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Random Noise Paradoxically Improves Light-Intensity Encoding
in Hermissenda Photoreceptor Network
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Butson CR, Clark GA. Random noise paradoxically improves light-
intensity encoding in Hermissenda photoreceptor network. J Neuro-
physiol 99: 146–154, 2008. First published November 14, 2007;
doi:10.1152/jn.01247.2006. Neurons are notoriously noisy devices.
Although the traditional view posits that noise degrades system
performance, recent evidence suggests that noise may instead enhance
neural information processing under certain conditions. Here we
report that random channel and synaptic noise improve the ability of
a biologically realistic computational model of the Hermissenda eye
to encode light intensity. The model was created in GENESIS and is
based on a previous model used to examine effects of changes in type
B photoreceptor excitability, synaptic strength, and network architec-
ture. The network consists of two type A and three type B multicom-
partmental photoreceptors. Each compartment contains a population
of Hodgkin–Huxley-type ion channels and each cell is stimulated via
artificial light currents. We found that the addition of random channel
and synaptic noise yielded a significant improvement in the accuracy
of the network’s encoding of light intensity across eight light levels
spanning 3.5 log units (P � 0.001, modified Levene test). The benefits
of noise remained after controlling for several consequences of ran-
domness in the model. Additionally, improvements were not confined
to perithreshold stimulus intensities. Finally, the effects of noise are
not present in individual neurons, but rather are an emergent property
of the synaptically connected network that is independent of stochas-
tic resonance. These results suggest that noise plays a constructive
role in neural information processing, a concept that could have
important implications for understanding neural information process-
ing or designing neural interface devices.

I N T R O D U C T I O N

Neurons are notoriously noisy devices, and problems of
random variation, noise, and reliability arise almost universally
in the nervous system (Perkel and Bullock 1968). The tradi-
tional view, partially influenced by decades of signal process-
ing research, is that noise lowers the signal-to-noise ratio
(SNR) and thus degrades performance. Another traditional
view, more relevant to neuroscience, is that noise reduces
spike-timing precision and therefore lowers the rate of infor-
mation transfer. If the traditional views are true, then decreas-
ing noise in the nervous system should improve performance.
However, biological systems perform quite well in the presence
of noise, often easily outperforming their human-engineered
counterparts. Here we present evidence for an alternate inter-
pretation based on a suite of computational experiments: the
nervous system uses randomness to its advantage such that
noise paradoxically improves, rather than degrades, perfor-
mance. Our experiments demonstrate such an effect in the

Hermissenda photoreceptor network. The purpose of this study
is to examine the ability of the eye to encode light intensity in
the presence of random noise. A companion paper takes this
analysis a step further to look for mechanisms of noise-induced
improvement (Butson and Clark 2008).

The marine mollusk Hermissenda crassicornis has served as
a prominent preparation for the investigation of cellular mech-
anisms of learning, particularly conditioned suppression of
phototaxis (Alkon 1974; Crow 1983; Crow and Alkon 1978;
Crow and Offenbach 1983; Farley and Alkon 1982; Lederhend-
ler and Alkon 1987). Naı̈ve Hermissenda instinctively loco-
mote toward a light source. This positive phototactic response
is suppressed after classical conditioning with a light-condi-
tioned stimulus (CS) and a rotation unconditioned stimulus
(US). Animals also exhibit a new conditioned response, foot
shortening, that resembles the response to the US (Lederhendler
et al. 1986; Matzel et al. 1990a). Nonassociative suppression of
phototaxis also occurs (Alkon 1974; Crow 1983; Crow and
Alkon 1978; Farley and Alkon 1980, 1982; Grover et al. 1987;
Matzel et al. 1990b; Rogers et al. 1994). Increases in excit-
ability (Crow and Alkon 1980; Farley and Alkon 1982; Goh
and Alkon 1984; Goh et al. 1985) and synaptic strength of type
B cells (Frysztak and Crow 1994; Gandhi and Matzel 2000;
Schultz and Clark 1997; Schuman and Clark 1994) constitute
an important neural mechanism for these forms of learning.

