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Chapter 1

Executive Summary

The ASCAC Subcommittee on Synergistic Challenges in Data-Intensive Science and Exascale Com-
puting has reviewed current practice and future plans in multiple science domains in the context of
the challenges facing both Big Data and the Exascale Computing. challenges. The review drew from
public presentations, workshop reports and expert testimony. Data-intensive research activities are
increasing in all domains of science, and exascale computing is a key enabler of these activities. We
briefly summarize below the key findings and recommendations from this report from the perspec-
tive of identifying investments that are most likely to positively impact both data-intensive science
goals and exascale computing goals.

Finding 1: There are opportunities for investments that can benefit both data-intensive
science and exascale computing. There are natural synergies among the challenges facing
data-intensive science and exascale computing, and advances in both are necessary for next-
generation scientific breakthroughs. Data-intensive science relies on the collection, analysis and
management of massive volumes of data, whether they are obtained from scientific simulations or
experimental facilities or both. In both cases (simulation or experimental), investments in exascale
systems or, more generally, in “extreme-scale” systems1 will be necessary to analyze the massive
volumes of data that are essential for addressing DOE’s science missions.

The Exascale Computing Initiative [10] envisions exascale computing to be a sustainable tech-
nology that exploits economies of scale. An industry ecosystem for building exascale computers
will necessarily include the creation of higher-volume extreme-scale system components that are
needed for data analysis solutions at all scales. These components will include innovative memory
hierarchies and data movement optimizations that will be essential for all analysis components in
a data-intensive science workflow in the 2020+ timeframe.

For example, high-throughput reduction and analysis capabilities are essential when processing
large volumes of data generated by science instruments. While the computational capability needed
within a single data analysis tier of an experimental facility may not be at the exascale, extreme
scale processors built for exascale systems will be well matched for use in different tiers of data
analysis, since these processors will be focused (for example) on optimizing the energy impact of
data movement. Further, there is a clear synergy between algorithms for near-sensor computing in
experimental facilities and algorithms for in-situ analysis in simulations.

The Exascale Computing Initiative has also identified the need for innovations in applications

1As in past reports, we use “exascale systems” to refer to systems with an exascale capability and “extreme-scale
systems” to refer to all classes of systems built using exascale technologies which include chips with hundreds of cores
and different scales of interconnects and memory systems.
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and algorithms to address fundamental challenges in extreme-scale systems related to concurrency,
data movement, energy efficiency and resilience. Innovative solutions to these challenges will jointly
benefit analysis and computational algorithms for both data-intensive science and exascale com-
puting. Finally, advances in networking facilities, as projected for future generations of ESNet [9],
will also benefit both data-intensive science and exascale computing.

Finding 2: Integration of data analytics with exascale simulations represents a new
kind of workflow that will impact both data-intensive science and exascale computing.
In the past, computational science workflows were epitomized by large-scale simulations followed
by off-line data analyses and visualizations. Today’s ability to understand and explore gigabyte and
some petabyte spatial-temporal high-dimensional data in this workflow is the result of decades of
research investment in data analysis and visualization. However, exascale data being produced by
experiments and simulations are rapidly outstripping our current ability to explore and understand
them. Exascale simulations require that some analyses and visualizations be performed while data is
still resident in memory, so-called in-situ analysis and visualization, thus necessitating a new kind of
workflow for scientists. We need new algorithms for scientific data analysis and visualization along
with new data archiving techniques that allow for both in-situ and post processing of petabytes and
exabytes of simulation and experimental data. This new kind of workflow will impact data-intensive
science due to its tighter coupling of data and simulation, while also offering new opportunities for
data analysis to steer computation.

In addition, in-situ analysis will impact the workloads that high-end computers have tradition-
ally been designed for. Even for traditional floating-point-intensive applications, the addition of
analytics will change the workload to include (for example) larger numbers of integer operations
and branch operations than before. Design and development of scalable algorithms and software for
mining big data sets, as well as an ability to perform approximate analysis within certain time con-
straints will be necessary for effective in-situ analysis. In the past, different assumptions were made
for designing high-end computing systems vs. those made for analysis and visualization systems.
Tighter integration of simulation and analytics in the science workflow will impact co-design of these
systems for future workloads, and will require development of new classes of proxy applications to
capture the combined characteristics of simulations and analytics.

Finding 3: There is an urgent need to simplify the workflow for data-intensive science.
Analysis and visualization of increasingly larger-scale data sets will require integration of the best
computational algorithms with the best interactive techniques and interfaces. The workflow for
data-intensive science is complicated by the need to simultaneously manage both large volumes
of data and large amounts of computation to analyze the data, and this complexity continues to
increase rapidly. These complications can greatly reduce the productivity of the domain scientist,
if the workflow is not simplified and made more flexible. For example, the workflow should be able
to transparently support decisions such as when to move data to computation or computation to
data. The recent proposal for a Virtual Data Facility (VDF) will go a long way in simplifying the
workflow for data-intensive science because of the VDF’s integrated focus on data-intensive science
across the DOE ASCR facilities.

Finding 4: There is a need to increase the pool of computer and computational sci-
entists trained in both exascale and data-intensive computing. Earlier workflow models
allowed for a separation of concerns between computation and analytics that is no longer possible
as computation and data analysis become more tightly intertwined. Further, the separation of

2
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concerns allowed for science to progress with personnel that may be experts in computation or
in analysis, but not both. This approach is not sustainable in data-intensive science where the
workflow for computation and analysis will have to be co-designed. There is thus a need for invest-
ments to increase the number of computer and computational scientists trained in both exascale
and data-intensive computing to advance the goals of data-intensive science.

Recommendation 1: The DOE Office of Science should give high priority to invest-
ments that can benefit both data-intensive science and exascale computing so as to
leverage their synergies. The findings in this study have identified multiple technologies and
capabilities that can benefit both data-intensive science and exascale computing. Investments in
such dual-purpose technologies will provide the necessary leverage to advance science on both data
and computational fronts. For science domains that need exascale simulations, commensurate
investments in exascale computing capabilities and data infrastructure are necessary. In other do-
mains, extreme-scale components of exascale systems will be well matched for use in different tiers
of data analysis, since these processors will be focused on optimizing the energy impact of data
movement. Further, research in applications and algorithms to address fundamental challenges in
concurrency, data movement, and resilience will jointly benefit data analysis and computational
techniques for both data-intensive science and exascale computing. Finally, advances in network-
ing (as projected for future generations of ESNet technology) will also benefit both data-intensive
science and exascale computing.

Recommendation 2: DOE ASCR should give high priority to research and other in-
vestments that simplify the science workflow and improve the productivity of scien-
tists involved in exascale and data-intensive computing. We must pay greater attention to
simplifying human-computer-interface design and human-in-the-loop workflows for data-intensive
science. To that end, we encourage the recent proposal for a Virtual Data Facility (VDF) because it
will provide a simpler and more usable portal for data services than current systems. A significant
emphasis must be placed on research and development of scalable data analytics, mathematical
techniques, data mining algorithms and software components that can be used as building blocks
for sophisticated analysis pipelines and flows. We also recommend the creation of new classes of
proxy applications to capture the combined characteristics of simulation and analytics, so as to
help ensure that computational science and computer science research in ASCR are better targeted
to the needs of data-intensive science.

Recommendation 3: DOE ASCR should adjust investments in programs such as fel-
lowships, career awards, and funding grants, to increase the pool of computer and
computational scientists trained in both exascale and data-intensive computing. There
is a significant gap between the number of current computational and computer scientists trained
in both exascale and data-intensive computing and the future needs for this combined expertise in
support of DOE’s science missions. Investments in ASCR such as fellowships, career awards, and
funding grants should look to increase the pool of computer and computational scientists trained
in both exascale and data-intensive computing.
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Chapter 2

Introduction

2.1 Big Data and the Fourth Paradigm

Historically, the two dominant paradigms for scientific discovery have been theory and experi-
ments, with large-scale computer simulations emerging as the third paradigm in the 20th century.
In many cases, large-scale simulations are accompanied by the challenges of data-intensive com-
puting . Overcoming the challenges of data-intensive computing has required optimization of data
movement across multiple levels of memory hierarchies, and these considerations have become even
more important as we prepare for exascale computing. The approaches taken to address these
challenges include (a) fast data output from a large simulation for future processing/archiving;
(b) minimization of data movement across caches and other levels of the memory hierarchy; (c)
optimization of communication across nodes using fast and low-latency networks, and communica-
tion optimization; and (d) effective co-design, usage and optimization of system components from
architectures to software.

Over the past decade, a new paradigm for scientific discovery is emerging due to the availability
of exponentially increasing volumes of data from large instruments such as telescopes, colliders, and
light sources, as well as the proliferation of sensors and high-throughput analysis devices. Further,
data sources, analysis devices, and simulations are connected with current-generation networks that
are faster and capable of moving significantly larger volumes of data than in previous generations.
These trends are popularly referred to as big data. However, generation of data by itself is of
not much value unless the data can also lead to knowledge and actionable insights. Thus, the
fourth paradigm, which seeks to exploit information buried in massive datasets to drive scientific
discovery, has emerged as an essential complement to the three existing paradigms. The complexity
and challenge of the fourth paradigm arises from the increasing velocity, heterogeneity, and volume
of data generation. For example, experiments using the Large Hadron Collider (LHC) currently
generate tens of petabytes of reduced data per year, observational and simulation data in the
climate domain is expected to reach exabytes by 2021, and light source experiments are expected
to generate hundreds of terabytes per day. The heterogeneity of the data adds further complexity
— for example, data may be spatio-temporal, unstructured, or may be derived data with complex
formats.

Analysis of this large volume of complex data to derive knowledge, therefore, requires data-
driven computing, where the data drives the computation and control including complex queries,
analysis, statistics, hypothesis formulation and validation, and data mining. Figure 2.1 illustrates
a typical knowledge discovery life-cycle for big data [5], which consists of the following steps:

1. Data Generation: Data may be generated by instruments, experiments, sensors, or supercom-

4



Synergistic Challenges in Data-Intensive Science and Exascale Computing

puter simulations. In fact, a supercomputer can be thought of as another type of instrument,
which generates data by simulating large-scale mathematical models. However, to derive
knowledge from the simulations, the data (which is typically spatio-temporal) must be pro-
cessed, mined and visualized, like data from any other instrument.

2. Data Processing and Organization: This phase entails (re)organizing, deriving subsets, reduc-
tion, visualization, query analytics, distributing, and many other aspects of data processing.
This may also include combining data with external data or historical data, in essence creat-
ing a “virtual data warehouse”. For example, in LHC experiments, this phase may include
common operations on and derivations from raw data that is generated with appropriate
creation of metadata. The output of data processing then becomes a virtual data warehouse
used by thousands of scientists for their knowledge discovery process. Similarly, a collection of
simulation and observational data in the climate application case may be used by thousands
of scientists for their discovery process.

3. Data Analytics, Mining and Knowledge Discovery: Given the size and complexity of data
and the need for both top-down and bottom-up discovery, scalable algorithms and software
need to be deployed in this phase. The discovery process can be quite specific to the scientific
problem under consideration. For example, the data set may be used to predict extreme
weather events, or to understand long-term macro-climate patterns. Repeated evaluations,
what-if scenarios, predictive modeling, correlations, causality and other mining operations at
scale are all part of this phase.

4. Actions, Feedback and Refinement: Insights and discoveries from previous phases help close
the loop by influencing new simulations, models, parameters, settings, observations, thereby,
making the closed loop a virtuous cycle for big data.

While Figure 2.1 represents a common high-level approach to data-driven knowledge discovery,
there can be important differences among different science domains as to how data is produced,
consumed, stored, processed, analyzed and mined. The options to perform these activities can also
depend on where the data originates. For example, on an exascale system, there may be significant
opportunity to perform in-situ analytics on the system used to generate the data. Other scenarios
that require combining the analysis of historical data and simulation data may require a different
approach.

2.2 Intertwined Requirements for Big Data and Big Compute

Though the third and fourth paradigms mentioned earlier depend on “Big Compute” and “Big
Data” respectively, it would be a mistake to think of them as independent activities. Instead,
their requirements are tightly intertwined since they both contribute to a shared goal of scientific
discovery. In the 2022 timeframe that this report is focused on, Big Compute will be exemplified
by exascale systems or, more generally, “extreme-scale” systems. (As in past reports, we use
“exascale systems” to refer to systems with an exascale capability and “extreme-scale systems” to
refer to all classes of systems built using exascale technologies which include chips with hundreds
of cores and different scales of interconnects and memory systems.) Many science applications
increasingly compute ensembles to study “what-if” scenarios, as well as to understand potential
behaviors over a range of different conditions. Whereas traditional approaches for analysis typically
facilitate examining one dataset at a time, the growth in ensemble collections of simulations makes
it increasingly important to quantify error and uncertainty within and across ensembles.
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Figure 2.1: A knowledge-discovery life-cycle for Big Data. The life-cycle can be typically divided
into four stages. The first phase, “Data Generation” results in generation (or collection) of data via
a simulation or by instruments. In fact, a supercomputing simulation can be thought of as another
instrument generating data. Many tasks, including data reduction, processing and analysis can be
performed during the data generation phase concurrently with the generation. The second phase,
“Data Processing and Organization” phase entails transforming, (re)organizing, curating, process-
ing, reducing, and querying for top-down query-analytics and visualization. This step can include
in-situ analytics as well as post processing analytics. Furthermore, this step involves historical
data collection, distribution, federation and sharing. The third phase “Data Mining” refers to the
process of deploying large-scale data mining algorithms to find relationships, associations, perform
predictive modeling and overall bottom-up and top-down knowledge discovery. The fourth phase
closes the loop by deriving insights and using the feedback from the first three steps to refine, plan
and execute future simulations or experiments.
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For example, data-intensive simulations on Big Compute exascale systems will be used to gen-
erate volumes of Big Data that are comparable to the data volumes generated by many scientific
instruments. Likewise, the volumes of Big Data generated by the data-driven paradigm will need
to be analyzed by Big Compute exascale or extreme-scale systems. Historically, the data-intensive
and data-driven approaches have evolved somewhat independently of each other, and have not
leveraged many insights and optimizations developed in the context of each other, even though
they are faced with similar challenges related to optimizing data movement, data management,
and data reduction. As we head to the exascale timeframe, it will be critical to exploit synergies
between the two approaches, even though some fundamental differences may remain between the
two approaches.

