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Figure 1: Fiber Surfaces of electron density and reduced gradient in an ethane-diol molecule: (a) While an isosurface of
electron density identifies regions of influence of atoms (grey), it does not distinguish atomic type. An isosurface of reduced
gradient identifies bonding interaction sites (blue) but does not distinguish non-covalent (top) from covalent bonds (others).
(b) Continuous scatter plot (log scale) of electron density and reduced gradient. Isosurfaces and fiber surfaces are shown as
dashed lines and polygons respectively. (c) Fiber surfaces distinguish atom types (oxygen in red, carbons in grey) as well as
bond types (non-covalent in green, covalent in blue).

Abstract
Scientific visualization has many effective methods for examining and exploring scalar and vector fields, but rather
fewer for bivariate fields. We report the first general purpose approach for the interactive extraction of geometric
separating surfaces in bivariate fields. This method is based on fiber surfaces: surfaces constructed from sets of
fibers, the multivariate analogues of isolines. We show simple methods for fiber surface definition and extraction.
In particular, we show a simple and efficient fiber surface extraction algorithm based on Marching Cubes. We
also show how to construct fiber surfaces interactively with geometric primitives in the range of the function.
We then extend this to build user interfaces that generate parameterized families of fiber surfaces with respect to
arbitrary polygons. In the special case of isovalue-gradient plots, fiber surfaces capture features geometrically for
quantitative analysis that have previously only been analysed visually and qualitatively using multi-dimensional
transfer functions in volume rendering. We also demonstrate fiber surface extraction on a variety of bivariate data.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling—Curve, surface, solid and object representations
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1. Introduction

As scientific visualization expanded, methods developed for
visualizing scalar and vector fields, but fewer methods for bi-
variate fields. In particular, methods to extract surfaces rep-
resenting boundaries are largely unexplored. We introduce
a novel method for visualizing bivariate fields based on the
generalization of isosurfaces to fiber surfaces: surfaces made
up from fibers (the equivalent of contours in multi-fields).

Figure 2: Fiber Construction. Left: isosurface of f1. Centre:
fiber defined by intersecting isosurfaces. Right: isosurface of
f2. Both isosurfaces show the fiber for reference.

Our contribution is therefore to show:

1. a general purpose method that produces separating sur-
faces representing boundaries in bivariate fields,

2. an efficient and simple fiber surface extraction method
based on Marching Cubes for any mesh type,

3. simple yet powerful interfaces based on lines and poly-
gons in the range of the field,

4. families of fiber surfaces parametrized by a single vari-
able with respect to polygons

5. a relationship between these families of fiber surfaces and
linear combinations of two scalar fields,

6. that fiber surfaces can extract geometric surfaces for fea-
tures in multi-dimensional transfer functions [KKH02]

Crucially, fiber surfaces are geometric: no topological
computation is required. However, topological analysis gives
further insight and further power, and we will also discuss
the relationship with multifield topological analysis [CD14].

2. Background

Relevant work includes the use of Marching Cubes to extract
isosurfaces and separating surfaces (Section 2.1), methods
for multifield visualization (Section 2.2), multi-dimensional
transfer functions for direct volume rendering (Section 2.3),
and generalizing contours to fibers in multifields (Section 3).

2.1. Isosurfaces and Marching Cubes

Given a scalar field f :R3→R, contours and isosurfaces can
be defined mathematically as the inverse image f−1(h) =
{x∈Dom f : f (x)= h} of an isovalue h∈Ran f . For a simply
connected domain, this has the useful property that it sepa-
rates the domain into pieces: in particular, for many datasets,
the isosurface is a closed surface which represents some

sort of boundary in the phenomenon under study. Compu-
tationally, isosurfaces are approximated with triangles using
Marching Cubes [LC87]. In this algorithm, the space is sub-
divided into a grid of cubes with known data values at the
grid intersections. For a given isovalue h, the algorithm then
extracts a surface in each cube in four stages:

I: Classification: The data value f (x) at each corner of the
cube is compared with the isovalue h. If f (x) > h, the
vertex is classified as “black” (a 1 bit). Otherwise it is
classified as “white” (a 0 bit).

