymptotic analysis (see Theorem
3.2) with quantitative results that provides qualitative guidance on how the BFB algorithm
behaves in terms of the tradeoff in the number of sketches L versus a correlation parameter
(see the discussion following Theorem 3.4). We also provide asymptotic analysis with Gauss-
ian sketches that confirms intuition that the probabilistic correlations between the low- and
high-fidelity random sketches is high when \bfitb and \~\bfitb have high vector correlations (see the
discussion around Theorem 3.5). For analysis purposes we make the following assumption.

Assumption 3.1. Assume that neither \~\bfitb nor \bfitb lies in range(\bfitA ), i.e., \~\bfitb ,\bfitb \not \in range(\bfitA ).

This is a reasonable assumption: If \bfitb \in range(\bfitA ), then it would be possible to solve the
high-fidelity least squares problem exactly by sampling m = d linearly independent rows of
\bfitA and the corresponding rows of \bfitb . In this case, it is therefore easy to solve (1.3) and only
requires accessing d rows of \bfitb . Similarly, if \~\bfitb \in range(\bfitA ), then it would be easy to compute a
sketch \bfitS \ell which only samples m= d rows and achieves zero error in line 4 of Algorithm 3.1,
therefore making the boosting procedure vacuous.

3.2. Preasymptotic analysis via optimality coefficients. We introduce the following mea-
sure of relative error difference between the sketched and optimal solutions:

\mu \bfitA (\bfitb ,\bfitS )
\mathrm{d}\mathrm{e}\mathrm{f}
=

\sqrt{} 
r2\bfitS (\bfitA ,\bfitb ) - r2(\bfitA ,\bfitb )

r2(\bfitA ,\bfitb )

(\ast )
=

\| (\bfitS \bfitQ )\dagger \bfitS \bfitQ \bot \bfitQ 
T
\bot \bfitb \| 2

\| \bfitQ \bot \bfitQ 
T
\bot \bfitb \| 2

,(3.5)

where \bfitQ = orth(\bfitA ), and the second equality, marked (\ast ), is valid if rank(\bfitS \bfitA ) = rank(\bfitA ),
which we establish in Lemma 3.7. For notational simplicity we usually write \mu (\bfitb ,\bfitS ) when \bfitA 
is clear from the context, but we emphasize that \mu does depend on \bfitA . Note that r(\bfitA ,\bfitb ) =
\| \bfitQ \bot \bfitQ 

T
\bot \bfitb \| 2 > 0 due to Assumption 3.1, so the denominator in (3.5) is nonzero. We call \mu 

the optimality coefficient. Smaller values of \mu are better in practice: \mu = 0 implies the sketch
achieves perfect reconstruction of the data relative to the full least squares solution.

We provide two main theoretical results, Theorems 3.2 and 3.4, which shed light on the
performance of Algorithm 3.1 from two different practical perspectives. Theorem 3.2 shows
that with an appropriate choice of the sketches \{ \bfitS \ell \} \ell \in [L], Algorithm 3.1 produces a solution
with a relative error close to that of the oracle sketch solution in (3.4), while Theorem 3.4
provides insight on constructing an appropriate sketch for the purpose of bifidelity boosting.
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BIFIDELITY BOOSTING SAMPLING 223

A discussion of the practical implications of these two theorems is presented at the end of
section 3.2. Note that it would be straightforward to provide such guarantees if r\bfitS (\bfitA ,\~\bfitb ) \leq 
r\bfitS \prime (\bfitA ,\~\bfitb ) implied r\bfitS (\bfitA ,\bfitb )\leq r\bfitS \prime (\bfitA ,\bfitb ), in which case \ell \ast = \ell \ast \ast . This may happen, for instance,
when \~\bfitb and \bfitb are proportional. Unfortunately, this monotone residual property replacing \bfitb 
with \~\bfitb is unlikely to hold in practice. Theorem 3.2 identifies alternative conditions that ensure
\bfitS \ell \ast is a ``good"" sketch for the high-fidelity data.

Theorem 3.2. Fix a positive integer L and suppose \delta , \varepsilon \in (0,1]. If \{ \bfitS \ell \} \ell \in [L] is a sequence

of i.i.d. random matrices whose distribution is an (\varepsilon , \delta L) pair for (\bfitQ ,\bfith ), where

\bfith 
\mathrm{d}\mathrm{e}\mathrm{f}
=

\Bigl( 
(\bfitP \bfitQ \bot 

\bfitb )\scrP  - (\bfitP \bfitQ \bot 
\~\bfitb )\scrP 

\Bigr) 
\scrP 

and \bfitQ 
\mathrm{d}\mathrm{e}\mathrm{f}
= orth(\bfitA ),(3.6)

then with probability at least 1 - \delta ,

\mu (\bfitb ,\bfitS \ell \ast )\leq \mu (\bfitb ,\bfitS \ell \ast \ast ) + 2
\sqrt{} 

6(1 - \nu )\varepsilon , \nu 
\mathrm{d}\mathrm{e}\mathrm{f}
=

\bigm| \bigm| \bigm| corr(\bfitP \bfitQ \bot 
\bfitb ,\bfitP \bfitQ \bot 

\~\bfitb )
\bigm| \bigm| \bigm| ,(3.7)

where \nu is the absolute correlation coefficient between \bfitP \bfitQ \bot 
\bfitb and \bfitP \bfitQ \bot 

\~\bfitb . In addition, in the
event that (3.7) is true, we have that (2.4) holds with \bfitS =\bfitS \ell for every \ell \in [L].

We prove Theorem 3.2 in section 3.5. Theorem 3.2 shows that if a sketch satisfies an
(\varepsilon , \delta /L) condition for the pair \bfitQ and an element \bfith of range(\bfitQ \bot ), then we are able to prove
bounds on the low-fidelity boosted optimality coefficient \mu (\bfitb ,\bfitS \ell \ast ) relative to the oracle high-
fidelity boosted optimality coefficient \mu (\bfitb ,\bfitS \ell \ast \ast ). This is quite a general statement that ac-
commodates a wide range of sketching operators. The condition on the operators \{ \bfitS \ell \} \ell \in [L] is,
for example, satisfied by all sketching operators in sections 2.2.2--2.2.4 when the embedding
dimension m is sufficiently large. More precise statements for the leverage score and Gaussian
sketches are provided in Theorem 3.11.

To achieve a good approximate solution when applying sketching techniques in least
squares problems the sketching operator must preserve the relevant geometry of the prob-
lem. In particular, it is key that \bfitQ and \bfitP \bfitQ \bot 

\bfitb remain roughly orthogonal after the sketching
operator is applied. This importance of preserving \bfitP \bfitQ \bot 

\bfitb in the sketching phase when \bfitb is

replaced by low-fidelity data \~\bfitb manifests in Theorem 3.2 through the correlation parameter \nu .