Further, since the data-driven paradigm is relatively recent, current systems have been designed
using workloads that are focused more on computation requirements than on data requirements.
Figure 2.21 compares strawman computer architectures in the 2017 timeframe built for compute-
intensive vs. data-intensive requirements. The compute-intensive architecture follows current su-
percomputing trends and aims to maximize the computational density and memory bandwidth,
assuming that the working set data will mostly fit in main memory. The data-intensive architec-
ture will focus on tighter integration of storage and computation, to accommodate workloads with
data sets that exceed main memory capacities. Exascale systems will need to span the range of
compute-intensive and data-intensive architectures, though early exascale systems will likely be
aligned with compute-intensive designs.

The need for data-intensive computer architectures is motivated by the fact that past archi-
tecture designs have been based on established workloads that pre-date the fourth paradigm. For
example, compute-intensive architectures have evolved over decades to provide increased optimiza-
tion of floating-point computations in HPC workloads. Likewise, commercial servers have been
optimized for transactional and query-based workloads, and mobile processors have been optimized
for media processing. The characteristics and requirements of data analytics and mining applica-
tions that are central to the fourth paradigm have not as yet had a major impact on the design of
computer systems, but that is likely to change in the near future. For example, as early as 2015-
2016, visualization and data analysis capabilities will be built into the main compute resources in
the DOE Office of Science Trinity/NERSC 8 procurements. For fast I/O near compute nodes, burst
buffers will be included. They serve as both the primary resiliency mechanism and as near-data
persistent memory for in-transit analytics/visualization.

In the commercial world, the idea of building data-intensive computer architecures at the dat-
acenter scale has well established for a few years now [2]. Even there, it was recognized that the
data and computing requirements of a data center cannot be addressed effectively with off-the-shelf
software and systems. For example, Google has its own software stack that extends from the ker-
nel up through multiple levels of storage and networking into the specialized infrastructure layers
provided by families of applications such as Gmail, Google+, Youtube, and Docs. Many of these
applications rely on the BigTable structure [4]. The largest BigTable cluster in 2009 at Google held
70+ petabytes of data, with a sustained I/O rate of 30+ gigabytes/second. To handle larger scales
of data, the Spanner [6] system was recently introduced with the goal of scaling “up to millions of
machines across hundreds of datacenters”.

Some preliminary work has been performed to understand the differences between the require-
ments of data mining and analytics applications compared with other kinds of workloads [16]. This
analysis used a variety of application suites including integer application benchmarks (SPEC INT
from SPEC CPU2000), floating point application benchmarks (SPEC FP), multimedia application

1This figure and analysis was obtained by courtesy of NERSC.

7



Synergistic Challenges in Data-Intensive Science and Exascale Computing

Data Intensive Arch Compute Intensive Arch 

+ +  
5TF/socket 
1-2 sockets 

5TF/sock 
8+ sockets 

64-128GB 
HMC or Stack 

1-4 TB Aggregate 
Chained-HMC 

1TB/s	  

.5-1TB  
CDIMM (opt.) 

200TB/s	  
5-10TB Memory 
Class NVRAM 

10-100TB SSD 
Cache or local FS 

Organized for 
Burst Buffer 

1-10PB  Dist.Obj. DB 
(e.g whamcloud) 

�/�!
(root)!

�Dataset0�!
type,space! �Dataset1�!

type, space!
�subgrp�!

�time�=0.2345!

�validity�=None!

�author�=JoeBlow!

�Dataset0.1�!
type,space! �Dataset0.2�!

type,space!

Spatially-oriented 
e.g. 3D-5D Torus 

50GB/s/node	  
10TB/s/rack	  

100TB/s	  

50GB/s	  inject	  
10TB/s	  bisect	   All-to-All oriented 

e.g. Dragonfly or 3T 
GAS-support in network 

~1% nodes for  
Storage Gateways 

~10-20% nodes for  
Storage Gateways 
Parallel MDS 

~1% nodes for IP Gateways 40GBe Ethernet   
Direct to each node 

Compute Node! I/O Server!

Compute Node!

Compute Node!

. . .!
I/O Server!

Compute Node!

Disks!

Disks!

Disks!

Disks!Metadata Server (MDS)!

Interconnect"
Fabric!

RAID!
Couplet!

RAID!
Couplet!

50GB/s	  inject	  
0.5TB/s	  	  aggregate	  

4GB/s	  per	  node	  

Compute Node! I/O Server!

Compute Node!

Compute Node!

. . .!
I/O Server!

Compute Node!

Disks!

Disks!

Disks!

Disks!Metadata Server (MDS)!

Interconnect"
Fabric!

RAID!
Couplet!

RAID!
Couplet!

I/O Server!

. . .!

Compute	  

On-‐Package	  
DRAM	  

Capacity	  Memory	  

On-‐node-‐Storage	  

In-‐Rack	  Storage	  

Interconnect	  

Global	  Shared	  
Disk	  

Off-‐System	  
Network	  

Figure 2.2: Strawman compute-intensive vs. data-intensive computer architectures in the 2017
timeframe. Figure courtesy of NERSC. (HMC: Hybrid Memory Cube, NVRAM: Non-Volatile
Random-Access Memory, SSD: Solid-State Drive, GAS: Global Address Space.)
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benchmarks (MediaBench) and decision support application benchmarks (TPC-H from Transaction
Processing Council). The MineBench benchmark2 was used as a representative of data mining and
analytics applications. The results of the comparison are shown in Table 2.1. For example, one
attribute that signifies the uniqueness of data mining applications is the number of data references
per instruction retired. This rate is 1.10, whereas for other applications, it is significantly less,
clearly demonstrating the data intensive nature of these applications. The L2 miss rates are con-
siderably higher for data mining application as well. The reason for this is the inherent streaming
nature of data retrieval and computation dependent access patterns, which do not provide enough
opportunities for data reuse. These characteristics suggest that memory hierarchies in exascale
and extreme-scale systems should be made more flexible so as to support both Big Compute and
Big Data applications. Given the preliminary nature of the study in [16], more work is clearly
needed in developing proxy applications to ensure that co-design methodologies include require-
ments from compute-intensive, data-intensive and data-driven applications in guiding the design of
future computing facilities for scientific discovery.

Parameter
Benchmarks

SPECINT SPECFP MediaBench TPC-H MineBench

Data References 0.81 0.55 0.56 0.48 1.10

Bus Accesses 0.030 0.034 0.002 0.010 0.037

Instruction Decodes 1.17 1.02 1.28 1.08 0.78

Resource Related Stalls 0.66 1.04 0.14 0.69 0.43

ALU Instructions 0.25 0.29 0.27 0.30 0.31

L1 Misses 0.023 0.008 0.010 0.029 0.016

L2 Misses 0.0030 0.0030 0.0004 0.0020 0.0060

Branches 0.13 0.03 0.16 0.11 0.14

Branch Mispredictions 0.0090 0.0008 0.0160 0.0006 0.0060

Table 2.1: A comparison of selected performance parameters for different benchmarks with data
analytics and mining workloads [16]. The numbers shown here for the parameters are values per
instruction.

2.3 Interpretation of Charge

The subcommittee appreciated the timeliness of the charge, a copy of which is included in Ap-
pendix A. Data-intensive research activities are increasing in all domains of science, and exascale
computing is a key enabler of these activities. To focus our efforts in this study, we made the
following assumptions when interpreting the charge:

• There are several Federal government programs under way to address the challenges of the
“big data” revolution [11] to further scientific discovery and innovation. Likewise, there are
multiple efforts in industry to address big data challenges in the context of commercial data,
including the use of cloud computing to enable analysis of big data. We explicitly restricted
the scope of our study to the intersection of big data challenges and exascale computing in the
context of data-intensive science applications that are part of the Office of Science’s mission.

• This scope includes experimental facilities and scientific simulations that exemplify the Office
of Science’s unique role in data-intensive science. While some of our conclusions may be

2See http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html for details.
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more broadly applicable e.g., to Department of Defense exascale applications, we focused on
scenarios that centered on the Office of Science’s mission needs. Other areas (e.g., cyber
defense) were ruled to be out of scope for this study.

• The charge did not specify a timeframe to be assumed for our recommendations. However,
the focus on synergies with exascale computing suggests that a 10-year timeframe should be
our primary focus, since the current roadmap for exascale computing estimates the availabil-
ity of exascale capability approximately in the 2022 timeframe. Nearer term (e.g., 5-year)
considerations also deserve attention since they will influence the migration path to exascale
computing. Likewise, we do not wish to ignore the potential impact of longer-term technology
options (e.g., in the 20-year timeframe), but their study represents a secondary goal for this
study.

• The charge highlighted the importance of identifying investments that are most likely to
positively impact both data-intensive science research goals and exascale computing goals.
Since other studies are investigating the prioritization of investments across the Office of
Science (e.g., the recent Facilities study), this study will focus on investments that can leverage
synergies between data-intensive science and exascale computing.
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Chapter 3

Data Challenges in Science

In this chapter, we briefly summarize data challenges arising in multiple science domains, with
the goal of identifying cross-cutting data requirements from different domains to guide our study.
Though the set of science domains studied may not be complete, our aim was to cover enough of
a variety so as to understand the range of requirements underlying data-driven science.

Figure 3.1 summarizes projected growth rates for data acquisition from sequencers and detectors
and relates them to expected growth in processor and memory capacities. It conveys the general
trend facing multiple science domains. Even if the absolute data requirements do not appear to
be a significant obstacles for some science domains today, future trends indicate that most science
domains will become data-intensive in the exascale timeframe (and many well before then, including
in the current timeframe).

3.1 High Energy Physics

High Energy Physics (HEP) is inherently a data-intensive domain because of the fundamental
nature of quantum physics. Advances in HEP require the measurement of probabilities of “inter-
esting” events in large numbers of observations e.g., in 1016 or more particle collisions observed in
a year. Different experiments can be set up to generate collisions with different kinds of particles,
and at different energy levels.

The ATLAS and CMS experiments at the Large Hadron Collider are at the energy frontier
and present the greatest data challenges seen by HEP. The detectors in these experiments generate
massive amounts of analog data, at rates equivalent to petabytes per second running round the clock
for a large fraction of each year. These data must of necessity be reduced by orders of magnitude
in real time to a volume that can be stored at acceptable cost. Today, about 1 gigabyte per second
or around 10 petabytes per year is the limit for a major experiment. Further, this data is also
required to be distributable worldwide at an acceptable cost, so as to be shared among scientists
in different laboratories and countries. After the initial reduction, data volumes are inflated by
storing derived data products, replication for safety and efficient access, and by the need for storing
even more simulated data than the experimental data. ATLAS currently stores over 100 petabytes
and this volume is rising rapidly.

3.1.1 Real-time data reduction

Data reduction relies on two strategies:
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Figure 3.1: Projected growth rates for data acquisition and processor/memory capacities. (Figure
courtesy of Kathy Yelick.)

• Zero suppression, or more correctly “below threshold suppression”. Data from each collision
are produced by millions of sensitive devices. The majority of the devices record an energy
deposit consistent with noise and inconsistent with the passage of a charged particle. These
readings are cut out at a very early stage. This is not a trivial choice. For example a free
quark might deposit 11% of the energy expected for a normal charged particle, and would
very likely be rendered invisible by the zero suppression. However, discovery of a free quark
would be a ground-breaking science contribution that could well be worthy of a Nobel prize.

• Selection of “interesting” collisions. This proceeds in a series of steps. The first step is to
decide which collisions merit the digitization (and zero suppression) of the analog data in the
detection devices. This produces hundreds of gigabytes per second of digital data flow on
which further increasingly compute-intensive pattern recognition and selection is performed
by embarrassingly parallel “farms” of thousands of computers.

Typically, the group responsible for each major physics analysis topic is given a budget of how
many collisions per second it may collect and provides the corresponding selection algorithms.
Physicists are well aware of the dangers of optimizing for the“expected” new physics and being
blind to the unexpected. For real time data reduction, all the computing is necessarily performed
very close to the source of data.

3.1.2 Distributed Data Processing and Analysis

Construction of each LHC detector necessarily required that equipment costing hundreds of millions
of dollars be funded and built by nations around the world and assembled in an underground pit at
CERN. The motivation for this consolidation of experimental equipment is clear. However, there
is no corresponding motivation to consolidate computing and storage infrastructure in the same
manner. Instead, for both technical and political reasons, a distributed computing and storage
infrastructure has been the only feasible path to pursue despite some of the complexities involved.

The workflow for HEP scientists involved in an experiment like ATLAS or CMS typically consists
of the following tasks:

1. Reconstruction of likely particle trajectories and energy-shower deposits for each collision
from the individual measurements made by the millions of sensitive devices.
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2. Simulation of the detector response, followed by reconstruction, for all the expected collisions
plus a range of new physics hypotheses. Given the cost of acquiring the real collisions, it is
cost effective (but still expensive) to generate several times as much simulated data as real
data. The detector response simulation is extremely compute-intensive.

3. Selection of a subset of the collisions, and often a subset of the reconstructed objects to create
relatively compact datasets for use by designated physics analysis groups.

4. Detailed analysis of the subset datasets in comparison with the relevant simulated datasets
to derive publishable science contributions.

Several hundred national and university-based computing centers form the Worldwide LHC
Computing Grid (WLCG). They bring a total of almost 300,000 compute cores and hundreds of
petabytes of disk and tape storage capacity. Much of the communications flows over the LHC
Optical Private Network (LHCOPN), composed typically of dedicated wavelengths on national
research networks plus some explicitly purchased international links (e.g. 6 × 10 Gbps between
CERN and the US). The rising capabilities of general-purpose research and education networks
worldwide has begun to make “anywhere to anywhere” high-bandwidth data transfer feasible.
LHC distributed computing is evolving rapidly to exploit this capability.

WLCG resources are made available via Grid middleware developed in the US and Europe.
The European and US middleware have some differences, but interoperate successfully, providing
the basic utilities for authentication, data movement, job submission, monitoring, accounting and
trouble ticketing. The US Open Science Grid and European Grids are also open to other sciences
either as opportunistic users or as stakeholders sharing their own resources. The Grid approach
pre-dates virtualization and Cloud technology. As virtualization is increasing deployed there is an
increasing convergence with the Cloud world.

3.1.3 Challenges and Opportunities

Data Storage and Access Technologies: The million-fold reduction of data performed in real
time is driven by the limitations of data storage and access technology, not by science. It amounts
to a blinkered view of nature — no problem if you look in the right direction, but with a danger of
being unable to see the unexpected. If technology allowed storing and analyzing one thousand times
more data at tolerable cost, this would immediately become part of the process of this science.

