
Automated Programmatic Performance Analysis of Parallel
Programs

Onur Cankur
ocankur@umd.edu

Department of Computer Science,
University of Maryland

College Park, Maryland, USA

Aditya Tomar
adityatomar@berkeley.edu

Department of Electrical Engineering
and Computer Sciences, University of

California, Berkeley
Berkeley, California, USA

Daniel Nichols
dnicho@umd.edu

Department of Computer Science,
University of Maryland

College Park, Maryland, USA

Connor Scully-Allison
cscullyallison@email.arizona.edu
Department of Computer Science,

The University of Arizona
Arizone, USA

Katherine E. Isaacs
kisaacs@sci.utah.edu

Department of Computer Science,
The University of Utah

Utah, USA

Abhinav Bhatele
bhatele@cs.umd.edu

Department of Computer Science,
University of Maryland

College Park, Maryland, USA

ABSTRACT
Developing efficient parallel applications is critical to advancing
scientific development but requires significant performance analy-
sis and optimization. Performance analysis tools help developers
manage the increasing complexity and scale of performance data,
but often rely on the user to manually explore low-level data and
are rigid in how the data can be manipulated. We propose a Python-
based API, Chopper, which provides high-level and flexible perfor-
mance analysis for both single and multiple executions of parallel
applications. Chopper facilitates performance analysis and reduces
developer effort by providing configurable high-level methods for
common performance analysis tasks such as calculating load imbal-
ance, hot paths, scalability bottlenecks, correlation between metrics
and CCT nodes, and causes of performance variability within a ro-
bust and mature Python environment that provides fluid access to
lower-level data manipulations. We demonstrate how Chopper al-
lows developers to quickly and succinctly explore performance and
identify issues across applications such as AMG, Laghos, LULESH,
Quicksilver and Tortuga.

KEYWORDS
simplified, performance, analysis, parallel

1 INTRODUCTION
Ensuring that parallel applications run efficiently on modern su-
percomputers is essential to achieve scientific discoveries rapidly.
Identifying performance problems is the first step in the process
of optimizing performance of a parallel program. However, per-
formance analysis is a complex and time-consuming task due to
the inherent complexity of large-scale parallel applications and
architectures, and the large quantity of performance data that can
be collected when running in parallel. In addition, parallel applica-
tions may suffer from a variety of performance issues. Therefore,
in order to minimize the developer’s burden, we require highly

Conference’17, July 2017, Washington, DC, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

effective performance analysis techniques that can quickly identify
performance problems and their root causes.

A variety of performance measurement tools exist, including
profilers and tracing tools that can generate performance data [1, 7,
17, 28]. However, the data generated can be extremely large, making
it challenging to sift through this data to identify performance
issues. Several performance measurement tools also provide visual
analytics counterparts to facilitate performance analysis. Typically,
the analysis support is in the form of a graphical user interface
(GUI) to visualize and manipulate performance data [3, 14, 16, 22]
although some tools also provide a scripting interface [9, 26]. The
GUIs help in visualizing performance data and in many cases, the
user can connect such data to source code (file and line numbers).

Although GUIs provide some effective functionalities, having to
analyze performance data only via a GUI can make it inefficient
to identify performance issues. GUIs depend on the end user to
manually explore the visualizations, and to identify different pat-
terns that might suggest performance problems. As the data being
analyzed grows, this becomes more and more challenging. In addi-
tion, to analyze multiple executions, GUIs typically require opening
multiple separate windows with the datasets. Some of them can
visualize multiple datasets on the same window, however, they still
require significant manual effort to compare different executions.
Finally, adding new kinds of analyses on top of a GUI may not be
possible for an end user.

The main aim of this work is to simplify common performance
analysis tasks for the end user by reducing the time and effort
required. We present a Python-based API that simplifies several
performance analysis tasks, and offers flexibility and customization
to enable users to perform analyses with speed and effectiveness.
To achieve this goal, we explored the common functionalities in
other performance analysis tools and also collected feedback from
developers and users of performance tools to identify the most
needed functionalities. We develop this new API on top of an ex-
isting open-source performance analysis tool called Hatchet that
provides an interface for programmatic analysis of performance
data via Python [5].

By virtue of being developed on top of Hatchet, Chopper supports
data formats of various performance tools, including but not limited

ar
X

iv
:2

40
1.

13
15

0v
1 

 [
cs

.D
C

] 
 2

3 
Ja

n 
20

24

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Bhatele et al.

to Caliper [7], HPCToolkit [1], Score-P (Cubex) [17] and TAU [28].
Chopper facilitates performance analysis and reduces developer
effort by simplifying tasks such as detection of load imbalance, hot
paths, scalability bottlenecks, and causes of performance variability
via a programmatic interface. It provides support for analyzing
profiles from single and multiple executions of programs. By using
the provided functionalities in Chopper, users can quickly and
easily identify performance issues in a parallel program with a few
lines of Python code. Since it is a programmatic API, Chopper gives
flexibility to the users to extend it and also use other Python libraries
with it for visualization and further analysis. To demonstrate the
usability and flexibility of Chopper, we gather performance data
using several applications including the data collected in a prior
performance variability study [23]. The applications used in this
study are AMG, Laghos, LULESH, Quicksilver and Tortuga.

Specifically, this work makes the following contributions:

• A programmatic API that significantly simplifies several
single-run performance analysis tasks.
• Facilitate the analysis of multiple executions by designing
and implementing algorithms for multi-run analysis that
enable an effective and intuitive approach to identifying
performance issues across multiple executions.
• An evaluation of the scalability of some user-facing functions
provided in Chopper by using large parallel profiles.
• Demonstration of the usefulness of Chopper and its capa-
bilities to identify performance issues by performing case
studies using several applications.

2 BACKGROUND AND RELATEDWORK
We give background information on profiling, call graphs, and com-
mon performance analysis techniques. We also mention Hatchet
and other related work.

2.1 Profiling and Call Graphs
Generally, there are two methods for performance measurement:
profiling and tracing. Profiling provides a statistical approximation
instead of exact timestamps for each event in the program, unlike
tracing. In this paper we focus on profiling.

The performance data generated by profiling tools provide a va-
riety of information such as function call sequences, performance
metrics (e.g., time, cache misses, floating-point operations per sec-
ond), andMPI process topologies. In this work we study the analysis
of calling context trees (CCT) and call graphs, in both of which
the nodes typically represent procedures and edges represent the
caller-callee relationships (i.e., function call sequences). A path
from any given node to the root is called a call path or calling
context. A collection of distinct calling contexts forms a CCT. Un-
like CCTs, in call graphs a procedure that is called in different call
paths is represented as a single node with aggregated metric values.
Therefore, call graphs are less context-sensitive, but they provide a
more concise representation. Additionally, performance data typi-
cally contains information about function names, file names, line
numbers, and process or thread IDs.

