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Abstract

As neuromodulation therapy has grown, so has the recognition that computational
models can provide important insights into the design, operation, and clinical applica-
tion of neurostimulation systems. Models of deep brain stimulation and spinal cord
stimulation have advanced over recent decades from simple, stereotyped models to
sophisticated patient-specific models that can incorporate many important details of
the stimulation system and the attributes of individual subjects. Models have been used
to make detailed predictions of the bioelectric fields produced during stimulation.
These predictions have been used as a starting point for further analyses such as stim-
ulation safety, neural response, neurostimulation system design, or clinical outcomes.
This chapter provides a review of recent advances and anticipated future directions
in computational modeling of neuromodulation.

1. INTRODUCTION

Neuromodulation is commonly defined as the therapeutic alteration

of activity in the nervous system by means of implanted devices. By this def-

inition, cardiac pacemakers and cochlear implants are two of the most
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successful neuromodulation therapies ever devised. The theory of operation

behind cardiac pacemakers seems straightforward: the primary function of

the heart is to pump blood through the circulatory system; cardiac tissue

is electrically excitable, and electrical stimulation can be used to regulate

the timing of heart contractions via an implantable system. Cochlear

implants also have a clear theory of operation: the cochlea has a tonotopic

organization of sensory neurons; neurons in the cochlea are electrically

excitable, and electrical stimulation can be used to selectively stimulate cells

in confined regions of the cochlea to mimic external sound energy in a

particular frequency range. There are common themes in these two exam-

ples. First, we have a good understanding of the primary function of the tar-

get organ. Second, we have clear evidence of an excitatory response to

electrical stimulation. Third, we have clear evidence that neuromodulation

can be used to help reestablish or mimic the function of the healthy organ.

Lastly, we have quantitative, objective measures of the efficacy of

stimulation.

Over the past two decades there has been increasing interest in

neuromodulation therapies such as: deep brain stimulation (DBS) for the

treatment of Parkinson’s disease (PD; Limousin et al., 1995), essential tremor

(Benabid et al., 1996), and dystonia (Vidailhet et al., 2005) as well as poten-

tial new indications such as depression (Hamani &Nóbrega, 2010;Mayberg,

2009); and spinal cord stimulation (SCS) for treatment of many types of

chronic pain (Cameron, 2004). However, in contrast to the examples

mentioned above, the theory of operation behind DBS and SCS is not as

well developed. First, in the context of the conditions that are treated using

these therapies, we do not have a clear understanding of what the central

nervous system (CNS), particularly the brain, is doing in its healthy state.

Further, we often lack a detailed understanding of the pathophysiology of

the disease state. Second, the effects of neuromodulation in the CNS have

been shown to have a range of excitatory and inhibitory effects. Third,

much of the evidence for the therapeutic effectiveness was gathered

empirically without a clear mechanistic understanding. Lastly, in many

cases we lack objective measures of the efficacy of stimulation and

instead rely on subjective measures that are self-reported or assessed by an

examiner.

Despite these apparent limitations there is evidence that large patient

populations can be effectively treated using neuromodulation therapy,

and this has fostered a sense of hope for new indications, some of which have

few other treatment options. Computational models are being used with
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increasing frequency in the study of neuromodulation and it is now clear that

they can provide insights that would be difficult to obtain using other

approaches. In particular, models are being used to fill many gaps in our

knowledge about DBS and SCS. Where is stimulation occurring? How is

it affecting nearby neural tissue? Why is a certain manner of stimulation

effective or ineffective? Different types of models have been created to

answer these questions, each with their own purpose. Canonical models are

used to represent the functional properties of a system without necessarily

attempting to mimic the details of the stimulation system or the neural tissue.

