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INTRODUCTION

In a previous article, we described how the frequency-
dependent complex shear modulus and the time-depen-
dent shear stress relaxation modulus for a highly en-
tangled polybutadiene (PBD) melt can be obtained from
molecular dynamics (MD) simulations of an unen-
tangled PBD melt.1 In that work, we obtained from
simulations of an unentangled melt all properties re-
quired for the prediction of the dynamic shear modulus
with three reptation theories for the dynamics of en-
tangled melts of linear, monodisperse polymers.2–5

More recently, we showed how the high-frequency
(glassy) behavior of PBD can be obtained directly from
MD simulations.6 The calculated complex and stress
relaxation shear moduli for a PBD melt with a molec-
ular weight of 1.3 z 105 Da at 298 K were found to be in
excellent agreement with experimental data.1,6 In this
work, we investigate the ability of MD simulations of
the unentangled melt, in conjunction with reptation
theory, to reproduce the molecular weight and temper-
ature dependence of the viscoelastic properties of PBD.

Here we concentrate on the low-frequency/long-time
dynamics that determine the zero shear-rate viscosity,
a property that has been extensively studied for PBD as
a function of molecular weight and temperature.7–14

THEORY AND SIMULATIONS

Reptation Theory

The reptation theory of polymer dynamics in monodis-
perse, linear polymers, which originated with de
Gennes15,16 and was developed by Doi and Edwards5

into a full description of the linear and nonlinear rhe-
ology of entangled melts, leads to discrete spectra of
relaxation modes for the shear modulus given by

G~t! 5 O
p

N

GpexpS2
t
tp
D (1)

The complex shear modulus G*(v) is defined as a
Laplace transform of the time-dependent shear stress
modulus G(t):

G*~v! 5 iv E
0

`

e2ivtG~t!dt 5 G9~v! 1 iG0~v! (2)
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Reptation theories involve a linear superposition of p
5 1 to N Maxwell modes of strength Gp and relaxation
time tp. The sum is subdivided into several relaxation
processes in which the number of modes for each pro-
cess depends on the particular modification of the orig-
inal reptation model but generally includes Rouse and
reptation regimes with different expressions for Gp and
tp. Previously, we applied three reptation models to the
prediction of the dynamic shear modulus of PBD: (1)
the original Doi–Edwards theory (DE),2–5 (2) a modi-
fied version of DE (MDE) that accounts for fluctuations
of the chain contour-length,17 and (3) an additional
reptation model, presented by Milner and McLeish,18

that accounts for contour-length fluctuations. The full
formulation of these models is summarized in our pre-
vious work.1

Zero Shear-Rate Viscosity

The viscosity at a zero shear-rate or steady-flow viscos-
ity h0 is given as an integral over the entire time
domain of G(t):5

h0 5 E
0

`

G~t!dt 5 lim
v30

G0~v!

v
(3)

Although the original reptation model2–5 has success-
fully explained many characteristic features of the vis-
coelastic behavior of concentrated polymer solutions
and polymer melts, it does not give a correct quantita-
tive prediction for the molecular weight dependence of
the zero shear-rate viscosity. The original DE theory
predicts h0 to be proportional to the cube of the molec-
ular weight, h0 ; Mw

3 , whereas experimental evidence
indicates that for highly entangled chains, h0 ; Mw

a ,
where the empirical exponent a ranges from 3.14 to
4.0.19 It has been understood for some time that the
physical origin of the a . 3 scaling is that the relax-

ation of some portion of the stress occurs by faster
process(es) than reptation, for example, contour-length
fluctuations, which would decrease the viscosity rela-
tive to the asymptotic result.5,18,20 It is convenient to
express the zero shear-rate viscosity obtained from rep-
tation theories as

h0~n! 5 GNtd~n! z f~n! (4)

where n 5 N/Ne is the number of entanglements along
the polymer chain (Ne is the number of segments be-
tween the entanglements), td is a reptation relaxation
time proportional to n3, GN is the molecular weight
independent plateau modulus, and f(n) is a function
accounting for contour-length fluctuations. These func-
tions are outlined in Table I for the three reptation
models considered. Although all three models yield an
asymptotic molecular weight scaling of the viscosity
equal to 3, the models that include effects of contour-
length fluctuations yield a scaling exponent greater
than 3 in the molecular weight range of available ex-
perimental data, as shown in Table I.

Temperature Dependence of the Viscoelastic Relaxation

Experimental data for numerous polymers indicate
that the processes comprising the terminal flow region
and the glass–rubber transition change with tempera-
ture in a similar manner.12,19 One of the important
implications of this fact is the validity of the time–
temperature or frequency–temperature superposition
principle. Particularly suitable for the description of
this common temperature dependence is the shift pa-
rameter aT, which is given by21

aT 5 log
h0~T!

h0~TR!
(5)

