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I. Introduction
While accurate quantum chemistry based potentials,1

improved simulation algorithms, and faster computers
have made accurate calculation of chain dynamics in
unentangled polymer melts from molecular dynamics
simulations possible,2-5 direct calculation of the vis-
coelastic properties of entangled polymers remains well
beyond the capability of even the most powerful com-
puters. Encouragingly, polymer melt dynamics of chains
below the entanglement length can be represented
reasonably well by the Rouse model6,7 while the molec-
ular theory of viscoelasticity of Doi and Edwards7-11
based on the reptating chain model of de Gennes12 has
proven successful in describing entangled melts. Until
now, the structural, thermodynamic, and dynamic
properties required by these models have been obtained
exclusively from experiment. In this paper we utilize
the results of molecular dynamics (MD) simulations of
an unentangled polybutadiene (PBD) melt in the pre-
diction of the linear viscoelastic response of an entangled
melt and compare the calculated complex shear modulus
with experiment.
II. Molecular Dynamics Simulations
We performed MD simulations of a PBD melt using

the quantum chemistry based potential described else-
where.5,13 An ensemble of 40 random copolymer chains
each comprised of 30 units with a microstructure of 40%/
50%/10% 1,4-cis/1,4-trans/1,2-vinyl monomers was gen-
erated.5 Each chain consisted of 114 backbone carbons
(BD114), which is slightly below the entanglement mo-
lecular weight for this polymer.14 After equilibration,
constant temperature and density sampling trajectories
of 30, 60, and 130 ns were generated at 353, 323, and
293 K, respectively. An extensive comparison at 353 K
with NMR spin-lattice and neutron spin-echo measure-
ments performed on the same molecular weight mate-
rial revealed that the MD simulations using the quan-
tum chemistry force field accurately reproduce the local
and chain dynamics of the unentangled PBD chains.5,15
III. Reptation Models
To obtain the time-dependent shear stress modulus

G(t) and frequency-dependent complex shear modulus

G*(ω) for entangled melts, specifically BD9140 (130 000Da) for which experimental data exist, we have em-
ployed three reptation models: (i) the original reptation
model of Doi and Edwards7-10 (DE); (ii) a modified
version of DE that accounts for fluctuations of the chain
contour length11 (MDE); (iii) an additional reptation
model that accounts for contour-length fluctuations
presented by Milner and McLeish.16 The principal
relationships used in these models as well as crossover
functions between dynamic regimes are outlined in
Tables 1 and 2. These models require only a few
parameters for calculation of G(t) andG*(ω), specifically
the Rouse time τR, the number of bonds between
entanglements Ne, the plateau modulus GN, and a
glassy modulus G∞, all of which can be obtained directlyor indirectly from simulations of unentangled melts, as
demonstrated below.
Rouse Time and the Monomer Friction Coef-

ficient. The fundamental relaxation time in the rep-
tation model is the Rouse time τR given by7

where ú is the monomer friction coefficient, N is the
number of backbone bonds in the chain, 〈R2〉 is the
mean-square end-to-end distance, and T is the absolute
temperature. The monomer friction coefficient is the
only dynamic parameter in both the Rouse and repta-
tion models; it expresses the effective medium viscous
force acting on a monomer per unit velocity.
Graessley17 found that ú can be determined from the

measured viscosity of low molecular weight polymers,
yielding reasonable agreement with experiment for the
diffusion coefficient of high molecular weight polymers.
These results indicate that ú is not strongly dependent
upon the polymer chain length. Hence, we neglected any
molecular weight dependence of ú. For unentangled
chains, the Rouse model yields the monomer friction
coefficient as7

where D(T) is the temperature-dependent self-diffusion
coefficient determined from the mean-square center-of-
mass displacement of the unentangled polymer chains.
For BD114, τR and D(T) were found to be in excellent
agreement with experiment5 and yielded consistent
values for the monomer friction coefficient. The Rouse
time for a polymer of any molecular weight (entangled
or not) can be determined from the relationship7
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where τR
0 and N0 are the Rouse time and number ofbackbone bonds for the unentangled reference system.

Plateau Modulus and the Number of Bonds
between Entanglements. The value of the plateau
modulus GN for entangled polymeric systems is givenas7

whereMe is molecular weight between entanglements,M0 ) M/N is the molecular weight per backbone bond,
and F is the melt density. In the reptation model,
topological constraints due to entanglements with neigh-
boring chains are considered to form a tube of diameter
a enclosing each chain. The quantity a2 also represents
the mean-square distance between neighboring en-
tanglements along the chain. Hence, the number of
entanglements n of a chain of N monomers can be
written as7,14

and number of monomers between entanglements Neas

The tube diameter cannot be extracted directly from
simulations of unentangled chains, but simple scaling
arguments indicate that it should be proportional to the
packing length P defined as14

where M is the polymer molecular weight. It has been
shown empirically for a large variety of polymers that
a ) KP where the proportionality coefficient (K ) 17.68)
was found to be nearly independent of temperature.14
Combining this expression for the tube diameter and
eqs 4-7, one easily obtains the following relationships
for the number of bonds between entanglements and
for the plateau modulus:

Table 1. Time-Dependent Shear Stress Moduli in Different Regimes for Different Reptation Modelsa

a N, Ne, and n are the same as in eq 6; τA ) n-2τR and τR is given by eq 1; GN and G∞ are given by eqs 9 and 14, respectively. b References7-10. c References 11 and 21. d Reference 16. e The same for all three models, refs 21 and 24. f τ0 is given by eq 12. g A(p) ) 1, if p e n,
and A(p) ) 1/3, if p > n.
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where the required properties (F, 〈R2〉/N (see below)) can
be obtained from simulations of unentangled chains.

Table 2. Complex Shear Stress Moduli in Different Regimes for Different Reptation Modelsa

a All notations and crossover functions are the same as in Table 1. b References 7-10. c References 11 and 21. d Reference 16. e The
same for all models, refs 21 and 24. f R(ω) ) [1+(ωτ0)2]-1/2, φ(ω) ) tan-1(ωτ0).
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End-to-End Distance and Characteristic Ratio
of the Polymer Chains. The mean-square end-to-end
distance for polymer melt chains of high molecular
weight can be calculated if the characteristic ratio C∞of the polymer is known using the relationship

where b2 is the mean-square bond length in the polymer
backbone. C∞ can be estimated from simulations of
relatively short chains by calculating the characteristic
ratio as a function of 1/N and then linearly extrapolating
to 1/N f 0.18 The value of C∞ ) 5.44 as obtained from
simulations of BD114 is in a good agreement with
experiment (C∞ ) 5.4).19 This C∞ yields a molecular
weight between entanglements for PBD of Me ) 1634
Da (Ne ) 126) close to the reported experimental value
of 1543 Da.14
IV. High-Frequency Regime (Glass Transition)
The complex shear modulus G*(ω) is defined as a

Fourier transform of the time-dependent shear stress
modulus G(t):7

The Rouse/reptation models do not account for the
elastic reaction of the melt at high frequency. At high
frequencies (ω . 1/τR), it is observed experimentally thatthe loss modulus G′′(ω) manifests a maximum that
cannot be described by the reptation or Rouse
approach.20-23 Many models have been derived for
calculations of this (the glass relaxation) process.20-24
We found the Davidson-Cole approach24 to be the most
appropriate for the current treatment because it can be
utilized in a form that requires no adjustable param-
eters when the characteristic time τ0 for this regime istaken to be21

and the Davidson-Cole stretching exponent is taken as
1/2. Importantly, the adequacy of this model was dem-onstrated for several polymers including PBD.21 We
have taken the dynamical segment size for local motions
bdyn to be the static statistical segment length for PBDof 8.05 Å. The loss modulus G′′glass(ω) given in Table 2
exhibits a maximum at frequency ωM ) x3/τ0.To estimate the magnitude of the glassy modulus G∞from properties determined from simulations, we have
applied an extension to the Rouse theory that takes into
account high-frequency response, introduced by Mar-
vin.20,25 One of the remarkable results of the theory is
that it attributes the location of the maximum of G′′(ω)
on frequency axis to the value of G∞ by the followingrelationship

This expression yields a quite simple expression for G∞after term rearrangement and substituting eqs 12 and
4:

V. Results and Discussion
The original DE,7-10 modified DE,11,21 and Milner-

McLeish16 reptation theories utilize the same set of
input parameters obtained from MD simulations. In
Figure 1 we show the time-dependent shear modulus
G(t) for BD9140 (130 000 Da) at 298 K. Predictions wereobtained using the properties obtained from simulations
of the BD114 melts, specifically the Rouse time, chaindimensions, and density of the bulk polymer. As MD
simulations were performed at 293, 323, and 353 K, the
required parameters for 298 K were obtained by inter-
polating corresponding values versus temperature. As
one can see, the models yield similar results for G(t),
with the variance becoming larger in the long-time
regime where time approaches the disentanglement
time τd. It can be seen that the time-dependent shearstress modulus calculated utilizing the modified DE and
Milner-McLeish approaches relaxes faster than G(t)
obtained by applying the original DE method. This
difference is in agreement with Doi’s considerations of
tube length fluctuations.7,11 Tube (or contour) length
fluctuations of a polymer chains have a significant effect
on polymer dynamics by reducing τd. An “effective”
scaling of the longest relaxation time with respect to
chain length is shown in Table 1 for all three models.
Although the contour length fluctuations become neg-
ligible for very high molecular weights, their effect is
not negligible for usual values of N (the order of 10 000
for common commercial polymers). In the case of BD9140(n ≈ 70), the ratio between τd calculated from the MDE
and DE models is about 0.77, while the same ratio for
the Milner-McLeish and DE models is 0.74. At short
times t ≈ τ0 contributions from GRouse(t) are essentiallythe same for all models and yield a slope of-1/2 in accordwith the theory.7 As one can see, this Rouse behavior is
perturbed by the glass relaxation contribution Gglass(t),which starts to dominate at times smaller than τ0.We also calculated the components of the complex
frequency-dependent shear stress modulus G*(ω) for
BD9140 at 298 K, which is shown in Figure 2. Here wecompare our predictions to the experimental data of
Colby et al.26 on reasonably monodispersed PBD chains
(Mw/Mn < 1.1) of the same molecular weight and with
the microstructure of 35.5%/54.5%/10% 1,4-cis/1,4-trans/
1,2-vinyl monomers. As can be seen, simulations of the
unentangled melt yield the structural, thermodynamic,
and dynamic properties required by the reptation model
to yield good agreement with experiment for the linear
viscoelastic properties of the higher molecular weight
polymer.
The log-log plot of the real and imaginary compo-