2.2 Hatchet
Hatchet is a Python-based tool that enables analyzing hierarchi-
cal data, such as CCTs and call graphs, programmatically [5]. It
reads performance data from several profiling tools (e.g., Caliper,
HPCToolkit, Score-P, TAU, timemory) and provides an interface for
programmatic analysis of performance data. It also provides several
visualization functionalities such as terminal, DOT, and interactive
Jupyter notebook visualization. It supports low level operations to
manipulate the data and requires significant programming.

Hatchet’s central data structure is called GraphFrame, which is a
combination of a pandas DataFrame [20, 21] and a Graph. It stores
the caller-callee relationships in the graph object and the associated
performance metrics and contextual information in the DataFrame.
Hatchet provides graph-indexed DataFrames, which means every
index of the DataFrame points to a node in the graph. Therefore,
these two data structures are connected and can be manipulated
together. This data structure enables the practical implementation
of different analysis tasks. We utilize Hatchet to implement our
analysis API, Chopper.

2.3 Common Performance Analysis Problems
The performance of a parallel application can suffer from communi-
cation or computational inefficiencies. Performance problems can
be revealed by investigating imbalances, scalability, variability, and
hot paths in the program.

Load Imbalance: Parallel programs use multiple processing ele-
ments (e.g., processes and threads). Ideally, the work done by the
program should be equally distributed over processing elements, so
that they can finish their tasks at the same time. However, the ideal
scenario is almost never achieved in complex workflows, which
makes the load imbalance a common problem. It can be identified
by investigating the cost incurred by different processes.

Hot Paths: One way to pinpoint the bottlenecks in the program is
to examine the most time-consuming call paths. This task is called
hot path analysis [2]. For a given metric (e.g., time), every node
in a hot path accounts for more than 50% percent of its parents.
Manually finding the hot path is a tedious task when there are
millions of nodes in the call graph.

Poor Scalability: Scalability analysis shows how well a program
utilizes the increasing number of processing elements. A program
that has poor scalability may work slower than expected despite
using more processing elements. Scalability problems can be iden-
tified by performing scaling experiments and observing the change
in speedup and efficiency.

Performance Variation: The performance of a program may dif-
fer in different runs even though all of the parameters used in each
run are the same (e.g., hardware architecture and input parame-
ters). For example network congestion can lead to variability in
performance [6]. Variability can be identified by analyzing multiple
identical runs of a program.

2.4 Related Work
The idea of analyzing single and multiple call graph data to pinpoint
bottlenecks is defined as differential profiling by early work [19].



Automated Programmatic Performance Analysis of Parallel Programs Conference’17, July 2017, Washington, DC, USA

Table 1: Capabilities in different profile analysis and visualization tools.

Hot Path Load Imb. Programmatic Flat Speedup Correlation Multirun Perf.
Analysis Analysis API Profile Analysis Analysis Analysis Modeling

Cube Manual × × Guided Manual × Manual ×
Extra-P × × × × Guided ✓ Guided ✓
Hatchet Manual Manual ✓ Manual Manual × Manual ×
hpcviewer Guided Manual × Guided Manual × Manual ×
ParaProf Manual Manual × Guided Manual × Manual ×
PerfExplorer × × × × Guided ✓ Guided ×
Thicket Manual Manual ✓ Manual Guided × Guided ✓
This work Guided Guided ✓ Guided Guided ✓ Guided ×

Later works demonstrated the usefulness of manipulating and vi-
sualizing call graph data by performing differential analysis [27].
With that knowledge many studies utilized the call graph data to
effectively identify and visualize performance problems. Several
studies manipulated performance metrics to identify load imbal-
ances [11, 13, 29]. Adhianto et al. [2] defined hot path analysis
and demonstrated how to perform it using HPCViewer. Several
studies demonstrated applying differential profiling by using call
path profiles to analyze the scalability of the programs [10, 18, 30].
Benedict et al. [4] examined the scalability of the programs by in-
strumenting the region of interests in the programs and analyzing
the performance of different processes on those regions. Variability
in performance of HPC applications is another commonly studied
topic [24] However, to the best of our knowledge, there is no study
on analyzing performance variability using call graph data.

2.4.1 Performance Analysis Tools. Many performance analysis tools
are developed to facilitate performance analysis. Table 1 provides
a summary of different tools. Cube [26] is a performance analysis
tool for Score-P. Extra-P [9] is an automated performance model-
ing tool that focuses mostly on scaling behavior of applications.
HPCViewer [22] enables analyzing profile and trace data generated
by HPCToolkit. ParaProf [3] is also a performance analysis tool
and a part of TAU toolkit. It supports several different profile data
formats. All of these tools present call graph along with perfor-
mance metrics. Additionally, Cube and ParaProf can visualize MPI
process topologies. PerfExplorer [14] framework is also a part of
TAU toolkit and supports several data mining operations such as
correlation analysis and clustering. Thicket [8], provides perfor-
mance analysis capabilities for multi-run performance experiments.
It utilizes Hatchet and Extra-P and develop new capabilities on
top of them. Even though all of these tools provide useful analysis
capabilities, most of them provide only a desktop GUI. However,
GUIs typically are not as flexible and dynamic as a programmatic
interface and they do not provide rich APIs to manipulate the pro-
file data. This limitation becomes more obvious when the data is
very large and complex. Additionally, making changes or adding
new capabilities to a GUI is hardly possible for the end user. Thicket
provides programmatic analysis capabilities but only focuses on
multi-run analysis.

We propose a Python-based API, Chopper, to overcome these
limitations. Chopper facilitates performance analysis by simplify-
ing several single-run and multi-run performance analysis tasks

and making them easier and more intuitive to perform. We utilize
Hatchet’s programmatic interface and visualization capabilities to
implement the analysis tasks. With the Chopper API the users can
identify performance problems in their parallel programs by writ-
ing only a few lines of Python code. Chopper reduces the effort and
time spent on performance analysis.

3 SIMPLIFYING PERFORMANCE ANALYSIS
TASKS

Performance analysis of parallel applications is complex, tedious,
time-consuming and challenging. This is partly due to the fact that
a significant burden of performance analysis falls on the end user
(code developer, performance engineer, etc.). Our primary goal in
this work is to simplify different performance analysis workflows
as much as possible, and to make it straightforward for the end
user to identify common performance issues in their parallel code.

We started with creating a glossary of different performance
analysis tasks that end users perform when dealing with parallel
code. We asked end users of Hatchet for recommendations of anal-
ysis tasks they would want to see in a performance analysis library.
We also analyzed the tasks supported by the GUIs of performance
analysis tools and identified the user effort in using them to arrive
at performance issues. We also identified the gaps in current tools
that could be supported in a programmatic API.