These have been used to examine the pathophysiological features of the basal

ganglia in diseases such as PD and to predict how neuromodulation systems

could be interacting with the basal ganglia (Frank, Samanta, Moustafa, &

Sherman, 2007; Rubin & Terman, 2004). Bioelectric field models are used to

predict the bioelectric field produced in the body during neurostimulation

based on a detailed geometric and biophysical characterization (Butson,

Cooper, Henderson, & McIntyre, 2007). These models have been used to

predict the spatial and temporal properties of stimulation. Cellular models

are created to predict neural firing patterns in response to stimulation using

detailed neuron geometries with Hodgkin–Huxley ion channel kinetics

(Holsheimer, 1998). Computational models provide a way to characterize

design decisions and treatment approaches before a system is manufactured

and deployed. As always, final evidence of effectiveness comes from

human clinical trials. However, it is infeasible to test the vast parameter

space that exists in neuromodulation therapy using a trial-based approach

in humans or animals–it is simply too large and clinical trials are far too

expensive.

This chapter provides a review of the history, recent advances, and

anticipated future directions in computational modeling of neuromodulation.

Examples are presented in the areas of DBS for PD and SCS to treat chronic

pain. They are organized around insights that have been gained from model-

based approaches.

2. FOUNDATIONS OF NEUROSTIMULATION MODELING

Computational modeling of neuromodulation is an area that grew

from computational neuroscience, which is a field of study that uses com-

putational tools to understand how the nervous system solves problems, and

from bioelectric field modeling, which is the study of the interactions of

electromagnetic fields with biological tissue. The important distinction of
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neuromodulation models is that they specifically account for perturbations

to the nervous system that are caused by artificial stimulation using

implanted electrodes. Current approaches to modeling have come about

because of the confluence of advances in several areas. First, there have been

substantial advances in quantitative characterization of the behavior of neural

systems. An early example of this was the work of Hodgkin–Huxley

(Hodgkin & Huxley, 1952), who won the Nobel Prize for their painstaking

work in deriving a set of governing equations for the nonlinear behavior of

selective ion channels in nerve membranes. Second, there has been a steady

expansion in computational power available via commodity workstations,

which has facilitated the use of computational tools. During this time finite

element modeling (FEM) has matured as a numerical approach for solving

bioelectric field problems with complex geometric features and anisotropic

tissue properties. Also, open-source programs such as GENESIS (Beeman &

Bower, 1998) and NEURON (Carnevale & Hines, 2006) have been

written to simulate neurons using multicompartmental models with

Hodgkin–Huxley ion channel kinetics. Third, we have developed a stronger

conceptual understanding of the neural response to a variety of stimulation

modalities and conditions. For example, textbooks are available that provide

a broad theoretical basis for many types of neurostimulation therapy

(Malmivuo & Plonsey, 1995). Lastly, seminal work by investigators such

as Lorente de Nó, Rattay, Ranck and McNeal provided some of the foun-

dations of modern computational models (Lorente de Nó, 1947; McNeal,

1976; Ranck, 1975; Rattay, 1986).

The common theory of operation behindDBS and SCS is that an applied

electromagnetic field impinges on neural structures located in anatomical

regions near the electrode(s), which in turn leads to a functional response.

In the best case, a patient receives good therapeutic benefit with minimal

side effects and this is a gratifying outcome for all involved. However, when

neuromodulation therapy is ineffective we have had few tools at our disposal

to determine why. Possibilities range from suboptimal lead location to in-

adequate titration of stimulation settings to misdiagnosis. Hence, computa-

tional models can provide a way to augment our understanding of

neuromodulation therapy. To date, models have been developed to (1) pre-

dict the electric fields produced during stimulation; (2) predict the neural

response to the applied electric field; (3) elucidate the dynamics of the

CNS in the healthy and diseased state; (4) explore mechanisms of stimula-

tion; and (5) quantify the interactions between the stimulation system and

anatomical regions using patient-specific models generated from imaging
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modalities such as magnetic resonance imaging (MRI), diffusion-weighted

imaging (DWI), or computed tomography (CT).