The eye of Hermissenda provides an advantageous prepara-
tion for the investigation of mechanisms underlying neural
information processing, as well as information acquisition,
storage, and retrieval (“learning” and “memory”). The large,
identifiable neurons and relatively simple circuitry of this
preparation permit the construction of biologically realistic
computational models that facilitate quantitative analyses
(Blackwell 2006; Fost and Clark 1996b,c; Mo and Blackwell
2003; Sakakibara 1989; Smith and Farley 2006; Werness et al.
1992). Each of the two Hermissenda eyes contains five cells
interconnected in a stereotyped manner (Alkon 1984) (Fig. 1).
Three type B cells form inhibitory synaptic contacts both with
two type A cells as well as with the other type B cells. The type
A cells form reciprocally inhibitory connections with the type
B cells but do not communicate with each other. Both types of
photoreceptors show large depolarizing generator potentials
and vigorous spiking in response to light (Alkon and Fuortes
1972; Alkon and Grossman, 1978; Dennis 1967; Detwiler
1976). Several possible pathways between the photoreceptors
and distal motor neurons have been identified; one commonly
identified pathway is the excitatory connection between the

Address for reprint requests and other correspondence: G. A. Clark, Uni-
versity of Utah, Department of Biomedical Engineering, 20 S. 2030 E., Rm.
506, Salt Lake City, UT 84112-9458 (E-mail: greg.clark@utah.edu).

The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby marked “advertisement”
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

J Neurophysiol 99: 146–154, 2008.
First published November 14, 2007; doi:10.1152/jn.01247.2006.

146 0022-3077/08 $8.00 Copyright © 2008 The American Physiological Society www.jn.org

 on M
arch 1, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


type A cells and a pool of interneurons that drive the pedal
musculature and are believed to mediate positive phototaxis
(Crow and Tian 2003a,b, 2004; Goh and Alkon 1984; Goh
et al. 1985). Thus one consequence of the architecture within
the eye is that, via the B–A inhibitory pathway, the type B cells
are capable of inhibiting type A cells and the motor response
that type A cells control.

Although Hermissenda have historically been used as a
system to study learning and memory, here we take advantage
of the large knowledge base available for this preparation to
examine its performance in the presence of ion channel and
synaptic noise. Several groups have already begun to examine
the effects of noise in other model (Chow and White 1996;
Horikawa 1991; Liu et al. 2001; Schneidman et al. 1998; Stein-
metz et al. 2000) and physiological (Bialek et al. 1991; Holt et al.
1996; Keeler et al. 1989) systems. Evidence from experimental,
theoretical, and computational studies indicates that noise from
voltage-gated ion channels can have important effects at the
cellular level (Chialvo et al. 2000; Roddey et al. 2000; Schneid-
man et al. 1998) and that such noise plays an important, if
poorly understood, role in the functioning of the nervous
system (White et al. 1998). Additionally, the variability of
input spike arrival times, which can result from synaptic
noise, plays a much greater role in facilitating SNR in-
creases than does intrinsic (channel) noise (Plesser and

Gerstner 2000). In this paper we examine the ability of the
Hermissenda eye to encode light intensity under varying
levels of channel and synaptic noise and find that noise
paradoxically improves, rather than degrades, the encoding
of light intensity. In a companion paper we look more
deeply at the mechanisms for noise-induced performance
improvement, and demonstrate that this improvement arises
from changes in contextual spike-timing relationships,
rather than from stochastic resonance, DC-bias effects, or
other possible mechanisms.

M E T H O D S

The large knowledge base available for the Hermissenda eye, in
conjunction with the relative simplicity of the system itself, has made
it possible for us to develop a biologically realistic computational
model on a Hodgkin–Huxley level using empirically derived param-
eters. Our previously published computational studies investigating
neural mechanisms of learning in Hermissenda used a custom pro-
gram written explicitly for those investigations (Fost and Clark
1996b,c). This computational model has proven to be informative and
has made several predictions regarding physiology that were initially
controversial but have subsequently been confirmed, including the
impacts of synaptic strengthening and input frequency on postsynaptic
targets (Fost and Clark 1996a) and the role of the IA current in spike
broadening and synaptic facilitation (Cai et al. 2006; Gandhi and
Matzel 2000; Han et al. 2001). We have since ported the model to
GENESIS (Bower and Beeman 1998; Butson and Clark 2001, 2002),
which provides a simulation environment used by a larger community.
Thus the use of GENESIS will facilitate dissemination, confirmation,
and extension of our results, as well as dissemination of the model
itself.