We observed that when end users are conducting performance
analysis, there are two broad categories of tasks that are signifi-
cantly different from each other. One type of tasks involves analyz-
ing the performance of a single execution (a specific application
running a specific input problem on a specific architecture). This is
often done when the user knows that there is some performance
issue or has recently modified the code and wants to understand its
performance impacts. The second type of tasks involve analyzing
multiple executions. Such analyses are done in a variety of con-
texts – studying scaling performance with increasing number of
processes/threads, comparing the impact of different inputs on per-
formance, understanding performance variability across multiple
executions, etc. We will refer to these two types of tasks as single-
run and multi-run analysis respectively in the rest of the paper. We
then classified all the performance analysis tasks in the glossary
we created into either single-run or multi-run type of tasks.

The design and implementation of single-run and multi-run
analysis tasks can be significantly different. Hence, when designing



Conference’17, July 2017, Washington, DC, USA Bhatele et al.

Chopper, we considered them and the design issues surrounding
them separately. Chopper provides a unified interface for invoking
functions from either category. However, single-run analysis tasks
can also be invoked from a GraphFrame object in Hatchet.

4 CHOPPER: A PYTHON API FOR
PERFORMANCE ANALYSIS

We describe the design of API we implemented, called “Chopper”
because it helps manipulate calling context trees (and call graphs).
Chopper facilitates a range of analysis tasks for both single (sub-
section 4.1) and multiple executions (subsection 4.2).

4.1 Analyzing a Single Execution
Through Chopper, we add higher-level performance analysis oper-
ations to the lower-level performance metrics and manipulations
offered by Hatchet. To provide a seamless experience, we augment
the Hatchet GraphFrame (pandas dataframe + graph) object so
Chopper methods can be called directly. These methods are also
available directly through the Chopper API by passing the Graph-
Frame object. We describe Chopper’s single-run capabilities below.

(a) CCT

(b) Call Graph

Figure 1: Creating a callgraph from a CCT using the
to_callgraph function. Hatchet’s Jupyter notebook visual-
ization is used to visualize the CCT (a). The call graph (b) is
visualized externally.

to_callgraph: For some analyses, the full calling context of each
function is not necessary. It may be more intuitive to examine the
call graph which merges all calls to the same function name into

a single node. The to_callgraph function converts a CCT into a
call graph by merging nodes representing the same function name
and summing their associated metric data. The output is a new
GraphFrame where the graph has updated (merged) caller-callee
relationships and the DataFrame has aggregated metric values.

Figure 1 shows a small CCT and the resulting output when
converted to a call graph using the to_callgraph function. The call
graph representation is more concise but performance metrics are
no longer divided by calling context.

Figure 2: Calculating the load imbalance of a 512 process
execution for LULESH by using the load_imbalance function.
The resulting DataFrame is sorted by the time.imbalance
columnwhich shows the imbalance value for each CCT node.

load_imbalance: Load imbalance is a common performance prob-
lem in parallel programs. Developers and application users are
interested in identifying load imbalance so they can improve the dis-
tribute of work among processes or threads. The load_imbalance
function in Chopper makes it easier to study load imbalance at the
level of individual CCT nodes.

Algorithm 1 summarizes the load_imbalance function. The in-
put is a GraphFrame along with the metric on which to compute
imbalance. Optional parameters are a threshold value to filter out
inconsequential nodes and a flag for calculate detailed statistics
about the load imbalance. The output is a new GraphFrame with
the same graph object but additional columns in its DataFrame to
describe load imbalance and optionally the verbose statistics. A full
example of load_imbalance is shown in Figure 2.

To calculate per-node load imbalance, we use pandas DataFrame
operations to compute the mean and maximum of the given metric
across all processes (line 4 and 5). Load balance is then themaximum
divided by the mean (line 15). A large maximum-to-mean ratio
indicates heavy load imbalance. The per-node load imbalance value
is added as a new column in DataFrame.



Automated Programmatic Performance Analysis of Parallel Programs Conference’17, July 2017, Washington, DC, USA

The threshold parameter is used to filter out nodes with metric
values below the given threshold (line 13). This feature allows users
to remove nodes that might have high imbalance because their
metric values are small. For example, high load imbalance may not
have significant impact on overall performance in the time spent
in the node is small.

The verbose option calculates additional statistics. If enabled, the
function adds a new column to the resulting DataFrame with each
of the following: the top five ranks that have the highest metric
values (line 7), values of 0th, 25th, 50th, 75th, and 100th percentiles
of each node (line 8), and the number of processes in each of ten
equal-sized bins between the 0th (minimum across processes) and
100th (maximum across processes) percentile values (line 9).

Algorithm 1 Pseudocode of load_imbalance
1: function load_imbalance(graphframe, metric, threshold, verbose)
2: dataframe← graphframe.dataframe
3: for nodes ∈ dataframe do
4: dataframe[“metric.max"]← max across processes
5: dataframe[“metric.mean"]← mean across processes
6: if verbose then
7: dataframe[“metric.ranks"]← top five ranks
8: dataframe[“metric.percentile"]← percentile values
9: dataframe[“metric.hist"]← frequency histogram
10: end if
11: end for
12: if threshold then
13: dataframe← filter(dataframe[“metric.max"] > threshold)
14: end if
15: dataframe[“metric.imbalance"] ← dataframe[“metric.max"] /

dataframe[“metric.mean"]
16: return graphframe
17: end function

1 import hatchet as ht
2 %load_ext hatchet.vis.loader
3

4 gf = ht.GraphFrame.from_hpctoolkit("simple -profile")
5 hot_path = gf.hot_path ()
6 %cct gf #Jupyter CCT visualiation

Figure 3: Identifying the hot path of a simple CCT using the
hot_path function in Chopper. The red-colored path with
bigger, labeled nodes represents the hot path.

hot_path: A common task in analyzing a single execution is to
examine the most time-consuming call paths in the program or
some subset of the program. Seeking out the latter call paths can be
tedious in a GUI, especially if the CCT is large and complex. Chop-
per’s hot_path function retrieves the hot path from any subtree of
a CCT given its root. The input parameters are the GraphFrame,

metric (and optional stopping condition), and the root of the subtree
to search. Starting at the given subtree root, the method traverses
the graph it finds a node whose metric accounts for more than a
given percentage of that of its parent. This percentage is the stop-
ping condition. The hot path is then the path between that node
and the given subtree root. The function outputs a list of nodes
using which the DataFrame can be manipulated.

By default, the hot_path function uses the most time-consuming
root node (in case of a forest) as the subtree root. The default stop-
ping condition is 50%, which we chose based on its utility as identi-
fied by Adhianto et al. [2]. The resulting hot path can be visualized
in the context of the CCT using the interactive Jupyter visualization
in Hatchet. We validated our implementation by comparing our
results with hpcviewer.