Remark 3.3. Equation (3.7) suggests that \bfitS \ell \ast is ``good"" when \nu is large. This explicitly
requires high parametric correlation between the portions of \bfitb and \~\bfitb that lie orthogonal to the
range of \bfitA . A more subtle sufficient condition ensuring large \nu is furnished by our discussion
following Proposition 3.8, which provides a lower bound for \nu in terms of other parameters.

Although Theorem 3.2 presents a form of error bound using appropriate sketches, it does
not provide a concrete strategy for how the sketches used in boosting are chosen or constructed.
Combining Theorem 3.2 with good sketching choices should result in explicit and illuminating
theory for Algorithm 3.1. In particular, one expects a tradeoff between the values of \nu and L:
larger values of \nu (close to 1) suggest that the BFB procedure will be more effective (since \bfitb is
``closer"" to \~\bfitb ), so we expect that larger L is effective in this case. Smaller values of \nu suggest
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224 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

that boosting with large L will not achieve anything better than a nonboosting strategy. The
theory we develop below reveals this tradeoff for leverage score sketches in subsection 2.2.2.

Theorem 3.4. Let \delta , \epsilon \in (0,1/2) and L\in \BbbN be chosen, and assume that m,d satisfy

d\leq \delta 

4
exp

\biggl( 
2

35\epsilon \delta 

\biggr) 
, m\geq 4dL

\epsilon \delta 
.(3.8)

Now consider Algorithm 3.1, where \{ \bfitS \ell \} \ell \in [L] are i.i.d. samples of the leverage score sketching
operator defined in (2.6). Then each \bfitS \ell satisfies an (\epsilon /L, \delta /2) condition for the pair (\bfitQ ,\bfith ),
and with probability at least 1 - \delta , we have

r2\bfitS \ell \ast 
(\bfitA ,\bfitb )\leq 

\Bigl( 
1 +

\epsilon 

L
\tau 
\Bigr) 
r2(\bfitA ,\bfitb ),(3.9)

where

\tau = \tau (\epsilon , \delta , \nu ,L) = 24L(1 - \nu ) +
\delta 

2

\Bigl( 
1 + 4

\sqrt{} 
6(1 - \nu )\epsilon 

\Bigr) 
.

The results above give explicit behavior of the BFB residual via a concrete sketching
strategy for Algorithm 3.1. Note in particular that the sampling requirement m = \scrO (L/\epsilon )
in (3.8) means that without boosting and simply generating one sketch \bfitS according to (3.8),
which requires m high-fidelity samples (equivalent to the number from BFB), we expect that
the residual from this one sketch behaves like

r2\bfitS (\bfitA ,\bfitb )\sim 
\Bigl( 
1 +

\epsilon 

L

\Bigr) 
r2(\bfitA ,\bfitb ).

Comparing the above to (3.9), note that the only difference is the appearance of \tau , and
hence we expect BFB to be useful (compared to an equivalent number of high-fidelity samples
devoted to a nonboosting strategy) when \tau \leq 1, which requires

L\lesssim 
1

1 - \nu 
,

i.e., boosting with L sketches is useful in BFB up to a threshold \sim 1/(1  - \nu ). Boosting
with more than this threshold level of sketches causes the error bound to saturate at a level
determined by 1 - \nu . Since \nu is the correlation between the range(\bfitA )-orthogonal components
of \bfitb and \~\bfitb , we conclude that highly correlated range-orthogonal residuals (large values of \nu 
very close to 1) are optimal for BFB in the sense that sketching with large L will be effective.

A second observation we make is that the m \sim L sampling requirement in (3.8) is larger
than necessary: Stronger coherence-like conditions on the matrix \bfitA imply that leverage score
sketching with m\sim logL is sufficient; see (3.26) in Theorem 3.11. Gaussian sketches generally
only require m \sim logL samples (see (3.23)). Finally, one can achieve the (\epsilon , \delta ) condition on
average with leverage scores using m\sim logL samples (see, e.g., [31, equation (2.18)]. Finally,
if d is sufficiently large to violate (3.8), then indeed m\sim logL for leverage score sketches (see
(3.24) and the computation in (SM4.1)). Thus, we expect in practice that m\sim logL samples
are sufficient.

We give the proof of Theorem 3.4 in section SM4, which relies directly on Theorem 3.2,
and can be generalized for non--leverage score types of sketches. The theoretical analysis from
Theorems 3.2 and 3.4 suggest several practical implications:
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BIFIDELITY BOOSTING SAMPLING 225

\bullet An effective low-fidelity model should have outputs \~\bfitb whose orthogonal projection onto
the subspace spanned by the columns of matrix \bfitA closely aligns with the same pro-
jection of the high-fidelity output vector \bfitb . This alignment presents the opportunity
for mitigating residual errors by increasing the size of the boosting factor L.

\bullet In practice, the choice of the boosting factor L is influenced by the cost of generating
low-fidelity data. Larger pools of such data lead to improved boosting, which in turn
contribute to BFB error reduction.

\bullet A favorable performance outcome of the BFB is anticipated when a strong ``connec-
tion"" exists between \~\bfitb and \bfitb , manifesting as a small value for \nu as defined in (3.7).
Additionally, this favorable performance is further facilitated by increasing the boost-
ing factor L.

3.3. Asymptotic analysis via probabilistic correlation. We provide an alternative analysis
of Algorithm 3.1 motivated by the following intuition: If \mu (\bfitb ,\bfitS ) and \mu (\~\bfitb ,\bfitS ) are probabilisti-
cally correlated in some sense, then we expect that Algorithm 3.1 should produce a sketching
operator \bfitS \ell \ast that is close to the oracle sketch \bfitS \ell \ast \ast . We give a technical verification of this
intuition below in Theorem 3.5, providing an asymptotic lower bound on a certain measure of
correlation between the two optimality coefficients when \bfitS is a Gaussian sketching operator.

Theorem 3.5. If \bfitS is a Gaussian sketch, then

lim inf
m\rightarrow \infty 

corr(\mu 2(\bfitb ,\bfitS ), \mu 2(\~\bfitb ,\bfitS ))\geq 
\| \bfitP \bfitQ \bot 

\bfitb \scrP \| 22  - 
\surd 
6min\{ \| \bfitP \bfitQ \bot 

(\bfitb \scrP \pm \~\bfitb \scrP )\| 2\} 
\| \bfitP \bfitQ \bot 

\~\bfitb \scrP \| 22
,(3.10)

where \bfitb \scrP ,\~\bfitb \scrP are normalized versions of \bfitb and \~\bfitb , respectively, and the minimum is taken over
the two \pm options. Moreover, if

\varphi 
\mathrm{d}\mathrm{e}\mathrm{f}
=

| \langle \bfitb ,\~\bfitb \rangle | 
\| \bfitb \| 2\| \~\bfitb \| 2

\geq 
\| \bfitP \bfitQ \bfitb \| 2
\| \bfitb \| 2

\mathrm{d}\mathrm{e}\mathrm{f}
= \kappa ,(3.11)

then we further have that

lim inf
m\rightarrow \infty 

corr(\mu 2(\bfitb ,\bfitS ), \mu 2(\~\bfitb ,\bfitS ))\geq (1 - \kappa 2) - 
\sqrt{} 