3. STIMULATION SAFETY

Computational modeling has been useful for assessing stimulation

safety. Specifically, models have been used to estimate whether stimulation

parameters fall within accepted guidelines for avoiding tissue damage. Much

of this work is based on two fundamental pieces of information. First, early

work by Lilly identified a class of charge-balanced waveforms that could be

applied continuously to neural tissue without causing injury (Lilly, Hughes,

Alvord, & Galkin,1955). These waveforms have two important properties:

they consist of an initial cathodic or anodic pulse of fixed pulse width; and

the initial pulse is quickly followed by a longer duration, lower amplitude

pulse with an equal amount of charge (hence the name charge-balance

waveform). Later, McCreery published data on safe stimulation limits based

on data gathered from animal studies (McCreery, Agnew, Yuen, & Bullara,

1990). This data was later reinterpreted to provide an estimate of safe stim-

ulation limits using parametric information based on charge quantity and

charge density (Shannon, 1992). The idea behind this approach is that the

safety of Lilly-type waveforms can be assessed by taking into account the av-

erage charge density over each electrode contact and the total charge per

phase, both of which can be estimated with aid of computational models.

Hence, models can provide an opportunity to assess the safety of novel stim-

ulation systems or configurations of anodes and cathodes before they are

used in practice. They have also been used to assess the degree to which cur-

rent density is unevenly distributed across the surface of the electrode contact

(Wei & Grill, 2005). Generally speaking, current preferentially flows

through the edges of the electrodes rather than the center.

4. SPINAL CORD STIMULATION FOR PAIN

SCS has been used to treat pain associated with a variety of neuro-

pathic and ischemic conditions (Cameron, 2004; Foletti, Durrer, &

Buchser, 2007). Generally speaking, the mechanisms of action of SCS are

not well understood and as a result its clinical application has been guided

largely by observations regarding effective versus ineffective stimulation.

For example, one common observation is that to achieve good pain

relief, stimulation-induced paresthesias should overlap with the painful
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region of the body. Another is that paresthesia “spreads” to multiple

dermatomes as the pulse amplitude is increased (Hunter & Ashby, 1994)

and that increasing pulse width to values as high as 500 or 1000 ms seems

to be correlated with a caudal shift in coverage (Yearwood, Hershey,

Bradley, & Lee, 2010). It is also believed that the therapeutic neural

targets of SCS are axons in the dorsal column (DC), while activation of

axons in the dorsal root (DR) is undesirable. Lastly, it is widely

recognized that the thickness of the cerebrospinal fluid (CSF) layer in the

spinal cord can vary over a wide range as a function of the spinal cord

segment and the posture of the patient (Cameron & Alo, 1998), and this

could have an effect on stimulation effectiveness. SCS models have been

constructed to provide quantitative support for each of these observations.

The earliest example of an SCS model used a two-dimensional FEM to

assess bipolar versus monopolar epidural stimulation (Coburn, 1980). FEM

models have since been used in many studies to predict the electric field pro-

duced during neurostimulation using three-dimensional (3D) volumetric

models (Fig. 2.1A) governed by the Poisson equation, which is equivalent

to Ohm’s Law in 3D space. The conceptual basis for these models is that

stimulating electrodes serve as voltage or current sources that inject current

through a resistive tissue medium. The Poisson equation can be solved either

Transversal view of spinal cord model

Dorsal column fibers

Dorsal root mother branch

Dorsal root daughter branch

Left mm

Right

A

B D

C E

Caudal−5

−5

−5

5

0

−10

0

5

5
0

10

10

15

20

25

30

Rostral

Ventral

Dorsal

mm

Three-dimensional spinal cord model
(only a segment is displayed)

Figure 2.1 Finite element models of spinal cord stimulation. (A) 3D FEMmodel of spinal
cord segmented by tissue type. (B) Finite element mesh. (C) Cross-section of spinal cord
model showing dorsal columns and (D) dorsal roots. (E) 3D FEM model of spinal cord.
Parts A and B modified from Hernández-Labrado et al. (2011). Parts C, D, and E modified
from Lee et al. (2011).
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analytical or numerical. Analytical models are attractive because they usually

provide a closed-form solution using a compact set of governing equations.