Simulations were performed using a multicompartmental model
with Hodgkin–Huxley current-based descriptions (Hodgkin and
Huxley 1952) of type B and type A photoreceptors (Fig. 1). Each cell
has seven compartments and nine currents, including light-induced
and fast sodium currents, so both types of model cells exhibit spiking
responses to light stimulation. As in the original Hodgkin–Huxley
formulation, each current has the general form Ik � gk � mi � hj �
(V � Ek), where Ik is the current, gk is the peak conductance, mi and
hj are the activation and inactivation state variables, respectively; V is
the absolute voltage of the cell; Ek is the reversal potential for that
current; and i and j are constants. A variety of methods have been
proposed for parameter estimation in single-neuron and ion-channel
models (Tabak et al. 2000; Vanier and Bower 1999; Willms et al.
1999). We chose to use biologically based parameters that were
derived from voltage-clamp or other physiological experiments wher-
ever possible. Equations for each current and sources for comparisons
to physiology are given in Fost and Clark (1996b). Amplitudes of the
generator potential in type B cells elicited by unattenuated light were
47 and 19.3 mV (peak and plateau, respectively). Calculations were
performed using Crank–Nicholson implicit numerical integration with
a time step size of 0.01 ms (�one order of magnitude smaller than the
smallest time constant in the neural parameters). This method is more
than adequate for our stability and accuracy requirements, as con-
firmed by evaluation with other time steps and by comparison with
previous results.

To make the network models more biologically realistic, we intro-
duced various amounts of ionic current noise and synaptic noise into
the simulations. To mimic channel noise, Gaussian noise was injected
into each compartment of each cell at each time step in the form of an
ionic current. Unless otherwise noted, the noisy condition contained
an ionic current drawn from the N[0, 0.33 nA] distribution, where the
noise variance was estimated from physiological recordings. During
synaptic transmission, the quantal force parameter (Q) was calculated
to determine the “quanta” released from the presynaptic cell to the

FIG. 1. Overview of biological and computational model. The Hermis-
senda eye contains 2 type A and 3 type B photoreceptor cells arranged in an
exclusively inhibitory network. Black dots indicate inhibitory synapses; with
the exception of the 2 type A cells, all cell pairs have reciprocal inhibitory
connections. The type A cells constitute an important output layer of the
network thought to contribute to phototaxis. The model network consists of 2
type A and 3 type B multicompartmental photoreceptors. Each compartment
contains a population of Hodgkin–Huxley-type ion channels, and each cell is
stimulated via artificial light currents. To create a set of models that could be
compared in the presence and absence of noise, we varied the membrane
resistance of each cell with a normal distribution, yielding 11 eyes. Responses
of each cell to artificial light steps are recorded over a 30-s period; average type
A cell firing rates from the last 25 s are used to analyze output.
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postsynaptic cell, which in turn was used to calculate the postsynaptic
current (Fost and Clark 1996b). Q was calculated once per spike and,
in each instance, it was multiplied by a factor drawn from the N[1,
0.2] distribution. To create a set of models that could be compared in
the presence and absence of noise, the membrane resistance of each
cell in the network was multiplied by a scaling factor drawn from the
N[1, 0.025] distribution. This step was repeated 11 times, yielding 11
model eyes. In previous work, this sample size proved sufficient to
detect differences of about 0.1 Hz (Fost and Clark 1996c). One
particular advantage of this approach is that it allows statistical
comparisons of effects in the deterministic, noise-free condition
(which would otherwise always be identical, by definition, and thus
represent a sample size of 1). This approach also ensures that results
are general, rather than idiosyncratic, to one particular set of param-
eters. Previous studies have shown evidence for (Alkon and Fuortes
1972) and importance of (Mar et al. 1999; Read and Siegel 1996;
Werness et al. 1992) heterogeneity of individual cell responses to light
stimuli.

