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Abstract—In recent years there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation
therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical
workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization
software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing
devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson’s disease patients who received
DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic
response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile
to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode
contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen
from the software versus the stimulation protocol that was chosen via clinical practice (independently of the study). Lastly, we compared
the amount of time required to reach these settings using the software versus the time required through standard practice. We found that
the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically
less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used
to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas
other than DBS.

Index Terms—Biomedical and Medical Visualization, Mobile and Ubiquitous Visualization, Computational Model, Clinical Decision
Making, Parkinson’s Disease.

F

1 INTRODUCTION

N EUROMODULATION is the alteration of neural activity
by means of implanted devices. Most neuromodulation

systems consist of a multi-electrode lead that is surgically
implanted in the brain, and is connected to a subcutaneous
implantable pulse generator (IPG) in the torso. The basic
concept behind neuromodulation is that stimulation-induced
current flows from electrode(s) through surrounding brain tissue,
which in turn causes a therapeutic functional response. One
important example of this approach is deep brain stimulation
(DBS), which is an established therapy for treating the motor
symptoms of Parkinson’s disease (PD) [18], [36], as well
as a variety of other disorders [35]. The Medtronic DBS
system consists of an electrode lead with four cylindrical
contacts (each 1.27 mm diameter, 1.5 mm height, 1.5 mm
or 0.5 mm spacing between contacts) and an IPG that delivers
continuous stimulation (see Figure 2). The electrode location
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is chosen during surgery based on brain anatomy, imaging
data and intra-operative electrophysiology. The stimulation
parameters are selected post-operatively, and are titrated to
provide good therapeutic benefit with minimal side effects.
A persistent problem with neuromodulation techniques such
as DBS has been the selection of stimulation settings for
optimal response. To achieve this, patients must often undergo
lengthy and repeated clinic visits to determine the best settings.
A study by Hunka et al. [24] found that the total time spent
programming the stimulator and assessing DBS patients ranged
from 18-36 hours per patient. Part of the reason for this length
of time is the amount of trial and error involved in choosing
the best stimulation protocol without any visual guidance on
the location of the electrode or the effects of stimulation on
nearby brain tissue.

Neurologists and neurosurgeons are experts at solving the
classic “black box” problem where the practitioner can study
the inputs and outputs to a system but cannot see within
it. In the application to neuromodulation, the input is the
stimulation protocol, the output is the patient response and
the “black box” is the patient. This approach has persisted for
decades, primarily because the computational tools necessary
to visualize the effects of stimulation were not available. While
significant progress has been made over the last few years
in the sophistication of computational models available for
neuromodulation, very few of these have been introduced
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Fig. 1. A patient-specific model of deep brain stimulation (DBS) is used to show the location of the electrode lead
relative to the surrounding nuclei in a Parkinson’s disease patient. A model-predicted volume of tissue activated (VTA)
during DBS (yellow part) is shown surrounding the distal electrode contact. With this model it is possible to view the
overlap between the VTA and nearby anatomical structures, which is a key feature in clinical decision making when
choosing stimulation settings.

Fig. 2. Overview of the DBS system. The DBS electrode
is implanted in the brain during stereotactic surgery.
The electrode is attached via an extension wire to the
IPG, which is implanted in the torso. The entire system
is subcutaneous and is designed to deliver continuous
stimulation for several years at a time.

into clinical practice for several possible reasons: complex
software that lacks a simple interface; complex visualizations
that are difficult to interpret; and new software is perceived
as increasing the demands on clinicians who are often under
intense time pressure. As a result, the approaches that tend
to persist in the clinical application of neuromodulation are
reductionist methods where empirical data are used to select
stimulation protocols from the tens of thousands that are
available. However, evidence-based practices for this approach
have not yet emerged, which is one of the main reasons why
selection of stimulation parameters is more of an art than a
science.

In this paper we set out to demonstrate how patient-specific
models of DBS can be combined into a decision support system
that can be easily used at the point of care. We hypothesized
that ImageVis3D Mobile would enable clinicians to choose
DBS parameters that were comparable to standard of care but
in much less time. Furthermore, simplified interfaces common
to such platforms would lower the barrier to entry and be
more readily accepted. To test this we have chosen to use
devices that clinicians are accustomed to in their daily routines:
their smartphones. In the current setting we use iPhone class
hardware (this includes iPod touch and iPad devices), but the
concepts presented here are in no way restricted to this platform.
We have implemented a mobile visualization environment called
ImageVis3D Mobile. This environment consists not only of
interactive volume and geometry rendering implementations,
optimized for OpenGL ES 1.1 and OpenGL ES 2.0 mobile
devices, but in particular it also contains means of receiving
and exploring data, as well as sharing it between devices.
Both renderers can coexist, enabling seamless interleaving of
volumes and opaque or transparent geometry. To transfer data to
a device we utilize techniques from instant messaging systems
that allow the end user to view a new dataset with literally a
single touch.