However, such models exist for only a small collection of very simplified

geometries. As a concrete example, analytical models exist for current or

voltage sources in a conductive medium; the electrode is approximated

by a point source and tissue is considered to be homogeneous and isotropic.

This often provides a solution that is approximately correct at locations dis-

tant from the electrode. However, what is desired in neuromodulation

models is often the exact opposite: we need a highly accurate solution in

the region around the electrode but are often willing to accept reduced ac-

curacy in locations distant from the source. Fortunately, numerical FEM

models are designed to solve this class of problems. The distinguishing fea-

ture of FEM, and the basis for its name, is that the geometric features in the

model are subdivided into tetrahedral (four sided) or hexahedral (six sided)

elements that form a mesh. Meshes are often multiresolution, which means

that the element size can change depending on the fineness of the geometry

and the necessary solution accuracy. FEM models of SCS and DBS often

use tetrahedral meshes with very small element sizes near the electrodes,

where the voltage is changing the fastest, and much larger elements distant

from the electrode where the voltage is changing more slowly. The major

drawback of numerical FEMmodels is that they can require significant com-

putational resources because one equation is required to represent each node

in the mesh. Hence, the number of equations that must be simultaneously

solved is directly proportional to the node density and mesh volume. For-

tunately, it is possible to solve systems of up to a million equations using

commodity workstations.

To assess the effects of SCS, early studies used FEM models to quantify

simple outcomemeasures such as electric field magnitude, which is relatively

easy to calculate but is not an accurate predictor of neural response. In the

earliest model-based study, the authors examined the electric fields pro-

duced in the spine and concluded that field strength was much stronger

for epidural than transdermal stimulation (Coburn, 1980). Later models in-

corporated more accurate predictors such as the activating function (Rattay,

1986), which is the second spatial derivate of the voltage along a neural el-

ement such as an axon. The activating function can also be calculated

quickly and is a more accurate predictor of activation than the electric field

alone. One early SCS study used the activating function to estimate neural

response while assessing the effects of anisotropic tissue properties in model

predictions (Struijk, Holsheimer, van Veen, & Boom, 1991). They
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illustrated that the difference between the homogeneous and inhomoge-

neous model is mainly due to spreading of the current in longitudinal and

lateral direction caused by the highly conductive CSF layer. However,

the activating function suffers from important limitations such as the inability

to easily incorporate time-dependent parameters including frequency or

pulse width (Moffitt, McIntyre, & Grill, 2004). To address these limitations,

several models combined FEM predictions of the electric field with mul-

ticompartmental models of individual neurons (McIntyre, Grill, Sherman,

& Thakor, 2004). These are believed to provide the most accurate estimates

of the response to stimulation as long as they are properly constrained with

anatomical and physiological data. The integration of cellular models such as

axons with the FEM allows a more detailed understanding of the interactions

between the SCS system and nearby neural elements such as the DC andDR

(Fig. 2.1B), but at the cost of much greater complexity.

SCSmodels have been used to disambiguate the effects of changing pulse

width and amplitude. Since both of these parameters increase the amount of

charge injected during each stimulation pulse, they might be expected to

have similar effects. However, experimental and empirical observations have

suggested that this is not the case. As a starting point there is a wealth of elec-

trophysiological data that has been collected on strength–duration curves to

establish the relationship between stimulation pulse duration and amplitude

(Nowak & Bullier, 1998a, 1998b). The minimal amplitude necessary to

excite a neural element is called rheobase; chronaxie is the pulse duration

at twice rheobase. The chronaxie of myelinated axons is in the range

30–200 whereas dendrites and cell bodies are often much longer. These

values have been measured electrophysiologically (Holsheimer,

Demeulemeester, Nuttin, & de Sutter, 2000; Holsheimer, Dijkstra,

Demeulemeester, & Nuttin, 2000) and have been estimated from patient

studies (Rizzone et al., 2001) using stimulus–response data, providing an

opportunity to make direct comparisons between in vivo, in vitro, and

model data to characterize the neural targets of stimulation.