II: Triangle Topology: The eight bits are converted into a
single-byte integer called the ‘case’ and used to retrieve
triangle topology from a look-up table, with triangle ver-
tices located along edges of the cube.

III: Vertex Interpolation: For each triangle vertex, linear in-
terpolation based on the isovalue is applied along the ver-
tex’ edge to determine the exact location. Without this
stage, the vertices are fixed to grid locations and result in
blocky surfaces which are visually displeasing.

IV: Normal Vectors: Normal vectors are constructed either
as flat normals of the faces, by averaging normals around
each vertex, or using central differencing and interpola-
tion to estimate the gradient vector at the vertex.

While Marching Cubes is not perfect, it is the principal
method for isosurface extraction due to its simplicity, robust-
ness and ability to represent material boundaries as separat-
ing surfaces [NY06, Wen13]. Variants exist in particular for
tetrahedra [Blo88], where the surfaces extracted are mathe-
matically correct for the linear interpolant.

2.2. Multifield Visualization

Other than reduction to scalar fields or direct volume ren-
dering, few general methods for bivariate visualization in
Dom f are known, except for the special case of complex-
valued fields [WB96], where a complex value was chosen in
the range of f : C2→ C, and the corresponding 2-manifold
contour in C2 was constructed. If we treat C as R2, f can
be restated as f : R4→ R2, and these complex contours are
then fibers of f , as described in the next section.

One method that is often used is to classify the data points
statistically as “interior” or “exterior” then apply stage II. of
Marching Cubes. However, this binary classification makes
it difficult to apply stages III. and IV, which are usually re-
solved with heuristics [HM03, SBSG06].

Multifields can be shown as multidimensional histograms,
and recent work on continuous scatterplots [BW08] has
shown the importance of the presumed mesh continuity.
Subsequent work has focussed on linear features [LT10]
which are now [CD14] known to be related to the topology
of the multifield. Further work on multifield topology is on-
going [EH04,EHP08,NN11], but these methods are complex
and not fully developed.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



Hamish Carr, Zhao Geng, Julien Tierny, Amit Chattopadhyay & Aaron Knoll / Fiber Surfaces

2.3. Direct Volume Rendering

Direct volume rendering visualizes data [Lev88] with a
transfer function that maps data values to color and opac-
ity, then integrates light transport along rays for each pixel.
Laidlaw [Lai95] first proposed multidimensional transfer
functions for MRI data. 2D transfer functions were also
proposed to augment univariate data with gradient magni-
tude [KKH02, Kin02] or curvature [KWTM03]. Early mul-
tifield approaches employed Gaussian kernels [KPI∗03] or
maximum-intensity projection [SR04]. Bivariate classifica-
tion can also use derived quantities such as heat diffu-
sion [GWK12], or apply clustering of cells [WZL∗12] or
Morse-Smale analysis [KKH13].

Recent work has built user interfaces for dimension-
ality reduction and transfer function generation, added
scatterplots [Dol07], kernel density estimation [MWCE09,
LWT∗14], parallel coordinates [ZK10, GXY11], combina-
tions of all three [ZH13], or automatic approaches [GMY11,
ZH14]. We refer interested readers to a recent sur-
vey [KH13]. For multifield geometric features. Kotava et
al. [KKS∗12] show that the necessary sampling rate for
sharp feature reconstruction depends on the product of fre-
quencies of all component fields convolved with the transfer
function, and sample directly in transfer function space to
render high-frequency features similar to fiber surfaces.

In these papers, linear range features correspond roughly
to material boundaries, and interfaces are thus often de-
signed using polygonal widgets in Ran f [SKK06]. For ex-
ample, Kotava et al. [KKS∗12] volume render fine features
in multidimensional transfer functions by sampling in range
space. While direct volume rendering is now standard for vi-
sualizing scalar fields and multifields, it has two drawbacks.
First, even with modern GPUs, rendering is relatively slow,
especially for complex high-gradient data. Second, it pro-
duces an image, not a geometric surface that can also be used
for modelling and simulation.