Firing rates from the type A cells in the plateau region (the last 25 s
of a 30-s simulated light step, except where explicitly noted) were
used to measure output over eight light intensities spanning approx-
imately 3.5 log units. Previous studies of Hermissenda have shown a
log-linear increase in cell response with light intensity (Detwiler
1976). Additionally, Akaike and Alkon (1980) found that all five
photoreceptors depolarize and increase their firing frequency in re-
sponse to light when stimulated over a range of about 3.5 log units
with a maximum intensity of 105 ergs �cm�1 �s�1.

Eleven artificial eyes were subjected to eight light levels in noisy
and noise-free conditions to determine whether noise, light, or
noise � light had an effect on average type A cell firing frequencies
using the general linear model (GLM) ANOVA (SPSS, Chicago, IL),
where P values �0.05 indicate significance. Performance was evalu-
ated using a modified Levene test on residuals. Specifically, the
performance of each eye was determined by measuring the residuals
between the actual performance of the system and the expected
performance of an ideal decoder under varying levels of channel and
synaptic noise. An example that steps through the analysis process is
summarized in Fig. 2. Simulations were run for 30 s postlight, and the
average firing frequency of the type A cells from the last 25 s of the
simulation was recorded at eight light levels. These relatively long
integration times follow from the 1- to 2-min behavioral response time
of the animal. To find the optimal decoder for each individual eye,
firing rate data were tested for significant curve fits of polynomial
orders 1 to 7 (within-subject contrasts from GLM ANOVA). Of the

statistically significant curves, the one with the lowest Akaike infor-
mation criterion (AIC) was selected. AIC is calculated from

AIC � n � log (�2/n) � 2 � p (1)

where n is the sample size, � is the sum of squares of the residuals,
and p is the number of model parameters (in this case p refers to the
number of polynomial terms included). With this approach, we gave
each individual eye the chance to find an optimal decoder, rather than
enforcing one a priori. Once a decoder was determined, residuals
between the actual firing rate and the optimal decoder were calculated
for each eye and analyzed using a repeated-measures ANOVA for 8
light levels, 11 model eyes, and 2 conditions (noisy and noise-free).
This performance measure was designed to take into account the
known correlation between light intensity and firing frequency, al-
though we considered other more general performance measures that
examined the difference in mean frequency between light levels in
relation to the variance at each light level (see DISCUSSION).

Spike times for each neuron were recorded using an action potential
detector in GENESIS and stored in a Microsoft Access database.
Database queries were designed to extract spike times for specific
cells and windows of time for firing rate calculations.

R E S U L T S

Noise improves performance of light-intensity encoding

Our principal finding is that noise improves the performance
of light-intensity encoding. For the 11 model networks, the
average firing rates of the type A cells over the last 25 s of
a 30-s light response are plotted versus log (light intensity)
(Fig. 3A). ANOVA results indicate a significant difference for
light (P � 0.001) and noise � light (P � 0.001), but no
significant difference for noise level (P � 0.461). Most impor-
tantly, the noisy network outperformed the noise-free network:
residuals were smaller and more evenly distributed in the noisy
condition (Fig. 3B). Repeated-measures ANOVA on the resid-
uals (modified Levene test) showed significant differences for
noise (F � 37.127, P � 0.001), light (F � 5.427, P � 0.001),
and noise � light (F � 7.012, P � 0.001), with smaller
residuals in the noisy condition than in the noise-free condi-
tion. The residuals represent the differences (errors) between
the eye’s best-fit optimal decoder and the photoreceptor’s
actual firing frequencies for the various light intensities. Thus

