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a b s t r a c t

We present a spectral element algorithm and open-source code for computing the fractional Laplacian
defined by the eigenfunction expansion on finite 2D/3D complex domains with both homogeneous
and nonhomogeneous boundaries. We demonstrate the scalability of the spectral element algorithm
on large clusters by constructing the fractional Laplacian based on computed eigenvalues and eigen-
functions using up to thousands of CPUs. To demonstrate the accuracy of this eigen-based approach
for computing the factional Laplacian, we approximate the solutions of the fractional diffusion
equation using the computed eigenvalues and eigenfunctions on a 2D quadrilateral, and on a 3D
cubic and cylindrical domain, and compare the results with the contrived solutions to demonstrate
fast convergence. Subsequently, we present simulation results for a fractional diffusion equation on a
hand-shaped domain discretized with 3D hexahedra, as well as on a domain constructed from the
Hanford site geometry corresponding to nonzero Dirichlet boundary conditions. Finally, we apply
the algorithm to solve the surface quasi-geostrophic (SQG) equation on a 2D square with periodic
boundaries. Simulation results demonstrate the accuracy, efficiency, and geometric flexibility of our
algorithm and that our algorithm can capture the subtle dynamics of anomalous diffusion modeled by
the fractional Laplacian on complex geometry domains. The included open-source code is the first of
its kind.
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Nature of problem: An open-source parallel code for computing the spectral fractional Laplacian on 3D
complex geometry domains.
Solution method: A distributed, sparse, iterative algorithm is developed to solve an associated integer-
order Laplace eigenvalue problem for use in computing approximate solutions to the fractional
diffusion equation.
Additional comments including restrictions and unusual features: The code is implemented on CPUs with
super-linear parallel efficiency at extreme scale.
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1. Introduction

During the past few decades, the fractional Laplacian has
found extensive applications in modeling long-range interac-
tion occurring in various disciplines of science and engineer-
ing, such as energy dissipation of acoustic propagation [1–3],
turbulence diffusion [4–7], contaminant transport in groundwa-
ter [8], nonlocal heat conduction [9], and electromagnetic fields
on fractals [10].
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Many numerical schemes have been developed to compute
he fractional Laplacian based on different definitions, such as
he pseudo-spectral method using the spectral definition [11],
he singular boundary method using implicit definition [12], the
daptive finite element method, and the walk-on-sphere method
sing Riesz definition [13]. However, most of these schemes
re for structured domains in low dimensions and become very
xpensive to implement for unstructured domains in high dimen-
ions [14]. Efficient and accurate numerical solvers for the higher
imensional fractional Laplacian are still scarce, especially on a
eometrically complex higher dimensional domain, due to the
omplicated integral expression and nonlocal property of most
xisting definitions of the fractional Laplacian [12]. Unlike the
aplacian of integer order, the nonlocal property of the frac-
ional Laplacian leads to the dense discretization matrix, even
ith a local discretization technique such as the finite difference
ethod [15–17], the finite element method [18,19], and the spec-

ral or spectral element method. The nonlocality increases the
omputational cost in forming the discretized matrix of the op-
rator. For example, with the finite element method, the stiffness
atrix assembly requires two elemental loops, but it needs only
ne loop for the integer order case [18]. Fast solvers for frac-
ional Laplacian using numerical techniques with finite difference
ethods, i.e., the alternating-direction implicit (ADI) [20–22] are
ffective for structured domains but difficult to apply to general
rregular domains [23]. Consequently, the fractional Laplacian
olver development in higher dimensions is left far behind of
hat is needed for realistic problems of anomalous transport
cross disciplines, i.e. from geophysical to biomedical problems.
he purpose of this paper is to develop a scalable, accurate, and
fficient 3D parallel solver for computing the spectral fractional
aplacian on geometrically complex domains.
To overcome the numerical challenges of the fractional Lapla-

ian computation, we used the definition of the fractional Lapla-
ian (−△)

α
2 of order α through the eigenfunction expansion on

a finite domain as proposed by [24–26] instead of using the
integral expression. In this way, we avoid the two elemental
loops for the stiffness matrix assembly. In particular, the eigen-
function definition can be easily generalized from one dimension
to higher dimensions. In space, we employ a spectral/hp finite
element method [27] to discretize the fractional Laplacian, which
combines the high accuracy of spectral methods and the geo-
metric flexibility of finite element methods. We also implement
nonhomogeneous boundary conditions [28] into our solver. A
comprehensive comparison of different definitions of the frac-
tional Laplacian in [13] shows that the spectral definition can
handle general boundary conditions.