Geometric surfaces are thus of general interest, with
particular value where multi-dimensional transfer functions
have already been adopted. We therefore turn our attention
to generalizing isosurfaces to the bivariate case, observing
that the development is similar for higher dimensions.

3. Fibers

For f : Rd → Rr, the domain Dom f = Rd is the set of input
values, with d commonly 2,3, or 4. In contrast, the range
Ran f = Rr is the set of output values: in scientific visual-
ization, this may be scalar (r = 1), bivariate (r = 2), vector
(r = d, with special semantic meaning), or higher dimen-
sions. This paper only addresses bivariate data, so we as-
sume d = 3,r = 2, and use f1, f2 to refer to the two output
variables. We also assume a simply connected domain. We
leave for future work the questions of extra dimensions and
more general manifolds.

For bivariate (and higher) data, inverse images of points
(fibers) are well-defined [Sae04], and are analogous to con-
tours. In R3→R2, a fiber is defined by a point h= (h1,h2)∈
Ran f , and can be found by intersecting isosurfaces of h1 in
f1 and h2 in f2, as shown in Figure 2.

For a contour of co-dimension 1 (one dimension less than
the domain), this fiber is of co-dimension 2, i.e. a 1-manifold
structure similar to a contour line. This happens because our
point h = (h1,h2) specifies two parameters, each of which
reduces the dimensionality by one. Thus, a single fiber can-
not separate regions, as shown in Figure 2.

4. Fiber Surfaces

The challenge is to find a generalization of contours to bi-
variate volumes that produces well-defined separating sur-
faces. We do so by constructing surfaces from fibers, and for
this a further property of fibers (and contours) is useful: as h
varies continuously, so does f−1(h). Thus, any path in Ran f
corresponds to a set of fibers that varies continuously in the
domain, sweeping out a surface or set of surfaces.

There has been historic confusion between isosurfaces
and their connected components (often called contours or
isosurface components), since connectivity was not consid-
ered when isosurfaces were originally defined. Similarly, a
fiber may have multiple components, and the term fiber com-
ponent has recently been introduced to refer to a single con-
nected component of a fiber [SSC∗]. For consistency, we
therefore use fiber surface for the inverse image in Dom f
of any path P ∈ Ran f , and fiber surface component for a
single connected component of a fiber surface.
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Figure 3: Fiber Surface of a Polygon. Left: the polygon in
the range with the projection of a single tetrahedra. Right:
the tetrahedron in the range with the fibers corresponding to
edges uv,vw. Each fiber is a point in the range but a line in
the domain. Each line in the range corresponds to a plane in
the tetrahedron.

Fiber surfaces have two properties similar to isosurfaces.
First, each fiber surface component is a continuous sur-
face. Second, if the path P separates Ran f into regions,
then the corresponding fiber surface f−1(P) is a separat-
ing surface in Dom f . To see that this is true, consider two
points p,q ∈ Ran f that are separated by P. Claim: all paths
Q ∈ Dom f between f−1(p) and f−1(q) intersect f−1(P).
To see this, we observe that each point r∈Q belongs to some
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fiber f−1(hr) : hr ∈ Ran f . Moreover, since f is a continu-
ous mapping, the set hr : r ∈ Q must be continuous in Ran f ,
and therefore forms a path f (Q) in Ran f , although some hr
may be repeated. But P separates p and q, so any such path
f (Q) must cross P: it then follows that Q must cross f−1(P),
as required. Moreover, if Q does not touch the boundary of
Dom f , then it must be a closed 2-manifold surface.