FIG. 2. Light-encoding performance of each photoreceptor is evaluated relative to the optimal decoder as shown in a representative example in the noise-free
condition. A: mean type A cell firing frequency is plotted vs. log (light intensity) for a single photoreceptor. Light intensity is labeled relative to a maximum value
of 0, a convention derived from using neutral-density filters to attenuate light intensity from a source. A detailed measure of network performance is provided
by comparing residuals between raw data and a “best-fit” decoder for each model eye. Candidate decoders were selected from significant within-subject contrasts
in a general linear model (GLM) ANOVA; in this example linear and quadratic were significant. The decoder with the smallest Akaike information criteria was
considered the best. B: differences between observed firing frequency and best-fit predicted firing rate (residuals) are recorded for each of the 11 model eyes in
noise-free and noisy conditions (example shown for linear fit from noise-free neuron in A).
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these results indicate that the response of the photoreceptor is
more systematic and monotonic in the noisy condition, com-
pared with the noise-free condition. Given that one role of this
system is to determine light intensity, the network will make this
measurement more accurately in the noisy condition. Thus we
conclude that, for a wide range of stimulus intensities, the model
Hermissenda photoreceptor network encodes light intensity more
systematically in the noisy condition compared with the noise-free
condition.

Encoding performance is modulated by noise amplitude

Previous investigators have observed an optimal noise in-
tensity for signal-to-noise ratio (SNR) in neurons with
Hodgkin–Huxley channels (Wang et al. 2000). In an attempt to
see whether such an optimum existed in the Hermissenda
photoreceptor, we characterized the sensitivity of network
performance to noise type and amplitude. Although some noise
appears beneficial, system performance could be modulated by
noise amplitude and type. As a result, certain noise levels
would provide greater benefit. To explore this, we varied
channel and synaptic noise across a wide range of levels
(channel noise varied from N[0, 0 nA] to N[0, 1 nA]; synaptic
noise varied from N[1, 0] to N[1, 0.25]) as shown in Fig. 4. We
found that there is a floor effect for both channel and synaptic
noise. Some noise is good, but high levels of noise do not have
any added benefit. Although either noise type can confer
performance benefits at sufficient magnitudes, the residuals for
channel noise are smaller than those for synaptic noise.

Noise enhances encoding accuracy in longer epochs

Having shown that noise improves performance, we next
sought to characterize the conditions under which noise im-
provement occurs. To examine the effect of noise on neural
response time (i.e., how quickly can the intensity of the light
stimulus be determined?), we measured light encoding perfor-
mance with different duration time epochs from 5 to 25 s
postlight onset. We found that in the noisy condition the
accuracy of light-intensity encoding was correlated with the
length of the time by comparing the average residuals in the 5-,
10-, and 25-s light epochs (Fig. 5). In contrast, the noise-free
condition did not improve, regardless of epoch length.

Noise-induced performance requires ongoing presence
of noise

In a second experiment to characterize the conditions for
noise-induced improvement, we examined the performance of

the network as noise was turned on and off during the light
response (Fig. 6) at the eight light levels explained earlier. In
this case, we conducted an 80-s light-duration experiment
during which noise was off for the first 30 s, then on for 25 s,
then off for the final 25 s. Each epoch (5–30, 30–55, and
55–80 s) was analyzed independently to determine firing rates
and residuals. There are two important results from this exper-
iment. First, it confirmed our initial observation that network
performance is modulated by the ongoing presence of noise. It
is not sufficient to “seed” the network with noise and retain any
lasting benefit when noise is turned off. Second, while analyz-
ing these results we observed something intriguing about the
cell firing patterns. In the absence of noise we discovered that
the networks tended to adopt spike timing patterns where the
type A cells become artificially synchronized, an effect that
warrants further exploration (see DISCUSSION).

Noise-induced improvement is an emergent property of the
photoreceptor network

In the absence of synaptic connections, the individual cells
in the noise-free and noisy conditions perform similarly
(Fig. 7), with a slight improvement in the noise-free condition
compared with the noisy condition. In the single-cell case, the
two conditions have relatively similar monotonic increases in
firing rate with light intensity, and have relatively comparable
residuals when compared with an ideal decoder. ANOVA
results indicate significant differences in firing frequency for
light (P � 0.001), noise (P � 0.005), and noise � light (P �
0.006); ANOVA results on the residuals indicate significant
effects for noise (P � 0.002) but not light (P � 0.4) or noise �
light (P � 0.9). Given that the mean residuals in the noise-free
condition are lower, these results suggest that in the absence of
synaptic connections, the individual cell performs slightly
better in the noise-free condition, which is the exact opposite of
the effect of noise in the synaptically connected network, for
which noise improved encoding. However, this effect is small.
Thus the ability of noise to improve encoding of light intensity
is an emergent property of the inhibitory network arising from
synaptic connections among its neurons, rather than a property
of the individual neurons themselves.