We tested our hypothesis by asking five clinicians who
have extensive experience with DBS programming to choose
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stimulation settings using patient-specific computational models
of DBS on ImageVis3D Mobile. The feasibility and accuracy
of the computational models has been reported in previous
studies (see Section 2.1). The DBS settings and time required
were compared to retrospective data that was gathered during
standard clinical care (independent of the study). We show
that mobile visualization of patient-specific DBS models have
compelling features for clinical decision making.

The remainder of this paper is structured as follows: The next
section presents related work. Section 3 then gives an overview
of the evaluation and the motivation behind it. In Section 4,
we briefly outline the functional details of our visualization
environment, especially focusing on the subsystems relevant for
the evaluation. Section 5 and Section 6 describe the evaluation
in detail and discuss the results achieved. We conclude with
predictions based on our results and possible future directions.

2 RELATED WORK

Over the last few years a body of work has emerged on computa-
tional methods to predict the effects of neuromodulation therapy.
However, it has proven very difficult to create a visualization
system that can be integrated into clinical care.

2.1 Computational Models of DBS
Recently, computational models have been developed to predict
and visualize the effects of DBS on an individual patient
basis [3], [8], [9], [10], [11], [28], [30]. Briefly, finite element
models that are derived from patient medical image volumes
are used to determine the location of the electrode in the brain,
calculate the bioelectric fields produced during stimulation, and
predict the neural response to the applied electric field. The
primary outcome of this approach is a model-predicted volume
of tissue activated (VTA) (Figure 1), which is the region of
neural tissue that is affected by DBS. These models have been
validated by comparing model-predicted outcomes to clinically
measured responses in PD patients [4], [5], have been used
retrospectively and prospectively to determine how activation
of certain anatomical regions is correlated with motor [6], [27]
and neuropsychological [7] outcomes in PD, and have been
shown to guide clinicians to select stimulation parameters that
improve cognitive and motor outcomes [21]. However, two
problems persist:

• DBS programming is often performed without any visual
guidance on the location of the DBS electrodes or the
effects of stimulation on surrounding structures.

• The software required to perform such visualization can
require significant training and is not widely available in
a clinical setting.

Hence, there is a need for a simple, intuitive application
that can visualize the effects of DBS on an individual basis to
facilitate clinical decision making.

2.2 Visualization on Mobile Devices
In the past two decades texture-based volume rendering on
graphics hardware has positioned itself as a powerful tool
for interactive visual analysis of volumetric datasets. While

early volume rendering systems required supercomputers
and expensive graphics subsystems, over the years hardware
requirements have become more and more relaxed. Nowadays,
commodity PCs and even notebooks are sufficient to visualize
even extremely large datasets interactively.

In parallel with commodity hardware, mobile devices have
caught the attention of the visualization community as another
viable and interesting platform. Even before today’s powerful
mobile devices were available Encarnação et al. [19] discussed
the general issues in using mobile devices to obtain and access
data. Later Paelke et al. [33] discussed user interface design
aspects for mobile devices. More recently, Chittaro [15] focused
on the general issues of visualizing content on mobile devices.

When capable mobile devices became available, Chang
and Ger [13] implemented a ray-caster for opaque geometry
on PocketPC devices. They argued that the performance of
ray-casting and ray-tracing approaches is dominated by the
number of pixels, and therefore mobile devices, where hardware
capabilities are expected to grow but screen sizes will remain
relatively stagnant, are a perfect fit for these approaches. Their
system realized a client-server model, whereby desktop systems
could be utilized to accelerate rendering on the mobile device.
Burigat and Chittaro [2] described a VRML-based system
for visualizing what a user sees as they roam a city. Lluch
et al. [26] presented a client/server surface rendering system.
A server holds a scene graph and uses it, along with client
view information, to select an appropriate resolution from a
multi-resolution representation on disk. Scene access is done
in an out-of-core fashion, allowing very large models to be
visualized. Even when rendering is done on the server, for large
data a single machine may not be able to provide updates to the
mobile device quickly enough for mobile users. For this reason
Lamberti and Sanna [25] introduce a Chromium-based [23]
rendering system which encodes the data as MPEG and streams
it to be decoded on the mobile device. With motion estimation
being the most expensive process of MPEG4 encoding, Cheng
et al. [14] are able to significantly improve this step by directly
retrieving motion vectors from information available in the
rendering pipeline. Their algorithm can be implemented on a
GPU, further increasing encoding speed.