5. Fiber Surfaces of Lines in the Range

The simplest fiber surfaces are given by lines in the range
in normal form: ~n · p = c, where ~n = (n1,n2). Here, c is the
perpendicular distance from the origin to the line, scaled by
‖~n‖. For any point p = (h1,h2) on this line, n1h1+n2h2 = c.
Now, given any point x on the fiber f−1(p) in the domain,
( f1(x), f2(x)) = p = (h1,h2), and n1 f1(x)+n2 f2(x) = c for
all such points. Thus, this fiber surface is the isosurface at
c of the weighted sum ~n · f , i.e. an isosurface of a derived
scalar field. Doing this at runtime is easy: we pass ~n and c
to Marching Cubes, and compute derived values at vertices
on the fly. Trivially, an isosurface of one variable is a fiber
surface defined by a vertical or horizontal line.

If f is defined on a tetrahedron, the fiber surface of a line
is a plane (Figure 3). For a cubic mesh with trilinear interpo-
lation, Nielson’s cases [Nie03] can be used. We also observe
that for a derived field g =~n · f ,∇g = n1∇ f1 +n2∇ f2 - i.e.
we can compute normal vectors either with the gradient of
the derived field g, or by linear combination of the gradient
vectors of the components of f . Alternately, as with con-
ventional isosurfaces, we can either use flat-shading of each
triangle, or average normal vectors around each vertex.

All isosurfaces of~n · f share the normal vector~n with dif-
ferent isovalues c. Therefore their range lines are parallel,
with c the distance from the origin to the line. We define the
line through the origin to be the reference, and observe that
the others are at fixed distances from it: i.e. parallel lines are
contours of the distance field of the reference line. We will
use this to generalize beyond lines to arbitrary curves.

6. Fiber Surfaces of Polygons

We now consider the general case of fiber surface defined
by arbitrary curves, polylines or polygons. Since curves and
polylines can be approximated with polygons, we assume a
separating polygon: i.e. a closed loop of range line segments,
which we call the fiber surface control polygon or FSCP.

Again, we start from the observations that each point on
the FSCP corresponds to a fiber, and that f is a continuous
mapping. As we travel around the FSCP, the continuity of
f implies that while a fiber may separate into components
or join, the fibers themselves deform continuously into each
other, thus sweeping out a set of continuous surfaces in the
domain. In the ideal case, we would extract the fiber surface
exactly, but in practice this is more difficult than it sounds.

Consider Figure 3, in which we show a single tetrahedron
with the fiber surface defined near a vertex v of the FSCP.
Each linear segment in the range is a subset of a range line
fiber surface, each of which is planar in the tetrahedron, and
the planes meet along the fiber for v. Thus, having anything
other than a straight line gives potentially arbitrarily com-
plex geometry in each tetrahedron in the mesh.

An important property of isosurfaces is that they separate
an inside from an outside. This property also carries over to
fiber surfaces. Consider a path Pd from the inside of a closed
fiber surface to its outside. Each point on this path belongs to
a fiber, and this fiber is defined by a point in the range. Thus,
the projection of Pd is also a continuous path Pr, but in the
range. Moreover, there is some point pd where Pd crosses
the fiber surface, and it’s fiber is defined by point pr = f (pd)
in the range. Removing the fiber of pr then disconnects the
path Pd in the domain, and removing the point pr discon-
nects the path Pr in the range. It then follows that any set
whose removal disconnects the range of f must disconnect
the domain of f , and the result follows.

Strictly speaking, it is possible for the inside of the FSCP
to map to the outside of the fiber surface. In practice, as long
as we are prepared to render both sides of the surface, this
is unimportant. Algorithmically, mesh vertices whose fibers
are inside the FSCP are also inside the fiber surface. Corre-
spondingly, vertices whose fibers are outside the FSCP are
also outside the fiber surface. But this is the same as stage I
of Marching Cubes, substituting a point-in-polygon test for
the isovalue comparison. Stage II is then performed as usual,
using the standard lookup tables.

Stages III and IV are trickier, as we no longer have an iso-
value for interpolation. Observe however that vertices of the
cube have locations in the range: i.e. vertex u of the cube
will map to f (u), and an edge uv will intersect the fiber sur-
face if and only if f (u) and f (v) are on opposite sides of
the FSCP P. Thus, the line segment f (u) f (v) intersects P at
some point w ∈ Ran f , and therefore the edge uv must inter-
sect the fiber surface. Moreover, if we parametrize f (u) f (v)
with a parameter t, we can compute the point e= u+t(v−u)
at which the fiber surface intersects the cube edge.