Efficient Execution on Future Computer Architectures: A majority of all available
computing power and storage is currently devoted to detailed simulation of how the detector and
the reconstruction software respond to collision products. The ratio of simulated to real data is
barely sufficient now and is at risk of further deterioration as the LHC collision rate increases
as planned. Unlike many simulations, HEP event simulation and reconstruction is not naturally
vector-processor or GPU friendly. The main hope of achieving acceptable simulation statistics
is, nevertheless, to understand how to exploit upcoming extreme-scale architectures while still
retaining the millions of lines of collaboratively written code in a practical manner.

Towards Widely Applicable Distributed Data Intensive Computing: The distributed
computing environment for the LHC has proved to be a formidable resource, giving scientists
access to huge resources that are pooled worldwide and largely automatically managed. However,
the scale of operational effort required is burdensome for the HEP community, and will be hard to
replicate in other science communities. Could the current HEP distributed environments be used
as a distributed systems laboratory to understand how more robust, self-healing, self-diagnosing
systems could be created?
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3.2 Climate Science

3.2.1 Background

In order to fully understand climate change, climate research is focused not only at global scales,
but also at regional and local scales, using high-resolution global models, regional models, and
observational data sets. In addition, climate science has moved beyond physical climate to include
atmospheric chemistry, aerosols, ice sheets and glaciers, vegetation changes, and biogeochemical
feedbacks within an Earth System Model (ESM). These new directions are generating ultra-scale
data sets because of the very high spatial resolution and increased sophistication of the physics
incorporated into ESMs. With the advent of greater compute power and storage capacity, climate
research is moving away from single runs to multi-model ensemble runs; field-based diagnostics
to process-based diagnostics; and low frequency, monthly annual means to higher frequency, daily
(or even three-hourly) diagnostics, to name a few. In addition, observational programs and field
campaigns are generating increasingly rich and complex data sets. On average, we estimate that
each program or campaign will generate one terabyte of data per day for simulation, observation,
and reanalysis data. This data estimate does not include additional data sources from in-situ,
paleo, regional, or derived data. With petabytes of data generated each year for climate research,
advanced tools for managing, analyzing and visualizing ultra-scale climate data are essential if we
are to maintain rapid progress of our scientific understanding and prediction of climate change and
utilize this understanding to make informed decisions.

3.2.2 Collaborative Data-Driven Process and Use Cases

Climate research is inherently a collaborative and multi-disciplinary effort requiring sophisticated
simulations of the physical processes and exchange mechanisms between multiple Earth realms
(atmosphere, land, ocean, and sea ice) and comparison and validation of these simulations with
observational data from various sources, most likely collected over long periods of time. Over
the past several decades, the Working Group on Coupled Modeling (WGCM), sponsored by the
World Climate Research Program (WCRP), has generated simulation data in direct support of
the International Panel on Climate Change (IPCC) assessment reports, with the fifth assessment
report due out in 2013. These activities involve tens of modeling groups in as many countries,
running the same prescribed set of climate change scenarios on the most advanced supercomputers,
and producing petabytes of output containing hundreds of physical variables spanning tens and
hundreds of years (see Figure 3.2). These data sets are held at distributed locations around the
globe but must be discovered, downloaded, and analyzed as if they were stored in a single archive,
with efficient and reliable access mechanisms that can span political and institutional boundaries.

The same infrastructure must also allow scientists to access and compare observational and
reanalysis data sets from multiple sources, including, for example, Earth Observing System (EOS)
satellites, Advanced Radiation Measurements (ARM) sites, and the Modern-Era Retrospective
Analysis for Research and Applications (MERRA) reanalysis. These observations and reanalysis,
often collected and made available in real-time or near real-time, are typically stored in different
formats and must be post-processed to be converted to a format that allows easy comparison with
models. The need for providing data products on demand, as well as value-added products, adds
another dimension to the necessary capabilities. Finally, science results must be applied at mul-
tiple scales (global, regional, and local) and made available to different communities (scientists,
policy makers, instructors, farmers, and industry). Because of its high visibility and direct impact
on political decisions that govern human activities, the end-to-end scientific investigation must be
completely transparent, collaborative, and reproducible. Scientists must be given the environment
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Figure 1.  The surface of the Earth is warming. Four maps of the northern hemisphere demonstrate the trend, with average surface temperature for:
top left, 1919; top right, 2002; bottom left, 2061; and bottom right, 2099. Center, the global average, as a function of time, is shown. The
computations were based on observed temperature (pre-2000) and a climate model assuming a continued high rate of greenhouse gas emission.

to determine what climate changes have anthro-
pogenic causes. Humans are changing the climate;
the scientists must determine and explain how. The
third role is to analyze and explain the efficacy of
proposed methods of adapting to or mitigating the
effects of such changes. Adaptation describes things
man can do to cope with changes, such as construct-
ing seawalls to protect low-lying areas from rising
sea levels. Mitigation describes things humans can
do to avoid, minimize, slow, or even reverse climate
changes (for example, dispersing aerosols into the
atmosphere to reflect solar radiation, thereby cool-
ing the planet). Many schemes will be proposed; the
climate scientists will be called upon to predict and
explain their effects.

Modeling the Earth’s Climate: 
A Laboratory the Size Of the Planet
Climate changes in the recent past can be deduced
from recorded observations of temperature, precip-
itation, and even wind. Going further back into the
past, similar inferences can be made from ice cores,
lake sediments, tree rings, and other indicators. 

Until recently, future changes to the climate could
only be hypothesized employing small computa-
tional tools. As computing power has grown, large,
global-scale climate modeling has expanded. Previ-
ous limits on computing capability and the size of
datasets had constrained the resolution and scope
of the effective modeling capability. With the ongo-
ing revolution in high-capacity, high-performance
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Figure 3.2: The surface of the earth is warming. Four maps of the northern hemisphere demonstrate
the trend, with average surface temperature for 1919 (top left), 2002 (top right), 2061 (bottom left),
and 2099 (bottom right) shown. The global average, as a function of time, is shown in the center.
The computations were based on observed temperature (pre-2000) and the average of 23-climate
model (i.e., multi-model ensemble) assuming a continued high rate of greenhouse gas emission.

and tools for exchanging ideas and verifying results with colleagues in opposite time zones, investi-
gating metadata, tracking provenance, annotating results, and collaborating in developing analysis
applications and algorithms.

3.2.3 Data Challenges

Managing high volumes of climate data within a network of high-performance computing (HPC)
environments located across the globe presents unique challenges. How data are organized can have
considerable impact on performance. Often, the only realistic choice for storage device is robotic
tape drives within a hierarchical management system. In the worst case, poor data organization
means that some data may never be accessed simply because access takes too long because of
challenges in storage access, compute resources, or network. Users generally store the data them-
selves, possibly without being aware of how to most effectively use the hierarchical storage system.
Additionally, some applications require that large volumes of data be staged across low-bandwidth
networks simply to access relatively small amounts of data. Finally, when data usage changes or
storage devices are upgraded, large data sets may need to be reorganized and quite possibly moved
to a new location to take advantage of the new configuration. To address these and other concerns,
the climate data community needs a network architecture that offers more intelligent and fully
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layered data services, providing users with increased information about the data, its anticipated
usage, storage requirements, and network system characteristics. Its layered service structure must
be invisible to users while effectively managing the system to ensure a truly efficient, productive
workflow.

3.2.4 Direction and Opportunities

Given the critical importance of scientific climate data and its projected size by 2020 (in the
exabytes), the climate research community must continue to specify a format for common activities
as well as standards, application programmer’s interfaces (APIs), and protocols to facilitate the
development of infrastructures that support the community’s long-range efforts. We cannot afford
to work in an ad hoc fashion without proper standards for building hardware and networks or
bonding software together via the specific protocols, because doing so will cost Department of
Energy (DOE) and the climate community at large considerable time and resources. If DOE is to
optimize its investment in data, it must ensure that a common open architecture is in place and a
significant fraction of that architecture is shared among the different climate activities, rather than
having specific domain architecture for each project.

In all cases, data or analysis results must be supplied to the end user, including climate re-
searchers and non-researchers such as farmers, students, and decision makers. Researchers will
often need to visualize results from various viewpoints, or simply slice data in various ways to
reduce dimensionality. Decision makers and non-expert users will require visualizations that are
easy to interpret. For some decision makers, data must be provided in different formats, such as
geographic information system (GIS), for use in existing decision and planning tools. A robust
analysis tool must therefore provide an end-to-end solution that can gather data from multiple
sources, interpolate and manipulate appropriately, and then provide visualization at the user’s end.

3.3 Combustion

3.3.1 Motivation

Over 70% of the 86 million barrels of crude oil that are consumed in this nation each day are used
in internal combustion engines. The nation spends about 1 billion dollars a day on imported oil.
Accompanying the tremendous oil consumption is the undesirable emissions, e.g. nitric oxides, par-
ticulates, and CO2 production. To mitigate the negative environmental and health implications,
there is legislation that mandates reductions in fuel usage per kilometer by 50% in new vehicles
by 2030 and greenhouse gases by 80% by 2050. Although this may appear to be far off in time,
the time required to bring new vehicle technologies to market and to become widely adopted is
also long. Hence, the urgent need for a concerted effort to develop non-petroleum-based fuels and
their efficient, clean utilization in transportation is warranted by concerns over energy sustainabil-
ity, energy security, competitiveness, and global warming. Drastic changes in the fuel constituents
and operational characteristics of automobiles and trucks are needed over the next few decades
as the world transitions away from petroleum-derived transportation fuels. Conventional empirical
approaches to developing new engines and certifying new fuels have only led to incremental improve-
ments, and as such they cannot meet these enormous challenges in a timely, cost-effective manner.
Achieving the required high rate of innovation will require computer-aided design, as is currently
used to design the aerodynamically efficient wings of airplanes and the molecules in ozone-friendly
refrigerants. The diversity of alternative fuels and the corresponding variation in their physical and
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chemical properties, coupled with simultaneous changes in automotive design/control strategies
needed to improve efficiency and reduce emissions, pose immense technical challenges.

A central challenge is predicting combustion rates and emissions in novel low temperature
compression ignition engines. Compression ignition engines have much higher efficiencies than
spark ignited gasoline engines (only 20% efficiency) with the potential to increase by as much
as 50% if key technological challenges can be overcome. Current diesel engines suffer from high
nitric oxide and particulate emissions requiring expensive after-treatments. To reduce emissions
while capitalizing on the high fuel efficiency of compression ignition engines constrains the thermo-
chemical space that advanced engines can operate in, i.e. they burn overall fuel-lean, dilute and
at lower temperatures than conventional diesel engines. Combustion in this new environment is
governed by previously unexplored regimes of mixed-mode combustion involving strong coupling
between turbulent mixing and chemistry characterized by intermittent phenomena such as auto-
ignition and extinction in stratified mixtures burning near flammability limits. The new combustion
regimes are poorly understood, and there is a dearth of predictive models for engine design operating
in these regimes. Basic research in this area is underscored in the Department of Energy Basic
Energy Sciences workshop report on “Basic Energy Needs for Clean and Efficient Combustion
of 21st Century Transportation Fuels” which identified a single overarching grand challenge: to
develop a “validated, predictive, multi-scale, combustion modeling capability to optimize the design
and operation of evolving fuels in advanced engines for transportation applications.”

3.3.2 Exascale use case

Exascale computing offers the promise of enabling combustion simulations in parameter regimes
relevant to next-generation combustors burning alternative fuels that are needed to provide the
underlying science of “turbulence-chemistry” interactions required to design fuel efficient, clean
burning vehicles, planes, and power plants for electricity generation. Use cases based on this target
have been designed to provide a focal point for exascale co-design efforts. One representative exas-
cale combustion use case corresponds to an advanced engine design, homogeneous charge compres-
sion ignition, which relies on autoignition chemistry at high pressures to determine the combustion
phasing and burn rate. We estimate that to describe this system would require a computational
mesh with 1012 points with more than 100 variables per point to describe the fuel chemistry of
surrogate bio-fuels. Simulation of this case would require memory usage of around 3 PB integrated
for 1.2 million time steps representing 6 ms of physical time, requiring 5× 1011 cpu-hours and gen-
erating an exabyte of raw data (1 PB per 0.5 hour). Current practice at the petascale is to write
out the raw data from simulations to persistent disk and then read in the data later for analysis.
This approach is unlikely to scale to exascale due to the disparity among computational power,
machine memory and I/O bandwidth. Hence, at the exascale combustion simulations will not be
able to write enough data out to permanent storage to ensure a reliable analysis. It is anticipated
that much of the current analysis and visualization will need to be integrated with the combustion
simulation in a comprehensive overall workflow on an exascale machine. Please refer to Section
4.4.1 for details regarding the in-situ analytics for combustion and the use of proxy applications to
understand machine independent performance characteristics of representative analytics algorithms
in combustion.

3.3.3 Comprehensive exploration of the combustion workflow design space

In addition to understanding the specific performance characteristics of individual algorithms, we
need to understand the overall workload and impact of various designs in the context of the end-to-
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end combustion simulation workflow. The design space is large, including such options as placement
of analysis tasks, if/when/how/where to move or make data available from the solvers to the analysis
tasks, scheduling analysis tasks, and availability of hardware resources.

Consider, for example, the selection of cores for analysis, and how they interact with the main
simulation. In one case, the analysis operations are delegated to discrete cores on the simulation
node (staging cores), and in another, analysis operations are time-multiplexed with simulation
operations on the same cores. In the first case, the analysis operators will access the data asyn-
chronously and will not impact the data locality optimizations for the simulation. However, this
approach will reduce the peak compute capability available to the simulation. In the second case,
the simulation can access all the available compute resources, but will have to wait for the analysis
tasks to complete before making progress. Moreover, the sharing of resources could have a larger
impact on the simulation performance due to cache pollution. These design choices must be evalu-
ated in the context of specific use cases and current and future hardware platforms (using hardware
simulators to evaluate future platforms).

Figure 3.3: Rich co-design space of end-to-end workflows on exascale machines.

Figure 3.3 illustrates the rich co-design space of end-to-end science workflows on exascale ma-
chines where tradeoffs have to be made across different choices for placement, persistence, data
access, synchronization and scheduling of resources for simulation and analysis components.