Figure 3 shows the hot path for a simple CCT example, found
with a single Chopper function call (line 5) and visualized using
Hatchet’s Jupyter notebook visualization (line 6). The red-colored
path with the large red nodes and additional labeling represents
the hot path. Users can interactively expand or collapse subtrees to
investigate the CCT further.

correlation_analysis: Profiling data may include numerous met-
rics and CCT nodes and it is important to analyze correlation
between them to understand the program behaviour. To facili-
tate this analysis, the Chopper API provides two main functions:
correlation_analysis and pairwise_correlation. The corre-
lation_analysis function calculates the correlation between different
performance metrics such as time, cache misses, and branch misses.
It accepts a GraphFrame, list of metrics, and a method to calculate
correlations (e.g., Pearson, Spearman, Kendall). It outputs the cor-
relation matrix. In order to simplify the analysis, Chopper provides
the filter_correlation_matrix function that filters the correla-
tionmatrix based on the correlation value. The pairwise_correlation
function provides a more granular view, examining the relationship
of two metrics at the level of individual CCT nodes. This function
performs linear regression and fits a linear model to the data, as-
suming linear relationship between two performance metrics. The
CCT nodes that diverge significantly from the fitted line might im-
ply unusual behavior within the program and aid users to identify
potential issues. The pairwise_correlation function adds the values
on the regression line and the distances of each CCT node to the
GraphFrame’s DataFrame.

4.2 Comparing Multiple Executions
Performance often only makes sense in the context of multiple
executions, for example, understanding weak or strong scaling.
However, GUI-based performance tools are often focused on single
executions. While Hatchet has a few simple pairwise operations on
two GraphFrames (i.e., two executions), three or more executions
require programming ad hoc analyses. Chopper implements several
capabilities for comparing performance across several executions,
targeting common analyses such as those in studies of scaling
scaling or performance variability. These are implemented as static
functions of the Chopper API.

construct_from: Ingesting multiple datasets is the first step to
analyzing them. It is laborious and tedious to specify and load



Conference’17, July 2017, Washington, DC, USA Bhatele et al.

1 datasets = glob.glob("list_of_lulesh_profiles")
2 gfs = hatchet.GraphFrame.construct_from(datasets)
3 table = hatchet.Chopper.multirun_analysis(gfs)
4 print(table)

Figure 4: The multirun_analysis function returns a pivot
table containing node names and time values of the nodes in
each profile. We show a truncated example of the returned
pivot table from a set of LULESH weak scaling executions
(64, 125, 216, and 512 processes).

unify_multiple_graphframes([gf1, gf2, gf3])

gf2

gf2

Figure 5: GraphFrames before and after unification by the
unify_multiple_graphframes function. The resulting Graph-
Frames include all nodes from the given GraphFrames but
retain their original metric values.

each profile manually, which is necessary in Hatchet. To alleviate
this problem, we introduce construct_from, which takes a list of
datasets and returns a list of GraphFrames, one for each dataset.
Users can then leverage Python’s built-in functionalities to create
the list from names and structures inspected from the file system.

construct_from automatically detects the data collection source
of each profile, using file extensions, JSON schemes, and other
characteristics of the datasets that are unique to the various output
formats. This allows Chopper to choose the appropriate data read in
Hatchet for each dataset, eliminating the manual task of specifying
each one. We demonstrate the power of construct_from in Figures 4
and 6 (line 2 in both).

multirun_analysis: Analyzing across multiple executions typi-
cally involves comparing metric values across the individual CCT
nodes of the different executions. Implementing this manually can
be cumbersome, especially as CCTs will differ between runs. We
simplify this task with the multirun_analysis function.

1 datasets = glob.glob("list_of_lulesh_profiles")
2 gfs = hatchet.GraphFrame.construct_from(datasets)
3 efficiency = hatchet.Chopper.speedup_efficiency(gfs , weak

=True , efficiency=True)
4 print(efficiency.sort_values("512. time", ascending=True))

Figure 6: Calculating efficiency of each node using the
speedup_efficiency function. The figure shows a truncated
example of the returned pivot table. LULESH weak scaling
executions running on 64, 125, 216, and 512 processes are
used for this demonstration.

By default, multirun_analysis builds a unified “pivot table” of the
multiple executions for a given metric. The index (or “pivot”) is the
execution identifier. Per-execution, the metrics are also aggregated
by the function name. This allows users to quickly summarize
across executions and their composite functions for any metric.

multirun_analysis allows flexibly setting the desired index, columns
(e.g., using file or module rather than function name), and metrics
with which to construct the pivot table. It also provides filtering
of nodes below a threshold value of the metric. The code block in
Figure 4 demonstrates multirun_analysis with default parameters
(line 3) and its resulting table.

As we will show in Section 7, the multirun_analysis function
makes it straightforward to analyze multiple executions and signif-
icantly reduces end-user effort. Most importantly, users can easily
manipulate the pivot table programmatically or generate different
ones for different analysis tasks such as scaling and variability. In
addition, it is possible to plot the data in this pivot table with only
a single line of Python code. This is normally a laborious task to
perform using only a GUI.

unify_multiple_graphframes:
Fine-grained analysis tasks may require preserving those indi-

vidual metrics and CCT topology in order to match them across
CCT nodes. Combining multiple large parallel profiles takes sig-
nificant programming effort. We automate this task through the
unify_multiple_graphframes function, which takes multiple Graph-
Frames as inputs and updates each GraphFrame in place.

The unify_multiple_graphframes function creates a union graph
object from all input GraphFrames from the collection of unique
call paths. The updated GraphFrames point to this new object and
the DataFrame of each is updated with the missing nodes. The
operation ensures that all input GraphFrames are associated with
the same unified graph and have individually updated DataFrames.



Automated Programmatic Performance Analysis of Parallel Programs Conference’17, July 2017, Washington, DC, USA

106 107 108 109

Rows in Dataframe

102

103

104

105

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

Memory Consumption Plot of from_hpctoolkit

from_hpctoolkit()

Figure 7: Log-log plot of the runtime of the hot_path and load_imbalance, and from_hpctoolkit functions (left) and memory
consumption of from_hpctoolkit (right). We observe that all of the functions scale linearly with data size and memory
consumption by the Chopper API functions does not exceed that of file reading.

Figure 5 illustrates how the GraphFrames are updated by unifica-
tion. The resulting GraphFrames share the same graph while retain-
ing their original metric values. Using this unified GraphFrames,
node-level (calling context-dependent) metrics can be calculated,
such as speedup and efficiency.

speedup_efficiency: Two commonly used metrics to determine
the scalability of parallel codes are speedup and efficiency. The
speedup_efficiency function simplifies the task of calculating
these metrics per CCT node across multiple executions with dif-
ferent process or thread counts. Given multiple GraphFrames as
input, speedup_efficiency creates a new DataFrame with efficiency
or speedup per CCT node, using unify_multiple_graphframes to
unify the set of nodes. An optional parameter allows users to set a
metric threshold with which to exclude unnecessary nodes.