The rest of the paper is organized as follows. Section 2 dis-
cusses the definition of the fractional Laplacian by the eigenfunc-
tion expansion, the method we use to solve for the associated
eigenvalue problem, the implementation of the algorithm, and
the scalability of our solver. Section 3 demonstrates the accuracy
of our algorithm by solving the fractional diffusion equation and
comparing the computational results with the contrived solutions
on 2D/3D structured and unstructured domains. Furthermore, we
compare the performance of C0 and C1 bases for the associated
eigenvalue problem. Section 4 demonstrates the geometric flexi-
bility of our method by solving the fractional diffusion equation
on a hand-shaped domain discretized with 3D hexahedra and
homogeneous boundary conditions and a 2D domain constructed
from the Hanford site discretized with quadrilaterals and non-
homogeneous boundary conditions. We conclude in Section 5
with a short summary. Appendix A includes a discussion about
the accuracy of the associated eigenvalue problem based on the
spectral element method, and Appendix B includes the simulation
results of the surface quasi-geostrophic equation. Appendix C
includes a brief description of our solver Nektarpp_EigenMM.
2

2. Definition and computation of the fractional Laplacian
through eigenfunction expansion

We use the definition of the fractional Laplacian through its
eigenfunction expansion, or equivalently, the spectral decompo-
sition. The idea was first proposed by Ilić [25], who approximated
the fractional Laplacian by raising the matrix representation of
the Laplacian (-△) to the fractional index α/2, where α ∈ (0, 2].

e start with one dimension and then make generalizations to
igher dimensions; see more details in [29].

.1. The fractional Laplacian with zero Dirichlet boundary conditions

We consider the 1D Laplacian eigenvalue problem,

△ u − λu = 0, x ∈ Ω, (1)

here u|∂Ω= 0, or ∂u
∂n |∂Ω= 0. Ω ∈ R1,2,3 is bounded.

We start from 1D and use the spectral element method to
discretize Eq. (1). Let x denote global coordinates and ξ denote
local coordinates in one standard element Ωst = {−1 ≤ ξ ≤ 1}.
Let N1 be the expansion order in one standard local element;
N the total number of global modes, or the number of degrees
of freedom for the system; and α the order of the fractional
Laplacian. Consider the polynomial space of the interior modes
on Ωst defined as VI = {f (ξ ) ∈ PN1 : f (−1) = f (1) = 0},
where PN1 represents the set of polynomials of degree at most
N1. We start with an arbitrary basis φp(ξ ) = (1 − ξ 2)ξ p−1(p =

1, . . . ,N1 − 1) in VI and form the elemental interior mass and
stiffness matrix, denoted by Me

= [Me
pq](N1−1)×(N1−1) with Me

pq =∫ 1
−1 ψpψqdξ and K e

= [K e
pq](N1−1)×(N1−1) with K e

pq =
∫ 1

−1
dψp
dξ

dψq
dξ dξ ,

espectively. The global mass matrix M and global stiffness matrix
can be assembled from local Me and K e. The unknown u(x) can
e expressed as u(x) =

∑i=N
i=1 ûgφi(x), where φi(x)s are the global

odes. Thus, Eq. (1) can be discretized as Kûg − λMûg = 0, from
hich we can solve for the approximations of the eigenpairs (λi,
i) of the continuous eigenvalue problem Eq. (1). After getting the
igenmodes φi, the weighted Gram–Schmidt method is applied
o make the eigenvectors orthogonal to each other, i.e., φ̃i(ξ ) =

i(ξ ) −
(φi,φi)
(φp,φp)

φp(ξ ), where 1 ≤ p ≤ i and (, ) is the L2 inner
product. The resulting new global modes φ̃i are orthogonalized
to each other such that

∫
Ω
φp(x)φq(x)dx = 1 if (p = q) and 0

if (p ̸= q). The fractional Laplacian operator can be constructed
as (−△)

α
2 u(x) =

∑i=N
i=1 ciλ

α
2
i φi(x) [25,29,30], if we approximate

the standard Laplacian operator by (−△)u(x) =
∑i=N

i=1 λiciφi(x).
n 2D and 3D, we solve the associated eigenvalue problems, get
he corresponding eigenvalues and eigenvectors, and construct
he fractional Laplacian. Note that the mass and stiffness matri-
es computed from the global eigenfunctions are both diagonal,
ith the mass matrix an identity matrix and with the diagonal
lements of the stiffness matrix the eigenvalues.