Most closely related to our rendering subsystem is a
contribution by Moser and Weiskopf [31]. In particular our
OpenGL ES 1.1 volume renderer is based on their findings.
Park et al. [34] developed a system for collaborative medical
visualization, using parallel server-based volume rendering
techniques. Very recently Meir and Rubinsky [29] investigate
the use of mobile devices as a cost-effective component of a
distributed system for performing ultrasounds. Their system
combines simple-to-use, inexpensive ultrasound devices at the
client site, which generate ultrasound data. The data is sent
to a server which performs volume rendering at pre-defined
camera angles, and sends the images back down to mobile
devices for analysis in the field.

3 OVERVIEW

In this paper, we evaluate the deployment of our mobile
visualization system ImageVis3D Mobile in a real-world
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environment to support clinical decision making in DBS for
PD. Using our system, clinicians were able to make decisions
similar to current standard practice but in substantially less
time. This improvement was attributable to the use of patient-
specific models in the interactive visualization system, but
the system also conferred indirect benefits. As we will show,
the system provided a framework for comparison of alternate
programming strategies employed by different users, which is a
significant ongoing subject of debate in the clinical application
of DBS. In addition, the system has several attributes which
are attractive for clinical workflow.

Under the current standard of care for DBS, patients return
to the clinic a few weeks after implantation of the system for
their initial programming, which is performed an outpatient
setting such as an exam room. Each center and practitioner
performs this process slightly differently, but the general trend
is to first perform a monopolar review with each electrode
contact as the cathode and the IPG case as the anode. Common
initial stimulation settings are 60 µsec and 130 Hz, while a
range of voltage amplitudes are tested. If satisfactory results
are not achieved then more complex stimulation protocols are
considered. This process can include substantial trial and error,
which is partly attributable to the lack of visualization of the
patient anatomy or the effects of stimulation.

In this study we evaluated the accuracy and speed of DBS
programming using ImageVis3D Mobile compared to standard
of care. To do so we identified four Parkinson’s disease
patients who previously received DBS leads implanted in the
subthalamic nucleus (STN) and who were good responders
to the therapy. We then constructed patient-specific models
of DBS and provided them to the clinicians in ImageVis3D
Mobile. The clinicians were blinded to the actual identity of
the patients, and were asked to use ImageVis3D Mobile to
determine the best electrode contact to use for monopolar
stimulation, as well as the stimulation amplitude that would
provide the best therapeutic benefit with minimal side effects.
The values chosen in the study were compared to those used
for each patient’s clinical DBS settings, which were determined
through standard medical care outside of this study. Lastly, we
determined the amount of time necessary to program patients
using ImageVis3D Mobile compared to the time required for
standard clinical practice, which was estimated using data
gathered from the patients’ medical records.

4 VISUALIZATION SYSTEM

ImageVis3D Mobile is a mobile, interactive visualization system
for volume and geometry data, implemented for Apple’s iOS
software platform. iOS runs on a large number of devices and is
the platform of choice for our target users in the evaluation, who
are familiar with the user interface and interaction metaphors
the platform provides. As the hardware specifications of iPhone,
iPod and iPad reflect the design of many other mobile devices,
our findings in this evaluation should be applicable to a wide
range of mobile hardware.

In the following subsections we outline the main components
of ImageVis3D Mobile, the rendering system and the data
transfer. The focus is on functionality relevant for the evaluation

rather than on technical details. We conclude with a description
of the evaluation datasets rendered in ImageVis3D Mobile as
seen by the clinicians.

4.1 Rendering
ImageVis3D Mobile provides volume and geometry rendering
capabilities, which have been implemented to support both
OpenGL ES 1.1 and OpenGL ES 2.0. Due to the lack of
support for 3D textures in OpenGL ES , three axis aligned
stacks of 2D textures are used to access volumetric data on
the GPU as described by Hadwiger et al. [22]. The volume
renderer implements manual trilinear filtering and volumetric
lighting in OpenGL ES 2.0.