5. DEEP BRAIN STIMULATION FOR PARKINSON'S
DISEASE

FEM models have been used to calculate the voltage distribution in

the brain during DBS, and these models have illustrated several basic fea-

tures. For example, conventional DBS electrode contacts implanted in

the subthalamic nucleus (STN), internal segment of the globus pallidus

(GPi), or thalamus have impedances of around 1000 O (Hemm et al.,
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2004) which reflects the contributions of the wire, electrode–tissue interface

and tissue itself. At typical stimulation settings for PD (monopolar, !3 V or

!3 mA, 90 ms pulse width, 130 Hz), DBS creates a voltage distribution

that ranges from !3 V at the electrode contact to near zero at the distant

anode, which is the implantable pulse generator (IPG). Bipolar DBS with

a single cathode and a single anode on the same lead creates a distribution

that follows a gradient from about !1.5 V at the cathode to about þ1.5 V

at the anode, while the distant IPG is still near 0 V. These simple examples

illustrate several basic concepts behind bioelectric field modeling. First, the

body does not contain a “ground” electrode in the traditional sense nor does

it contain reference or indifferent electrodes that are commonly used in elec-

trophysiological recordings. Rather, DBS systems contain only anodes and

cathodes. To account for this, FEM models use implicit or explicit mech-

anism to enforce a voltage of zero at locations distant from the electrode,

which is meant to mimic the assumption that the average voltage within

the body is zero at any time point. Second, the voltage gradient within

the tissue can occur over short distances, such as between adjacent contacts

during bipolar stimulation, or much longer distances such as between the

electrode contact in the brain and the IPG in the torso during monopolar

stimulation. Third, these models have been developed further to take into

account the impedance of the encapsulation layer and the voltage drop

that occurs at the electrode–tissue interface due to charge transfer from elec-

trons in the metal electrode contact to ions in the tissue medium (Gimsa

et al., 2005; Lempka, Miocinovic, Johnson, Vitek, & McIntyre, 2009).

FEM models have suggested that the thickness and conductivity of the

encapsulation layer is one of the primary determinants of electrode

impedance and that there is a substantial voltage drop across the

encapsulation tissue (Butson, Maks, & McIntyre, 2006).

However, as described these models only take into account the spatial

voltage distribution in the tissue at the peak cathodic voltage, but do not take

into account time. In fact, the Poisson equation does not explicitly contain a

mechanism to incorporate the time-dependent properties such as the Lilly-

type waveforms produced by the IPG. To address this, specialized solvers

have been developed that allow prediction of the time- and space-

dependent voltage distribution in the brain during DBS (Butson &

McIntyre, 2005) and these predictions were later confirmed during in vivo

recordings in primates (Miocinovic et al., 2009). These experiments and

others have helped to illustrate several reasons why the signal that the brain

“sees” is not an exact reproduction of the signal produced by the IPG.

Decades of research in other fields such as electroencephalography have
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guided us to think of the body as a purely resistive medium at frequencies

below 1000 Hz, which is an assumption that has worked well for inter-

preting signals recorded from the skin. However, there are several reasons

why this assumption might not be appropriate for neuromodulation models:

neural tissue is known to have capacitive properties; stimulation electrodes

are often made of a platinum–iridium alloy, which also has capacitive

properties; and neurostimulation waveforms have substantial amounts of

energy at frequencies above 1000 Hz. The existence of capacitance from

the electrode or tissue, in combination with the resistive tissue properties,

has the effect of creating a filter whose time constant is determined from

the product of these values. This can transform the original waveform

and reduce the amount of charge injected below what is expected from the

IPG output alone.