Finally, normals of these approximate fiber surfaces can
use flat shading or averaged normals. Alternately, we can
identify which edge of P was intersected, and use its normal
vector~n to weight the gradient components of f as before.

This leads to Algorithm 1. While this can be implemented
as it stands, it depends on slow geometric tests, so we recall
from Section 5 that fiber surfaces from parallel lines corre-
spond to isosurfaces of the distance field contours of a refer-
ence line in the range. Generalizing this, the fiber surface for
a given FSCP is defined by the zero-contour of the FSCP’s
signed distance field. Moreover, given linear interpolation,
interpolating in the distance field will compute the same w
as before, without requiring either point in polygon tests or
line intersection tests.

c© 2015 The Author(s)
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Figure 4: Fiber surfaces obtained by increasing the range distance to the initial fiber surface control polygon, from (a) to (d).

Algorithm 1 Algorithm for extracting Fiber Surfaces
Require: Function f , Mesh M in Dom f , Polygon P in Ran f

for each cell C in mesh M do
for each vertex V in C do

if f(V) is in polygon P then
Classify V as black

else
Classify V as white

end if
end for
Compute Marching Cubes (MC) case from vertex clas-
sification
for Each triangle T in MC case do

for Each cell edge u,v intersected by MC case do
Find intersection w of line segment f (u), f (v) and
polygon P
Find parameter t on f (u) f (v) for w
Interpolate vertex e = u+ t(v−u)
Interpolate normal vector at e

end for
end for

end for

Finally, if we compute the distance field for a FSCP, and
choose contours at non-zero distances, we obtain a family of
fiber surfaces that nest properly inside each other as isosur-
faces do, and that can be parametrized by the distance value.

7. User Interfaces

Given the above definition of fiber surfaces, the next task is
to build a user interface to define them. In the longer run, we
expect user interfaces to be at least as rich as those for multi-

dimensional transfer functions. Moreover, user interfaces for
fiber surfaces will ultimately be application dependent, so
evaluation of effectiveness must be deferred until domain-
specific interfaces are constructed. We therefore restrict our
attention to simple proof-of-concept interfaces.

Clearly, a fiber surface interface must show the range of
the function as well as the fiber surfaces in the domain.
Moreover, it is desirable to show some information in the
range that helps the user understand where to place a line,
curve or polyline. We therefore show the continuous scatter-
plot [BW08] of f in the range, and superimpose lines and
polygons on it. As the continuous scatterplot is fixed for a
given dataset, we assume it has been precomputed.

The second major decision is whether to use lines or poly-
gons to define fiber surfaces. Lines can be defined in several
ways: as a pair of points that can be manipulated, as a dial
for normal vector ~n and a slider for constant c, or as a sin-
gle point p that defines vector ~n = p−O from the origin
constant c =~n · p. We show some of these possibilities in the
accompanying video, but observe that polygons are the more
general case, and assume only polygons.

Thus, our interface consists primarily of two widgets: a
range widget and a domain widget, as previously used by
Sakurai et al. [SSC∗]. In the range widget, we provide the
ability to edit the FSCP, while in the domain widget, we
show the corresponding fiber surface. In addition to this, we
provide a number of utility widgets to control what is visu-
alized at any point, and in particular, a slider for setting the
distance field parameter for families of fiber surfaces.