A key feature of ImageVis3D Mobile is furthermore to
interleave multiple datasets and render them together. To
interleave volumes and geometry, semi-transparent geometry
is sorted in back-to-front order in each frame and inserted
in-between the volume slices for correct compositing. This
feature is required for our evaluation where geometric data of
a patient’s nuclei including the placed electrode shaft needs to
be overlapped with VTAs which indicate the effects of DBS.

It is worth noting that on touch enabled screens such as
our target platform, better frame rates are required than on
traditional mouse operated systems. This is due to the fact that
the user expects the data to move in sync with their finger,
otherwise the fingers and the dataset feel decoupled. Therefore,
we provide a number of methods to increase speed during
periods of interaction, such as a reduction of the render target
resolution, the texture sampling quality, the volume quality,
and an option to disable lighting on interaction. In addition to
these means in the volume renderer the precision of visibility
sorting can be reduced to speed up the geometry rendering as
well.

4.2 Data Transfer
ImageVis3D Mobile is the mobile counterpart of the desktop
visualization system ImageVis3D, which builds on the out-of-
core volume rendering system library Tuvok as described by
Fogal and Krüger [20]. To prepare data for rendering on the
mobile device we extended Tuvok’s modular IO subsystem with
the capability to write out ImageVis3D Mobile data files. This
allows our pipeline to accept a number of volume and geometry
formats and convert those automatically into ImageVis3D
Mobile data. Amongst those formats are SCIRun [17] volumes
and geometry in which the input data for this survey is stored.

Transfer of these datasets to the device can be done in
several ways. In our particular use case, simple data transfer
not requiring any technical expertise is a key requirement.
Therefore, transfer via a direct cable link from a data server
is not desirable for several reasons. First, it requires direct
access to the server, which is most likely located in a computer
laboratory away from the point of care. Second, this solution
requires expertise on how to connect a device to the server,
and then how to use additional software to select and transfer
datasets. To avoid these issues, ImageVis3D Mobile uses instant
messaging technology coupled with a wireless connection to
access data on a server.
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Fig. 3. Patient thalamus (green), subthalamic nucleus
(red), and DBS lead with four electrode contacts (a).
Volume of tissue activated (VTA) (b).

Our data distribution system thereby builds on a particular
technology of the iOS called Push Notifications. Push Noti-
fications are Apple’s means of being able to send messages
to devices without the need to constantly run custom receiver
software on the device. Instead, a single daemon runs and
distributes instant messages to any application that supports
the feature. While Push Notifications are only available on iOS
devices, our general concept can be applied to other mobile
devices as well, it would just require ImageVis3D Mobile to
be run in daemon mode, listening on a network port.

To distribute data, we keep track of all devices and datasets
with a central management application, which can be used
to select datasets and notify registered devices about their
availability. Notifications are initiated by an operator at the
server, and the notification process can be automated so certain
users automatically receive new datasets attributed to them.
Notifications are passed from the server to the Apple Push
Notification Service, which delivers them via an accredited and
encrypted IP connection to a device directly if it is available
or as soon as it comes online [1]. When the notification is
delivered, a dialog window appears on the mobile device
allowing the user to accept or decline the download of the data.
Accepting a download will automatically start ImageVis3D
Mobile and initiates the download and display of the data.
Note that the whole process requires just a single tap from
the end user who is only interested in reviewing the datasets.
Should a user decline the download of a new dataset in the
notification dialog he can still access it later. For this purpose,
ImageVis3D Mobile provides a list menu where all datasets
available for this client are listed, tapping one or multiple
of those list entries initiates the download of the datasets to
the mobile client similar to accepting them in the notification
dialog. This way, a user can access all datasets at a later point
without requiring another push notification. Also, datasets can
be exchanged between devices with a bluetooth connection
through a similar list menu. In all cases, the user’s single point
of interaction is ImageVis3D Mobile.