3.4 Biology and Genomics

The vision of the grand challenges confronting the biology community over the next few years
showcases several different types of data management challenges arising from the extreme volumes
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of data being produced by simulation, analysis, and experiment. Ranging from the understanding
of the fundamental connections between the chemistry of biomolecules and the function of whole
organisms, to the processing and interpretation of complex reaction pathways inside organisms used
in bioremediation, to the simulation and understanding of the human brain itself, these complex
“challenge problems” use data in ways that extend the requirements for extreme-scale data man-
agement and visualization. In particular, the report on “Opportunities in Biology at the Extreme
Scale of Computing” report [7] highlights the following grand challenge issues in biology for exascale
computing:

• Biophysical simulations of cellular environments, either in terms of long time dynamics,
crowded environments and the challenges therein, or coarse graining dynamics for entire
cellular systems.

• Cracking the ‘signaling code’ of the genome across the tree of life, implying a reconstruction
of large-scale cellular networks across species, and across time points and environmental
conditions.

• Re-engineering the units of biological function at a whole organism scale.

• Correlating observational ecology and models of population dynamics in microbial commu-
nity systems, and from this basis, to apply these models to microevolutionary dynamics in
microbial communities.

• Reverse engineering the brain to understand complex neural systems, as well as to provide new
methods to integrate large-scale data, information and simulation dynamics, and ultimately
to provide societal benefits for health. And perhaps most importantly, to learn how nature’s
design of a biologically-based knowledge machine beats all estimates for “low power” systems
to compute or store information when compared to even the most power–efficient hardware
systems being conceived for the future.

3.5 Light Sources

Unlike previous sections which focused on scientists in specific domains, users of light sources can be
very diverse. They come from many different science domains (e.g., ranging from paleontologists
to material scientists), and in many cases, have little or no familiarity with high performance
computing.

The Advanced Photon Source (APS) at ANL provides this nation’s brightest x-ray beams for
research in multiple scientific disciplines. It includes about 65 beam lines organized in 34 sectors,
each with different data rates. For example, a tomography beam line can generate 1 terabyte of data
per day. While many users still bring in their own external storage devices to capture experimental
data, this will become increasingly untenable with increasing data rates when some future light
sources are expected to generate 1 terabyte of data per second! Likewise, the historical trend of
individual users performing manual analysis of their data will not be feasible with increasing data
sizes. While some communities (e.g., protein crystallographers) have data analysis user groups that
contribute to an ecosystem for data analysis tools, there is no standard science workflow for users of
light sources. The availability of GridFTP and GlobusOnline services has been helpful in supporting
some of the APS users. However, in general, the primary focus on maximizing utilization of APS
as a scientific facility has made it challenging to justify resources to build software services and
capabilities that are necessary to increase the scientist’s productivity when using a light source.
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In contrast to APS, the Linac Coherent Light Source (LCLS) is a relatively new facility that was
able to take a different approach to data acquisition. It provides users access to an offline storage
facility with a capacity of approximately 2.5 petabytes, where data is stored for 2 years, and an
on-line cache of approximately 50 terabytes, where data is stored for 5 days [18]. While these data
volumes do not sound prohibitive in size, they are expected to increase dramatically in the future
with the introduction of larger multi mega-pixels cameras and an increased number of stations. All
data management can be controlled by the user via the LCLS web portal, including archiving to tape
(HPSS) which is implemented as an iRODS service. The success of centralized data services at LCLS
bodes well for the recent proposal for a Virtual Data Facility (VDF) to simplify the workflow for
scientists. However, the data analysis ecosystem still lags the data management ecosystem; LCLS
users need a wide range of data analysis software functionalities, including advanced algorithms
and interactive frameworks. In general, there is a strong need for a collaborative, high performance,
open source, software ecosystem for data analysis across all the light source facilities.

3.6 Neutron Science

Neutron scattering provides researchers with a powerful method for understanding the structure
and properties of materials, macromolecular and biological systems, and the fundamental physics
of the neutron by providing information on the internal structure of materials from the atomic
scale, atomic positions and excitations, up to the mesoscale, e.g. the effects of stress and strain.
Studies conducted via neutron scattering span fundamental to applied research and are a critical
component of understanding and developing new materials with optimized properties such as mag-
netism, superconductivity, and ferroelectric and energy storage mechanisms. These studies require
advanced accelerators such as the Spallation Neutron Source (SNS) which supports approximately
500 experiments and more than 1500 researchers each year1.

The SNS hosts the most intense neutron source in the world with some of the most advanced
high-resolution neutron detector technologies. This combination of advances has resulted in instru-
ments capable of detecting over 1014 neutron events per year. Given these data rates, users at the
SNS are now critically reliant on data-intensive infrastructure to carry out their research. With
the high cost and high demand for the use of these instruments, it is critical that acquiring and
analyzing the data they generate is mades as efficient as possible.

3.6.1 Data Processing and Analysis

From a high level perspective, the process of a neutron scattering experiment at the SNS generally
involves three stages:

1. Capturing the position and time of flight information of neutrons scattered from a sample. For
some experiments this may require capturing millions of events per second over a prolonged
period of time (hours). Other data describing the sample environment (temperature, pressure,
magnetism) must also be captured.

2. Transformation of this raw data from instrument units to physical units, e.g. energy and wave
vector (momentum), and corrected for instrument/measurement artifacts. Conducting this
transformation in real-time is desirable in order to provide instant feedback as the experiment
evolves.

1The material in this section was obtained courtesy of Galen Shipman at ORNL.
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3. Analysis of the transformed data often involving comparison/fitting of the physical units
against atomistic models of materials. This stage of the experiment can be extremely com-
putationally intensive.

Data generated in stages 1 and 2 are stored and cataloged with all relevant metadata related to
the experiment (proposal identifier, research team members, sample information, etc.) This data is
concurrently archived for disaster recovery. Data generated in stage 3 is generally not stored long
term due to storage space limitations.

Traditionally, stages 2 and 3 of this process could take hours or even days. This impedes the
flow of experimental work, where the analysis of the data often strongly influences the next step in
the experimental investigation. Many neutron science experiments rely upon simulation via density
functional theory, molecular dynamics, and Quantum Monte Carlo techniques. These simulations
and models are used to analyze data generated from the instrument and to guide steps in the
experiment process. Time-to-solution is a critical aspect of the overall utility of these techniques,
particularly when guiding or “steering” the experiment based on simulation.

3.6.2 Challenges and Opportunities

Many users of the SNS facility lack the compute and data infrastructure required to analyze their
SNS datasets at their home institution. This is in stark contrast to previous generation neutron
facilities where users were able to take their data back to their home institution and process it using
relatively modest workstations. Today, virtually every user of the SNS facility is reliant upon data
infrastructure at the SNS even after they have left the facility. Users of the SNS require access to
large-scale, high-performance data storage, compute clusters, and large-memory SMP systems to
conduct their data analysis from anywhere in the world. This presents challenges for the SNS as
the facility must architect, deploy, and manage a data intensive infrastructure for both local and
remote users with a full suite of tools for processing their data. Even with this data infrastructure
in place, many users face significant challenges when utilizing complimentary resources such as the
Advanced Photon Source (APS) as they have no place in which to compare and analyze data take
from multiple facilities as their data exist on distinct islands of data infrastructure.

The availability of a large-scale federated data infrastructure in which to capture, process,
catalog, and steward not only data taken at the SNS, but across complimentary instruments at the
APS or the Advanced Light Source (ALS) would be of immediate benefit to the neutron science and
the broader materials science communities. This infrastructure must allow users to easily capture,
access and compare data from these (and other) major facilities from anywhere in the world.
Common tools and data analysis packages should be easily accessible to the users of the data
infrastructure. Automated data transform and data fusion workflows should be easily constructed
allowing for more efficient comparison of data from multiple experiments or experiment/simulation
inter-comparison. Providing these capabilities via a federated data infrastructure, such as the
proposed Virtual Data Facility (VDF), would remove significant roadblocks that currently exist in
the path toward scientific discovery using neutrons.

3.7 Identification of cross-cutting requirements from different do-
mains

Data may be generated by instruments, experiments, sensors, or supercomputer simulations. In
this context, a supercomputer can be thought of as another type of instrument, which generates
data by simulating mathematical models at large-scale. Data can be processed, organized, mined
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concurrently with the data generation phase (“in-situ” or “on-line”) to some extent depending
on the scenario and application. Subsequently, raw data and/or derived data must be stored,
organized, managed, distributed and shared for future use (“post-processing”). The extent and
applicability of these options depends on the applications as well as technology and infrastructure’s
(including cost) capabilities to handle volume, velocity, variety and other parameters.

Table 3.1 shows four scenarios as viewed from the data generation phase — two each for simu-
lations and instruments. The table identifies similarities and differences among different scenarios
and domains. Scalable data analysis, mining, storage and visualization prove to be critically im-
portant in all scenarios. The requirements for storage (particularly for distribution and future
usage), sharing, management, analytics varies across the scenarios. As an illustration, consider the
two scenarios of exascale simulations generating data. In the point design oriented scenarios (e.g.,
combustion), a lot of analytics and processing can be done within the data generation phase using
“in-situ” processing. On the other hand, for applications such as climate, in addition to point
analysis, which can leverage “in-situ” analytics, accessing historical data, observational data or
other ensembles may be important to derive insights. Furthermore, a lot more data may need to be
stored, derived and organized in order for a larger community to use the data and its derivation for
many applications within each domain e.g., spatio-temporal slices to execute regional assessments,
understand extreme events or evaluate broader climate trends. The communities, applications, pro-
cessing, mining and discovery applications may vary widely, thereby requiring much more extensive
and sophisticated management, storage, distribution and provenance capabilities.

Science is not the only domain facing new challenges and opportunities from the growing ubiq-
uity of data. Data is transforming many industries and providing new services and products to
consumers. The large commercial market for data-driven capabilities has generated considerable
research and development. Clearly, DOE needs to leverage existing investments to the maximal ex-
tent possible. Cloud computing and Map-Reduce style analytics are popular in industry and should
be used in DOE as appropriate. Emerging data-centric computing designs like Cray’s uRiKA plat-
form should also be investigated. The larger commercial marketplace is also driving advances in
memory devices and hierarchies, and these will be valuable to DOE both for data-centric science
applications and as components of future HPC platforms.

For the past decades, the high performance computing community has been leveraging and
adapting commodity hardware to create supercomputers. So DOE has experience making incre-
mental investments amidst a larger background of development activity. Similar skills will be
required to effectively adapt commercially developed data-centric computing capabilities to the
unique demands of DOE’s scientific missions. Among the features that can make scientific appli-
cations different from commercial applications are: a need for real-time data reduction; extremely
bursty data generation with comparatively lengthy periods of hiatus mixed with high intensity
bursts of generation; data generated on a supercomputer instead of being collected from the world.
These and other areas of uniqueness will require DOE to adapt technologies developed for other
markets. DOE will need to make appropriate investments to make these technologies useful to
scientific applications.

The cross-cutting challenge of scientific workflows – making life easy for scientists with complex
data on which many operations must be performed – appeared as a major issue in the course of
this study. This challenge is outlined below.

3.7.1 Scientific Workflows

In an increasing range of observational, experimental and simulation science, scientists are diverted
from science by the need to manage chains of data processing, data movement and data storage and
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Data
Generation
Phase
(scenarios)

Overview Transactional
/ in situ
processing
require-
ments

Storage for
Post
processing

Sharing and
distribution

Visualization

1) Design
Oriented
Exascale
Simulations
e.g.,
combustion,
CFD

Generation of
data from
simulations.

(1) Data
reduction for
post
processing
(2) feature
detection &
tracking
(3) advanced
analytics

Reduced data Low (Only the
producer or a
few scientists
may analyze
data in the
future)

In-situ, inter-
action, feature
display, uncer-
tainty, visual
debugging

2) Discovery
Oriented
Exascale
Simulations
(2) e.g.,
climate,
cosmology

Integration of
data generated
from
simulation and
observations

(1) Data
reduction for
post
processing
(2) time series
(3) statistics
(4) advanced
analytics

(1) Raw data
(2) Well
organized
(DB)
(3) Enabled
for queries

High (A large
number of
scientists,
geographically
distributed)

InfoVis and
SciVis, pattern
detection,
correlation,
clustering,
ensemble vis,
uncertainty

3) Large
centralized
instruments
e.g., LHC

Data
generation
from large
devices
Extremely
high rates
Centralized,
coordinated,
controlled
access

(1) HW/SW
for high-rate
data
processing
(2) derived
data
(3) metadata
(4) Extensive
queries

(1) Raw data
(2) Different
forms of
derived data
(3) Lots of
distributed
copies

High (A large
number of
scientists,
geographically
distributed),
different sets
defined by
queries and
other
parameters

Custom user
interfaces en-
abling query
visual analysis,
trajectory
vis/analysis,
user driven
data triage/-
summarization

4) Smaller
distributed
instruments
e.g., field
work, sensors,
biology

Data
generation
from massive
numbers of
distributed
devices,
sensors

(1) Local
processing and
derivations
(2) Local
analytics
(3) Integration
of massive
data (possibly
at an exascale
level system,
data centers)

(1) Raw data
(2) Derived
data and
subsets
(3)
Distributed
copies

High (A large
number of
scientists,
geographically
distributed)

InfoVis, high
dimensional
vis, large-
scale graphs,
patterns,
clustering,
scalability

Table 3.1: Data-generation requirements for different domains

archiving. In general, experimental scientists may have more of an expectation of such drudgery
than scientists developing models, but regardless of the magnitude of the psychological shock, the
drain on productivity is real and massive. The problem is exacerbated by the seeming disparity
between the workflow management needs of the various sciences. Figure 3.4 shows a generalized
workflow of the scientific process, in which individual scientists uniquely develop their derived
process within each step.
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Figure 3.4: Generalized Scientific Workflow.

High energy physics leads the field in the complexity and scale of its workflows, where drudgery
without any automation is already a human impossibility. Workflow automation has been developed
to make the science possible. Fortunately the large size of experimental HEP collaborations has
made it possible to share the development effort. It is now possible to stand back and examine
the HEP distributed data and data-processing systems and begin to understand which elements
of the automated systems could be generalized for use in other domains. HEP also cries out for
a much higher level of automation than presently achieved which still requires physicists to take
shifts checking and troubleshooting the worldwide workflow management systems. The new light
sources present challenges that are far below the HEP scale today, but advances in light-source and
sensor technology are on the verge of making data management and data processing workflow into
major challenges for the relatively small groups that perform the majority of the science at these
facilities.

To illustrate workflow issues in more detail, climate science and combustion science issues are
examined below. From these domains, we can distinguish between many types of workflow use
cases involving scientific research, all of which generate large-scale data: 1) model development, 2)
observations, and 3) scientific exploration. For these use cases, there is no typical scientist workflow,
which means that everyone prescribes to their own unique way of doing business. Moreover, the
different communities (such as model developers who run and produce the large-scale data) have
their own set of tools and services. That said, basic workflow undertakings must be generalized while
allowing individuals the flexibility to interject their own unique processes into the operation. This
situation requires managing a complex workflow involving long-term jobs and data management in
a user-transparent way.