Speedup and efficiency have different expressions under the
assumption of weak or strong scaling. Thus, the speedup_efficiency
functions should be supplied with the type of experiment performed
(weak or strong scaling) and the metric of interest (speedup or
efficiency). Equations 1, 2, and 3 define these metrics, where 𝑡𝑠 is
the baseline value of the metric of interest, typically time spent
in the execution. In other words, 𝑡𝑠 is the metric’s value in the
execution with the smallest number of processes, 𝑠 . 𝑡𝑛 is then the
metric value from the executing with 𝑛 processes, where 𝑛 > 𝑠 .
Speedup for strong scaling, 𝑆strong is defined as the ratio of 𝑡𝑠 to 𝑡𝑛
(Eq. 1) and efficiency for strong scaling, 𝐸strong is defined by the
multiplication of the ratio of 𝑠 to 𝑛 and ratio of 𝑡𝑠 to 𝑡𝑛 (Eq. 2).

𝑆strong =
𝑡𝑠

𝑡𝑛
(1)

𝐸strong =
𝑠 · 𝑡𝑠
𝑛 · 𝑡𝑛

(2)

We calculate only efficiency for weak scaling experiments, 𝐸𝑤𝑒𝑎𝑘 ,
which is defined as the ratio of 𝑡𝑠 to 𝑡𝑛 (Eq. 3).

𝐸weak =
𝑡𝑠

𝑡𝑛
(3)

Figure 6 shows the output DataFrame of efficiency values from a
weak scaling (64 to 512 process) experiment of LULESH along with
the corresponding code block (line 3). The DataFrame can then be
used directly to plot the results.

5 EXPERIMENTAL SETUP
We collected our experiment profiles on a supercomputer with
an x86_64 architecture and 36 cores per node. On this machine
we collected performance profiles from LULESH 2.0.3 [15] and
Quicksilver 1.0 [25] executions on 64 and 128 processes using 32
cores per node (2 to 16 nodes). LULESH is a proxy application that
solves a Sedov blast problem and Quicksilver solves a simplified
monte carlo problem. In addition, we strong-scaled Tortuga using
32, 64, 128, and 256 processes. Tortuga is a computational fluid
dynamics applications provided to us by our collaborators. We
use a set of data collected from AMG 1.2 [12] (a parallel algebraic
multigrid solver) and Laghos for a study on variability in [23]. This
data was collected on the same machine and for several applications
run on 512 processes with the same configuration for almost a year.
We used a subset of the data that includes six months of HPCToolkit
profiles for AMG and Laghos executions.

We built each tool and application using GCC 8.3.1 and Open
MPI 3.0.1. We used Score-P 7.1 to profile Tortuga and all other
applications was profiled using HPCToolkit 2021.05.15.

6 PERFORMANCE EVALUATION OF CHOPPER
In this section, we evaluate the performance of some of the single
execution analysis functions in Chopper.

6.1 API Performance for Single Executions
We measure the runtime of the functions by using them with a set
of HPCToolkit profiles. The smallest GraphFrame is created from
an AMG execution on 64 processes (2 nodes) and contains 1,893,504
rows in the DataFrame and 29,586 CCT nodes in the graph object.
The biggest is created from a MILC execution on 256 processes (8



Conference’17, July 2017, Washington, DC, USA Bhatele et al.

nodes) and contains 121,177,088 rows in the DataFrame and 473,348
CCT nodes in the graph object. The data points in between are
from AMG executions on 128, 256, and 512 and a MILC execution
on 128 processes.

Figure 7 (a) shows the runtime of load_imbalance and hot_path
for each data size. The runtime of the HPCToolkit reader function,
Hatchet’s from_hpctoolkit, is included to illustrate the total time
required as reading into Hatchet is necessary to use Chopper. The
results demonstrate that all the functions work efficiently for large
profiles in terms of number of rows in the DataFrame. The slow-
est function, load_imbalance, takes 9.81 seconds for the smallest
and 470.94 seconds for the largest data size. This increase in run-
ning time is expected due to the significant increase in size of the
profiles. Figure 7 (b) shows only the memory consumption of the
from_hpctoolkit function because the Chopper functions con-
sume less memory than the file reading.

7 CASE STUDIES
We demonstrate the usability and flexibility of the analysis func-
tionalities we provide in Chopper by analyzing profiles from single
and multiple executions.

1 %load_ext hatchet.vis.loader
2 gf = hatchet.GraphFrame.from_hpctoolkit("lulesh_64")
3 hot_path = gf.hot_path ()
4 %cct gf # Jupyter Visualization

Figure 8: Demonstration of identifying the hot path on a
filtered CCT gathered from a LULESH execution on 64 pro-
cesses using the hot_path function.We visualize the tree with
the highlighted hot path (red coloring) by using Hatchet’s
interactive Jupyter visualization.

7.1 Analyzing a Single Execution
Analyzing the performance of a single execution is a common task
in performance analysis. For example, the user may want to identify
the causes of performance degradation that occur when running
the application with a specific number of processes on a particular
platform.

Finding the hot path: Hot path analysis helps explore the most
time-consuming call path in the program. It may help to pinpoint
potential bottlenecks. Figure 8 shows the hot path we found in a
LULESH execution on 64 processes. We call the hot_path function
and find the hot path. Chopper identified CalcEnergyForElems as
the hot node, indicating that each of the nodes between the root
and CalcEnergyForElems account for 50% or more of the inclusive
time of their parents. Further exploration can be done by examining
the children and parent of the hot node.

To visualize the hot path, we added capability to highlight the
hot path in the Jupyter visualization, which simplifies analyzing and
presenting the hot path. The visualization highlights the hot path
by coloring the nodes and edges in red and making the nodes bigger
and edges thicker than normal (Figure 8). The user can easily visu-
alize the tree (line 4) and manipulate it interactively (e.g., selecting
nodes, expanding or collapsing subtrees) for further examination
and export tree state back to Python via query. The code block in
Figure 8 demonstrates that Chopper makes this analysis effortless
with a few lines of Python code and enables further investigation.

Detecting load imbalance: In this case study we use Quicksil-
ver proxy application to analyze load imbalance in an execution
on 128 processes. The code block in Figure 9 demonstrates how
the load imbalance analysis can be performed using Chopper. We
create the GraphFrame (line 1) and call the load_imbalance func-
tion with the time metric and verbose parameters (line 2). The
DataFrame associated with the returning GraphFrame is sorted by
the time.mean column, so that we can investigate the load imbal-
ance of the most time-consuming CCT nodes. Then, we create a
smaller DataFrame, df_imb by filtering out the top 50 nodes and
sorting them by time.imbalance (line 4). Then, we focus on the
top four nodes (line 5) that have the highest imbalance values since
the rest of nodes do not have significant imbalance.