.2. The fractional Laplacian with nonzero Dirichlet boundary con-
itions

We use the following definition of the fractional Laplacian
ith a nonzero Dirichlet boundary in [28], i.e., (−△D)

α
2 u :=

∞

k=1(λ
α/2
k

∫
Ω
uφk + λ

α/2−1
k

∫
∂Ω

u∂νφk)φk. The fractional diffusion
equation (−△)

α
2 u = f , given u|∂Ω= g , is solved in two parts as

u = w + v with w and v satisfying following equations:

−△)
α
2w = f , x ∈ Ω, w|∂Ω= 0, (2)

(−△)
α
2 v = 0, x ∈ Ω, v|∂Ω= g.
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.3. Implementation of the algorithm

The idea behind our custom algorithm is that each Krylov–
chur solve for the associated discrete Laplace eigenvalue prob-
em Kûg − λMûg = 0 can be done independently. We developed
partitioning scheme so that we can divide the spectrum into
sub-intervals, each containing an equivalent number of eigen-
airs. In order to reduce the overall communication costs, we
hose P to be the number of physical machines. Each physical
achine (with p MPI tasks each) solves for N

P eigenpairs indepen-
ently by repeatedly solving systems of the form Kûg −λMûg = 0

exactly using parallel Cholesky factorization. Our custom scalable
eigenvalue solver built on top of PETSc and SLEPc is designed
specifically to solve for all eigenpairs. PETSc [31] is a scalable
linear algebra library that handles the storage of the discrete
system in memory and that efficiently applies matrix operations
such as matrix–vector multiplications. SLEPc [32] is a library for
solving eigenvalue problems that is built around PETSc. From
SLEPc, we use the Krylov–Schur iterative algorithm for solving
for a given number of eigenpairs in specifically targeted portions
of the spectrum. More detail about this algorithm and more
performance results can be found in [33].

The dominating time complexity for our approach is τ ≈
N
P T (k,N, p)+na(T (k,N, p)+P), where N is the number of degrees
of freedom for the system, k is a measure of sparsity for K
and M , P is the number of evaluators, and p is the number of
processors per evaluator. Then T (k,N, p) is the time it takes to
do a single parallel Cholesky factorization of a matrix K + λM ,
which is O(N). The first term N

P T (k,N, p) is the time it takes for
single evaluator to solve for N

P eigenpairs, and the second term
na(T (k,N, p)+P) is the time it takes to partition the total interval
into P equally loaded subintervals, where the constant na, which
can be specified by users, is the number of iterations it takes to
partition the interval.

For the scalability test, we ran scaling experiments on the
University of Utah Center for High Performance Computing’s
(CHPC) Kingspeak cluster and the Texas Advanced Computing
Center’s (TACC) Frontera cluster; the configurations of the com-
puting nodes of these clusters can be found on the websites [34]
and [35], respectively. Fig. 1 shows the complex geometry we
used for these tests, (a) for the Hanford site and (b) for an
aorta. The Hanford site is a decommissioned nuclear production
complex on the Columbia River in Benton County in the U.S. state
of Washington, which was home to the first full-scale plutonium
production reaction in the world in 1943 [36]. The aorta is the
main artery that carries blood away from the heart to the rest
of the body [37]. Fig. 2 shows the parallel efficiency of the solve
phase with respect to the number of processes. We ran scaling
experiments using different basis function orders to determine if
we had achieved ideal scalability in all cases. For 2D, we used the
Hanford site mesh with linear and quadratic basis functions; for
3D, we used a simple cube with linear and quadratic basis func-
tions and the complex aorta mesh with quadratic basis functions.
In all of the cases for which we ran the experiment, the speedup
was greater than the ideal linear speedup due to memory effi-
ciency of solving smaller independent problems. As the number of
processors increased, the speedup eventually started to dip below
the ideal but this did not occur until the total absolute run-time
was on the order of 10 s.