In the case of model development, the goal is usually to extend the capabilities of a model (e.g.,
to include additional processes or “components” to an existing model) or to improve a model by
introducing better representations of processes already accounted for. Workflow management of a
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model is based on running complex computer programs at leadership-class facilities (e.g., Argonne,
ORNL, NERSC). These complex, parallelized model programs generally comprise the integration
of smaller complex subprograms representing components of a larger ecosystem. For example, in
climate change a global climate model may consist of many interchangeable smaller sub-components
(i.e., atmosphere, ocean, land, or sea-ice) to simulate the Earth‘s ecosystem. For modelers, the
workflow process can be summarized as follows:

1. Introduce coding changes and specify parameter values;

2. Perform simulations that produce results (that can be compared with observations) and save
output;

3. Analyze the output and process relevant observations similarly;

4. Assess fidelity of the model by comparing model results against observations;

5. Determine strengths and shortcomings of model and if necessary, return to step 1.

It should be noted that sometimes during the model development workflow, process simulations
are run that are not meant to be realistic (i.e., are not meant to be compared with observations).
Instead, they yield information about important characteristics of model behavior (e.g., its sensi-
tivity to idealized external forcing).

In the case of scientific exploration, the goal of the workflow is to improve understanding of
the models and of the natural system they are designed to represent. For this, inter-comparisons
of model output and observations help scientists verify and validate the integrity of final model
output results. Scientists analyzing final results have many complex workflows at their disposal.
Each workflow is unique, giving a different perspective on the output. For example, ensemble
workflows help scientists isolate and deal with uncertainties in the system and there are many types
of ensembles used by each science domain. They include “initial condition ensembles,” involving
the same model run from a variety of starting states;“perturbed physics ensemble,” derived from a
main scientific focus project (generally only one model); the forcing ensemble,” in which the model
is subject to different physical parameters and forcings; and the “grand ensemble,” which is the
ensemble of ensembles.

For scientific exploration, the workflow process can be summarized as follows:

1. Design model experiments that can answer a scientific question (or questions) of interest;

2. Perform simulations and save output;

3. Analyze the output (often along with observations), following initial instincts as to an ap-
proach that might be fruitful;

4. Return to step 1, if it becomes apparent that additional experiments are needed to answer
the scientific question;

5. Plan a new strategy and return to step 3, if the initial analysis approach is unsuccessful;

6. Publish paper, describe findings.

Ideally, information gleaned about model behavior through the analyses performed as part of
this workflow use case would feed directly into efforts to improve models (i.e., the model develop-
ment use case). Currently, there is no formal mechanism for accomplishing this other than via the
relatively slow communication afforded by peer-reviewed publications.
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As models become more complex, steps involving the generation, movement, and analysis of
model output increasingly tax data processing capabilities. Moreover, as community-wide analysis
of model results becomes commonplace and with the availability of multiple analysis workflow of
simulations (e.g., ensembles), support for services that provide remote access to large-scale data
become essential. Therefore, from the perspective of large-scale data processing for the above use
cases, major efforts must be devoted to:

1. Optimizing codes and job streams to run efficiently on large supercomputers (usually mas-
sively parallel);

2. Enabling codes (and hardware and networks) to efficiently output simulation results to parallel
disk systems;

3. Transferring a subset of the output to a convenient data archive (if the original system cannot
be used);

4. Providing information to potential users of output as to what is in the data archive (Note
that the data archive might be distributed across multiple leadership-class facilities, especially
with multiple simulations);

5. Giving qualified users access to the data archive (and to other relevant data archives hosting,
for example, observational data);

6. Providing users with options to perform certain types of server-side calculations across the
cluster of data nodes (generally to reduce the amount of data needed to be transferred from
archive to user);

7. Offering efficient methods for users to download results (from a generally distributed archive
in the form of common data formats or visualization).

26



Chapter 4

Data Analysis and Visualization

4.1 Introduction: From Big Data to Big Information

Since the advent of computing, the world has experienced an explosion of data that can be viewed
as an “information big bang”. Information is being created at an exponential rate such that, since
2003, new information is growing at an annual rate that exceeds the information contained in all
previously created documents; digital information now makes up more than 90% of all information
production, vastly exceeding paper and film. The coming of exascale computing and data acquisi-
tion from high-bandwidth experiments across the sciences is creating a phase change. Our ability
to produce data is rapidly outstripping our ability to use it. As Herbert Simon, Nobel Laureate in
economics, noted: “A wealth of information creates a poverty of attention and a need to allocate
it efficiently.” With exascale datasets, we will be creating far more data than we can explore in a
lifetime with current tools. Yet, exploring these datasets is the essence of the fourth paradigm of
scientific discovery.

As such, one of our greatest scientific and engineering challenges will be to effectively understand
and make use of this rapidly growing data; to create new theories, techniques, and software that
can be used to make new discoveries and advances in science and engineering [12,13]. Data Analysis
and Visualization are key technologies for enabling future advances in simulation and data-intensive
based science, as well as in several domains beyond the sciences.

4.2 Challenges of in-situ analysis

Science applications are impacted by the widening gap between I/O and computational capacity.
I/O costs are rising, so, as simulations increase in spatiotemporal resolution and higher-fidelity
physics, the need for analysis and visualization to understand results will become more and more
acute. As I/O becomes prohibitively costly, the need to perform analysis and visualization while
data is still resident in memory during a simulation, so-called in-situ analysis, becomes increasingly
necessary. In-situ processing has been successfully deployed over the past two decades in specific
instances e.g., see Figure 4.1. However, in-situ analysis is still not a mainstream technique in
scientific computing, for multiple reasons:

1. There are software development costs for running in situ. They include costs for instrumenting
the simulation and for developing in-situ appropriate analysis routines.

2. There can be significant runtime costs associated with running in-situ. Running analysis
in-situ will consume memory, FLOPs, and/or network bandwidth, all of which are precious
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to the simulation. These costs must be sufficiently low that the majority of supercomputing
time is devoted to simulation.

3. At the exascale, resiliency will be a key issue; in-situ analysis software should not create
additional failures, and it should be able to recover gracefully when failures occur.

Further, to make in-situ processing a reality, we must fundamentally rethink the overall scientific
discovery process when using simulation and determine how best to couple simulation with data
analysis. As detailed in [1], we need to answer several key questions and address the corresponding
challenges:

• To date, in-situ processing has been used primarily for operations that we know to perform
a priori. Will this continue to be the case? Will we be able to engage in exploration-oriented
activities that have a user “in the loop?” If so, will these exploration-oriented activities
occur concurrently with the simulation? Or will we do in situ data reduction that will enable
subsequent offline exploration? What types of reductions are appropriate (e.g., compression,
feature tracking)?

• How do simulation and visualization calculations best share the same processor, memory
space, and domain decomposition to exploit data locality? If sharing is not feasible, how do
we reduce the data and ship it to processors dedicated to the visualization calculations?

• What fraction of the supercomputer time should be devoted to in situ data processing/visu-
alization? As in-situ visualization becomes a necessity rather than an option, scientists must
accept “embedded analysis” as an integral part of the simulation.

• Which data processing tasks and visualization operations are best performed in-situ? To
what extent does the monitoring scenario stay relevant, and how is monitoring effectively
coupled with domain knowledge-driven data reduction? If we have little a priori knowledge
about what is interesting or important, how should data reduction be done?

• As we store less raw data to disk, what supplemental information (e.g., uncertainty) should
be generated in-situ?

• What are the unique requirements of in-situ analysis and visualization algorithms? Some vi-
sualization and analysis routines are fundamentally memory-heavy, and some are intrinsically
compute-heavy. Thus some are not usable for in-situ processing. We will need to reformulate
these calculations. Furthermore, some analysis requires looking at large windows of time. We
may need to develop incremental analysis methods to meet this requirement.

• What similarities can be exploited over multiple simulation projects? Can the Data Man-
agement, Analysis, and Visualization (DMAV) community develop a code base that can be
re-used across simulations? Can existing commercial and open-source visualization software
tools be directly extended to support in-situ visualization at extreme scale?

• The research, design, development and implementation of big data analytics and mining
algorithms has lagged far behind those for simulation techniques. Thus, there is a need for
sophisticated, generalizable and scalable analytics techniques that can be deployed in-situ as
well as for post processing.
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Figure 4.1: In-situ Visualization Scaling Graph (Left) and In-situ Visualization Example (Right).
Topological representations can provide insight into complex phenomenon, such as identifying bub-
bles in a Rayleigh Taylor instability. This figure shows an example of computing the Morse Smale
complex, traditionally restricted to small data because the serial nature of existing algorithms,
using a newly introduced parallel technique, achieving 40% end to end strong scaling efficiency on
32K BG/P nodes.
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Figure 4.2: Federated data access in climate workflow

4.3 Climate exemplar

Climate science is a prominent example of a discipline in which scientific progress is critically depen-
dent on the availability of a reliable infrastructure for managing and accessing of large and hetero-
geneous quantities of data on a global scale. It is inherently a collaborative and multi-disciplinary
effort that requires sophisticated modeling of the physical processes and exchange mechanisms be-
tween multiple Earth realms (atmosphere, land, ocean and sea ice) and comparison and validation
of these simulations with observational data from various sources, possibly collected over long pe-
riods of time. The climate community has worked for the past decade on concerted, worldwide
modeling activities led by the Working Group on Coupled Modeling (WGCM), sponsored by the
World Climate Research Program (WCRP) and leading to successive reports by the International
Panel on Climate Change (IPCC). The fifth assessment (IPCC-AR5) is currently under way and
due out by the end of 2013. These activities involve tens of modeling groups in as many countries,
running the same prescribed set of climate change scenarios on the most advanced supercomputers
and producing several petabytes of output containing hundreds of physical variables spanning tens
and hundreds of years. These data sets are held at distributed locations around the globe but must
be discovered, downloaded, and analyzed as if they were stored in a single archive, with efficient and
reliable access mechanisms that can span political and institutional boundaries (see Figure 4.2).

The same infrastructure must also allow scientists to access and compare observational data
sets from multiple sources, including, for example, Earth Observing System (EOS) satellites and
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Advanced Radiation Measurements (ARM) sites. These observations, often collected and made
available in real-time or near real-time, are typically stored in different formats and must be post-
processed to be converted to a format that allows easy comparison with models. The need for
providing data products on demand, as well as value-added products, adds another dimension to
the needed capabilities. Finally, science results must be applied at multiple scales (global, regional,
and local) and made available to different communities (scientists, policy makers, instructors, farm-
ers, and industry). Because of its high visibility and direct impact on political decisions that govern
human activities, the end-to-end scientific investigation must be completely transparent, collabo-
rative, and reproducible. Scientists must be given the environment and tools for exchanging ideas
and verifying results with colleagues in opposite time zones, investigating metadata, tracking prove-
nance, annotating results, and collaborating in developing analysis applications and algorithms.

4.4 Combustion exemplar

4.4.1 In-situ analytics for exascale combustion use case

The exascale simulation summarized in Section 3.3 is only one component of the overall combustion
workflow; the resulting simulation data must also be analyzed. The types of analysis are dictated
by the characteristics of the combustion and turbulence and ranges from topological feature seg-
mentation and tracking, level set flame distance function and normal analysis, statistical analysis
including moments and spectra, and visualization of scalar, vector and particle fields. The range of
analyses are presented in Table 4.1. These representative analyses are being characterized (loads,
stores, memory movement) and being studied in light of opportunities for new programming lan-
guages that would expose the semantics to enable automatically exploring scheduling placement,
i.e. that would optimize across storage, communication, and computation on different exascale
resources.
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Table 4.1: Categorization of representative combustion analytics where green, yellow and red denote increasing degree of difficulty in
implementation at the exascale, respectively.
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Current combustion practice at the petascale is to write data to persistent disk and then read
data later for analysis. This approach won’t scale to exascale due to the widening gap between
computational power and machine memory compared to the available I/O bandwidth. If current
projections hold true, the classical paradigm of simulation followed by post-processing will become
infeasible. At exascale, simulation codes will not be able to write a sufficient number of time
steps to permanent storage to ensure a reliable analysis. Therefore, we anticipate that much of
the current analysis and visualization will need to be integrated with the simulation codes into
a comprehensive combustion workflow. However, data analysis algorithms typically have charac-
teristics that are very different from typical simulation codes. For example, they may be branch
heavy with comparatively few floating point operations; many algorithms are I/O bound and/or
heavily dependent on the data layout of their respective input data; and the performance of most
algorithms is strongly data dependent (e.g. depends on the distribution of features in the data). By
contrast, combustion solvers are typically memory bandwidth bound. As a result, many analytics
algorithms are difficult to scale even to current architectures let alone projected exascale systems.
Fortunately, analysis tasks in general tend to be computationally less expensive than the simulation
itself, making integrated analysis still a viable option.

To understand the data analysis needs and potential trade-offs at exascale there are three
areas that need attention:1) a wide range of potential execution models and the necessary APIs to
explore them need to be defined; 2) proxy or mini-applications for a variety of representative data
analysis algorithms are needed to characterize fundamental, machine-independent behaviors such
as memory accesses and/or data movements; and 3) these algorithms need to be integrated into
a comprehensive combustion workflow to study the interactions between the different components
and evaluate design-space trade-offs inherent in the system.

4.4.2 Execution models

As mentioned above the two primary characteristics of many data analysis algorithms are that
they are computationally inexpensive (compared to the simulation) but data intensive. The former
provides significant freedom in how algorithms can be implemented while the latter puts strong
restrictions on where they can be executed given the expense of moving data.

Traditionally, a simulation will use all available cores on its given partition of a machine and
the most straight forward integration of an analysis algorithm is to do the same: as the simulation
advances it directly calls an analysis routine, waits for it to finish, and proceeds. However, assuming
that any given analytics algorithm may not need or cannot reasonably utilize all cores on an exascale
machine, this introduces a number of viable alternative execution models (as indicated earlier in
Figure 3.3). For example, the analysis could use only some of the cores on a given node, or only
some nodes of the partition, or even nodes on a different machine. Each approach has advantages
and disadvantages trading off between, for example, code scalability, wall-clock time, impact on the
simulation, and required data movement. A closely connected choice is how the analysis accesses
the simulation data. For example, it may directly access the simulation data structures or agree
on an in-memory hand-off requiring a copy.