D I S C U S S I O N

Noise and neural systems

In this paper we demonstrate the paradoxical improvement
that random noise exerts on the performance of the Hermis-

FIG. 3. Noise improves light-intensity encoding; group
data. A: the Hermissenda eye encodes light more systematically
in the presence of noise relative to the noise-free condition.
Shown are mean type A cell firing rates � SE over the last 25 s
of a 30-s light stimulus for noisy and noise-free conditions (n �
11). B: residuals were determined between each model eye and
its optimal decoder for noisy and noise-free conditions. Data
are averaged across multiple eyes to show residuals for all eyes
at each light level. Residuals were smaller and less variable in
the noisy compared with the noise-free condition.
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senda photoreceptor network. One important component of the
modeling approach used in this paper is the nature of noise
sources. Physiologically, intracellular recordings capture the
sum of signal and noise, keeping in mind that the definitions of
these two sources are not strictly defined. Herein we view

FIG. 5. Noise improves encoding accuracy as shown during 5-, 10, and 25-s
epochs (A–C, respectively). Increasing the epoch length had little effect on
residuals in the noise-free condition (D1), but caused a reduction in residuals
and an improvement in light-intensity encoding performance in the noisy
condition (D2). All values are shown � SE.

FIG. 4. Optimal levels of channel and synaptic noise. Each graph shows the
average residuals across 11 eyes as a function of noise intensity. A: surface plot
showing the results when channel and synaptic noise are covaried. A minimum
value occurs at channel noise � 4e-10 nA and synaptic noise � 16%.
B: channel noise alone, synaptic noise � 0. C: synaptic noise alone, channel
noise � 0. In all plots, the values used during the default noisy condition are
highlighted with a shaded circle.

150 C. R. BUTSON AND G. A. CLARK

J Neurophysiol • VOL 99 • JANUARY 2008 • www.jn.org

 on M
arch 1, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


channel noise as voltage deviations from the moving average
value and synaptic noise as variability in IPSPs. Major noise
sources in physiological recordings result from the stochastic
nature of ion channel openings and closings, as well as changes
in the magnitude of postsynaptic potentials during steady-state
conditions. We attempted to mimic these noise sources by
adding ionic noise currents on a per-compartment basis and by
varying the magnitude of postsynaptic potentials. These
sources have not been previously characterized in the Hermis-
senda photoreceptor network, but have been examined in
similar systems. For example, in Hermissenda statocyst hair
cells, noise variance is caused by mechanotransduction and
shares a common origin with the generator potential (DeFelice
and Alkon 1977; Grossman et al. 1979). They measured noise
variance in the range 1e-8 to 12e-8 V for cells under relevant
conditions, values that are somewhat larger than those that we
measured from the photoreceptor cells. They also observed that
removal of sodium from the extracellular bath drastically
decreased noise variance, suggesting that sodium ion channels
are a primary source of channel noise. Indeed, a small number
of persistent Na� channels can cause a relatively high coefficient
of variation in induced current as measured in entorhinal cortex
(White et al. 1998), where the effects of channel noise are
insensitive to changes in the specific form of the noise: changing
the threshold, bandwidth, or voltage dependence of the noise
altered details but not the basic properties of the results. Consistent
with these findings, channel stochasticity is likely to be a key
player in setting neuron’s firing patterns, and thus it should be
incorporated in models that explore the firing variability and spike
timing of cortical neurons (Schneidman et al. 1998). In our
approach we mimic the microscopic effects of channel noise with
macroscopic noise injection, an approach that has been shown to

be relevant for the distribution of thresholds for generation of
action potentials (Chow and White 1996; Steinmetz et al. 2000).