Figure 9 (a) shows the resulting DataFrame. The highest im-
balance value (4.199) occurs from MacroscopicCrossSection:22.
The five ranks (process IDs) with the highest time value are shown
in time.ranks. The time.percentiles column shows the 0th,
25th, 50th, 75th, and 100th percentiles. Using these two columns,
we observe that rank 39 has the most load imbalance and spends
39.1 seconds in this function. The time.hist column shows the
number of processes for each node in ten equal-sized bins space
across the full range of time values. Additionally, users can eas-
ily investigate the parent of MacroscopicCrossSection:22 (e.g.,
df_imb.index[0].parents) to see where it is being called. Using
this to examine the source code, we observe that many load and
store operations are performed in macroscopicCrossSection and
it is called in a for loop inside of the CollisionEvent function.
Therefore, uneven distribution of load/store operations across pro-
cesses may be the cause of this imbalance.

As shown in Figure 9 (b), most processes spend between 6.296
to 9.577 seconds, while only a few spend more than 32.541 seconds.
This case study shows that a detailed analysis of load imbalance at
per node-granularity can be trivially accomplished using Chopper.

Analyzing correlation between metrics and CCT nodes: In
this case study, we analyze the relationship between performance



Automated Programmatic Performance Analysis of Parallel Programs Conference’17, July 2017, Washington, DC, USA

(a) Quicksilver Load Imbalance DataFrame Output (b) Load Imbalance Histogram of MacroscopicCrossSection.cc:22

1 graphframe = hatchet.GraphFrame.from_hpctoolkit("qs_profile_128")
2 graphframe_imbalance = graphframe.load_imbalance(verbose=True)
3 # sort the top 50 nodes that have the highest mean value by imbalance
4 df_imb = graphframe_imbalance.dataframe.head (50).sort_values("time.imbalance", ascending=False)
5 print(df_imb.head (4)) # Dataframe Output (a)

Figure 9: Demonstration of load imbalance analysis and the results of the case study. The most imbalance is caused by
MacroscopicCrossSection:22. Chopper’s load_imbalance function provides detailed statistics about the imbalance (a) that can
be easily plotted by using Python libraries (b). We use Quicksilver execution on 128 processes.

tim
e

ca
ch

e_
m

is
se

s

br
an

ch
_m

is
se

s

in
st

ru
ct

io
ns

pa
ge

_f
au

lts

cy
cl

es

time

cache_misses

branch_misses

instructions

page_faults

cycles

1 0.65 0.62 0.61 0.35 0.63

0.65 1 0.82 0.83 0.56 0.88

0.62 0.82 1 0.91 0.5 0.94

0.61 0.83 0.91 1 0.47 0.98

0.35 0.56 0.5 0.47 1 0.51

0.63 0.88 0.94 0.98 0.51 1

(a) Correlation matrix

0.4

0.5

0.6

0.7

0.8

0.9

1.0

102 104 106 108 1010

Number of instructions

10 9

10 7

10 5

10 3

10 1

101

T
im

e 
(s

)

write_data_cvnoVector
write_data_cvnoScalar

time-loop
(b) Scatter plot with regression line

1 correlation_matrix = gf.correlation_analysis(metrics =["time", "cache_misses", "branch_misses", "instructions", "
page_faults", "cycles"], method="spearman")

2 sns.heatmap(correlation_matrix , annot=True , cmap='coolwarm ')
3 gf_corr = gf.pairwise_correlation(metric1="instructions", metric2="time", logscale=True)
4 plt.plot(gf_corr.dataframe["instructions"], gf_corr.dataframe["time"], 'o')
5 plt.plot(gf_corr.dataframe["instructions"], np.exp(gf_corr.dataframe["predicted"]), '--k')

Figure 10: Demonstration of correlation analysis performed by using Chopper. We first calculate the correlation matrix of all
the performance matrix (a). Then, we investigate the relationship of instructions and time metrics at the individual CCT node
level (b). We use the Tortuga execution on 1024 processes.

metrics and CCT nodes. We use Tortuga execution on processes.
We manually annotated and profiled Tortuga by using Score-P.

Figure 10 (a) shows the correlation between each metric. We
first examine the correlation between performance metrics by us-
ing the correlation_analysis function with the Spearman method



Conference’17, July 2017, Washington, DC, USA Bhatele et al.

1 datasets = glob.glob("list_of_amg_profiles")
2 graphframes = hatchet.GraphFrame.construct_from(datasets)
3 pivot_table = hatchet.Chopper.multirun_analysis(graphframes=graphframes , threshold=threshold)
4 pivot_table.loc[:, :]. plot.bar(stacked=True)

Figure 11: Demonstration of variability analysis by using multiple executions. The figure shows the executions slowest to
fastest from left to right. We create GraphFrames for slowest, average, and fastest (a) AMG and (b) Laghos runs. Then, we
use the multirun_analysis function to compare CCT nodes on these multiple executions and easily create plots by using the
output of the function. As shown, the variation comes from communication libraries in both cases. All executions use 512
processes and has the same configuration.

1 query = ["*", {"name": "MPI_File_write_all"}]
2 filtered_test = graphframe.filter(query)
3 print(filtered_test.tree())

1 query = ["*", {"name": "MPI_File_iwrite"}]
2 filtered_test = graphframe.filter(query)
3 print(filtered_test.tree())

Figure 12: Call paths of the problematic portions of the program before (left) and after (right) the optimization. The time spent
in writeSingleField reduced from 7.033 to 2.088. The 1024 process count execution is used.

(line 1). We create a heatmap of correlation values by using the
seaborn library in Python (line 2). Interestingly we observe that
time and other metrics are not highly correlated. To investigate
further, we use the pairwise_correlation function (line 4). We then
create a scatter plot with a regression line by using the output
of the pairwise_correlation function (line 5 and 6). As shown in
Figure 10 (b), there are a few outliers CCT nodes. The time-loop
node represents the main for loop that includes all the opera-
tions and functions calls on the program. The program spends

relatively significant amount of time on write_data_cvnoVector
and write_data_cvnoScalar although they don’t execute as many
instructions. Both of these functions perform parallel IO write op-
erations. Therefore, we observe that they perform less instructions
but they have more wait time due to IO operations. This case study
demostrates that the users can easily examine correlation between
different performance metrics and investigate outliers or potential
issues by performing analyses at CCT node level. Chopper also
enables to easily plot the results by using the Python libraries.



Automated Programmatic Performance Analysis of Parallel Programs Conference’17, July 2017, Washington, DC, USA

7.2 Comparing Multiple Executions
More advanced analysis tasks, such as studying scalability and vari-
ability, require analyzing multiple executions of the same program
with different parameters. In this case, the user needs to analyze
more than two CCTs. We show that Chopper can significantly
simplify these analysis tasks.