4.3 Evaluation Datasets
Once the datasets have been transferred to a device, they
are ready for inspection. For our evaluation, data for each
patient was divided into a geometric component (see Fig-
ure 3a) and a volumetric component (see Figure 3b). The

geometric component consists of surface representations of
nearby anatomical nuclei (thalamus and subthalamic nucleus,
see labels in Figure 4), as well as the DBS lead and electrode
contacts. We deliberately chose geometrically simple surfaces
of common anatomical structures that mimicked the types of
atlas representations that physicians are likely to be familiar
with. We constructed the anatomical surfaces by coregistering
each patient MRI to an atlas brain using a 3D nonlinear
warping algorithm [16]. Surfaces for the DBS lead and electrode
contacts were constructed using SCIRun [17]. The volumetric
component is the VTA. In total, 36 VTAs were provided for
each patient (9 for each electrode contact, representing a range
of voltages from -1V to -5V, all at 130 Hz, 60 µsec pulse width).
While indeed special desktop software is required to produce
ImageVis3D Mobile-compatible visualization data from raw
input, this process can be automated and is independant from
ImageVis3D Mobile’s simplified interface. Figure 4 shows both
components interleaved in ImageVis3D Mobile. Annotations
were provided to distinguish between patients (the geometric
component, top right), as well as to convey the VTA (top left).
DBS stimulation settings for the VTA were also provided. Text
size can be adapted by the user.

This combination of visualization components was ideally
suited to our evaluation for several reasons. First, the use of
geometric and volume components allowed us to visualize
each in their native format as generated in SCIRun. Second,
the text annotations provided details necessary for the users to
know which patient and stimulation settings are being evaluated.
Third, the overlay of volume and geometry data allowed the
user to quickly determine the amount of overlap between the
VTA and nearby anatomical structures, which is the feature
that most strongly guides their decision making. Lastly, the
volumetric format is highly extensible, and should allow us to
easily incorporate additional dimensions of information (see
Section 7).

5 EVALUATION

In order to evaluate the utility of ImageVis3D Mobile for
clinical decision making, we constructed patient-specific models
of four PD patients who were good responders to DBS.
Models were created in SCIRun [17] using previously described
methods [5] and subsequently transferred to ImageVis3D
Mobile. We provided these models to five clinicians (three
movement disorders neurologists, one neurosurgeon and one
nurse) who have extensive experience with programming DBS
systems for PD patients. Each clinician was asked to select
DBS parameters using ImageVis3D Mobile on an iPad without
knowing the identity of the patients. We then compared their
selections to data collected via standard of care, along with
the amount of time required. Institutional Review Board (IRB)
approval was obtained prior to conducting the study.

5.1 Standard of Care

PD patients who were evaluated in this study received DBS
via standard care, independent of our experimental protocol,
as follows:
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Fig. 4. Interleaved view in ImageVis3D Mobile. The VTA
for -2.5V at contact 3 is shown for a specific patient.

1) Pre-operative motor and neuropsychological evaluation:
based on these evaluations the physicians a) determine
if the subject is a good DBS candidate, b) choose an
anatomical target for DBS implantation, and c) decide
whether the patient should receive unilateral or bilateral
DBS leads (one hemisphere or both hemispheres). In
this study we examined unilateral PD DBS patients with
DBS leads implanted in the subthalamic nucleus (STN).

2) Pre-operative imaging (magnetic resonance imaging
(MRI) and computed tomography (CT)): whole-brain
images are acquired to identify anatomical targets (MRI)
and to determine the position of the stereotactic frame on
the head (CT). The neurosurgeon loads the MRI and CT
into a surgical planning system to determine the entry
location, trajectory and depth of the DBS lead.

3) DBS surgery: patients undergo stereotactic surgery to
implant the DBS lead. Briefly, a burr hole is drilled in the
head and an incision is made in the dura. Microelectrode
recordings are acquired to confirm the target location
prior to implanting the DBS lead. Both microelectrodes
and DBS leads are precisely positioned using the stereo-
tactic frame and the surgical planning system. Once the
lead is implanted the patient is stimulated briefly in the
operating room to confirm therapeutic response (note that
the patient is awake for some portions of the surgery).
Following implantation of the DBS lead, the IPG is
implanted in the torso and connected to the lead using
an extension wire.

4) Selection of stimulation parameters: Four to six weeks

after surgery the IPG is turned on for the first time.
The clinician works with the patient to determine the
stimulation parameters that provide the best therapeutic
response with minimal side effects. This is done through a
process of activating each of the four individual electrode
contacts and testing a range of stimulation parameters
(voltage, pulse width and frequency). This process is
usually performed over several visits to the clinic. The
patients examined in this study had an average of three
to four visits requiring over four hours of time with a
clinician to perform DBS programming.