nents of G*(ω) can be clearly divided onto three zones:
the terminal or flow zone from zero frequency to ω )
1/τd (10-11 ps-1), the transition or plateau zone coveringfrequencies between the terminal peak and the mini-
mum in the loss modulus G′′(ω), and high frequency or
glass transition zone starting at ω ) 1/τA (10-6 ps-1).In the terminal zone where disentanglement occurs,
G′(ω) and G′′(ω) are proportional to ω2 and ω, respec-
tively. All models yield the right slope in this regime as
shown in Figure 2, but the MDE model shows faster
relaxation (occurring at higher frequencies) than the DE
or Milner-McLeish models; the latter models are in
better agreement with experimental data. In the transi-
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tion zone the reptation contribution to the storage
modulus G′rept(ω) leads to the plateau in G′(ω), which
is similar for all three models applied. The main
difference between the models is manifested in the loss
modulus G′′(ω) plot in this frequency region. The Rouse
contribution G′′Rouse(ω) leads to a ω-1/2 scaling of G′′(ω)
as shown for the original DE model. But the slope of
-1/2 is much steeper than experimental data with theslope about -1/4, as shown in Figure 2. Such deviationfrom Rouse behavior was found not only for PBD but
also for a number of other polymers.16,20-22 Agreement
with experiment is improved for the models that account
for contour length fluctuations. The fast-relaxing contour-
length fluctuations or retraction part of G′′(ω), contrib-
uting in this intermediate frequency range, gives rise
to ω-1/4 scaling for the both MDE and Milner-McLeish
models.16 Figure 2 reveals that the Milner-McLeish
approach gives a better representation of the G′′(ω) in
the transition zone than the MDE model.
As was mentioned before, we have applied the same

Davidson-Cole expressions for Gglass(t) and G*glass(ω)for all models (Tables 1 and 2) in order to describe the
behavior of the polymer at short times or in the high-
frequency range. Thus, differences between models

vanish as frequency approaches 1/τ0. The glass transi-tion strongly influences dynamic mechanical behavior
for frequencies greater than 10-4 ps-1. The high-
frequency response of PBD is not well represented by
the Rouse model, as shown in Figure 2. The Davidson-
Cole term of G*(ω) gives rise to proper scaling of the
storage and loss moduli.
VI. Conclusions
The main goal of the present work is to show a that

it is possible to predict the linear viscoelastic behavior
of an entangled polymer melt utilizing properties ob-
tained entirely from MD simulations, which to the best
knowledge of the authors has never been attempted. We
have demonstrated a newmethodology for extrapolation
of properties of short unentangled polymer chains to the
highly entangled regime based on extant theoretical
reptation models and semiempirical relations. We have
also demonstrated that MD simulations can be used for
testing of models of polymer viscoelasticity by providing
physically meaningful and accurate quantities needed
for the parametrization of these models.
The combination of simulation and theory allows for

the accurate prediction of dynamic properties of polymer
melts on time and length scales many orders of mag-
nitude longer than are directly accessible to MD simula-
tions. The quality of agreement obtained between
simulation/theory and experiment is a consequence not
only of the accurate prediction of structural, thermody-
namic, and dynamic properties of the unentangled melt
resulting from use of a validated, quantum chemistry
based potential function but also of the validity of the
viscoelastic models employed. As there is nothing spe-
cific in this approach to PBD, MD simulations of similar
quality for unentangled melts of other polymers can be
expected to yield accurate viscoelastic properties. Im-
provement in predicted properties at high frequency/
short time should be possible by direct calculation of
the modulus in this regime from simulation, eliminating
the need for the approximate relationships for the glass
relaxation utilized here. Time-temperature superposi-
tion should allow us to extend prediction of linear
viscoelastic properties from simulations to much lower
temperatures where time scales for the glass relaxation
behavior and monomer friction coefficient (chain diffu-
sion) are too long for direct determination from simula-
tion.
In the nearest future we will present a continuation

of this work where the methodology of direct calcula-
tions of high-frequency (glassy) modulus using the
Green-Kubo method will be discussed.
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