Alternatively, there may exist sufficient amounts of non-volatile memory on-node to store copies
of the simulation state or send parts of the state to adjacent nodes. Finally, one can process the data
either synchronously or asynchronously. Combining these choices results in a large design space
that can be adapted to different hardware configurations but can also be used to inform hardware.
Using representative data analysis algorithms described in Table 4.1, as well as the exascale use
cases, it is possible to explore this space of potential execution models.

For example, a large amount of non-volatile memory coupled with an asynchronous computation
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Figure 4.3: The timing breakdown (in seconds) for in-situ, in-transit, and data movement for the
simulation and the various analytics algorithms using 4896 cores on Jaguar, the Cray XK6 at Oak
Ridge National Laboratory’s National Center for Computational Sciences. 4480 cores were used for
the simulation and in-situ processing, 256 cores were used for in-transit processing and 160 cores
were used for task scheduling and data movement. The simulation grid size was 1600x1372x430
and all measurements are per simulation time step.

on a single core per-node is an attractive model, especially for slowly changing quantities of interest.
However, a background analysis process may interfere with the carefully tuned caching behavior
of the simulation. Similarly, a data-parallel filtering or compression may allow sending all data
required for analysis to dedicated analysis nodes or even an external analysis cluster, yet may cause
unacceptable levels of congestion on the network.

Some of these design trade-offs are being explored with analytics proxy applications: RTC,
SSA, and PVR operating in-situ with the petascale combustion solver, S3D. For example, it was
shown that by dividing each task into in-situ and in-transit components, the frequency of analysis
was increased without negatively impacting the performance of the solver on current machines [3].
In this approach, secondary compute resources were used to hide the less scalable global reduction
portions of analysis tasks. Figure 4.3 shows the experimental setup as well as timings for the various
stages for each analysis algorithm.

4.4.3 Proxy Applications for Analytics/Visualization

To fully quantify expected workloads and enable exploration of design space options for a combus-
tion workflow, the behavior of representative analytics tasks needs to be characterized. There are
many analytics tasks commonly performed by combustion scientists including the following, all of
which exhibit a range of characteristic algorithmic behaviors:

1. volume rendering of scalar, vector, and particle data (see Figure 4.4);

2. Lagrangian particle query and analysis;
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Figure 4.4: The need for high resolution when exploring small-scale features. The figure on the
right shows a volume rendering of one time step of a large-scale combustion simulation while the
figure on the left has been down-sampled. New peaks become visible only in the full, high resolution
visualization and some features that are implied in the down-sampled visualization are shown to be
artifacts of the down-sampling and do not appear in the high resolution visualization. Simulation by
Jackie Chen, Sandia National Laboratories; Visualization by the Scientific Computing and Imaging
(SCI) Institute.

3. level set distance function and normal analysis;

4. topology driven feature segmentation and characterization based on merge trees, Morse Smale
complex (see Figure 4.5);

5. feature tracking over time (see Figure 4.6);

6. shape analysis;

7. dimensionality reduction;

8. conditional moments of various orders;

9. spectra and filtering algorithms with spatial convolutions.

Some of the spectra and filtering operations involve spatial convolutions that imply global com-
munications patterns that are expected to be very expensive and will be highly influenced by the
network infrastructure. Feature extraction based on the full Morse-Smale complex computation,
involves unevenly distributed, data dependent computations that are infeasible in postprocessing
and highly unbalanced when executed in-situ. As discussed below, even reduced topology com-
putations will involve hierarchical communication patterns that can take advantage of a network
layer with low latency for small messages (e.g. achievable with on chip network interface). Feature
tracking that resolves properly the fine time scales of intermittent phenomena seems feasible only
in situ, but requires storing additional information that may go against the tight limits imposed by
the exascale architectures and would advocate for extra memory per node (even if slower). Shape
analysis involves eigenvalue decomposition for regions of interests whose distribution is data depen-
dent and can only be determined after completing a full topological segmentation, which indicates
that it may scale to exascale if properly coupled with the topology code. Chemical explosive mode
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Figure 4.5: A visualization of a topological analysis and volume visualization of one time step in a
large-scale combustion simulation. The topological analysis identifies important physical features
(ignition and extinction events) within the simulation while the volume rendering allows viewing the
features within the spatial context of the combustion simulation. Simulation by Jackie Chen, Sandia
National Laboratories; Visualization by the Scientific Computing and Imaging (SCI) Institute.
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Figure 4.6: The visualization on the left shows features for a single time step within a large-scale
combustion simulation while the figure on the right shows a graph that tracks features over time.
Combustion scientists can follow specific events over time. Simulation by Jackie Chen, Sandia
National Laboratories; Visualization by the Scientific Computing and Imaging (SCI) Institute.
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Figure 4.7: An example visual data analysis application framework called ViSUS. ViSUS is a
scalable data analysis and visualization framework for processing large-scale scientific data with
high performance selective queries. It combines an efficient data model with progressive streaming
techniques to allow interactive processing rates on a variety of computing devices ranging from
handheld devices like an iPhone, to simple workstations, to the I/O of parallel supercomputers.
Arrows denote external and internal dependencies of the main software components. Additionally
we show the relationship with several applications that have been successfully developed using this
framework [17].
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analysis (CEMA), based on an eigenvalue analysis of reaction rate Jacobians, on the other hand,
can be performed as a point-wise computation and is expected to scale easily, although it may still
involve challenges.

4.5 Biology exemplar

Data visualization, analysis, and management play a key role in addressing the grand challenges in
the Biology domain summarized in Section 3.4. In all of the key biological research areas addressed,
there is an important intersection between simulation data and experimental data. Thus analysis
and visualization tasks oriented around large data integration and verification are prominent in the
requirements. In fact, one of the key concerns highlighted in the report has to do with innovations
in high-throughput sequencing equipment; it is not concerned solely with large simulation data
volumes. From the perspective of the report, the extreme-scale computing challenges in biology will
depend heavily on the ability to adequately support data management, analysis, and visualization.

Figure 4.8 contains some examples of biological visualization. The rise of the fields of compu-
tational biology and bioinformatics has brought significant advances in algorithms for processing
biological datasets. However, deciphering raw data and computational results through visual rep-
resentations is too often done as the final step in a complex research process, with tools that are
rarely specific to the task. Hence, there is a significant opportunity to enhance biological data
analysis through a thoughtful and principled investigation of visualization. These four tools are
examples of custom, interactive visualization tools designed in collaborations with biologists – they
have all been deployed in biological research labs and led to a variety of scientific insights.

4.6 Data streaming and near-sensor computing

4.6.1 ADARA data streaming project

As discussed in Section 3.6, Oak Ridge National Laboratory’s Spallation Neutron Source (SNS)
is the world’s most intense pulsed, accelerator-based neutron source for scientific research and
development1. Traditionally, reduction and visualization of some of the large SNS data sets take
hours after the data has been collected. This impedes the scientist’s workflow, where the analysis of
the data often strongly influences the next step in the experimental investigation. The Accelerating
Data Acquisition Reduction and Analysis (ADARA) project (Figure 4.9) has developed a streaming
data system for real-time feedback from experiments and a software-as-a-service HPC infrastructure
to enable efficient reduction and analysis of the data generated from these experiments. The
streaming data infrastructure provides in-situ reduction of the data as it is generated from the
instrument, allowing users to visualize their data in energy/momentum space as the experiment is
underway.

Many of the technological advancements required in exascale computing are needed for the pro-
ductive use of the data generated by the SNS. These advances span system architecture to advances
in simulation and data analysis/visualization software. Explanatory and validated materials science
simulation software optimized for time-to-solution is required in order to provide timely feedback
during experiment. These improvements are non-trivial, requiring strong-scaling codes and a corre-
sponding scalable system architecture capable of providing time-to-solution improvements of up to
1000×. Advances in in-situ data processing, particularly in streaming data processing will require
lightweight, composable data analysis software optimized for use on next-generation systems.

1The material in this section was obtained courtesy of Galen Shipman at ORNL.
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Figure 4.8: The rise of the fields of computational biology and bioinformatics has brought significant
advances in algorithms for processing biological datasets. However, deciphering raw data and
computational results through visual representations is too often done as the final step in a complex
research process, with tools that are rarely specific to the task. Hence, there is a significant
opportunity to enhance biological data analysis through a thoughtful and principled investigation
of visualization.These four tools are examples of custom, interactive visualization tools designed in
collaborations with biologists – they have all been deployed in biological research labs and led to a
variety of scientific insights [14].
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Figure 4.9: Accelerating Data Acquisition Reduction and Analysis (ADARA) system architecture

4.6.2 Near-sensor computing and in-situ analysis

The previous sections have established the requirement for performing data reduction and analysis
close to the data source in many science domains. This form of near-sensor computing has been
under way in High Energy Physics for many years and will become increasingly important for DOE
light sources such as ALS and LCLS. The key features of near-sensor computing are as follows2:

1. Triggers to instantly detect when something interesting is occurring, so that information
recording can begin. This requires very fast sensing and detection mechanisms – often utilizing
FPGAs or custom logic embedded into the sensor due to the extremely low latencies required
for the trigger.

2. Filters are applied upon the data to reduce its size using analysis, selection, compression, or
other forms of data summarization. This is performed as close to the instrument as possible so
as to minimize the cost of downstream data transport and data storage. These mechanisms are
preferably lossless in the sense that they are targeted at reducing or removing information
that would not need to be revisited later. This often involves streaming processing using
FPGAs, GPUs, and/or clusters, all of which will take the form of extreme-scale systems in
the future. Examples can be found in radio telescopes, X-ray sources, adaptive optics for
telescopes and other high-throughput sensor systems.

3. After the data has been reduced by the triggers and filters, it is curated and archived for
re-processing and re-analysis by end users. This minimum subset of data must be preserved

2The material in this section was obtained courtesy of John Shalf at LBNL.
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because the cost of repeating the experiment far exceeds the cost of maintaining the data in
archive. Curation and data provenance controls are essential for this archived data.

There is an interesting correspondence between near-sensor computing and what is needed for
simulation data. The data production rates of exascale simulations will be severely limited by I/O
rates. Our current paradigm for data storage is to store all simulation data, and decide later what is
needed. However, the increased cost of purchasing sufficient back-end disk resources will make this
approach untenable in the future. As discussed earlier in this chapter, the solution to this challenge
lies with in-situ analysis, an approach in which data summarization and analysis is placed as close
as possible to the data production source. Thus, similar approaches and patterns can be used for
both near-sensor computing and in-situ analysis. For example, certain events of interest in the
simulation can serve as triggers, and filters can be applied to simulation data to summarize regions
of interest. Finally, in an increasing number of domains (e.g., climate simulation), it is impractical
to re-execute millions of CPU-hours of calculations invested in a specific simulation. So, the data
produced by the simulation must be curated and stored (as is done for experimental data) so that it
can be re-analyzed multiple times by the scientific community that generated it. This intersection
in the needs of reducing and analyzing experimental vs. simulation data is another example of the
synergies between data-driven science and exascale computing.
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Chapter 5

Synergies with Exascale Computing

5.1 Challenges and opportunities of exascale computing

For the past several years, the high performance computing research community has been focused on
the challenges associated with creating exascale computers – those with 1018 operations per second,
about 100 times faster than today’s fastest machines. Machines with this much computational
power would be of enormous value to a wide variety of scientific, commercial and national security
applications. But the path to exascale is challenging, and requires significant advances in a variety of
technologies. It is uncertain whether exascale is achievable without disruptive changes in the way we
build and use computers. Many of these challenges are detailed in the DARPA Exascale report [8].
Progress towards exascale will play out in the context of the broader computing ecosystem. The
high performance computing business is too small to drive the agenda of large processor, memory,
or computer systems vendors. Instead, as has been true for two decades, the HPC community
will need to leverage technologies developed for larger market segments. A key challenge for the
HPC community will be to optimize the use of comparatively small investments to tweak these
technologies to meet HPC needs.

Currently a major driver in the larger computing world is the explosive growth of data-centric
applications. These include a vast array of business analytics and web services, as well as the kinds of
scientific applications detailed elsewhere in this report. Popular computational approaches include
large shared-memory databases, computing clouds, and map-reduce approaches to analytics. The
giants of the internet economy have set up enormous server farms with aggregate computational
capability that used to be found only at leading HPC sites. IBM and Cray, traditional leaders in
high end computing for scientific applications, have both asserted that the data-computing market
is their principal focus.

One implication of the conclusions of [8] is that path to exascale will likely require technology
disruptions. With most of the computing community focusing on data-centric opportunities, the
technologies advances available to HPC will probably emerge from data-computing efforts. To the
extent possible, it will be advantageous for the exascale community to avail itself of the momentum
behind data-computing. When appropriate, exascale architects should use technologies supported
by the data-computing community as these will likely be advancing rapidly. In addition, where the
exascale community needs new technologies, these will be easiest to realize if they also benefit data
applications and so have a broader commercial viability.

In this section, we review some of the exascale challenges that are aligned with the needs of
data-centric computing. The examples below are meant to be illustrative and are by no means
comprehensive.
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5.2 The power challenge

Probably the greatest impediment to building and operating an exascale computer is the power it
will consume. The Exascale report [8] concludes that an exascale machine built out of extrapolations
of current technologies would consume several hundred megawatts. The report offers no path
towards resolution of this challenge and acknowledges that “The energy and power challenge is
the most pervasive of the four [exascale challenges], and has its roots in the inability of the group
to project any combination of currently mature technologies that will deliver sufficiently powerful
systems in any class at the desired power levels.” Intriguingly, the report also concludes that
the power consumed by moving data will be significantly larger than the power for performing
computations. “A key observation of the study is that it may be easier to solve the power problem
associated with base computation than it will be to reduce the problem of transporting data from
one site to another – on the same chip, between closely coupled chips in a common package, or
between different racks on opposite sides of a large machine room.”

Power is also an issue of growing concern to the data-computing community. Large data centers
are generally built in locations where inexpensive electricity and cooling are available. Furthermore,
data-centric computing (at any scale) tends to be less computationally intensive than scientific
computing, and so the power required for data movement will dominate overall power consumption.
So, both exascale computing and data-centric computing have strong interest in technologies that
can reduce power consumption – particularly for data movement. Several emerging technologies
have the potential to help with this problem and so provide opportunities for cross-community
leverage. One illustrative example is stacked memory with through-silicon vias which allow more
data to be kept closer to processors thereby reducing aggregate data movement. But the potential
power advantages of stacked memory go well beyond this. The Hybrid Memory Cube (HMC)
Consortium is developing technology in which the stacked memory is combined with processing
capability. By doing some computation very close to the memory itself, data transfers to the CPU
can be avoided altogether. This can significantly reduce power consumption while simultaneously
boosting performance. The HMC Consortium reports that, relative to DDR3 memory technology,
the HMC can improve performance by a factor of 15 while reducing power by 70%. Taking optimal
advantage of this kind of capability will require changes to programming models and algorithms. In
particular, the ability to perform computation in memory will require new ways of thinking about
algorithms and new programming constructs for expressing them. These are areas in which the
data-computing community and the exascale community share common interests. DOE’s “Data
Movement Dominates project is one encouraging example of the types of investments that could
be made.