128 256 512 1024
Number of processes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ef
fic

ie
nc

y

6.
98

6.
68

7.
07

7.
03

13
.8

6

10
.1

4

5.
63

5.
72

66
.4

1

46
.5

3

16
.4

8

11
.1

5

28
8.

28

16
5.

86

79
.0

0

47
.6

528
0.

44

15
8.

65

71
.6

6

40
.4

1

time-loop
run
endGhostCvsInterfaces

spectralRadius
writeSingleField

1 datasets = glob.glob("list_of_tortuga_profiles")
2 gfs = hatchet.GraphFrame.construct_from(datasets)
3 df = hatchet.Chopper.speedup_efficiency(gfs , strong=True ,

efficiency=True)
4 df = df.loc[df['1024'] < 0.7]
5 df.T.loc[:, :]. plot.bar()

Figure 13: Demonstration of scalability analysis by using
multiple executions. We plot efficiency of the four least effi-
cient nodes discovered in Tortuga strong scaling executions
(64, 128, 256, 512, 1024 processes). 64 process count execution
is used as the baseline. The vertical labels on each bar corre-
sponds the absolute time spent in the functions.

Identifying performance variability: We analyze data collected
in [23] that focuses on two applications, AMG and Laghos. The
data was collected over a period of six months, during which the
applications were executed repeatedly on a fixed number of nodes
using fixed input parameters to study performance variability. In
this case study, we demonstrate how we use Chopper to quickly
identify the sources of variability. For both applications, we identify
the runs that have fastest, slowest, and average execution time and
analyze profile of these runs.

Figure 11 illustrates our analysis methodology and the resulting
plots. First, we create GraphFrames for each profile (line 2) and pass
them to the multirun_analysis function. Using the time metric, we
apply a threshold for each of the three executions to remove the
insignificant CCT nodes. Using the table that the multirun_analysis
function constructs, we create the plots as shown in line 4.

The resulting plots show the difference between the runs (or-
dered left to right from slowest to fastest) in the execution time
of the nodes causing variability in AMG (a) and Laghos (b). These
plots reveal that increase in time on the slowest runs is caused by
the communication libraries (such as libpsm2.s and libmpi.so),

which is expected due to network congestion mentioned in the
previous paper [23]

The Chopper API enables the analysis of multiple executions us-
ing a single function call and presents the results in an easy-to-plot
format. This is a tedious and fraught task without programmatic
analysis capabilities as it requires comparing performance nodes
from multiple runs simultaneously. Furthermore, to the best of our
knowledge, this is the first study that uses CCT data to identify
performance variability.

Identifying scalability bottlenecks: In this case study, we ana-
lyze data from a strong scaling experiment using Tortuga executions
on 64, 128, 256, 512, and 1024 processes. The executions use 2, 4, 8,
and 16 full nodes on the supercomputer, respectively. The efficiency
at 128, 256, 512, and 1024 process counts is calculated relative to
the baseline, which is the execution with 64 processes. We used the
code that we manually annotated using Score-P.

Figure 13 demonstrates how a per-node (CCT node) scalabil-
ity analysis can be done using the Chopper API. We first cre-
ate a GraphFrame for each execution (line 2), and then call the
speedup_efficiency function by passing all of the GraphFrames,
the metric that we want to calculate efficiency on (time by de-
fault), the type of experiment (strong=True), and analysis type
(efficiency=True) in line 3. This function automatically unifies all
the given GraphFrames with the unify_multiple_graphframes func-
tion and calculates efficiency relative to the baseline execution. We
filter out the CCT whose efficiency values are greater than 0.7 (line
4) and plot the results by using the resulting DataFrame (line 5). In
addition to efficiency values and node names, the user can access
the corresponding file and line number from the DataFrame.

The efficiency plot (Figure 13) shows the nodes that use more
than 10% of the total execution time and have efficiency values lower
than 0.7. endGhostCvsInterfaces perform the communication of
ghost cells in the program. Therefore, the decreasing efficiency on
these nodes indicates inefficient communication. spectralRadius
is called in every iteration of the main for loop of the program. It
calculates spectral radius of a 3-dimensional tensor and calls both
MPI_Reduce and MPI_Bcast. run is a large function (772 lines of
code) that includes the main for loop and many IO operations.
time-loop represents the main for loop. writeSingleField in-
cludes file write operations using all the MPI processes used.

After getting this efficiency results, we decided to focus on the
writeSingleField function because it is one of the functions that
has significantly decreasing efficiency. We further annotated this
function to identify the code block that cause this scalability is-
sue. We identified the MPI_File_write_all function as a cause
of this problem. It is a collective and blocking function that uses
all the processes on the program to write to a file. Instead of us-
ing this collective and blocking function, we used the nonblocking
MPI_File_iwrite function and leveraged asynchrony to optimize
the function. Figure 12 demonstrates the unoptimized (left) and
the optimized (right) version of the corresponding call path. The
time spent on writeSingleField reduced from 7.033 to 2.088 on
1024 processes. The figure also demonstrates how to easily get the
corresponding call paths by using Hatchet’s query language.

This study shows that Chopper significantly simplifies this scal-
ability analysis at per-node granularity by providing functions that



Conference’17, July 2017, Washington, DC, USA Bhatele et al.

can automatically unify the profile outputs and calculate efficiency.
It also enables easy plotting of the results via Python libraries.

8 CONCLUSION
In this study, we proposed Chopper, a Python-based API for perfor-
mance analysis, which provides programmatic analysis capabilities
that simplifies the performance analysis of single and multiple
executions of parallel applications.

We decided to build it on top of Hatchet to leverage its program-
matic interface and visualization capabilities. We designed the API
in a way that it does not have a steep learning curve so the users
can quickly perform their analyses.

In this paper, we used several case studies to demonstrate how
Chopper enables performing common but laborious analysis tasks
by writing only a few lines of Python code. Specifically, we pre-
sented how Chopper simplifies analysis tasks for single and multi-
ple executions such as detecting load imbalance, finding hot paths,
identifying scaling bottlenecks, finding correlation between met-
rics and CCT nodes, and causes of performance variation. We also
demonstrated some useful functionalities such as reading multiple
profile data at once and unifying multiple GraphFrames. We iden-
tified potential performance problems in Tortuga and Quicksilver
applications. Additionally, we identified the performance variability
problem in AMG and Laghos runs. The effective capabilities that
Chopper provides makes the performance analysis tasks easier to
perform and significantly reduces the effort.

In the future, we plan to improve correlation analysis by adding
predictive modeling capabilities to facilitate performance analysis.
To further simplify the analyses and reduce the effort, we plan to
support customizable plotting capabilities. Additionally, we will
add support for analyzing the performance of GPU applications.

REFERENCES
[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,

John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for perfor-
mance analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience 22, 6 (2010), 685–701.

[2] Laksono Adhianto, JohnMellor-Crummey, and Nathan R Tallent. 2010. Effectively
presenting call path profiles of application performance. In 2010 39th International
Conference on Parallel Processing Workshops. IEEE, 179–188.