8. Fiber Surface Examples

Given this user interface, we now show examples drawn
from chemistry, cosmology and combustion.
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Figure 5: Fiber Surfaces of a cosmological simulation of universe expansion: (a, b) Isosurfaces of matter (white) and dark
matter (orange) concentrations for different pairs of isovalues (a: low, b: high). (c) Discrete scatter plot superimposed on the
continuous one (matter vs. dark matter distribution). (d) Distribution by surface area of fiber surface components. (e)-(g) Zoom-
in views for dark matter, matter and fiber surface respectively. (h) Composite zoom-in views for the 3 surfaces emphasizing their
nesting relation. (i) Fiber surface for the polygon shown in (c). (j)-(k) Progressive simplification of the fiber surface components
by surface area (dashed lines in (d)). (l) Composite view of dark matter (orange), matter (white) and fiber surface (blue). (m)
Fiber surface contraction through smoothing passes to enhance the visual display of bubbles and filaments.

Chemistry: In Figure 1, we extract fiber surfaces from
bivariate data for (i) the electron density and (ii) the re-
duced gradient of an ethanediol molecule. Here, the electron
density is the distribution function of electrons, with local
maxima near atoms, while the reduced gradient [JKMS∗10]
is the deviation in atomic densities due to molecular in-
teractions, and has local minima near atoms and covalent
or non-covalent interactions. Together, these functions are
used by chemists to isolate regions of influence of atoms
and regions of molecular interactions. Tools such as NCI
plots [CGJK∗11], use sequences of isosurfaces and thresh-
olds to isolate such features. Isosurfaces of electron density
capture regions of atomic influence (grey, 1(a)), but cannot
distinguish between atom types. Isosurfaces of reduced gra-
dient capture molecular interactions (blue, 1(a)), but do not
distinguish covalent from non-covalent bonds.

Electron density and reduced gradient are related expo-
nentially in regions where no chemical interaction occurs,
i.e. on the main separating axis of the continuous scatter-
plot (bright colors, 1(b)). Regions away from this axis are
thus presumed to be significant in analysing chemical inter-
actions. In our example, the regions of interest occur near the
atoms (2 C, 2 O, 6 H), and near covalent (C-C, C-H, C-O)
and non-covalent (O-H) atomic bonds.

These features can be selected visually in the continu-
ous scatterplot (1(b)). Since different atom types have differ-
ent reduced gradients, they have distinct polygons above the
main axis (1(c), oxygen in red, carbon in grey). Similarly,
covalent and non-covalent bonds differ in electron density,
clearly distinguishable as the polygons below the main axis
(1(d), covalent bonds in blue, non-covalent bonds in green).

While topology-based approaches [GABCG∗14] semi-
automatically segment these regions using the join tree of the
reduced gradient and the Morse-Smale complex of a func-
tion derived from electron density, our approach is simpler.
We leave automatic detection of chemical features in range
space for the future, as it is likely to depend on topologi-
cal analysis of fiber surfaces. Moreover, in contrast to semi-
automatic methods, our approach allows interactive explo-
ration of the features in range space, as seen in Figure 4.
Here, the downward spike in the continuous scatter plot was
selected to investigate non-covalent interactions (planar in-
terface between the two alcohol (OH) groups). Finally, our
user interface allows interactive exploration of the parame-
terized family of fiber surfaces induced by this polygon, by
choosing different distance constants, as discussed in Sec-
tion 6. The resulting surfaces, in a) - d), could be interpreted
as candidate regions for non-covalent interactions.
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Figure 6: Extracting the core of a burning flame: (a)
Isotherm thresholded (opaque triangles) on temperature
gradient magnitude (color map). (b) Extracting the same
feature with fiber surfaces guarantees closed 2-manifolds.

Cosmology: Our second example (Figure 5) is from cos-
mology, with bivariate data representing a time-step in a sim-
ulation of universe expansion. Here, the first value represents
concentrations of matter (white isosurfaces), while the sec-
ond represents concentrations of dark matter (orange isosur-
faces). Scientifically, the expectation is that high concentra-
tions of matter will be co-located with high concentrations
of dark matter, but not vice versa. Analysis thus focuses on
“bubbles”, where both properties are locally high, and “fil-
aments” that connect the bubbles by thin threads with high
concentrations of dark matter only. The thresholds are, how-
ever, unknown and are expected to vary across the data set.