12(1 - \varphi )

(\varphi  - \kappa )2
.(3.12)

In Theorem 3.5 we restrict our analysis to Gaussian sketches and consider corr(\mu 2(\bfitb ,\bfitS ),
\mu 2(\~\bfitb ,\bfitS )) (rather than the more natural quantity corr(\mu (\bfitb ,\bfitS ), \mu (\~\bfitb ,\bfitS ))) in order to make analy-
sis tractable. In general corr(\mu (\bfitb ,\bfitS ), \mu (\~\bfitb ,\bfitS )) and corr(\mu 2(\bfitb ,\bfitS ), \mu 2(\~\bfitb ,\bfitS )) may have signifi-
cantly different statistical properties. However, if either of them is close to 1, then that would
indicate a monotonically increasing (although not necessarily linear) relationship between
\mu (\bfitb ,\bfitS ) and \mu (\~\bfitb ,\bfitS ), and when such a relationship holds we expect the boosting procedure in
Algorithm 3.1 to work well. While we restrict our attention to Gaussian sketches, this prob-
abilistic model is usually a good indicator of how other sketches perform [32, Remark 8.2].
That is, we expect the result to carry over to the sampling-based sketches (e.g., leverage
scores) that we consider. We verify this numerically in section 4.

Remark 3.6. The lower bound in (3.12) is useful only when the right-hand side is close
to 1, which roughly requires \varphi to be large and \kappa to be small. See Remark 3.9 for how this
condition relates to Theorem 3.2.
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226 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

The rest of this section is organized as follows. Section 3.4 derives some preliminary
technical results. Section 3.5 then proves Theorem 3.2. Section 3.6 provides theoretical guar-
antees for when various sketches satisfy the (\varepsilon , \delta ) pair condition in Definition 2.1 and discuss
how this condition in turn ensures that those sketching operators satisfy the requirements
in Theorem 3.2. The proof of Theorem 3.5 is given in section SM5 of the supplementary
material.

3.4. Preliminary technical results. Our first task is to understand how the optimal resid-
ual r(\bfitA ,\bfitb ) compares to r\bfitS (\bfitA ,\bfitb ). Throughout this section let \bfitQ = orth(\bfitA ).

Lemma 3.7. Given a sketch matrix \bfitS , assume ker(\bfitS ) \cap range(\bfitA ) = \{ \bfzero \} , or, equivalently,
rank(\bfitS \bfitA ) = rank(\bfitA ). Then we have

r2\bfitS (\bfitA ,\bfitb ) = r2(\bfitA ,\bfitb ) + \| (\bfitS \bfitQ )\dagger \bfitS \bfitQ \bot \bfitQ 
T
\bot \bfitb \| 22.(3.13)

The proof is contained in subsection SM3.1. We conclude that r\bfitS (\bfitA ,\bfitb ) is comparable to
r(\bfitA ,\bfitb ) if and only if \| (\bfitS \bfitQ )\dagger \bfitS \bfitQ \bot \bfitQ 

T
\bot \bfitb \| 22 is small, which motivates the definition of \mu in (3.5).

Our second result relates the quantities \nu , \varphi , and \kappa defined in (3.7) and (3.11).

Proposition 3.8. Assume \varphi \geq \kappa . Then we have the two inequalities

\nu \geq \varphi  - \kappa min
\Bigl\{ 
1,
\sqrt{} 

2(1 - \varphi + \kappa )
\Bigr\} 
,(3.14)

\nu \geq \varphi  - (\varphi \~\kappa +
\sqrt{} 

1 - \varphi 2)min

\biggl\{ 
1,

\sqrt{} 
2(1 - \varphi +\varphi \~\kappa +

\sqrt{} 
1 - \varphi 2)

\biggr\} 
,(3.15)

where

\~\kappa 
\mathrm{d}\mathrm{e}\mathrm{f}
=

\| \bfitP \bfitQ 
\~\bfitb \| 2

\| \~\bfitb \| 2
(3.16)

measures the relative energy of the low-fidelity vector in the range of \bfitA .

The proof is provided in subsection SM3.2. The main appeal of (3.15) is that the quantity
\~\kappa involves only low-fidelity data, and hence can be estimated. That is, (3.15) gives a more
practically estimable lower bound for \nu , involving one quantity \~\kappa that depends only on low-
fidelity data \~\bfitb , and the correlation \varphi between \bfitb and \~\bfitb .

Remark 3.9. Recall that our main convergence result, Theorem 3.2, has more attractive
bounds when \nu is large. By (3.14), \nu is large if \varphi \approx 1 and \varphi \gg \kappa , which coincides with sufficient
conditions to ensure attractive bounds in (3.12) in Theorem 3.5 (cf. Remark 3.6). Thus, \varphi \gg \kappa 
is a unifying condition under which both of our main theoretical results, Theorems 3.2 and 3.5,
provide useful bounds. The condition \varphi \gg \kappa means that the correlation between \bfitb and \~\bfitb is
high and strongly dominates the relative energy of \bfitb in range(\bfitA ). Since \mu is defined relative
to r(\bfitA ,\bfitb ), a small r\bfitS \ell \ast (\bfitA ,\bfitb ) may still result in a large \mu (\bfitb ,\bfitS \ell \ast ) even if r\bfitS \ell \ast (\bfitA ,\bfitb ) is small
but relatively large compared to r(\bfitA ,\bfitb ).

3.5. Proof of Theorem 3.2. We first consider the case corr(\bfitP \bfitQ \bot 
\bfitb ,\bfitP \bfitQ \bot 

\~\bfitb ) \geq 0. Fixing
\ell \in [L], \bfitS =\bfitS \ell , consider the event E of probability at least 1 - \delta /L, where the rank condition
in (2.4) holds. On this event, this rank condition with Lemma 3.7 implies that

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

6/
24

 to
 1

55
.9

8.
19

.7
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



BIFIDELITY BOOSTING SAMPLING 227

r2\bfitS (\bfitA ,\bfitb ) - r2(\bfitA ,\bfitb ) = \| (\bfitS \bfitQ )\dagger \bfitS \bfitQ \bot \bfitQ 
T
\bot \bfitb \| 22,

allowing us to directly estimate the difference between \mu (\bfitb ,\bfitS ) and \mu (\~\bfitb ,\bfitS ) as follows:

| \mu (\bfitb ,\bfitS ) - \mu (\~\bfitb ,\bfitS )| =

\bigm| \bigm| \bigm| \bigm| \bigm| \| (\bfitS \bfitQ )\dagger \bfitS \bfitQ \bot \bfitQ 
T
\bot \bfitb \| 2

\| \bfitQ \bot \bfitQ 
T
\bot \bfitb \| 2

 - \| (\bfitS \bfitQ )\dagger \bfitS \bfitQ \bot \bfitQ 
T
\bot 
\~\bfitb \| 2

\| \bfitQ \bot \bfitQ 
T
\bot 
\~\bfitb \| 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm\| \bigm\| \bigm\| (\bfitS \bfitQ )\dagger \bfitS 