FEM models are constructed using estimates of tissue properties derived

from biological preparations (Gabriel, Gabriel, & Corthout, 1996; Geddes &

Baker, 1967) which were then incorporated into parametric models of

biophysical properties for a variety of different tissue types (Gabriel, Lau,

& Gabriel, 1996). Later, DWI was used to measure water diffusivity in

individual subjects. DWI data is often transformed into diffusion tensors

(diffusion tensor imaging (DTI)), which provide a compact mathematical

representation of the magnitude and anisotropy of diffusivity. DTI tensors

are used to construct fiber tracts using tractography, and these have been

incorporated into DBS models (Chaturvedi, Butson, Lempka, Cooper, &

McIntyre, 2010). In addition, methods have been developed to estimate

the conductivity of brain tissue from DTI (Tuch, Wedeen, Dale, George,

& Belliveau, 2001). The major advantage of this approach is the ability to

characterize anisotropic conductivity using diffusion tensors, which have

been incorporated into patient-specific models (Butson et al., 2007).

Computation of the bioelectric field produced during DBS is a better-

defined problem than predicting the neural response. The latter could

be a function of many different attributes such as cell type and morphology,

cell orientation within the induced bioelectric field, the complex biophysics

of nonlinear ion channels in the cell membrane combined with the intracel-

lular activity, and finally the synaptic connections that form neural circuits.

And in contrast to SCS, the brain has a less stereotyped architecture than the

spinal cord. Oneof the first insights to come fromcomputationalmodelingwas

support for the idea that the neural targets of DBS are myelinated axons rather

than cell bodies (Holsheimer, Demeulemeester, Nuttin, & de Sutter, 2000).
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Hence, many of the combined FEM-cellular models of DBS examined

the neural response of populations of myelinated axons as a measure of

the extent to which DBS exerted it effects. A concept that emerged from

these studies was the volume of tissue activated (VTA) in the brain during

DBS in individual patients (Butson et al., 2007; McIntyre, Mori, Sherman,

Thakor, & Vitek, 2004).

Patient-specific modeling is an approach that has grown substantially

over the past decade (Fig. 2.2). As the name implies, these models are built

to represent the anatomy and tissue properties of individual subjects. A

common approach to this is to build a model from pre- and postoperative

imaging. Preoperative MRI is used to identify the anatomy. This is cor-

egistered with postoperative imaging such as MRI or CT to determine

electrode location(s). In addition, DTI has been used to estimate tissue

conductivity and to identify bundles of axonal fibers from tractography.

Lastly, the models are often registered with a brain atlas to identify anatom-

ical nuclei or other features that may not be visible using conventional im-

aging techniques. The product of this imaging is an anatomically accurate

morphological model of the brain that can include the following features:

the DBS lead; surface representation of nearby nuclei such as the STN,

thalamus (with subthalamic nuclei such as the ventral intermediate

(VIM)), or globus pallidus; fiber tracts identified from tractography or mi-

croscopic reconstruction techniques (Parent, Lévesque, & Parent, 2001);

and voxel-based anisotropic tissue properties. These models can be used

to quantify the electric field produced in the brain during DBS after taking

into account the details of the stimulation protocol (stimulation waveform

and configuration of anodes and cathodes). However, the electric field

alone is not a good predictor of neural response to DBS. To address this,

different approaches have been attempted including the activation function

and the response of neural elements such as cell bodies or fibers of passage.