We also tested our code on the complex 3D mesh of an aorta
(see Fig. 1) for a variety of problem sizes to see the least required
computing resources to compute the full set of eigenpairs in a
reasonable amount of time. Specifically, we fixed the problem size
and then increased the number of machines P until we got a total
run-time less than 10 min. Table 1 shows that we achieved very
good weak scaling results.
3

Table 1
Weak scaling for 3D aorta mesh using order p = 1, 2, 3 basis functions.
Number of DoFs 24k 165k 528k

Number of nodes 1 64 512
Number of evaluators 2 128 512
Threads per evaluator 28 28 56
Total processes 56 3584 28,672

Total elapsed time 4 m 59 s 4 m 23 s 9 m 33 s

(Compute spectral radius) 3 s 6 s 20 s
(Partition interval) 3 s 25 s 1 m 40 s
(Solve) 4 m 44 s 3 m 44 s 7 m 14 s
(Post-processing) 8 s 8 s 18 s

3. Code validation and benchmarks

In this section, we constructed the numerical solution for the
fractional diffusion equation in 2D and 3D with eigenmodes being
computed from the algorithm in Section 2 and compare the nu-
merical results with the solutions based on analytical eigenvalues.
The geometries we tested are a 2D square, a 3D cube, and a 3D
cylinder. We also investigated the performance of using C1 basis
instead of C0 basis used in the spectral element or finite element
method. The goal was to study and demonstrate the accuracy of
the proposed fractional Laplacian computation.

The fractional diffusion equation we solve is

∂tu = −µ(−△)
α
2 u, x ∈ Ω, (3)

u(x, t)|∂Ω= 0 ,
u(x, 0) = u0(x), x ∈ Ω,

here Ω = Rd is a bounded domain with d = 2, 3. Using the
igenmodes φi, we can expand u(x, t) to u(x, t) =

∑
∞

i ci(t)φi,
here ci = (u, φi). Then from Eq. (1), we have

∑
∞

i=0 ∂tci(t)φi =

µ
∑

∞

i=0 ci(t)(λi)
α
2 φi. If we express the initial condition as u0(x)

=
∑N

i=1 ci(0)φi, where ci(0) = (u0, φi), the numerical solution for

Eq. (3) can be given by uN (x, t) =
∑N

i=1 e
−µλ

α
2
i tci(0)φi.

3.1. A 2D square with homogeneous boundary conditions

On a 2D square, the analytical eigenpairs (λi, φi) for Eq. (1) are

i = n2π2
+ m2π2 (4)

i = sin(nπx) sin(mπy),

here n, m = 1, 2, . . .N.
The test we consider is to solve Eq. (3) with the initial condi-

ion u(x, y) = sin(πx) sin(πy) and µ = 1. The analytical solution
or this problem is u =

∑
∞

i,j=1 exp(−µλit) sin(iπx) sin(jπy). The
umerical solution to this problem is obtained on a domain Ω =

(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} discretized with two
quadrilaterals, and the computation time is T = 0.4. Fig. 3(a)
shows the exponential convergence results for fractional orders
α = 1.2, 1.5, 1.8, and 2.0 with a p-type refinement. The solutions
rom our computation converge exponentially in terms of the
lement order. Moreover, the convergence rate decreases as the
rder of fractional order α decreases. However, for all α, machine
recision is achieved at the element order around 20, which
emonstrates the accuracy of our algorithm in a 2D square.

.2. A 3D cube and cylinder with homogeneous boundary conditions

The test we consider is to solve Eq. (3) on a cube Ω = {(x, y) :

1 ≤ x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1} discretized with two
exahedrons and on a cylinder Ω = {(r, z) : 0 ≤ r ≤ 1,−1 ≤
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Fig. 1. Complex geometry for scalability tests. (a) 2D Hanford site; (b) 3D aorta.
Fig. 2. Parallel speed-up of solver Nektarpp_EigenMM’s full eigenbasis solve as a function of the number of nodes, with a variety of matrix sizes. Results are
rom (a) CHPC’s Kingspeak cluster and (b) TACC’s Frontera cluster, respectively. N is the number of degrees of freedom, and p is the order of the polynomial basis.
peed-up is calculated as T28/Tn where n is the number of processors used. Load balancing is achieved by evenly dividing the spectrum using our spectrum slicing
pproach detailed in [33].
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≤ 1} discretized with five hexahedrons using curvilinear edges.
n a 3D cube, the analytical eigenpairs (λi, φi) for Eq. (1) are

i = n2π2
+ m2π2

+ k2π2 (5)
φi = sin(nπx) sin(mπy) sin(kπz),

where n, m, k = 1, 2, . . .N. On a 3D cylinder, we assume the initial
condition is given as u = 20.0