In our study we compared the amount of time required to
perform initial programming (step 4 above) to the amount of
time required to choose stimulation parameters using IV3D. The
time required via standard care was estimated from retrospective
chart review. In addition, we compared the stimulation settings
chosen using each approach.

5.2 Training
Prior to the experimental protocol, each clinician was trained
as follows:

1) The clinician was informed of the objectives of the study.
2) They were shown an example dataset in ImageVis3D

Mobile on an iPad and the following interactions were
demonstrated: rotating, translating and scaling models
in the viewer; loading individual patient models of
anatomical nuclei and electrode location; overlaying and
selecting VTAs.

3) After the demonstration, the clinician was given the op-
portunity to have hands-on experience with ImageVis3D
Mobile.

The total training time was approximately 10 minutes for
each clinician.

5.3 Experimental Protocol
After training, the following experimental protocol was con-
ducted to evaluate ImageVis3D Mobile for DBS parameter
selection:

1) Patient DBS models were announced via push notifica-
tion and transferred automatically to an iPad running
ImageVis3D Mobile.

2) An individual patient model was loaded in ImageVis3D
Mobile. While the patients in our study were previously
treated by the clinicians involved in the ImageVis3D Mo-
bile evaluation, patients were anonymized and clinicians
were blinded to their identity. No identifying information
was provided other than a patient number, and it was
not possible to determine the patient identity from the
ImageVis3D Mobile visualization.

3) The clinician was asked to select the most appropriate
electrode contact for stimulation based on the location of
the DBS electrode relative to nearby anatomical nuclei
(thalamus and subthalamic nucleus).

4) VTAs were loaded for the chosen electrode contact,
starting with -1V amplitude. On-screen annotations
provided verification of stimulation settings.
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5) The clinician stepped through a range of VTAs from
-1V to -5V in 0.5V increments for the chosen electrode
contact. From these, the most appropriate voltage value
was chosen.

6) The clinician was allowed to choose a different electrode
contact and repeat the previous step if none of the VTAs
seemed appropriate.

These steps were timed on a per-patient basis.

6 RESULTS AND DISCUSSION
We tested our experimental protocol among five clinicians who
examined models for four PD DBS patients. We found that
the amount of time required to choose stimulation settings
was significantly faster using ImageVis3D Mobile compared
to standard clinical care. Selection of stimulation settings
required an average of 1.7±0.8 minutes per patient across
all clinicians, compared to an average of 4±1.4 hours required
for programming via standard of care to reach stable settings
with good therapeutic response (usually within three to four
clinic visits). In addition, we found that the stimulation settings
chosen using ImageVis3D Mobile were very similar to those
selected via standard of care. The voltages selected using
ImageVis3D Mobile were generally equal to or smaller than
the voltages selected using standard care (Table 1), and in
fact this is a trend that has been observed previously [21].
The active electrode contacts chosen using ImageVis3D Mobile
were either the same as or adjacent to the contact chosen using
standard care (Table 2). Prior studies have noted comparable
therapeutic benefit from more than one electrode contact [32].
Hence, we consider this degree of variability to be within the
range that is observed clinically.

Patient ID Standard Care IV3DM (Average)
1 4.1V 2.35±0.34V
2 2.3V 2.4±0.74V
3 2.5V 2.05±0.76V
4 2.2V 2.0±0.71V

TABLE 1
DBS voltages chosen with ImageVis3D Mobile versus

standard care.

Clinician Number
Patient ID Standard Care 1 2 3 4 5

1 C2 C2 C3 C3 C3 C3
2 C2 C2 C2 C1 C1 C1
3 C2 C1 C2 C1 C1 C2
4 C1 C2 C2 C2 C1 C2

TABLE 2
Electrode contact (C) chosen with ImageVis3D Mobile

versus standard care.

In addition, feedback on this system from clinicians has
been very positive. The user interface is intuitive, especially
for existing iPhone users. The ability to interactively visualize
patient models provides a level of understanding that is not
currently available. This is perceived as a welcome alternative to
the current process, and clinicians who have used this system

are optimistic about its long-range potential to provide the
optimal DBS therapy more rapidly than previously possible.
Hence, the salient features of this for clinical decision making
are the abilities to: easily retrieve data; view the DBS electrode
location relative to surrounding anatomy on an individual
patient basis at the point of care; view how the DBS-induced
VTAs overlap with nearby anatomical structures; interact with
the visualization using an intuitive touch screen interface.