\Bigl( 
(\bfitP \bfitQ \bot 

\bfitb )\scrP  - (\bfitP \bfitQ \bot 
\~\bfitb )\scrP 

\Bigr) \bigm\| \bigm\| \bigm\| 
2

= \| (\bfitP \bfitQ \bot 
\bfitb )\scrP  - (\bfitP \bfitQ \bot 

\~\bfitb )\scrP \| 2\| (\bfitS \bfitQ )\dagger \bfitS \bfith \| 2

=

\sqrt{} 
\| (\bfitP \bfitQ \bot 

\bfitb )\scrP \| 22 + \| (\bfitP \bfitQ \bot 
\~\bfitb )\scrP \| 22  - 2\langle (\bfitP \bfitQ \bot 

\bfitb )\scrP , (\bfitP \bfitQ \bot 
\~\bfitb )\scrP \rangle \| (\bfitS \bfitQ )\dagger \bfitS \bfith \| 2

=
\surd 
2 - 2\nu \cdot \| (\bfitS \bfitQ )\dagger \bfitS \bfith \| 2

=
\surd 
2 - 2\nu \cdot \| \bfitQ (\bfitS \bfitQ )\dagger \bfitS \bfith \| 2,

(3.17)

where the first inequality follows from the reverse triangle inequality, the second-to-last equal-
ity follows (3.7), and the final equality follows from unitary invariance of the operator norm.
The case corr(\bfitP \bfitQ \bot 

\bfitb ,\bfitP \bfitQ \bot 
\~\bfitb )< 0 can be treated similarly by noting that the inequality on the

second line of (3.17) still holds if the minus sign on the right-hand side is changed to a plus
sign. The rest of the computation is similar to the case with nonnegative correlation.

Note that (\bfitS \bfitQ )\dagger \bfitS \bfith is the \bfitS -sketched least squares solution to min\bfitx \| \bfitQ \bfitx  - \bfith \| 2. Also,
note that \bfith \in range(\bfitQ \bot ). Using (2.4), the following also holds on the event E:

\| \bfitQ (\bfitS \bfitQ )\dagger \bfitS \bfith \| 22 + \| \bfith \| 22 = \| \bfitQ (\bfitS \bfitQ )\dagger \bfitS \bfith  - \bfith \| 22 \leq (1 + \varepsilon )2 min
\bfitx \in \BbbR d

\| \bfitQ \bfitx  - \bfith \| 22 = (1+ \varepsilon )2\| \bfith \| 22.
(3.18)

Rearranging terms and noting \| \bfith \| 2 = 1 yields \| \bfitQ (\bfitS \bfitQ )\dagger \bfitS \bfith \| \leq 
\surd 
3\varepsilon , which is substituted into

(3.17), implying that on an event E with probability at least 1 - \delta /L, we have

| \mu (\bfitb ,\bfitS ) - \mu (\~\bfitb ,\bfitS )| \leq 
\sqrt{} 

6(1 - \nu )\varepsilon .(3.19)

Taking a union bound over \ell \in [L] yields that, with probability at least 1 - \delta ,

max
\ell \in [L]

| \mu (\bfitb ,\bfitS \ell ) - \mu (\~\bfitb ,\bfitS \ell )| \leq 
\sqrt{} 

6(1 - \nu )\varepsilon .(3.20)

Conditioning on the event in (3.20) and using the definition of \ell \ast and \ell \ast \ast finishes the proof:

\mu (\bfitb ,\bfitS \ell \ast )\leq \mu (\~\bfitb ,\bfitS \ell \ast ) +
\sqrt{} 
6(1 - \nu )\varepsilon \leq \mu (\~\bfitb ,\bfitS \ell \ast \ast ) +

\sqrt{} 
6(1 - \nu )\varepsilon \leq \mu (\bfitb ,\bfitS \ell \ast \ast ) + 2

\sqrt{} 
6(1 - \nu )\varepsilon .(3.21)

3.6. Achieving the (\bfitvarepsilon , \bfitdelta ) pair condition. We next show that, for a variety of random
sketches of interest, the (\varepsilon , \delta L) pair condition for (\bfitQ ,\bfith ) in Theorem 3.2 holds for sufficiently
large m. We begin with a lemma that gives a sufficient condition for verification of the (\varepsilon , \delta L)
pair condition for (\bfitQ ,\bfith ), which can be deduced as a special case from [15, Lemma 1].
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Lemma 3.10 (see [15]). Let \bfitQ and \bfith be defined as in Theorem 3.2. The distribution of \bfitS 
is an (\varepsilon , \delta L) pair for (\bfitQ ,\bfith ) if with probability at least 1 - \delta /L we simultaneously have

\sigma 2\mathrm{m}\mathrm{i}\mathrm{n}(\bfitS \bfitQ )\geq 
\surd 
2

2
and \| \bfitQ T\bfitS T\bfitS \bfith \| 22 \leq 

\varepsilon 

2
,(3.22)

where \sigma \mathrm{m}\mathrm{i}\mathrm{n}(\cdot ) denotes the smallest singular value of a matrix.

When the conditions in Lemma 3.10 hold, one can directly bound (3.17) using the sub-
multiplicativity of operator norms instead of resorting to an (\varepsilon , \delta ) argument as in the proof of
Theorem 3.2, although the latter is more general. Theorem 3.11 presents constructive strate-
gies for generating sketch distributions---based on sub-Gaussian random variables and leverage
scores---that achieve appropriate (\varepsilon , \delta ) pair conditions. We recall that a random variable X is
called sub-Gaussian if, for some K > 0, we have \BbbE exp(X2/K2)\leq 2 [39, Definition 2.5.6]. The
sub-Gaussian norm of X is defined as \| X\| \psi 2

\mathrm{d}\mathrm{e}\mathrm{f}
= inf

\bigl\{ 
K > 0 : \BbbE exp(X2/K2)\leq 2

\bigr\} 
[39]. A proof

of Theorem 3.11 is give in section SM6. Variants of these results have appeared previously in
the literature [13, 14, 15, 28].

Theorem 3.11. Let \bfitQ and \bfith be defined as in Theorem 3.2, with \bfitQ = [\bfitq 1, . . . ,\bfitq d] the columns
of \bfitQ . Denote by qij

\mathrm{d}\mathrm{e}\mathrm{f}
= \bfitq i(j) and hj

\mathrm{d}\mathrm{e}\mathrm{f}
= \bfith (j) the jth component of \bfitq i and \bfith , respectively.