∑100
i=1

J0(λir)
(λiJ1(λiR))

, where R = 1.0 is
he radius of the cylinder, J0, and J1 are the Bessel functions of
he first kind of order zero and one. The cylinder has homoge-
eous boundaries on the cylinder wall and periodic boundaries
n the z direction. The analytical solution for this problem is
= 20.0

∑
∞

i=1 exp(−µλ
2
i t)

J0(λir)
(λiJ1(λiR))

, where eigenvalues λi are the
oots of the equation J0(λR) = 0 [38].

Figs. 3(b)–(c) show the exponential convergence results for
he numerical solutions as a function of the element order in a
D cube and a 3D cylinder, respectively. Similar to the previous
D square case, smaller α leads to lower solution accuracy. The
ime dependent diffusion problem Eq. (3) can be used to model a
udden cooling of a hot cylinder if we take u as the temperature
ariable. Figs. 3(d) and (e) show the field plot of temperature u
n a 3D cylinder taken at computational time T = 0.2 with the
ractional order 1.1 and 2.0. The smaller the fractional order is, the
lower the cooling process. Fig. 3(f) shows that the solution curve
eclines as the fractional order α increases, and the variation of
he solutions against the fractional order α is continuous. The
ractional diffusion equation, as pointed out in [12], can also
4

e used in modeling the transient heat conduction in nano-
ystems [9], e.g., in bodies where discontinuities such as cracks
ay emerge, interact and evolve [39], and is more adequate in
escribing the long-range thermal energy transfer.

.3. Fractional Laplacian with nonzero Dirichlet boundary conditions

In this subsection, we compute the fractional Laplacian (−△)
α
2

of u = cos(πx) sin(πy) using the method in [28] on one quadri-
lateral element [0 1]×[0 1] in 2D with expansion order 20. Fig. 4
shows the field plots for the fractional Laplacian solution u =

cos(πx) sin(πy) and the line plots along the line y = 0.46 at
ifferent fractional orders α, see also [13].

.4. Regularity of basis functions across element boundaries

A well known phenomenon, described in [40] is that when
sing the finite element or spectral element method to compute
igenvalues and eigenvectors, the eigenvalues at the low end of
he spectrum are represented accurately, but at the high end of
he spectrum, the error becomes excessive. For the C0 discretiza-
ion, we use the hp-element framework Nektar++ [41]. Fig. 5
a) shows the eigenvalue errors for this C0 basis discretization
hroughout the spectrum for varying the basis function order for
typical spectral element method in a square domain. By increas-
ng p, the error of the eigenvalues at the high end of the spectrum
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Fig. 4. Computed fractional Laplacian (−△)
α
2 for function u = cos(πx) sin(πy). 1st row: field plot; 2nd row: line plot at y = 0.46.
t
e
b
a
t
v
W

tarts to blow up, resulting in a collection of eigenvectors that are
ot accurate since their corresponding eigenvalues cannot accu-
ately reflect the true eigenvalues. One of the ways to improve
he accuracy of eigenpairs is to use an alternative discretization
hat enforces C1 regularity at element boundaries. We use a
atlab library geoPDEs [42] to construct the C1 discrete system,
hich is then fed into our eigenvalue solver. Fig. 5(b) shows that
ith the C1 discretization, the eigenvalue errors stay bounded
hroughout the entire spectrum with increasing p. Fig. 5(c) shows
 φ

5

he eigenvalue errors for a C0 and C1 discretization with a roughly
quivalent number of degrees of freedom on a log scale. The C1
asis with higher regularity results in better eigenvalue accuracy
t both the high and the low ends of the spectrum. Fig. 6 shows
he residual error resulting from projecting the computed eigen-
ectors into the space of the exact eigenvectors and vice versa.
e denote the computed and exact eigenpairs by (θk, φk) and