In this study the clinicians were not provided with any
information on how VTAs should be selected relative to their
overlap with surrounding anatomical structures. In fact, the
verbal feedback they provided during the experiment indicated
slightly different approaches to parameter selection: three of
them tried to maximize VTA overlap with the STN; one
chose VTAs that were superior to the STN; two tried to avoid
VTA overlap with thalamus as much as possible. This reflects
ongoing discussion in the DBS community about optimal target
locations for stimulation, and we feel that this accounts for
some of the variance in our results. Hence, even with detailed
visualization of patient-specific data, there is not currently a
consensus on the best stimulation target for PD patients.

6.1 Interpretation and Potential Influence on Clinical
Workflow

Our results showed a dramatic decrease in time required to
select stimulation setting using ImageVis3D Mobile compared
to standard care. However, an important question remains:
what is responsible for the observed time difference? There
are many possible explanations that may not be attributable
to ImageVis3D Mobile. First, during standard care patients
often receive a brief motor exam after each change in DBS
parameters. This was not possible in our study design because
the clinicians were blinded to the patients’ identities, and
because one purpose of our study was to evaluate the utility
of the software without motor evaluation. Second, while our
study focused on selection of DBS voltage alone (pulse width
and frequency were fixed), clinicians will sometimes explore
these variables during initial programming. Current guidelines
suggest that good response to DBS can be achieved with pulse
widths ranging from 60 µsec to 210 µsec and frequencies from
130 to 185 Hz. Hence, the parameter space that is explored
during standard care is somewhat larger than the range that
we tested. Third, each patient model required between 30 and
60 minutes of preparation by a trained technician prior to
transferring the data to the mobile device, though we anticipate
that this amount of time could be reduced in the future by
creating a semi-automated system for model generation. Despite
the differences in these two approaches and the difficulties
of making direct comparisons, we believe that these factors
cannot completely account for the large effect size we observed
(a 99.5% reduction in the amount of time required to choose
DBS parameters). In addition, it is important to recognize
that our approach could facilitate a fundamentally different
clinical workflow. Specifically, the use of ImageVis3D Mobile
and patient-specific DBS models could allow the clinicians to
quickly converge on a small range of parameters that are likely
to provide good therapeutic response. From these initial settings



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

we anticipate that the clinician will evaluate motor outcomes
while exploring nearby settings. Hence, instead of performing
a comprehensive review of motor outcomes at a wide range
of stimulation settings for all DBS contacts, clinicians could
focus their effort on a much smaller parameter space prior to
beginning motor exams.

The ability to conduct these experiments on mobile comput-
ing devices is a subtle but important feature. First, as indicated
earlier, clinicians became proficient at using ImageVis3D
Mobile for DBS parameter selection in very little time. We
believe this is a reflection of the simplified interface to transfer,
select and interact with datasets and the representation of
information such as electrodes, anatomical nuclei and VTAs in a
familiar manner. While we did not compare ImageVis3D Mobile
to an equivalent desktop-based system, we anticipate that the
latter would require clinicians to spend substantially more
time to become used to the interface and access their datasets
for review. Second the use of mobile devices with wireless
data delivery is far more convenient for clinical workflow,
and does not require clinicians to rely on desktop computers
which might not be available directly at the point of care. In
particular, significant attention has been paid recently to the role
of mobile computing devices in a clinical environment for this
very reason. Hence, we believe that our implementation could
be a welcome addition to a healthcare delivery system that is
attempting to reduce reliance on desktop based architectures.
However, our current system is in a prototype state and requires
further testing before introducing it into a clinical environment.
This is especially true for the data distribution sub-systems
when considering issues issues authentication and protected
health information.

6.2 Insights into Visualization Applications

We believe that some of the developments we made in this
study are of much broader interest. In particular:

• Use of Instant Messaging for Data Distribution Most
of the proposed systems focus mainly on the renderer
and present efficient means of visualizing data as fast
as possible at maximum quality. While this is a very
important characteristic of a visualization environment, the
system becomes useless if the intended users are unable to
transfer their data onto the device. We hide the hardware
and software details of the data transfer process. This is
achieved through the combination of wireless networks
and instant messaging technology.

• Natural Multi-Touch Interfaces While multi-touch tech-
nology dates back to the early eighties [12], only very
recently, with the introduction of the iPhone, have such
devices become popular. In a short period multi-touch
hardware has become available for almost any type of
hardware (e.g. large display systems, workstations, mobile
devices). While we are certainly not the first to point
out this fact, we believe that in particular visualization
applications can benefit significantly from the integration
of these interaction metaphors.