Table I. Scaling Behavior for h0 from Reptation Theory

DE MDE Milner–McLeish

f~n! 5
h0

tdGN

p2

12
1
3 ~1 2 n21/2!3 1

1
15 n23/2

8
p2 z @1 2 sd~n!#2 O

p,odd

n 1
p4

log(h0)/log(Mw) slopea 3.00 3.22 3.07

Sd~n! 5

Î1 1 4S225
256 p3nD1/2

2 1

2S225
256 p3nD1/2

a Obtained from a power-law fit in a molecular weight range of Mw 5 103 to 106 Da. (See Figure 1)
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which relates the dynamics at temperature T to the
dynamics at reference temperature TR. The time–tem-
perature superposition principle allows us to determine
the influence of temperature on dynamics for all length
(and time) scales based on knowledge of the dynamics
on a single arbitrary length scale. A convenient length
scale to examine the temperature dependence of dy-
namics in MD simulations is that of the statistical
(Kuhn) segment. In the context of the Rouse model, the
temperature-dependent segmental frictional coefficient
or monomer friction coefficient z(T) is inversely propor-
tional to the center-of-mass diffusion coefficient D(T) of
the polymer molecule:5

z~T! 5
kBT

D~T!N (6)

where kB is the Boltzman constant and N is the number
of statistical segments comprising the chain. The diffu-
sion coefficient of unentangled polymer chains can be
determined straightforwardly from MD simulations for
temperatures well above the glass-transition tempera-
ture (Tg).22–24 For the majority of polymer melts, the
temperature dependence of the monomer friction coef-
ficient can be represented reasonably well by the Vo-
gel–Fulcher law:25

ln z~T! 5 A 1 B/~T 2 T0! (7)

where To is a Vogel temperature. The temperature-
dependent shift factor aT is given by

aT 5 log e ln z~T!/z~TR! 5 2C1

T 2 TR

T 2 TR 1 C2
(8)

which is the well-known Williams–Landel–Ferry
(WLF) equation, where C1 and C2 are constants char-
acterizing a given polymer.21

Simulation Methodology

The MD simulations of an unentangled PBD melt are
described in detail elsewhere.1,22,26,27 Briefly, we per-

formed MD simulations of a PBD melt, using a care-
fully validated quantum chemistry-based potential de-
scribed in previous publications.22,26 An ensemble of 40
random copolymer chains each consisting of 30 units
with a microstructure of 40%/50%/10% 1,4-cis/1,4-
trans/1,2-vinyl monomers was generated. Each chain
consisted of 114 backbone carbons, which is slightly
below the entanglement molecular weight for this poly-
mer.28 All the simulations considered here were per-
formed in an NVT ensemble, yielding an average pres-
sure of 1 atm. Simulations were performed at T 5 293,
323, 353, and 400 K.

RESULTS AND COMPARISON WITH EXPERIMENT

Molecular Weight Dependence

The zero shear-rate viscosity of PBD melts as a func-
tion of molecular weight at 298 K was calculated with
eq 4. Properties needed to determine the entanglement
molecular weight (chain dimensions represented by the
characteristic ratio, C`, and density of the polymer
melt, r) and the terminal relaxation time (entangle-
ment molecular weight and monomer friction coeffi-
cient) were determined from simulations of the unen-
tangled melt. These data are listed in the Table II. To
compare how different reptation models reproduce h0,
we performed calculations for all three models men-
tioned. The results are compared with experimental
data in Figure 1. Excellent agreement can be seen
between the Milner–McLeish model and experimental
results over the entire range of molecular weights,
whereas the MDE model underestimates the viscosity
for all molecular weights of PBD. The original DE
model exhibits better agreement with experimental

Figure 1. h0 as a function of the weight-average mo-
lecular weight (Mw) for PBD calculated with three rep-
tation models and compared with experimental data.

Table II. Properties of PBD Chains as Functions of
Temperature (T) Obtained from MD Simulations

T (K) D(T) (Å2/ps) r (kg/m3) C`

tR
a

(ns)

293 3.5 z 1024 920 5.44 126.59
323 1.2 z 1023 900 5.4 32.55
353 3.2 z 1023 880 5.45 14.24
400 7.5 z 1023 851 5.47 6.07

a tR is end-to-end vector relaxation time of the polymer
chains (Rouse time).
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data at higher molecular weights, where the contour-
fluctuation contribution becomes less important,
whereas at lower molecular weights, it somewhat over-
estimate the viscosity, consistent with a comparison of
the DE theory with other empirical data.5,17 The supe-
riority of the Milner–McLeish model is consistent with
the better agreement obtained with the experimental
complex shear modulus for PBD in our previous work.1

Temperature Dependence

Figure 2 shows the monomer friction coefficient z(T)
obtained from the self-diffusion coefficient of the un-
entangled chains with eq 6. A fit of the Vogel–Fulcher
equation, shown in Figure 2, yields To 5 135 K. This
value is in a good agreement with that obtained for
local dynamics from simulations of PBD29 and the
experimentally measured Tg of 181 K.19 In Figure 3,
the empirical shift factors obtained from experimen-
tal measurements of viscosity of PBD melts30 for a
variety of molecular weights are shown. Values of aT

obtained from a WLF fit (eq 8) to the monomer fric-
tion coefficient from simulation are in good agree-
ment with the experimental values over the entire
temperature range, except for the low-temperature
region. At temperatures less than 210 K, aT predicted
from MD simulation starts to deviate from experi-
mental data. This discrepancy may be due to (1) an
error in the WLF extrapolation obtained from simu-
lation due to statistical uncertainties in the monomer
friction coefficient obtained from simulation, (2) a
small difference in Tg between the low molecular
weight ensemble used in the simulations and higher
molecular weight systems studied experimentally,
(3) an imperfect description of nonbonded and con-
formational energetics provided by the potential

function, and/or (4) deviation from WLF behavior
near Tg.

CONCLUSIONS

The quality of agreement between simulation and ex-
periment for the molecular weight dependence of the
viscosity and temperature-dependent shift factor for
PBD, along with the previously reported agreement for
the complex shear modulus for an entangled PBD melt,
is strong evidence that MD simulations of unentangled
melts using high-quality, validated potentials, in con-
junction with reptation theory, can be used to predict
the linear viscoelastic properties of polymer melts over
a wide range of molecular weights and temperatures.
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