(λk, ψk), respectively. The projected computed eigenvectors are
(ψ)

=
∑N (ψi,ψi)ψ and the projected exact eigenvectors are
k i=1 (φk,ψi) i
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Fig. 6. Residual error resulting from projecting the computed eigenvectors into the space of exact eigenvectors (a) and vice versa (b). n is the number of
lements and p the order of the polynomial basis.
Fig. 7. L2 error using C0 and C1 basis for solving the fractional Poisson equation on a square with homogeneous Dirichlet boundary conditions at fractional
rder α = 1. (a) f = 2 sin(πx) sin(πy) (b) f = 2 sin(10πx) sin(10πy). f is the right-hand side of the Poisson equation and n the number of elements.
e
t

(ψ)
k =

∑N
i=1

(φi,φi)
(ψk,φi)

φi. The residual errors are defined as ∥φ
ψ

k −φk∥

nd ∥ψ
φ

k − ψk∥, respectively.
In order to measure the performance of the C0 and C1 eigen-

ectors in solving the fractional diffusion equation, we ran the
olver using both the C1 and C0 discretizations and compared
the solution accuracy in Fig. 7. For both discretizations, the
fractional Poisson problem is solved for forcing functions f =

sin(πx) sin(πy) and f = 2 sin(10πx) sin(πy). These forcing
unctions are eigenfunctions for a unit square with homogeneous
irichlet boundary conditions and have exact solutions. Fig. 7
hows that the C1 discretization is better. The overall convergence
ate with respect to the number of degrees of freedom (and by
6

extension, the order of the basis elements) remains the same, but
the C1 solution error has essentially been shifted by a constant.
These results suggest that by increasing the regularity of the
element boundaries during discretization, the computed eigen-
basis attains more accuracy for the same number of degrees of
freedom. A discretization with an arbitrarily high-order element
boundary regularity has been proposed in [43]. Importantly, if a
C0 code and a C1 code are given with the same number of mesh
lements and the same basis order p, they result in a different
otal number of degrees of freedom as below:

N(C0) = (1 + p(n − 1))d,
d
N(C1) = (2 + (p − 1)(n − 1)) ,
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here p, n, d are the expansion order, the number of elements,
nd spatial dimensions, respectively. p = 1, 2 indicate linear and
uadratic elements, respectively. Since the expansion order for
hese two methods have different meanings, we match the total
egrees of freedom N to compare errors instead of matching
he basis function order p. Since the amount of work that is
equired to compute the full eigenbasis depends directly on N ,
his comparison captures the work–precision tradeoff. Also note
7

ere the number of quadrature points used in the tests is different
or C0 and C1 basis.

. Capability demonstration: numerical simulation of frac-
ional diffusion equation on 2D/3D complex geometries

In this section, we solve the fractional heat conduction equa-
ion on complex geometry domains to show the geometric flexi-
ility of our algorithm for computing the fractional Laplacian.
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Fig. 9. 2D Hanford site domain with nonzero boundaries. Snapshots of solutions for fractional diffusion problem at time T = 0.02, 0.2, and 0.4. 1st row α = 1.0;
nd row α = 2.0.
.1. A 3D complex domain with zero Dirichlet boundary conditions

We solve the fractional heat conduction equation ∂u
∂t =

µ(−△)α/2u by 99 hexahedron elements with element order 5
nd time step size 1e-3. The initial and boundary conditions are
he same as for the fractional heat conduction equation on a
D cylinder in Section 3. The resulting matrix of the associated
igenvalue problem is 7405 × 7405. The first row of Fig. 8 shows

the contour plot for temperature at computation time T = 0.4
ith different fractional order α. This row demonstrates that the
maller α, the slower the cooling. The temperature isocontour
lots in the 2nd to 4th rows of the Fig. 8 show that the cooling
s faster in the thumb area with the fractional order 2.0, than the
ractional order 1.2 and 1.5. For the fractional order α < 2.0, the
heat penetrates the thumb area faster than the classical diffusion
corresponding to α = 2.0, which indicates the elongated tails
of the temperature distribution, a striking characteristic of the
anomalous diffusion [39]. Another interesting characteristic is the
accelerating fronts. With the decrease of the fractional order, the
movement of the front of the isocontour is accelerates.