1. Suppose \bfitS \in \BbbR m\times N is a dense sketch whose entries are i.i.d. sub-Gaussian random
variables with mean 0 and variance 1/m. Assume the sub-Gaussian norm of each
entry of

\surd 
m\bfitS is bounded by K \geq 1. Then the distribution of \bfitS is an (\varepsilon , \delta L) pair for

(\bfitQ ,\bfith ) if

m\geq CK4

\varepsilon 
d log

\biggl( 
4dL

\delta 

\biggr) 
,(3.23)

where C is an absolute constant.
2. Suppose \bfitS \in \BbbR m\times N is a row sketch based on the leverage scores of \bfitA , and 0< \varepsilon , \delta < 1/2;

see (2.6). Then the distribution of \bfitS is an (\varepsilon , \delta L) pair for (\bfitQ ,\bfith ) if

m\geq max

\biggl\{ 
35d log

\biggl( 
4dL

\delta 

\biggr) 
,
2dL

\varepsilon \delta 

\biggr\} 
.(3.24)

Moreover, if

max
i\in [d]

max
j\in [N ]:\ell j>0

d| qijhj | 
\ell j

\leq C, \ell j =
\sum 
k\in [d]

q2kj(3.25)

for some constant C > 0, then the distribution of \bfitS is an (\varepsilon , \delta L) pair for (\bfitQ ,\bfith ) if

m\geq max

\biggl\{ 
35,

4C2

\varepsilon 

\biggr\} 
d log

\biggl( 
4dL

\delta 

\biggr) 
.(3.26)

The scalar \ell j in (3.25) is the leverage score associated to row j of \bfitA , and (\ell j)j\in [N ] defines
a (discrete) probability distribution over the row indices [N ] of \bfitA ; see (2.6).

Remark 3.12. When \bfitQ is incoherent, i.e., when its leverage scores satisfy \ell i = \scrO (d/N)
for i \in [N ], then the entries qij satisfy qij = \scrO (1/

\surd 
N). For any \bfith such that maxj\in [N ] | hj | \lesssim 

\scrO (1/
\surd 
N), the condition in (3.25) is satisfied with C =\scrO (1):
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BIFIDELITY BOOSTING SAMPLING 229

max
i\in [d]

max
j\in [N ]:\ell j>0

d| qijhj | 
\ell j

\lesssim 
d \cdot 1\surd 

N
\cdot 1\surd 

N
d
N

= 1.

Remark 3.13. As noted in section 2.2.3, leveraged volume sampling requires m \gtrsim 
d log(d/\delta )+d/(\varepsilon \delta ) samples to satisfy the (\varepsilon , \delta ) pair condition. This result appears in Corollary
10 of [9].

4. Numerical experiments. In this section we illustrate various aspects of the BFB ap-
proach using both the manufactured data in section 4.1 as well as data obtained from PDE
solutions in section 4.2. The experiments in section 4.2 focus on the polynomial chaos class
of emulators [19, 41], in which we employed both quadrature grids and Monte Carlo random
sampling grids for constructing the emulator to illustrate the application scope of our pro-
posed methodology. It is worth noting that our analysis and algorithm hold for any emulator
construction falling into the general least squares procedure (1.3).

The codes used to generate the results of this section are available from the GitHub
repository https://github.com/CU-UQ/BF-Boosted-Quadrature-Sampling.

4.1. Verification of theoretical results on synthetic data. We first verify the theoretical
results in Theorems 3.2 and 3.5. We do this by simulating different values for \bfitS , \bfitb , and \~\bfitb .
We generate a design matrix \bfitA \in \BbbR 1000\times 50 (i.e., N = 1000 and d = 50) with i.i.d. standard
normal entries and fix it in the rest of the simulations. For sketching matrices \bfitS , we choose
the embedding dimension to be m = 100 and consider both the Gaussian and leverage score
sampling sketches. We generate multiple different versions of the vectors \bfitb and \~\bfitb that corre-
spond to different values of \kappa and \varphi . Recall that these parameters control how much of \bfitb is in
the range of \bfitA and the absolute value of the correlation between \bfitb and \~\bfitb , respectively. The
vectors are generated via

\bfitb = \kappa \bfitQ \bfitz 1 +
\sqrt{} 

1 - \kappa 2\bfitQ \bot \bfitz 2, \~\bfitb =\varphi \bfitb +
\sqrt{} 

1 - \varphi 2\bfitb \bot \bfitz 3,(4.1)

where\bfitQ = orth(\bfitA ), and \bfitz 1 \in \BbbR d - 1, \bfitz 2 \in \BbbR N - d - 1, and \bfitz 3 \in \BbbR N - 2 are generated by normalizing
random vectors of appropriate length whose entries are i.i.d. standard normal. The vectors
\bfitz 1,\bfitz 2,\bfitz 3 are drawn once and then kept fixed for the different choices of \kappa and \varphi .

To check the upper bound in Theorem 3.2, we generate \bfitb and \~\bfitb using 9 equispaced
values for \varphi and \kappa between 0 and 1, corresponding to 81 experiments for each sketching
strategy. We use a sequence of L = 10 independent sketching operators in our BFB ap-
proach. After computing values of \nu for each experiment, we evaluate the optimality coeffi-
cient difference \mu (\bfitb ,\bfitS \ell \ast ) - \mu (\bfitb ,\bfitS \ell \ast \ast ). Figure 1 illustrates the resulting relationship between
\mu (\bfitb ,\bfitS \ell \ast ) - \mu (\bfitb ,\bfitS \ell \ast \ast ) and the bound 2

\sqrt{} 
6(1 - \nu )\varepsilon . Due to the unknown constants in (3.23)

and (3.24), an exact value of \varepsilon corresponding to m= 100 is unavailable. Instead, we choose \varepsilon 
to be 0.01 heuristically. We chose this particular value of \varepsilon since it illustrates how the green
curve's shape, which is independent of the scalar \varepsilon , separates most of the scatter plots from
the rest of the area. The result shows our proposed BFB bound in Theorem 3.2 is effective
and nonvacuous for both Gaussian and leverage score sketching. It is noticeable that all the
dots out of our proposed bound (green) are leverage score sketch spots (blue). The reason is
because we set m= 100 for both sketch strategies, but leverage score sketch requires a higher
m to satisfy the (\varepsilon , \delta ) pair condition, which leads to a higher deviation in \mu with fixed m; see
details in Theorem 3.11.
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Figure 1. Scatter plots of \mu (\bfitb ,\bfitS \ell \ast ) - \mu (\bfitb ,\bfitS \ell \ast \ast ) based on given values of \nu for Gaussian sketch (red) and
leverage score sketch (blue). The green curve is the bound we provide in Theorem 3.2 with \varepsilon = 0.01.

Table 1
Empirical correlation between \mu 2(\bfitA ,\bfitb ) and \mu 2(\bfitA ,\~\bfitb ) for four different parameter setups and two different

sketch types.