5.3 Interconnect and bandwidth

Data movement between chips is essential to both exascale computing and large-scale data-centric
computing. Both communities have an interest in technologies that improve performance and
the power efficiency of data transfers. Off-chip communication is a primary scalability limiter
for scientific computing. Similarly, given the large amount of communication involved in typical
map-reduce computations, it is likely that off-chip communication is the rate limiter for many
large-scale data analysis jobs as well. In addition to limiting performance, off-chip communication
also consumes considerable power. With current technologies, the power required to move a bit
off-chip is nearly two orders of magnitude larger than that required to move a bit on-chip.

Silicon photonics is a maturing technology that has the potential to improve performance and
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reduce power consumption for both the scientific and data computing communities. Photons are
currently much more power efficient than electrons for moderate and long distance communication
and are widely used when communicating over distances larger than several meters, e.g. rack-to-
rack communications. The advantages of optics include higher wiring density and a power cost that
does not grow with distance. But the power required to convert between electrons and photons
has limited the advantages of optical communication for shorter links (e.g. within a rack, board
or chip). Approaches to address these limitations are active areas of research in both components
and systems, and promising prototypes have been demonstrated in laboratory settings. Progress
in accelerating the maturation of optical networking would be beneficial to multiple computing
communities.

5.4 Storage and data management hierarchies

Typical scientific computing application involve a small amount of data input, and a potentially
large amount of data output. Data-centric computing usually displays the opposite behavior. Large
amounts of data (e.g. from an experimental facility) are read into a computer and then reduced
or analyzed to generate a small set of output. Both the scientific and data-centric computing
communities will benefit from advances in storage and data management hierarchies, although
they are likely to exploit them in different ways. The data computing community needs to provide
access to data coming into a processing unit, while the scientific computing community needs to
manage data exiting (e.g. via burst buffers).

An important emerging technology in storage is solid state memory. NAND FLASH is a non-
volatile, solid-state memory that is being used to provide a higher performance alternative to disk
in some settings. It supports random access and low latency memory operations. However, it
remains more expensive than disk on a per-bit basis, and so seems most useful as an intermediate
level in the storage hierarchy.

An important shortcoming of current NAND FLASH technology is its limited endurance. The
technology degrades with use and can only sustain 10K to 100K read-write cycles. A promising
alternative is phase-change memory which is expected to provide much greater endurance. The
emergence of solid-state memory provides new opportunities for constructing storage hierarchies,
to the benefit of both the scientific and the data-centric computing communities.

5.5 Scalable Analytics Algorithms and Software

Scalable analytics algorithms, software and data mining not only are essential part of knowledge
discovery in big data area but will play a crucial role in analyzing data generated from exascale
simulation. The development of power-efficient techniques, approximations and scalable techniques
would be important. Furthermore, these techniques will be important to enhance the uncertainty
quantifications, validation and verification processes. One of the most effective ways to reduce
the costs is also to reduce the number of simulations, which can also be potentially achieved by
developing data-driven approaches that can enable optimized selection of exploring the parameter
space. Combining and integrating analysis of observation data with the simulation data effectively
will also require scalable data analytics software.
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Chapter 6

Cross-Cutting Issues

Rapid advances in experimental, sensor, computational technologies, and techniques are driving ex-
ponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This new
wealth of scientifically meaningful data has tremendous potential for scientific discovery. However,
to achieve scientific breakthroughs, these data must be exploitable — they must be analyzed effec-
tively and efficiently, and the results shared and communicated easily with the wider community.
The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve —
particularly given that an increasing number of disciplines are working across techniques, integrat-
ing simulation and experimental or observational results. Consequently we need new approaches
to software data management, analysis, and visualization that provide research teams with easy-
to-use, end-to-end solutions. These solutions must facilitate (and where feasible, automate) every
stage in the data lifecycle, from collection to management, annotation, sharing, discovery, analysis,
and visualization. The past chapters summarized the data challenges in science domains and teh
synergies with exascale computing. In this chapter, we summarize some important cross-cutting
issues related to the scope of this study.

6.1 Data sharing and lifecycle management

6.1.1 Data Retention: what to store and what to discard

Already, in data-intensive science, the financial and technical challenges of data storage and access
can match, or even dwarf the challenges of computation. The LHC with its petabyte per second
data rate is a compelling example. All but 0.001% of the data must be examined and discarded in
real time, and the discarding of data, especially derived and simulated data, continues throughout
the years of analysis. The data-retention challenge divides into two closely related challenges,
deciding what to keep (data retention) and keeping it in a viable form (data preservation). We first
discuss data retention considerations for different classes of data.

Unique data: Examples include observations of cosmic, or earth-systems happenings, such as
supernovae or climate sensor data. The universe, or the earth’s climate, are not readily reproducible
systems and these data, once obtained are normally retained indefinitely.

Hard to reproduce data: Data from frontier particle physics experiments are (statistically)
reproducible in principle, but, somewhat like the moon explorations of the 1970s, most such ex-
periments are not expected to be reproduced for the foreseeable future. Occasionally, old particle
physics data are reduced to negligible value by repeating the experiment in “factory” mode with
many orders of magnitude higher statistics and better detectors. In contrast, the hard-to-reproduce
data must be retained for the foreseeable future.
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Reproducible data: Reproducible experimental data includes much of the data captured at
light and neutron sources. While reproducing these data may not be trivial, at any instant in time
it is possible to assess the cost of reproducing the data and compare it with the cost of retention for
future use. For many decades, and probably for several more, the decreasing unit cost of storage
has meant that any experimental and observational data retained for a few years might just as well
be retained indefinitely, provided the other challenges of data preservation can be addressed.

Simulated and derived data: Data that are a result of simulation, or are derived from
retained experimental or observational data, can all be recreated in principle. The retain/discard
decision is (or should be) an economic one, sometimes distorted by knowing that although the
probability of needing to recreate discarded data would be small, obtaining the funds to do so
would be a significant impediment. In practice these decisions are hard to address algorithmically
and it is often convenient to make a large, but easily swamped, pool of storage available to a group
of scientists and let them manage the retain/delete decisions as best they can.

The imperative to retain “just in case” gets escalated to panic level if inadequate recording of
the provenance of derived and simulated data makes their reproduction close to impossible. The
ability to make good human or automated decisions on retention requires the rigorous recording of
provenance, leading to the technical ability to reproduce anything if resources are made available.
This is a mature concept that has, nevertheless, been only patchily implemented thus far.

6.1.2 Data Preservation

Experimental or observational data that are impossible or impossibly costly to reproduce should
be retained indefinitely. However, keeping the bits intact loses all value if nobody knows what they
mean. Gallileo’s notebooks are readily intelligible 400 years after he made his experimental mea-
surements. The bits emerging from modern high-rate data acquisition systems are unintelligible in
themselves and may require the combined knowledge of tens of scientists for correct interpretation.
This is the challenge of data preservation, it requires the retention of the data, the metadata/prove-
nance, and the recipes, often encoded into hundreds of thousands of lines of partially commented
software, used to extract information and knowledge from the bits. Often non-algorithmic human
processes, such as internal peer review by colleagues, are a vital part of the production of knowledge.

Repeated experience has shown that, where this preservation can be achieved, the old bits
can be mined for new, even unexpected information and knowledge, but the experience has also
highlighted the many daunting difficulties. Those with experience conclude that the preservation
of original experimental and observational data requires planning from the outset and will consume
resources that are significant on the scale of the gathering and analysis of the original data.

6.2 Software Challenges

Both exascale computing and data-driven science will require new approaches to software. ASCR’s
recent X-stack and OS/R research programs are focused on addressing the software challenges
of exascale computing, including concurrency, energy efficiency, and resilience. Many of these
challenges were described in [19], and we include a brief summary here.

There are several reasons for paying attention to software in the development of extreme-scale
systems. First, the exascale systems of 2022 will be dramatically different from today’s systems and
will require correspondingly fundamental changes in the execution model and structure of system
software. Second, while there has been significant innovation at the hardware and system level
for today’s systems, previous approaches (prior to the X-stack and OS/R programs) have not paid
much attention to the co-design of multiple levels in the system software stack (operating system,
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runtime, compiler, libraries, application frameworks) that is needed for exascale systems. Third,
while certain execution models such as Map-Reduce in cloud computing and CUDA/OpenCL in
GPGPU data parallelism have demonstrated large degrees of concurrency, they have not demon-
strated the ability to deliver a thousand-fold increase in parallelism to a single job with the energy
efficiency and strong scaling fraction necessary for extreme-scale systems. Finally, applications
can only be enabled for exploiting extreme-scale hardware by exploring a range of strong scaling
and innovative weak scaling techniques, with attention to efficient parallelism and data movement.
Operating system-related challenges include scalability, spatial partitioning, direct hardware access
for inter-processor communication, and asynchronous rather than interrupt-driven events. There
are additional challenges in runtime systems for scheduling, memory management, communication,
performance monitoring, power management, and resiliency, all of which will be built atop future
extreme-scale operating systems.

The software challenges for in-situ analysis arise from two kinds of costs: (1) the costs to couple
simulation and analysis routines and (2) the costs to make analysis routines work at extremely
high levels of concurrency. These areas are discussed in more depth in the following paragraphs. It
takes considerable effort to couple the parallel simulation code with the analysis code. There are
two primary approaches for obtaining the analysis code: writing custom code or using a general
purpose package. Writing custom code, of course, entails software development, often complex
code that must work at high levels of concurrency. Often, using a general purpose package is
also difficult. Staging techniques, in which analysis resources are placed on a separate part of
the supercomputer, requires routines for communicating data from the simulation to the analysis
software. Co-processing techniques, which place analysis routines directly into the memory space of
the simulation code, requires data adapters to convert between the simulation and analysis codes’
data models (preferably in a zero-copy manner) as well as a flexible model for coupling the two
programs at runtime. Further, making analysis routines work at very high levels of concurrency
is an extremely difficult task. In-situ processing algorithms thus must be at least as scalable as
the simulation code on petascale and exascale machines. Although some initial work has been
done that studies concurrency levels in the tens of thousands of MPI tasks, much work remains.
This work is especially critical, because poor analysis performance will directly impact simulation
runtime. As an example of the mismatched nature of analysis tasks and simulation tasks, consider
the following: the domain decomposition optimized for the simulation is sometimes unsuitable for
parallel data analysis and visualization, resulting in the need to replicate data to speed up the
visualization calculations. Can this practice continue in the memory-constrained world of in-situ
processing?

6.3 Provenance, Metadata and Security

Open-source scientific provenance and workflow management systems that are currently being de-
ployed by science communities support data exploration and visualization. Workflows are tradition-
ally used to automate repetitive tasks. As researchers generate and evaluate hypotheses about data
under study, they adjust a workflow in an interactive process, in effect creating a series of different
workflows. For data description and discovery, metadata is important. Metadata are based on
two complementary themes: descriptive and structural. Metadata catalogs allow users to identify
and locate data sets of interest from multiple data centers and archives. Today, most scientific
applications maintain a centralized metadata catalog. For security reasons, descriptive metadata
may be restricted to certain groups of users. The thought here is to prevent users from discovering
data that is not accessible for their use. However, discovery metadata across centers during the
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search process is based on structural metadata in the form of metadata schemas. For general use,
metadata schemas must be extensible to accommodate new types of data and resources at appro-
priate levels of center operations. In addition to being flexible across multiple science domains,
metadata and catalog services are also used to keep track of data replications and the physical
locations of actual data files and their accessibility. Secure data access to resources requires the
ability to specify and enforce group policy controls. This involves the implementation of Autho-
rization services to grant permission to would be users and Authentication Services to verify that a
user is who they claim to be. This process enables users access to remote data and resources under
a multitude of scenarios and conditions. For example, data transfer protocols and servers such
as GridFTP, HTTP, WGET, etc.), as well as client analysis and machine resources. Underlying
authentication services could rely on the popular single sign-on access to system resources. Security
machinery obtaining public key certificate credentials require overhead normally associated with
certificate generation. Further, security policy issues have become more daunting and data and
resource providers are requiring security measure to protect and limit data and resource access. In
light of the above, and as science demands intensify, innovative approaches are needed to improve
efficiency and transparency in research. Four very important requirements have been identified:

• Integrated remote data access and analysis methods to enable researchers (and non-researchers)
to better collaborate and learn from each other.

• A provenance and workflow environment to easily reproduce analyses and products for anyone
requesting results from articles, books, workshops, or reports.

• Descriptive and structural metadata services to capture the data content and structural spec-
ification of the data.

• Foster open yet secure communication channels and collaborative work environments.

As a result of these requirements, support for community research is expanding and, in par-
ticular, will include the delivery of ultra-large data and diagnostic products to a broader research
and non-research community. In addition to making document workloads and provenance more
transparent, common workflows are being used to optimize access to the data and the analyses
involved, reducing the data transmission load on the data infrastructure. The broad community of
researchers and non-researchers can thus efficiently access the most popular data products and trace
how they were produced. Future requirements call for greatly enhanced remote data access and
analysis capabilities, which can be provided via browser-based or client-based access. As we have
seen from a range of science domains, the real power comes from access to catalogs and higher-level
services that are harnessed remotely by a variety of popular client-side applications — significantly
streamlining the user experience and reducing the volume of data transmitted over the network.
Keeping track of the large volumes of data and analysis methods for process is non-trivial because
of:

• Existing disparate metadata, file formats, and conventions.

• Numerous existing client analysis tools and their underpinning languages.

• Aggregated data sets located on different archival storage systems.

• Managing hundreds (if not thousands) of standard or custom analysis workflows with limited
federated resources.

• Data and resource authentication and authorization.
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• System discovery and management of available (or updated) data and resources.

In this new environment, running analysis at remote data centers will be the norm, and prove-
nance recordings will be of utmost importance. That is, users will be interested in maintaining a
detailed record of where their data was generated and how it has been processed throughout the
workflow process. Metadata catalogs and services will accommodate heterogeneous centralized and
decentralized databases. As the number of databases increases, scalability and overhead for man-
aging communication will both be negatively impacted. To combat this situation, the peer-to-peer
technique has been proven to optimize distributed services with no single point of failure.