4.2. Hanford site geometry with nonzero Dirichlet boundary

We solve the fractional diffusion equation ∂tu = −µ(−△)
α
2 u

ith µ = 0.01 with nonhomogeneous Dirichlet boundary con-
itions on a complex geometry domain constructed from the
anford site discretized with 14,814 quadrilateral elements. For
he associated eigenvalue problem, 57,849 eigenvalues are com-
uted, and the time cost is 1191.2s with 1024 CPUs. Fig. 9 shows
he snapshots of the concentration u-field at time T = 0.02, 0.2,
nd 0.4 with fractional order α = 1.0 and α = 2.0.
8

5. Summary

An efficient and accurate 3D parallel solver
Nektarpp_EigenMM for computing the spectral fractional Lapla-
cian on complex geometries with homogeneous and nonhomoge-
neous boundaries through eigenfunction expansion is developed
and implemented with the spectral element method. We demon-
strate the scalability by testing the associated eigenvalue problem
solver on different numbers of CPUs and geometries. We demon-
strate the accuracy of this algorithm by solving the fractional
diffusion equation and comparing the results with the analytic
solutions. We discuss the possibilities of improving the solver
by using higher order regularity at element boundaries during
discretization. We apply this solver to the fractional diffusion
equation on complex geometry domains, which shows the ca-
pability of our solver in handling anomalous diffusion problems
modeled by the fractional Laplacian. Nektarpp_EigenMM is highly
customizable and freely available at Github https://github.com/
paralab/Nektarpp_EigenMM.
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Fig. 10. Eigenvalue distributions: (a) a 2D square domain discretized with quadrilateral elements, using C0 basis with hp refinement, and L2-error as a
unction of degrees of freedom n when solving a Helmholtz equation. (b) and (e) periodic in xz-direction; (c) and (f) periodic in yz-direction; (d) and (g) periodic
n xy-direction. n is the number of degrees of freedom.
ppendix A. Numerical issues: accuracy of the numerical
igenvalues and eigenfunctions and the completeness of the
igenspace with C0 basis

As mentioned in Section 3.4, the computed numerical eigen-
alues and eigenvectors from finite element method and spectral
lement method (C0 basis) have been long known to deviate from
he analytical ones [45,46], as shown in Fig. 10, if ordered in an
ncreasing fashion. C1 basis is an alternative to improve the accu-
acy of solving the fractional diffusion equation, see Section 3.4.
n this section, we show that although some of the eigenvalues
nd eigenvectors are not accurate, we still need all of them to
nsure the completeness of the space of C0 basis functions and
he convergence when solving fractional PDEs.

ompleteness of the eigenspace

To demonstrate that all the eigenvalues and eigenvectors are
eeded to compute the fractional Laplacian to keep the high
9

accuracy when solving a Helmholtz equation. Here, we solve
u − △u = f in Ω = {(x, y, z) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1,−1 ≤

z ≤ 1} with Dirichlet and mixed boundary conditions (Dirichlet
and periodic boundaries) using part of the eigenvectors in the full
set in the solution space and compare the computation results
with the contrived solutions.

We use mixed boundary conditions (Dirichlet and periodic
boundaries). Three numerical experiments are conducted. The
first set of tests are u(x, y, z) = (5/(4 + sin(πx)) − 5/4) and
u(x, y, z) = (1− x2) with xz periodic, the second set are u(x, y, z)
= (5/(4 + sin(πy)) − 5/4) and u(x, y, z) = (1 − y2) with yz
periodic, and the third are u(x, y, z) = (5/(4 + sin(πz)) − 5/4)
and u(x, y, z) = (1 − z2) with xy periodic. Fig. 10(b) and (e)
show the results for the first test, (c) and (f) for the second
test, and (d) and (g) for the third test, respectively. We can see
that if we use only part of the eigenvectors from the full set to
solve the equation, we cannot get good accuracy. These results
show that all the eigenvectors, even the erroneous ones, are
needed to obtain exponential accuracy in the fractional Laplacian

computation.
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ppendix B. Numerical simulation of surface quasi-
eostrophic equation (SQG)