[3] Robert Bell, Allen D Malony, and Sameer Shende. 2003. Paraprof: A portable,
extensible, and scalable tool for parallel performance profile analysis. In European
Conference on Parallel Processing. Springer, 17–26.

[4] Shajulin Benedict, Matthias Brehm, Michael Gerndt, Carla Guillen, Wolfram
Hesse, and Ventsislav Petkov. 2009. Automatic performance analysis of large
scale simulations. In European Conference on Parallel Processing. Springer, 199–
207.

[5] Abhinav Bhatele, Stephanie Brink, and Todd Gamblin. 2019. Hatchet: Pruning
the Overgrowth in Parallel Profiles. In Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’19). http://doi.acm.org/10.1145/3295500.3356219 LLNL-CONF-772402.

[6] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Katherine E. Isaacs.
2013. There goes the neighborhood: performance degradation due to nearby jobs.
In Proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’13). IEEE Computer Society.
http://doi.acm.org/10.1145/2503210.2503247

[7] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
Performance Introspection for HPC Software Stacks. In SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 550–560. https://doi.org/10.1109/SC.2016.46

[8] Stephanie Brink, Michael McKinsey, David Boehme, Connor Scully-Allison, Ian
Lumsden, Daryl Hawkins, Treece Burgess, Vanessa Lama, Jakob Lüttgau, Kather-
ine E. Isaacs, Michela Taufer, and Olga Pearce. 2023. Thicket: Seeing the Perfor-
mance Experiment Forest for the Individual Run Trees. In Proceedings of the 32nd

International Symposium on High-Performance Parallel and Distributed Computing
(Orlando, FL, USA) (HPDC ’23). Association for Computing Machinery, New York,
NY, USA, 281–293. https://doi.org/10.1145/3588195.3592989

[9] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. 2013. Using
Automated Performance Modeling to Find Scalability Bugs in Complex Codes.
In Proc. of the ACM/IEEE Conference on Supercomputing (SC13), Denver, CO, USA.
ACM, 1–12. https://doi.org/10.1145/2503210.2503277

[10] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. 2007.
Scalability analysis of SPMD codes using expectations. In Proceedings of the 21st
annual international conference on Supercomputing. 13–22.

[11] Luiz DeRose, Bill Homer, and Dean Johnson. 2007. Detecting application load
imbalance on high end massively parallel systems. In European Conference on
Parallel Processing. Springer, 150–159.

[12] Van Emden Henson and Ulrike Meier Yang. 2002. BoomerAMG: A parallel
algebraic multigrid solver and preconditioner. Applied Numerical Mathematics 41,
1 (2002), 155–177. https://doi.org/10.1016/S0168-9274(01)00115-5 Developments
and Trends in Iterative Methods for Large Systems of Equations - in memorium
Rudiger Weiss.

[13] Kevin AHuck and Jesus Labarta. 2010. Detailed load balance analysis of large scale
parallel applications. In 2010 39th International Conference on Parallel Processing.
IEEE, 535–544.

[14] Kevin A Huck and Allen D Malony. 2005. Perfexplorer: A performance data
mining framework for large-scale parallel computing. In SC’05: Proceedings of
the 2005 ACM/IEEE conference on Supercomputing. IEEE, 41–41.

[15] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. 1–9 pages.

[16] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S Müller, and Wolfgang E Nagel. 2008. The vampir
performance analysis tool-set. In Tools for high performance computing. Springer,
139–155.

[17] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel, and
Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–91.

[18] Xu Liu and Bo Wu. 2015. Scaanalyzer: A tool to identify memory scalability bot-
tlenecks in parallel programs. In SC’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[19] P. E. McKenney. 1995. Differential profiling. In MASCOTS ’95. Proceedings of the
Third International Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems. 237–241. https://doi.org/10.1109/MASCOT.1995.
378681

[20] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 51 – 56.

[21] Wes McKinney. 2017. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. O’Reilly Media.

[22] J. Mellor-Crummey, R. Fowler, and G. Marin. 2002. HPCView: A tool for top-down
analysis of node performance. The Journal of Supercomputing 23 (2002), 81–101.

[23] Daniel Nichols, AniruddhaMarathe, Kathleen Shoga, Todd Gamblin, and Abhinav
Bhatele. 2022. Resource Utilization Aware Job Scheduling toMitigate Performance
Variability. In Proceedings of the IEEE International Parallel & Distributed Processing
Symposium (IPDPS ’22). IEEE Computer Society.

[24] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. 2003. The Case of the
Missing Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. In Proceedings of the 2003 ACM/IEEE conference on
Supercomputing (SC’03) (Phoenix, AZ, USA).

[25] David F Richards, Ryan C Bleile, Patrick S Brantley, Shawn A Dawson,
Michael Scott McKinley, and Matthew J O’Brien. 2017. Quicksilver: a proxy
app for the Monte Carlo transport code mercury. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 866–873.

[26] Pavel Saviankou, Michael Knobloch, Anke Visser, and Bernd Mohr. 2015. Cube
v4: From performance report explorer to performance analysis tool. Procedia
Computer Science 51 (2015), 1343–1352.

[27] Martin Schulz and Bronis R. de Supinski. 2007. Practical Differential Profiling. In
Euro-Par 2007 Parallel Processing, Anne-Marie Kermarrec, Luc Bougé, and Thierry
Priol (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 97–106.

[28] Sameer S Shende and Allen D Malony. 2006. The TAU parallel performance
system. The International Journal of High Performance Computing Applications
20, 2 (2006), 287–311.

[29] Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-Crummey. 2010. Scal-
able Identification of Load Imbalance in Parallel Executions Using Call Path
Profiles.

[30] Nathan R Tallent, JohnMMellor-Crummey, Laksono Adhianto, Michael W Fagan,
and Mark Krentel. 2009. Diagnosing performance bottlenecks in emerging

http://doi.acm.org/10.1145/3295500.3356219
http://doi.acm.org/10.1145/2503210.2503247
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1145/3588195.3592989
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1109/MASCOT.1995.378681
https://doi.org/10.1109/MASCOT.1995.378681


Automated Programmatic Performance Analysis of Parallel Programs Conference’17, July 2017, Washington, DC, USA

petascale applications. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. 1–11.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Profiling and Call Graphs
	2.2 Hatchet
	2.3 Common Performance Analysis Problems
	2.4 Related Work

	3 Simplifying Performance Analysis Tasks
	4 Chopper: A Python API for Performance Analysis
	4.1 Analyzing a Single Execution
	4.2 Comparing Multiple Executions

	5 Experimental Setup
	6 Performance Evaluation of Chopper
	6.1 API Performance for Single Executions

	7 Case Studies
	7.1 Analyzing a Single Execution
	7.2 Comparing Multiple Executions

	8 Conclusion
	References