\kappa \varphi Sketch type Correlation

0.2 0.3 Gaussian 0.21
0.2 0.95 Gaussian 0.88
0.95 0.3 Gaussian 0.17
0.95 0.95 Gaussian 0.48

0.2 0.3 Leverage score 0.19
0.2 0.95 Leverage score 0.91
0.95 0.3 Leverage score 0.08
0.95 0.95 Leverage score 0.56

To further validate our theoretical results in Theorem 3.5, we consider four combinations
of \kappa and \varphi as listed in Table 1, right. For both the Gaussian and leverage score sketches we
draw 100 sketches randomly. The same set of sketches is used for each pair of the vectors \bfitb 
and \~\bfitb . Figure 2 shows scatter plots of the squared optimality coefficients for the four different
pairs of \bfitb and \~\bfitb and two different sketch types.

Table 1 provides the estimated correlations between \mu 2(\bfitb ,\bfitS ) and \mu 2(\~\bfitb ,\bfitS ) for each of the
eight setups based on the data points in Figure 2. For both sketches, a small value of \kappa and a
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BIFIDELITY BOOSTING SAMPLING 231

Figure 2. Scatter plots of the square of the optimality coefficient for high- and low-fidelity data for each of
100 different sketches. Each point is equal to (\mu 2(\~\bfitb ,\bfitS ), \mu 2(\bfitb ,\bfitS )) for one realization of the sketch \bfitS . Gaussian
sketches are (a)--(d) and leverage score sketches are (e)--(h).

large value of \varphi together yield the highest positive correlation between \mu 2(\bfitb ,\bfitS ) and \mu 2(\~\bfitb ,\bfitS ).
In this case, the sketch that attains the smallest residual on the low-fidelity data also attains
a near-minimal residual on the high-fidelity data, which is consistent with the upper bound
in (3.7) and the lower bound in (3.12) that support the idea of BFB.

4.2. Experiments on PDE datasets. In this section we verify the accuracy of Algo-
rithm 3.1 on two PDE problems: thermally driven cavity fluid flow (section 4.2.1) and simu-
lation of a composite beam (section 4.2.2). In doing so, we consider three sampling strategies
based on uniform, leverage score (section 2.2.2), and leveraged volume (section 2.2.3) sam-
pling. As a baseline, we present results from deterministic sketching via column-pivoted QR
decomposition (section 2.2.1). We also show the BFB results of random sampling, in which
the design matrix \bfitA is built with points drawn from the measure induced by the input ran-
domness, instead of a deterministic quadrature rule. The experiments with different design
matrices show the BFB method is applicable to a wider range of least square settings.

In both PDE problems, the high-fidelity solution operator takes uniformly distributed in-
puts \bfitp \in [ - 1,1]q. We therefore consider approximations of the form in (1.2) with \psi j : [ - 1,1]q \mapsto \rightarrow 
\BbbR chosen to be products of q univariate (normalized) Legendre polynomials. Specifically, let
\bfitj = (j1, . . . , jq), jk \in \BbbN \cup \{ 0\} , be a vector of nonnegative indices, and let \psi jk(pk) denote the
Legendre polynomial of degree jk in pk such that \BbbE [\psi 2

jk
(pk)] = 1. We also need to choose the

quadrature nodes \bfitp n and weights wn, which we choose to be constructed from a tensor-product
quadrature. Thus, the entries of \bfitA in (1.3) are constructed by defining

\psi \bfitj (\bfitp ) =

q\prod 
k=1

\psi jk(pk), \bfitp n = (p1,n1
, p2,n2

, . . . , pq,nq
), wn =

q\prod 
k=1

wk,nk
.(4.2)

There are two spaces with different orders considered in the experiments. The first space,
known as the total degree space, involves the selection of each column \bfitj based on whether
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232 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

the condition
\sum q

k=1 jk \leq \zeta holds, where \zeta \geq 0 is a fixed value. The second space we examine
is referred to as the hyperbolic cross space [16], in which the columns \bfitj must satisfy the
condition

\prod q
k=1(jk+1)\leq \zeta +1. It's worth noting that the order of the hyperbolic cross space

is smaller than that of the total degree space. This contrast provides a basis for comparing
the performance of spaces with differing degrees.

Each sequence (pk,nk
,wk,nk

)nk\in [Nk] consists of node-weight pairs in the Nk-point Gauss--
Legendre quadrature on [ - 1,1]. The resulting sequence (\bfitp n,wn)n\in [N ] contains N =

\prod q
k=1Nk

pairs. When \bfitA is constructed in this fashion, it is possible to sample rows of that matrix
according to the exact leverage score using the efficient method by [31]; see section SM2. As
an aside, we remark that such tensorial constructions of one-dimensional quadrature rules
have accuracy guarantees for smooth functions that decrease exponentially in the number
of points per dimension, e.g., [4, Theorem 3.2] and [2, section 3]. This construction, un-
fortunately, suffers from the curse of dimensionality, which motivates why one might prefer
compression/sketching strategies as we propose here. As an alternative to tensor-product
constructions, sparse grids could also be used [3] to identify a quadrature-type sampling for
least squares problems that have error guarantees. However, the consideration of how one
identifies a ``good"" full least squares problem is not the goal of this article; instead our focus
is on accurately approximating the full least squares solution when the corresponding data
collection is computationally unaffordable.

With \^\bfitx BFB the output from Algorithm 3.1, we measure performance via the relative error,

E
\mathrm{d}\mathrm{e}\mathrm{f}
=

\| \bfitA \^\bfitx BFB  - \bfitb \| 2
\| \bfitb \| 2

.(4.3)

4.2.1. Cavity fluid flow. Here we consider the case of temperature-driven fluid flow in
a two-dimensional cavity [3, 36, 25, 24, 17, 26], with the quantity of interest being the heat
flux averaged along the hot wall, as Figure 3 shows. The wall on the left-hand side is the hot
wall with random temperature Th, and the cold wall at the right-hand side has temperature
Tc < Th. \=Tc is the constant mean of Tc. The horizontal walls are adiabatic. The reference
temperature and the temperature difference are given by T\mathrm{r}\mathrm{e}\mathrm{f} = (Th+ \=Tc)/2 and \Delta T\mathrm{r}\mathrm{e}\mathrm{f} = Th - \=Tc,
respectively. The normalized governing equations are given by

\partial \bfu 

\partial t
+ \bfu \cdot \nabla \bfu = - \nabla p+ Pr\surd 

Ra
\nabla 2\bfu +Pr\Theta \bfe y,

\partial \Theta 

\partial t
+\nabla \cdot (\bfu \Theta )=

1\surd 
Ra

\nabla 2\Theta ,

\nabla \cdot \bfu = 0, T (x= 1, y) = \=Tc + \sigma T

q\sum 
i=1

\sqrt{} 
\lambda i\phi i(y)\mu i,

(4.4)

where \bfe y is the unit vector (0,1), \bfu = (u, v) is the velocity vector field, \Theta = (T  - T\mathrm{r}\mathrm{e}\mathrm{f})/\Delta T\mathrm{r}\mathrm{e}\mathrm{f} is
normalized temperature, p is pressure, and t is time. We assume no-slip boundary conditions
on the walls. The dimensionless Prandtl and Rayleigh numbers are defined as Pr = \nu \mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c}/\alpha and
Ra= g\tau \Delta T\mathrm{r}\mathrm{e}\mathrm{f}W

3/(\nu \mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c}\alpha ), respectively, where W is the width of the cavity, g is gravitational
acceleration, \nu \mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c} is kinematic viscosity, \alpha is thermal diffusivity, and \tau is the coefficient of
thermal expansion. We set g= 10, W = 1, \tau = 0.5, \Delta T\mathrm{r}\mathrm{e}\mathrm{f} = 100, Ra= 106, and Pr = 0.71.