For low isovalues (5(a)), the matter isosurface has one
component containing most of the volume, while the dark
matter isosurface has many small components. At higher
isovalues (5(b)), dark matter isosurfaces exhibit less noise,
while matter isosurfaces occupy less space, better showing
the backbone structure of matter which links galaxies during
expansion. However, as shown in zoom-in views, this back-
bone structure involves both matter and dark matter.

If we use a polygon to select the main feature visible in
the scatter plot, (5(c)), the corresponding fiber surface cap-
tures the shape of the bubbles of matter isosurfaces (zoom-in
views 5(e)-(g)) while still connecting these bubbles through
dark matter isosurface components, hence better capturing
the overall backbone structure of the galaxies. This is em-
phasized in Figures 5(h) and 5(l), which illustrate the nesting
relation of these three surfaces: the fiber surface appears in
light blue when it encompasses the dark matter isosurface,

Figure 7: Fiber surfaces for material boundaries in a tooth
CT-scan: (a) User selected isosurfaces. (b) Continuous scat-
ter plot of isovalue vs. gradient magnitude with user selected
isovalues (dashed lines) and polygons. (c) Fiber surfaces
of the selected polygons. (d) Fiber surfaces after connected
component filtering. (e) Cut-away view of the fiber surfaces.

and in light green in the opposite configuration. We do not
claim fiber surfaces are better than isosurfaces at comparing
matter and dark matter. Existing visualizations of such data
commonly employ side-by-side volume rendering with sep-
arate 1D classification [IWPN]. In discussions with cosmol-
ogists, we found that they frequently use joint histograms to
analyze multifield data; fiber surfaces may prove helpful to
domain experts in showing the combined geometry of both
fields, in the context of multivariate scatterplots.

Moreover, since fiber surfaces are explicit geometry, we
filter the individual connected components by their surface
areas (5(d)). Doing so shows the predominance of a few
very large components, allowing us to select a filter thresh-
old that limits the initial self occlusion of the fiber surface
(5(i)-(k)). Moreover, thanks to the explicit representation of
fiber surfaces, the visualization of the backbone structure of
the galaxies can be enhanced by contracting the fiber surface
by a smoothing procedure with a large number of iterations
(5(m)). In the process, features that look very like the ex-
pected bubbles and filaments start appearing (5(m)).

Combustion: In our third example, we look at two prop-
erties in a combustion simulation: temperature and tempera-
ture gradient magnitude (Figure 6). Here, features are found
by extracting an isotherm, then using a threshold of the gra-
dient magnitude to identify regions of rapid change, but this
leads to a non-manifold surface with holes in it (a). In con-
trast, choosing a fiber surface guarantees closed 2-manifold
surfaces that satisfy the same constraint (b), improving our
ability to do geometric and numerical post-processing.
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Table 1: Runtime Statistics : All timings were measured in seconds and performed on a 3.06GHz Mac Pro (2012) with 64GB
memory and a Radeon 5870 1GB video card, running OSX 10.8.5, and using VTK 6.1.0.

Data Resolution Polygon Edge Nr Distance Field Time Geom Extract. Time Geom. Size Frame Rate
tooth 103 * 94 * 161 11 6.91308s 1.58783s 150,800 17.85

39 13.7605s 2.05943s 603,732 4.68
enzo 256*256*256 8 63.8571s 16.8751s 1,748,868 1.44

17 67.4505s 24.2812s 7,446,081 0.38
combustion 170*160*140 12 16.5805s 3.94118s 531,554 5.57

30 18.7608s 4.21217s 711,794 4.09
ethaneDiol 115*116*134 9 6.84636s 1.66709s 4,948 150.29

15 7.4306s 1.71076s 8,140 217.95

9. Material Boundaries in Acquired Data

As seen in Section 2.3, multi-dimensional transfer functions
often use isovalue and gradient magnitude to highlight mate-
rial boundaries in DVR [KKH02]. Given the shared depen-
dence on the continuous scatterplot, the question is whether
fiber surfaces can extract corresponding geometric surfaces.