• User Familiarity We believe that it is a widely underesti-
mated fact that users are more effective with devices they

know well. As most people spend quite a decent amount of
time per day using their smartphones, it seems only natural
to use them for as many tasks as possible, even if this
means working with suboptimal hardware environments.
Interestingly, in this work we found that clinicians are
more than willing to ignore the disadvantages of the small
display in favor of working with their own well-known
handheld devices.

6.3 Limitations
One goal of this study was to evaluate the potential of patient-
specific DBS models and ImageVis3D Mobile to reduce the
burden for both patients and clinicians in the selection of DBS
parameters, and in this regard the results are very promising.
However, our approach has a few limitations that should be
taken into consideration. First, this was a retrospective study
and therefore we did not test the stimulation settings chosen
using ImageVis3D Mobile in each patient. Hence, it is possible
that the chosen settings could be better than, equal to or worse
than the settings chosen via standard of care. Lastly, the VTAs
available within ImageVis3D Mobile did not allow exploration
of all parameters available to the clinician. In particular the
clinicians could change stimulation amplitude (voltage) while
pulse width and frequency were fixed at common values.
However, this is not a limitation of our approach but was rather
a deliberate simplification of the study design to focus on its
primary advantage over existing methods: it could drastically
decrease the amount of time required for DBS programming
by providing a good starting point. Hence, rather than testing
a range of stimulation settings at all electrode contacts, the
settings chosen using ImageVis3D Mobile could be used for
initial clinical evaluation and then titrated as needed. In a
future study we plan to assess the efficacy of model-selected
parameters, and benefits are conferred to the patient as a result.

7 CONCLUSIONS & FUTURE DIRECTIONS

We anticipate that this system could provide a significant
step forward in clinical practice for several reasons: mobile
computing platforms such as the iPhone are widely used
by physicians, and new hardware devices such as the iPad
have generated significant interest in the clinical community;
computational models are gaining acceptance by practitioners,
and are being used more often for clinical decision making;
the system described here has a simple, intuitive interface and
can be used at the patient bedside. A final advantage of this
approach is more subtle. In the course of the experiment we
realized that the interactive visualization provided a structure for
comparison of different approaches to DBS programming. One
persistent problem in neuromodulation is that the vocabulary
for describing target locations is somewhat imprecise, and
alternate programming approaches are employed by different
practitioners. To put this in perspective, consider the fact STN
DBS does not refer strictly to the STN but rather to the
region around the STN encompassing a volume of approx-
imately 1000mm3. In comparison, a DBS electrode contact
is approximately 6mm3, and a VTA at typical DBS settings
is approximately 250mm3. Hence, there is the possibility for
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substantial variation in the exact position of the VTA in the STN
region, and the interactive visualization provided using this
approach allows for a structured comparison despite imprecise
vocabulary. We feel that this is a significant indirect benefit of
the system.

Even though feedback has been positive, one area of future
work is to assess whether use of this system improves patient
outcomes. We plan to test this by prospectively comparing
neuropsychological and motor outcomes from DBS using
this system versus the current standard of care. In doing so,
we will take advantage of the extensibility of the volumetric
visualization in ImageVis3D Mobile to add new dimensions
of information for decision making. In a future study we
will include volumetric target locations from a probabilistic
atlas to determine whether the inclusion of evidence gathered
from other patients results in further improvements in the
selection of DBS parameters. Recent work has begun to develop
methods to define optimal stimulation targets from retrospective
and prospective multi-patient clinical studies [6], [27]. By
including both classes of information the clinician can first
see the interaction of the stimulation system with surrounding
anatomical nuclei, and secondly see the interaction with target
regions where stimulation has therapeutic effects or side effects
as defined by probabilistic atlases that are compiled from multi-
patient studies.

While previous attempts have been made to provide in-
teractive visualization of patient-specific DBS models, these
require significant amounts of training and domain knowledge
to become proficient. An advantage of the system described
here is the minimal amount of training required and its attractive
features for clinical workflow. We predict that this approach
could have significant impact not only in DBS for PD but also
in other neuromodulation methods where interactive patient-
specific models could provide useful insights into the best way
to prescribe the therapy. We conclude that the use of patient-
specific models of DBS in a mobile computing device running
ImageVis3D Mobile has strong potential to improve patient
outcomes by facilitating clinical decision making.
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