On the cold wall, we apply a temperature distribution with stochastic fluctuations through
T shown in (4.4), where \=Tc = 100 is a constant, \{ \lambda i\} i\in [q] and \{ \phi i(y)\} i\in [q] are the q largest
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Figure 3. Schematic of the temperature-driven cavity flow problem, reproduced from Figure 5 of [17].

Table 2
Correlation coefficients between \mu 2(\bfitA ,\bfitb ) and \mu 2(\bfitA ,\~\bfitb ) for different sampling methods under total degree or

hyperbolic cross space. The correlation is computed based on the points shown in Figure 4.

Polynomial space Uniform sampling Leverage score sampling Leveraged volume sampling

Total degree 0.66 0.57 0.18
Hyperbolic cross 0.99 0.98 0.98

eigenvalues and corresponding eigenfunctions of the kernel k(y1, y2) = exp( - | y1  - y2| /0.15),
and each \mu i

\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim U [ - 1,1]. We let q = 2 (though in general, this does not need to match the
physical dimension) and \sigma T = 2. The vector \bfitp = (\mu 1, \mu 2) is the uncertain input of the model.

In order to solve (4.4) we use the finite volume method with two different grid resolutions:
a finer grid of size 128\times 128 to produce the high-fidelity solution and a coarser grid of size
16\times 16 to produce the low-fidelity solution. The computational cost ratio between the high-
fidelity model and the low-fidelity model is approximately 955.43, as reported from [17]. For
our surrogate model, we choose the basis set \{ \psi j\} j\in [d] based on the total degree and hyperbolic
cross spaces of maximum order \zeta = 4. The corresponding spaces have d= 15 and d= 10 basis
functions, respectively. The quadrature pairs (\bfitp n,wn) used to construct \bfitA , \bfitb , and \~\bfitb are
defined as in (4.2) and are based on the nodes and weights from a 40-point Gauss--Legendre
rule, i.e., N1 =N2 = 40.

We first repeat the test we ran on synthetic data in section 4.1. Figure 4 shows the
scatter plots of (\mu 2(\~\bfitb ,\bfitS ), \mu 2(\bfitb ,\bfitS )) for the two different polynomial spaces and three different
quadrature sampling approaches. Each plot is based on 100 sketches with m= 30 and m= 20
samples used for the total degree and hyperbolic cross spaces, respectively. Table 2 presents
the correlation coefficients between \mu 2(\bfitb ,\bfitS ) and \mu 2(\~\bfitb ,\bfitS ) based on the points in Figure 4.
There is a discrepancy between the correlation observed for the total degree and hyperbolic
cross spaces. One possible explanation for this is that a greater portion of \bfitb is in the range of
\bfitA for the total degree space than for the hyperbolic cross space, i.e., \kappa (see (3.11)) is larger
for the former space, which by Theorem 3.5 suggests lower correlation.

Next, we run Algorithm 3.1 with L = 10 sketches and the number of samples m = 1.2d
and m = 2d. Figure 5 shows the relative error E in (4.3) from running the algorithm 1000

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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234 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

Figure 4. Scatter plots of the square of the optimality coefficient for high- and low-fidelity data from the
cavity fluid flow problem for different polynomial spaces (total degree: (a)--(c); hyperbolic cross: (d)--(f)) and
types of sampling. Each point is equal to (\mu 2(\~\bfitb ,\bfitS ), \mu 2(\bfitb ,\bfitS )) for one realization of the sketch \bfitS , and each subplot
contains 100 points (i.e., is based on 100 sketch realizations). For the total degree space, m = 30 samples are
used and for the hyperbolic cross space m= 20 samples are used.

times for each of the different choices of polynomial space, sketch size m, and quadrature
sampling approach. We observe that in all cases the BFB approach improves the error as
compared to the nonboosted case. In particular, the improvement is more considerable in
the case of the hyperbolic cross basis, which is explained by the higher correlation between
\mu 2(\bfitA ,\bfitb ) and \mu 2(\bfitA ,\~\bfitb ), as reported in Figure 4. Additionally, for the case of hyperbolic space,
the BFB results is comparable or better performance as compared to the column-pivoted QR
decomposition (blue line in Figure 5). Note that the computational cost of column-pivoted QR
is higher than the BFB as it requires the QR decomposition of the entire matrix \bfitA . Besides
the quadrature sampling results in Figure 5, the error E of random sampling is presented in
Figure 6. We observe that BFB also improves the performance, which discloses a wider scope
of application for the BFB algorithm.

4.2.2. Composite beam. Following [27, 5, 6], we consider a plane-stress, cantilever beam
with composite cross section and hollow web as shown in Figure 7. The quantity of interest
in this case is the maximum displacement of the top cord. The uncertain parameters of the
model are E1,E2,E3, f , where E1, E2, and E3 are the Young's moduli of the three components
of the cross section and f is the intensity of the applied distributed force on the beam; see
Figure 7. These are assumed to be statistically independent and uniformly distributed. The
dimension of the input parameter is therefore q = 4. Table 3 shows the range of the input
parameters as well as the other deterministic parameters.
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Figure 5. Relative error for different sampling methods and polynomial spaces when fitting the surrogate
model to the cavity fluid flow data. Yellow lines show the relative error E in (4.3) for the unsketched solution
in (1.3). Blue lines show E when the coefficients \bfitx are computed via the QR decomposition--based method in
section 2.2.1. The blue box plots show the distribution of E based on 1000 trials when \bfitx is computed as in (2.2).
The orange box plots show the same thing, but for the solution \^\bfitx BFB computed via Algorithm 3.1.

For the cavity fluid flow problem in section 4.2.1, we created high- and low-fidelity solutions
by changing the resolution of the grid used in the numerical solver. For the present problem,
we instead use two different models. The high-fidelity model is based on a finite element
discretization on a triangle mesh, as Figure 7 (bottom) shows. The low-fidelity model is
derived from Euler--Bernoulli beam theory in which the vertical cross sections are assumed to
remain planes throughout the deformation; in particular both the shear deformation of the
web and the circular holes are ignored. The Euler--Bernoulli theorem furnishes a differential
equation for the vertical displacement u that can be explicitly solved:

EI
d4u(x)

dx4
= - f =\Rightarrow u(x) = - fH4

24EI

\biggl( \Bigl( x
H

\Bigr) 4
 - 4

\Bigl( x
H

\Bigr) 3
+ 6

\Bigl( x
H

\Bigr) 2
\biggr) 
,(4.5)

where E and I are, respectively, the Young's modulus and the moment of inertia of an equiv-
alent cross section consisting of a single material, and we have taken E = E3, and the width
of the top and bottom sections are w1 = (E1/E3)w and w2 = (E2/E3)w, while all other di-
mensions are the same, as Figure 7 shows. Since the low-fidelity data is directly generated
from an explicit formula, its computational cost is negligible.