In our first example (Figure 7), we use the same CT scan
of a tooth used by Kniss et al. [KKH02]. While isosur-
faces can be chosen in (a) to segment the pulp (red), the
dentin (blue) and the enamel (white), this does not isolate
the boundary between the dentin and the enamel. However,
the continuous scatterplot (b) exhibits clear features corre-
sponding to material boundaries which we select with poly-
gons. Note that the isosurface corresponding to the enamel
boundary (white, (a)) spans two distinct features, which can
be isolated with separate polygons (white and yellow, (b)).

While these segmentations are not new, they have been
used previously to generate images, not geometric surfaces.
In contrast, fiber surfaces are geometric, allowing faster ren-
dering as well as reducing noise and removing occluding
features (c), (d). Finally, since we define fiber surfaces with
respect to the distance field of the polygon, we can choose
other fiber surfaces nested inside (or outside) the original se-
lection, and derive further information geometrically.

10. Comparisons

In previous sections, we showed how fiber surfaces extract
meaningful bivariate features. We now compare them to
DVR. Figure 8 compares fiber surface visualization to the
volume rendering method of Kotava et al. [KKS∗12]. In ad-
dition to filtering out small features by size to reduce occlu-
sion, fiber surfaces render at much higher frame rates than
DVR, at the expense of additional preprocessing time.

11. Implementation

The Fiber Surface algorithm was implemented as a filter
for Visualization Toolkit (VTK) 6.1.0, with a user interface
based on Qt 4.8. As proof-of-concept, our initial implemen-
tation favours simplicity and generality over performance.

For convenience and runtime performance, we compute a
distance field explicitly as a two-dimensional array and look-
up, but apply no other optimizations.

We also report some performance statistics. Since range
polygons capture surface structures in the domain, the per-
formance of computation and rendering is directly related to
the shape and position of polygons. Since polygon shape can
be defined arbitrarily, we have simply chosen two polygons
for each data set with different shape complexity.

Table 1 gives these statistics, including the resolution of
each data set, the number of edges in the polygon, the com-
putation time for the distance field of the polygon, the com-
putation time to extract the fiber surface, the number of tri-
angles in the fiber surface, and the frame rate reported by
vtkRenderer. In each case, the continuous scatter plot was
pre-computed as a texture in a using the original authors’
implementation [BW08], which took from a few seconds to
up to 8 minutes (enzo data-set).

Table 1 shows that the computation is dominated by the
distance field computation and fiber surface extraction, and
we intend to optimize these stages in future. Equally, while
the frame rates drop below 1fps for enzo (the cosmology
data set), this occurs when we hit 7.5 million triangles, and
we expect that a more recent video card would improve this.

12. Conclusions & Future Work

We have generalized isosurfaces to bivariate data to produce
well-defined geometric surfaces that isolate regions corre-
sponding to features identified in multi-dimensional transfer
functions, and that are easy to implement. Since we general-
ize from isosurfaces, many of the well-known optimizations
for Marching Cubes should apply, and we intend to do so.
In particular, we expect that this method will be embarass-
ingly parallelizable, as once the polygon or line is chosen,
extraction in each cell is independent.

It is clear that trivariate functions could use three-
dimensional range widgets, but this will be more complex,
and we leave this for future work. Beyond trivariate, we ex-
pect to develop constructs similar to fiber surfaces, but these
are more likely to be useful analytically than visually.

c© 2015 The Author(s)
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dvrfiber surfaces

dvrfiber surfaces

Figure 8: Fiber surfaces compared with direct volume rendering. Top: cosmology (enzo) simulation. Bottom: chemistry
(ethane-diol) simulation. Direct volume rendering was optimized with peak finding [KKS∗12] to identify the fiber surface
boundaries (this gives a roughly 2–4x performance improvement over naive volume rendering). Fiber surfacing exhibits better
contrast, enables geometric analyses and better rendering performance via rasterization.

As with isosurfaces, topological analysis can be applied
to fiber surfaces: this work is already underway [CD14]. We
felt it was important, however, to report the purely geometric
solution first, as it is simpler to understand and implement.
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