Synaptic noise has also been investigated. Noise can play a
constructive role in sensory processing in neuronal systems,
specifically that the SNR of a weak sinusoidal signal can be
increased in the presence of Gaussian noise in a Hodgkin–
Huxley neuronal model (Liu et al. 2001). This effect was
present in single cells, but much more pronounced in a network
of synaptically connected cells. In another set of experiments,
the variability of input spike arrival times may play a much
greater role in facilitating SNR increase than intrinsic noise
(Plesser and Gerstner 2000).

There are several possible noise sources such as changes in
intracellular or extracellular ion concentrations that are not
captured by the model used herein, and their effects are not
known. However, we observed that the paradoxical perfor-
mance improvement in the Hermissenda photoreceptor net-
work was not strongly dependent on the type (channel vs.
synaptic) or amplitude of the noise. Rather, once noise levels
reached a certain level as shown in Fig. 4, either type of noise
was sufficient to confer performance improvement. Thus our
results suggest that providing additional noise sources would
not change the primary results.

Effects of performance measure

Several different measures of photoreceptor network perfor-
mance are available besides the modified Levene test used in
this study (see METHODS). Among them, mutual information has
been attractive to some investigators because it requires no
assumptions about the underlying model. This has proven to be
very useful in certain situations where little is known about the
encoding or decoding mechanisms. For example, information

FIG. 6. Performance improvement requires ongoing pres-
ence of noise. A: we conducted light-intensity experiments with
noise off for 25 s postlight (5- to 30-s epoch), then on for 25 s
(30- to 55-s epoch), then off for 25 s (55- to 80-s epoch). Shown
are average type A cell firing rates � SE over each epoch.
B: we found that, consistent with our previous results, the noisy
condition exhibited lower residuals and improved performance
as shown by average residuals � SE for each epoch. The
performance in the noise-free condition was roughly the same
in both epochs, indicating that the ongoing presence of noise is
necessary to confer its advantages.

FIG. 7. Noise-induced improvement is an emergent network
property. In the absence of synaptic connections, the mean
firing rate (A) and residuals (B) of the type A cells are nearly
identical in the noisy and noise-free conditions. Values are
shown � SE.
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theoretic approaches have been used to accurately decode
angular velocity of a moving bar in fly H1 neurons (Bialek
et al. 1991). However, this is precisely why this measure is not
useful for our experiments: mutual information places no
bounds on the complexity of the underlying encoder and
decoder. From a practical standpoint in Hermissenda, this
means that the average type A cell firing rates could be
randomly rearranged with respect to light level, yet the mutual
information would not change. However, physiological exper-
iments provide evidence for a rate code for light intensity: the
higher the light intensity, the higher the firing frequency
(Akaike and Alkon 1980; Detwiler 1976). To accurately mea-
sure performance, our metric had to take this systematic
relationship into account. Our statistical tests use this relation-
ship by comparing the actual firing rate to that of an optimal
decoder that is chosen on a per-eye basis, which is a more
biologically realistic approach to the problem than assumption-
free methods like mutual information. Similar methods have
been proposed to assess the performance of neural encoding
models in the presence of noise (Roddey et al. 2000), using a
theoretically optimal, signal-averaged encoder for the neural
system rather than an optimal encoder for each case.

The design of our model is consistent with observations that the
existence of repeatable spike patterns and the reliability of their
timing change not only from neuron to neuron, but even for the
same neuron under different circumstances (Cecchi et al. 2000).
They also showed that neural output noise is dependent on
different stimuli and that this effect is dependent on the network
architecture. This is in contrast to assumptions about neurons as
communication channels from information theory, where the
noise is assumed to be independent of the signal.