We demonstrate the capability of our method to solve the
QG equation corresponding to the initial data constructed from
he first few eigenmodes proposed in [47]. The SQG equation
olves a quantity driven by the gradients of a uniform potential
orticity, which can be modeled by the fractional Laplacian. There
s an analogy between the level sets of solutions of the SQG
quation and the vortex lines of the 3D Euler equation [47].
he study of the singular front formation of SQG shed lights
n the behavior of the 3D Euler equation, which is a proto-
ype equation for studying turbulence behavior and potential
eteorological and oceanic applications [48]. A popular existing
umerical method for solving SQG is the pseudo-spectral method
ith the high wavenumber Fourier modes filtered out to avoid
he heavy oscillations created by the singularity of the solution
f the SQG equations [49]. However, the pseudo-spectral scheme
annot handle an irregular domain or nonperiodic initial con-
ition. We show that our method can solve the SQG equation
nvolving the fractional Laplacian calculation. For computations
10
that simulate large timescales, we adopt a fractional spectral
viscosity vanishing technique (fSVV) [50] to stabilize the method
and minimize the oscillations. We conduct the test with periodic
boundary conditions on a 2D square [0,2π ]×[0,2π ]. The initial
condition is θ = sin(x) sin(y) + cos(y).

The SQG equation is given as follows [49]:

θt + u · ▽θ + κ(−△)
α
2 θ = 0 (6)

(u1, u2) = (−∂x2ψ, ∂x1ψ)
(−△)1/2ψ = −θ ,

here κ ≫ 0 and α > 0 are parameters, θ = θ (x1, x2, t) is a
calar representing the potential temperature, and u = (u1, u2) is
he velocity field determined from θ by the stream function via
he auxiliary relations expressed in Eq. (6).

The SQG equations with fractional SVV technique [50] are as
ollows:
∂θN

∂t
+ (uN · ▽θN ) + κ(−△)

α
2 θN + ξNS

β

N (θN ) + ξN1S
β1
N (θN ) = 0 (7)

(u1, u2) = (−∂x2ψ, ∂x1ψ)
(−△)1/2ψ = −θ .
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able 2
arameters used for SQG.
Parameters κ α N β MN ξN β1 MN1 ξN1

0 0.4 28 0.75 40 0.04 1.0 1540 0.04

Free parameter selection for SQG in Eq. (7) with an artificial viscosity

MN, MN1, ξN , ξN1 , β and β1 are free parameters to be deter-
ined as long as they satisfy the spectral accuracy restriction.
N and MN1 are the wavenumbers we choose to add an artificial
iscosity term, MN2 are the total number of modes and ξN and
N1 are a fixed power of the vanishing grid size in order to yield
n accurate approximation. In [51], for SVV, MN ∼ 5

√
MN2 and

N ∼
1

MN2 when using the standard Laplacian. If we use the
fractional Laplacian and fractional SVV [50], we can estimate the
appropriate choices of the parameters MN, MN1, ξN , ξN1 , β and
β1, following [51].

Table 2 presents the parameters used in numerical simula-
tions. Fig. 11 shows the results for the inviscid equation with
κ = 0. Computation for the viscous equation with κ ̸= 0 has
numerical concerns beyond the scope of this paper and is omit-
ted. Notice that with κ = 0, a fractional Laplacian still appears in
the third equation of Eq. (6). Fig. 11(a)–(e) show snapshots from
time 0∼8s, where a sharp front is developing along the hyperbolic
saddle, and Fig. 11(f)–(i) show that from 8∼16 s, a chaotic mixing
appears.

Appendix C

Example simulations are included in the program source code
package, which can be downloaded from CPC or the Github repos-
itory that can be found in the program summary. Included are
2D and 3D examples of solving fractional diffusion and Poisson
equations and some samples meshes. The sample meshes for 2D
are a square with 1681 elements and the Hanford site mesh with
14,272 elements. The sample 3D meshes are a cube with 4913
elements and the aorta mesh with 24,095 elements. Boundary
conditions can be set to homogeneous Dirichlet or Neumann
inside the mesh files themselves.

The instructions for compilation and execution are detailed
in the top-level README.md file. The validations of solving frac-
tional diffusion equation described in Section 3 are also in-
cluded in the repository on CPC and Github. Example simulations,
meshes, and scripts can all be found in the ‘exp’ folder within the
Nektarpp_EigenMM root directory.
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