Provenance metadata will allow scientists to understand the origin of their results, repeat their
experiments, and validate the processes that were used to create or derive data products. The
process of conducting data-intensive science research will be primarily (or be more commonly)
performed at remote data centers. The goal is to have large-scale analysis processes co-located
where ultra-scale data reside. At these data centers, provenance will be recorded at every step in
the process and archived as a workflow configuration co-located with the data product. Later, other
scientists can run the same analysis from the workflow descriptor to confirm the results, and they can
expand on early findings by running different variations of a processing algorithm or using different
input data sources. Keeping track of high-performance computing and clusters, data movement,
and data ontology represents knowledge as a set of concepts within the provenance domain and the
data relationships among those concepts. For successful and comprehensive provenance metadata
capture, it will be crucial to capture all aspects of the end-to-end data intensive enterprise —
from hardware to software — for an overall increase in scientific productivity and new knowledge
discovery.

6.4 Expertise and skills gap

A strong research program cannot be established without a complementary education component,
which is as important as adequate infrastructure support. A continuing supply of high quality
computational scientists available for work at DOE laboratories is critical. For example, the DOE
Computational Science Graduate Fellowship (CSGF) program has successfully provided support
and guidance to some of the nation’s best scientific graduate students, and many of these students
are now employed in DOE laboratories, private industry, and educational institutions. However,
in order to meet the increasing need for computer and computational scientists trained to tackle
exascale and data intensive computing challenges, there is a significant need for a similar pro-
gram supporting training in exascale and data intensive computing and related areas as outlined
previously in this report. The DOE High-Performance Computer Science Fellowship formed by
Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National
Laboratories to foster long-range computer science research efforts in support of the challenges of
high-performance computing was a step in right direction. Unfortunately, these fellowships have
been discontinued. A DOE Graduate Fellowship in High-Performance Computer Science is needed
that trains people in exascale and data intensive computing as well as large-scale data analysis,
visualization, scientific data management and high- performance software and hardware [13]. It
should be emphasized that the demand for the DOE CSGF is extremely high. In recent years, each
year there have been upwards of 600 applicants for 20 or fewer slots. By a conservative estimate,
the program could be significantly increased in size with no diminution of the extraordinary quality
of successful applicants.

In addition to the DOE CSGF Program, another excellent program that could help meet the
increasing demand for computer and computational scientists trained in exascale and data intensive
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computing is the DOE Early Career Research Program. In the past three years, the program
received more than 3700 proposals from laboratory and university scientists. Of the 200 awards
made, only 18 were awarded to ASCR investigators [15]. Again, this program could be significantly
increased in size with no diminution of the extraordinary quality of successful applicants.

Another nascent example that could be replicated to help train both new scientists, as well as
existing scientists, about exascale computing is the Argonne School on Extreme-Scale Computing.
The first offering of the School on Extreme-Scale Computing will take place this summer in July
2013. The purpose of the Argonne School on Extreme-Scale Computing is to train computational
scientists on the key skills, approaches, and tools that are necessary for implementing and execut-
ing computational science and engineering (CS&E) projects on the current and next generations
of leadership computing facility (LCF) systems. The two-week program will involve daily lectures
and hands-on laboratory sessions, and will culminate in a final exam. Target participants are doc-
toral students, postdocs, and computational scientists with substantial experience in MPI and/or
OpenMP programming, and who have used at least one HPC system for a reasonably complex
application and are preparing to conduct CS&E research on large-scale computers. Principal inves-
tigators of Leadership-Class facility-scale computational science projects and researchers/developers
of programming models, algorithms, and tools for leading-edge systems may also apply.

Expanding or replicating such summer schools on exascale computing and introducing similar
courses on data intensive computing could help train both a new generation of scientists capable
of tackling the challenges of exascale and data intensive computing, but also update and upgrade
the skills of existing scientists and computer and computational scientists in these important areas
as well.
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Chapter 7

Findings

7.1 Opportunities for investments that can benefit both Data-
Intensive Science and Exascale Computing

There are natural synergies among the challenges facing data-intensive science and exascale comput-
ing, and advances in both are necessary for next-generation scientific breakthroughs. Data-intensive
science relies on the collection, analysis and management of massive volumes of data, whether they
are obtained from scientific simulations or experimental facilities or both. In both cases (simulation
or experimental), investments in exascale systems or, more generally, in “extreme-scale” systems
will be necessary to analyze the massive volumes of data that are essential for addressing DOE’s
science missions.

The Exascale Computing Initiative [10] envisions exascale computing to be a sustainable tech-
nology that exploits economies of scale. An industry ecosystem for building exascale computers
will necessarily include the creation of higher-volume extreme-scale system components that are
needed for data analysis solutions at all scales. These components will include innovative memory
hierarchies and data movement optimizations that will be essential for all analysis components in
a data-intensive science workflow in the 2020+ timeframe.

For example, high-throughput reduction and analysis capabilities are essential when processing
large volumes of data generated by science instruments. While the computational capability needed
within a single data analysis tier of an experimental facility may not be at the exascale, extreme
scale processors built for exascale systems will be well matched for use in multiple tiers of data
analysis, since these processors will be focused (for example) on optimizing the energy impact of
data movement. Further, there is a clear synergy between algorithms for near-sensor computing in
experimental facilities and algorithms for in-situ analysis in simulations.

The Exascale Computing Initiative has also identified the need for innovations in applications
and algorithms that address fundamental challenges in extreme-scale systems related to concur-
rency, data movement, energy efficiency and resilience. Innovative solutions to these challenges
will jointly benefit analysis and computational algorithms for both data-intensive science and ex-
ascale computing. Finally, advances in networking facilities (as projected for future generations of
ESNet [9]) will also benefit both data-intensive science and exascale computing.
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7.2 Integration of Data Analytics with Exascale Simulations Rep-
resents a New Class of Workflow

In the past, the computational science workflow was represented by large-scale simulations followed
by off-line data analyses and visualizations. Today’s ability to understand and explore gigabyte and
some petabyte spatial-temporal high-dimensional data in this workflow is the result of decades of
research investment in data analysis and visualization. However, exascale data being produced by
experiments and simulations are rapidly outstripping our current ability to explore and understand
them. Exascale simulations require that some analyses and visualizations be performed while data is
still resident in memory, so-called in-situ analysis and visualization, thus necessitating a new kind of
workflow for scientists. We need new algorithms for scientific data analysis and visualization along
with new data archiving techniques that allow for both in-situ and post processing of petabytes and
exabytes of simulation and experimental data. This new kind of workflow will impact data-intensive
science due to its tighter coupling of data and simulation, while also offering new opportunities for
data analysis to steer computation.

In addition, in-situ analysis will impact the workloads that high-end computers have tradition-
ally been designed for. Even for traditional floating-point-intensive applications, the addition of
analytics will change the workload to include (for example) larger numbers of integer operations
and branch operations than before. Design and development of scalable algorithms and software for
mining big data sets, as well as an ability to perform approximate analysis within certain time con-
straints will be necessary for effective in-situ analysis. In the past, different assumptions were made
for designing high-end computing systems vs. those made for analysis and visualization systems.
Tighter integration of simulation and analytics in the science workflow will impact co-design of these
systems for future workloads, and will require development of new classes of proxy applications to
capture the combined characteristics of simulations and analytics.

7.3 Urgent need to simplify the workflow for Data-Intensive Sci-
ence

Analysis and visualization of increasingly larger-scale data sets will require integration of the best
computational algorithms with the best interactive techniques and interfaces. The workflow for
data-intensive science is complicated by the need to simultaneously manage both large volumes
of data and large amounts of computation to analyze the data, and this complexity continues to
increase rapidly. These complications can greatly reduce the productivity of the domain scientist,
if the workflow is not simplified and made more flexible. For example, the workflow should be able
to transparently support decisions such as when to move data to computation or computation to
data. The recent proposal for a Virtual Data Facility (VDF) will go a long way in simplifying the
workflow for data-intensive science because of the VDF’s integrated focus on data-intensive science
across the DOE ASCR facilities.

7.4 Need for Computer and Computational Scientists trained in
both Exascale and Data-Intensive Computing

Earlier workflow models allowed for a separation of concerns between computation and analytics
that is no longer possible as computation and data analysis become more tightly intertwined. Fur-
ther, the separation of concerns allowed for science to progress with personnel that may be experts
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in computation or in analysis, but not both. This approach is not sustainable in data-intensive
science where the workflow for computation and analysis will have to be co-designed. There is thus
a need for investments to increase the number of computer and computational scientists trained in
both exascale and data-intensive computing to advance the goals of data-intensive science.
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Chapter 8

Recommendations

8.1 Investments that can benefit both Data-Intensive Science and
Exascale Computing

The DOE Office of Science should give high priority to investments that can benefit both data-
intensive science and exascale computing so as to leverage their synergies.

The findings in this study have identified multiple technologies and capabilities that can benefit
both data-intensive science and exascale computing. Investments in such dual-purpose technologies
will provide the necessary leverage to advance science on both data and computational fronts. For
science domains that need exascale simulations, commensurate investments in exascale computing
capabilities and data infrastructure are necessary for advancement. In other domains, extreme-
scale components of exascale systems will be well matched for use in different tiers of data analysis,
since these processors will be focused on optimizing the energy impact of data movement. Further,
research in applications and algorithms to address fundamental challenges in concurrency, data
movement, and resilience will jointly benefit data analysis and computational techniques for both
data-intensive science and exascale computing. Finally, advances in networking, as projected for
future generations of ESNet technology, will also benefit both data-intensive science and exascale
computing.

8.2 Simplifying Science Workflow and improving Productivity of
Scientists involved in Exascale and Data-Intensive Computing

DOE ASCR should give high priority to research and other investments that simplify the science
workflow and improve the productivity of scientists involved in exascale and data-intensive comput-
ing

The findings in this study have identified multiple such opportunities including a) leveraging
commonalities in mathematical, visualization and analytics requirements across multiple science
domains, b) integration of simulation and experimental studies, and c) expanding the scope of
co-design to include scenarios from data-intensive science.

Today’s ability to understand and explore gigabyte and some petabyte spatial-temporal three-
dimensional data and higher dimensional data is the result of decades of research investment by
DOE, NSF, DARPA and other agencies in data analysis and visualization . However, exascale
data being produced by experiments and simulations are rapidly outstripping our ability to explore
and understand them. As such, we need new mathematical algorithms for data analysis and new
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visualization algorithms along with new data archiving techniques that allow for both in-situ and
post processing of petabytes and exabytes of simulation and experimental data. Analysis and
visualization of increasingly larger-scale data sets will require integration of the best computational
algorithms with the best interactive techniques and interfaces. We must pay greater attention to
human computer interface design and human in the loop workflows.

We must pay greater attention to simplifying human-computer-interface design and human-in-
the-loop workflows for data-intensive science. To that end, we encourage the recent proposal for
a Virtual Data Facility (VDF) because it will provide a simpler and more usable portal for data
services than current systems. A significant emphasis must be placed on research and development
of scalable data analytics, mathematical techniques, data mining algorithms and software compo-
nents that can be used as building blocks for sophisticated analysis pipelines and flows. We also
recommend the creation of new classes of proxy applications to capture the combined character-
istics of simulation and analytics, so as to help ensure that computational science and computer
science research in ASCR are better targeted to the needs of data-intensive science.

8.3 Recommendation for Building Expertise in Exascale and Data-
Intensive Computing

DOE ASCR should adjust investments in programs such as fellowships, career awards, and funding
grants, to increase the pool of computer and computational scientists trained in both exascale and
data-intensive computing.

There is a significant gap between the number of current computational and computer scien-
tists trained in both exascale and data-intensive computing and the future needs for this combined
expertise in support of DOE’s science missions. Investments in ASCR such as fellowships, ca-
reer awards, and funding grants should look to increase the pool of computer and computational
scientists trained in both exascale and data-intensive computing.
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Chapter 9

Conclusions

This report reviewed current practice and future plans in multiple science domains in the context
of the Big Data and the Exascale Computing challenges that they will face in the future. The
review drew from public presentations, workshop reports and expert testimony. Data-intensive
research activities are increasing in all domains of science, and exascale computing is a key enabler
of these activities. The report includes key findings and recommendations from the perspective of
identifying investments that are most likely to positively impact both data-intensive science goals
and exascale computing goals.

The context for our report is based on the overall trend that data generation capabilities in
most science domains are growing more rapidly than compute capabilities, thereby causing these
domains to become data-intensive in the exascale timeframe, if not earlier. The challenges posed
by data intensity arise from the increasing velocity, heterogeneity, and volume of data generation,
as well as the increasing complexity of the analyses that need to be performed on massive data
volumes. This trend is also fueled by the emerging fourth paradigm for data-driven science that
goes beyond theory, experiments, and simulations. Data-driven science is data-intensive by its very
nature because it uses information available in massive datasets to drive scientific discovery — the
effectiveness of data-driven science is thus directly proportional to the volume and diversity of data
that it has access to.

There are several consequences of these trends towards data-intensive science. The widening gap
between computational and data movement (I/O) rates will make in-situ analysis and visualization
a necessity for exascale computing, thereby impacting the characteristics of the computational
workloads that will need to be supported by exascale computers. Further, the well-established
requirements for reducing data movement in exascale computers will need to be extrapolated to
enable movement of computation to data across all extreme-scale systems e.g., as in near-sensor
computing. A number of important cross-cutting issues were encountered during the course of this
study including data lifecycle challenges (retention, preservation, sharing, provenance, metadata,
security), software challenges, synergies between data-intensive science and commercial computing,
and a critical need to increase the pool of computer and computational scientists trained in both
exascale and data-intensive computing.

In general, we expect the requirements for Big Data and Exascale Computing (Big Compute)
to be increasingly intertwined. Big Data generated by the data-driven paradigm will need to be
analyzed by Big Compute systems. Likewise, data-intensive simulations on Big Compute systems
will generate volumes of Big Data comparable to data generated by the largest science experiments.
This coupling of Big Data and Big Compute underscores the importance of our three major rec-
ommendations: 1) giving high priority to investments that can benefit both data-intensive science
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and exascale computing, 2) giving high priority to research and other investments that simplify the
science workflow and improve the productivity of scientists involved in exascale and data-intensive
computing, and 3) adjusting investments in fellowships, career awards, and funding grants to in-
crease the pool of computer and computational scientists trained in both exascale and data-intensive
computing.
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