The quadrature surrogate model is based on multivariate Legendre polynomials of max-
imum degree \zeta = 2 with total degree and hyperbolic cross truncation. The corresponding
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236 CHENG, MALIK, XU, BECKER, DOOSTAN, AND NARAYAN

Figure 6. Same as Figure 5 except that the design matrix \bfitA is built with randomly sampled points instead
of quadrature grid points.

h1

h2

h3

w

q

r

L

E1

E2

E3
x

y 𝑓

𝐻

Figure 7. Top: Cantilever beam (left) and the composite cross section (right) adapted from [27]. Bottom:
Finite element mesh used to generate high-fidelity solutions.

Table 3
The values of the parameters in the composite cantilever beam model. The center of the holes are at

x = \{ 5,15,25,35,45\} . The parameters f , E1, E2, and E3 are drawn independently and uniformly at random
from the specified intervals.

H h1 h2 h3 w r f E1 E2 E3

50 0.1 0.1 5 1 1.5 [9,11] [0.9e6,1.1e6] [0.9e6,1.1e6] [0.9e4,1.1e4]
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BIFIDELITY BOOSTING SAMPLING 237

Figure 8. Scatter plots of the square of the optimality coefficient for high- and low-fidelity data from the
composite beam problem for different polynomial spaces (total degree: (a)--(c); hyperbolic cross: (d)--(f)) and
types of sampling. Each point is equal to (\mu 2(\~\bfitb ,\bfitS ), \mu 2(\bfitb ,\bfitS )) for one realization of the sketch \bfitS , and each
subplot contains 100 points (i.e., is based on 100 sketch realizations). For the total degree space m= 30 samples
are used, and for the hyperbolic cross space m= 18 samples are used.

Table 4
Correlation coefficient between \mu 2(\bfitA ,\bfitb ) and \mu 2(\bfitA ,\~\bfitb ) for different sampling methods under total degree or

hyperbolic cross space. The correlation is computed based on the points shown in Figure 8.

Polynomial space Uniform sampling Leverage score sampling Leveraged volume sampling

Total degree 0.77 0.69 0.84
Hyperbolic cross 0.72 0.73 0.82

spaces have d = 15 and d = 9 basis functions, respectively. As in the case of the cavity flow
problem, the quadrature pairs (\bfitp n,wn) used to construct \bfitA , \bfitb , and \~\bfitb are based on the nodes
and weights from 10-point Gauss--Legendre rule appropriately mapped into the ranges given
in Table 3.

Figure 8 shows the scatter plots of (\mu 2(\~\bfitb ,\bfitS ), \mu 2(\bfitb ,\bfitS )) when repeating the experiment in
section 4.1 for the different polynomial spaces and quadrature sampling approaches. Each
plot is based on 100 sketches with m= 2d, i.e., m= 30 and m= 18 samples used for the total
degree and hyperbolic cross spaces, respectively. Table 4 reports the correlation coefficient
between \mu 2(\bfitb ,\bfitS ) and \mu 2(\~\bfitb ,\bfitS ), indicating an overall high correlation in all cases.

Next, we run Algorithm 3.1 with L = 10 sketches and m chosen to be m = 1.2d and
m = 2d. Figure 9 shows the results from running the algorithm 1000 times for each of the
different choices of polynomial space, number of samples m, and quadrature sampling ap-
proach. Figure 10 presents the results from randomly sampled grid points under the same
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Figure 9. Relative error for different sampling methods and polynomial spaces when fitting the surrogate
model to the beam problem data. Yellow lines show the relative error E in (4.3) for the unsketched solution
in (1.3). Blue lines show E when the coefficients \bfitx are computed via the QR decomposition--based method in
section 2.2.1. The blue box plots shows the distribution of E based on 1000 trials when \bfitx is computed as in
(2.2). The orange box plots shows the same things, but for the solution \^\bfitx BFB computed via Algorithm 3.1.

settings. We observe that the BFB performance is superior to that of the nonboosted im-
plementation as it leads to a smaller variance of the error and fewer outliers with smaller
deviations from the mean performance for both cases. In the quadrature sampling example,
the BFB leads to accuracy comparable to the column-pivoted QR sketch, but with smaller
sketching cost. As in the case of the cavity flow, the results corroborate the discussion below
Theorem 3.5, in that the BFB improves the regression accuracy when corr(\mu 2(\bfitb ,\bfitS ), \mu 2(\~\bfitb ,\bfitS ))
is large.

5. Conclusion. This work was concerned with the construction of (polynomial) emula-
tors of parameter-to-solution maps of PDE problems via sketched least squares regression.
Sketching is a design of experiments approach that aims to improve the cost of building a
least squares solution in terms of reducing the number of samples needed---when the cost of
generating data is high---or the cost of generating a least squares solution---when data size
is substantial. Focusing on the former case, we have proposed a new boosting algorithm to
compute a sketched least squares solution.

The procedure consisted in identifying the best sketch from a set of candidates used to
construct least squares regression of the low-fidelity data and applying this optimal sketch to
the regression of high-fidelity data. The bifidelity boosting (BFB) approach limits the required
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BIFIDELITY BOOSTING SAMPLING 239

Figure 10. Same as Figure 9 except that the design matrix \bfitA is built with randomly sampled points instead
of fixed quadrature grid points.

sample complexity to \sim d logd high-fidelity data, where d is the size of the (polynomial) basis.
We have provided theoretical analysis of the BFB approach identifying assumptions on the
low- and high-fidelity data under which the BFB leads to improvement of the solution relative
to nonboosted regression of the high-fidelity data. We have also provided quantitative bounds
on the residual of the BFB solution relative to the full, computationally expensive solution.
We have investigated the performance of BFB on manufactured and PDE data from fluid
and solid mechanics. These cover sketching strategies based on leverage score and leveraged
volume sampling, for truncated Legendre polynomials of both total degree and hyperbolic
cross type. All tests illustrated the efficacy of BFB in reducing the residual---as compared to
the nonboosted implementation---and validate the theoretical results.

The present study was focused on the case of (weighted) least squares polynomial regres-
sion. When the regression coefficients are sparse, methods based on compressive sampling
have proven efficient in reducing the sample complexity below the size of the polynomial ba-
sis; see, e.g., [12, 1]. Furthermore, our analysis in this work is built on the assumption that
the observations \bfitb and \~\bfitb are noise-free. From a more practical perspective, it is more helpful
to consider the noise in our analysis. Therefore, some interesting future research directions
could include extending the BFB strategy to such underdetermined cases, for instance, using
the approach of [10], and building our analysis from the joint randomness from both sketching
operators and noisy observations.
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