Simple mechanisms cannot account for results

Before looking for detailed mechanisms for noise-induced
improvement, we searched for trivial mechanisms that could
explain these results. First, we considered stochastic resonance
(SR) as a mechanism. SR is a phenomenon described using a
variety of definitions with subtle distinctions. One common
description is a system whose subthreshold dynamics exceed
threshold in the presence of noise. However, SR is normally
used to describe neural dynamics of perithreshold stimuli,
which does not apply to the experiments presented in this
study. Second, we examined the effects of DC bias on the cell
firing rates. Due to the rectifying properties of ion channels,
even zero-mean channel noise can cause the cell to depolarize
(Fig. 8A). Indeed, we found that our Gaussian noise distribu-
tion of N[0, 0.33 nA] caused the average cell firing rate to
increase about 0.1 Hz. To compensate for this DC bias, we
added a small hyperpolarizing current such that the firing rates
were matched to within 0.1 Hz (power � 0.9) between the
noisy and noise-free condition. Even with this correction the
noise-induced performance improvement persisted, indicating
that noise-induced improvements in light-intensity encoding
were not due to a DC bias. Last, we examined the effects of
type A cell synchronization. In the absence of any biophysical
difference between type A cells, the noise-free condition col-
lapses to what is essentially a two-cell network (Fig. 8B). The
two type A cells fire in unison, as do the three type B cells. The
addition of cellular heterogeneity within each eye abolished
this artificial synchronization but does not account for the

differences between the noisy and noise-free conditions. Thus
noise-induced improvements did not arise simply from tempo-
ral dispersion of spike firing times among the photoreceptors.

This observation led to a new set of experiments designed to
look for mechanisms for noise-induced performance improve-
ment. In particular, we began to examine the relationships
among photoreceptor firing times in the Hermissenda eye. In
many past theoretical studies, inhibitory inputs were consid-
ered to simply lower firing rates of postsynaptic neurons rather
than affect precise firing times. However, Luk and Aihara
(2000) showed that IPSPs can play a functional role in realiz-
ing synchronization of neuronal firing. They also showed that
these effects are peculiar to the biologically realistic Hodgkin–
Huxley neuron models. This and other evidence led us to look
for contextual spike-timing codes. Briefly, contextual spike-
timing codes are distinct from rate or labeled line codes in that
they encode information through the firing of one neuron
relative to others. Here we have demonstrated enhanced light-

FIG. 8. Trivial mechanisms cannot account for results. A: due to the
rectifying properties of neurons, the zero-mean channel noise can cause a slight
increase in firing rate (Original Noisy condition). To compensate for this, we
added a small hyperpolarizing current such that the average firing frequency
was matched to within 0.1 Hz (power � 0.9) between the noisy and noise-free
conditions. Values are shown � SE. B: cross-correlograms show temporal
synchronization between type A cells. To compensate for artificial temporal
synchronization in the noise-free network (top), we added cell heterogeneity as
described in METHODS (middle). This produced levels of desynchronization
similar to those of the noisy condition (bottom) but did not improve encoding
performance.
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encoding performance of the Hermissenda photoreceptor net-
work in the presence of noise, relative to the noise-free con-
dition. Alternate explanations have been considered for this
effect. However, the phenomenon has persisted after control-
ling for each alternate mechanism. In contrast to noise-induced
effects observed during stochastic resonance, this effect occurs
with suprathreshold stimuli.

Conclusion

We have shown that the effects of noise are an emergent
property of the Hermissenda network. In the absence of syn-
aptic connections, noisy and noise-free cells show comparable
performance in encoding light intensity. The addition of either
channel or synaptic noise (or both) in a synaptically connected
eye drastically improves performance: there is a closer rela-
tionship between light intensity and photoreceptor firing rate,
allowing light intensity to be inferred more accurately. Synap-
tic connections also confer other advantages, such as network
interactions contributing to learning and memory (Alkon 1974;
Crow 1983; Crow and Alkon 1978; Crow and Offenbach 1983;
Farley and Alkon 1982; Frysztak and Crow 1994; Lederhendler
and Alkon 1987; Schuman and Clark 1994). Having eliminated
several trivial explanations for the noise-induced improve-
ments, we now turn to a set of hypotheses on mechanisms for
noise-induced improvement that are explored in a companion
paper (Butson and Clark 2008). We specifically examine the
effects of contextual spike timing and its implications as a
mechanism for noise-induced improvement.
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