One idea that came from these models was the idea of a VTA produced

during DBS. The idea behind this approach is that a criterion can be applied

to determine which neurons reached threshold during DBS; neurons that

reach threshold are considered part of the VTA. These volumes can be sup-

erimposed on patient-specific models to determine the overlap with nearby

anatomical structures. A second idea was that VTAs could be combined with

clinical outcomes from a cohort of patients to predict stimulation targets

(Butson et al., 2011; Maks, Butson, Walter, Vitek, & McIntyre, 2009)

which could be used to guide the selection of stimulation parameters
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(Frankemolle et al., 2010).This has led tohope that computationalmodels could

be incorporated into clinical decision support systems (Butson et al., 2012).

Manyof theDBSmodels describedhaveused stimulationwaveforms avail-

able incommercial IPGs.Thedesignandselectionofwaveforms tobest achieve

therapeutic objectives remains a largely unexplored space. In this regard,

models can aid in understanding how the waveforms produced by the stimu-

lator interact with the pathophysiology of nearby nuclei in the basal ganglia.

Recent work has suggested that the therapeutic effects of DBS are achieved

using pulse trains at regular intervals, while irregularly space pulses had reduced

effectiveness (Dorval, Kuncel, Birdno, Turner, &Grill, 2010). Lastly, compu-

tational basal ganglia models suggest that novel DBS waveforms exist which

may return Parkinsonian network dynamics close to the normal state and ex-

ploit mechanisms that differ from those of conventional DBS at frequencies

over 100 Hz (Feng, Greenwald, Rabitz, Shea-Brown, & Kosut, 2007).

6. LIMITATIONS OF COMPUTATIONAL MODELS

Computational models have several inherent limitations. First, models

can precisely quantify many different measures of neuromodulation, but in

doing so there is a risk of overestimating the accuracy of predictions. The

accuracy of model predictions depends on the degree to which it mimics

the physiological system. Second, in contrast to physiological studies, com-

puter simulations produce the same answer every single time unless sources

of randomness are explicitly incorporated. As a result, it is often difficult for

model-based analyses to characterize the uncertainty of in vivo systems.

Hence, model-based results should be viewed cautiously until they can

be constrained or validated with physiological data. Validation is a general

approach by which model results are directly or indirectly compared to

physiological data to establish accuracy, and as time goes one there is a grow-

ing expectation that model-based studies should include a validation mech-

anism. Fortunately, models of neuromodulation have become an accepted

tool, a fact that has led many teams to conduct model experiments in con-

junction with physiological studies.

7. CONCLUSIONS

Neuromodulation systems are growing in complexity. Systems are

now becoming available with different electrical source types (voltage con-

trolled and current controlled), increasing numbers and sizes of electrode
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contacts, multiple independent sources and a growing range of stimulation

waveforms. There is a perception that by virtue of these new capabilities,

clinicians will have greater ability to customize therapy to each individual

patient and as a result patient outcomes will improve. It is conceivable that

this will occur and this is certainly what the medical, scientific, and commer-

cial communities are hoping for. However, this is not a forgone conclusion.

Toachieve thisgoalwewill need toexpandourknowledge inat least threeareas.

First, we will need additional predictive power of the effects of stimulation as a

function of location and type. Second, we will need additional information on

the neurological targets of stimulation and the mechanisms of therapeutic im-

provement. Third,wewill need decision support systems that provide a layer of

abstractionbetween the clinician andpatient such that stimulationprotocols can

be selected toprovideagoodmatchbetweentheneurologicalobjectives and the

capabilities of the neuromodulation system. Computational models have the

potential to fill gaps in our knowledge in eachof these areas.Of these, the largest

growthwill likely be in the area of computational informatics systems that com-

binepredictivemodels and interactivevisualization for clinical decisionmaking.

Such systems have the potential to provide better patient outcomes and to

accomplish this faster than would be achievable otherwise. To live up to this

potential, future models will need to integrate simulation data with

instrument-based measures, functional imaging, and clinical outcomes. From

this view,models have an opportunity to synthesize new types of data and pro-

vide new insights that would be difficult to achieve otherwise.
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