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1. Introduction

The material point method (MPM) is a particle-based method
for solving large-deformation solid mechanics problems [1,2]. In
this method, the problem domain is discretized into particles that
carry material data such as mass, velocity, internal state variables,
etc. At each time step, the mass, velocity, and internal force are
projected from the particles to a ‘‘background’’ grid, which is
typically (though not necessarily) taken to be Eulerian. The
equations of motion are solved on the background grid, and the
updated velocity and acceleration fields at the grid nodes are then
mapped to the particles to update the particle position and veloc-
ity, respectively. The updated grid velocity field is used to calculate
the velocity gradient, rate of deformation, and updated deforma-
tion gradient tensors at each particle, which then may be used
by the constitutive model to update the stress at each particle.
The MPM equations and algorithm are summarized in Section 2.
For a more complete description of the method see Steffen and
Wallstedt for a review [3]. An implicit version of the MPM has also
been developed [4,5], but only the explicit MPM is considered in
this paper.

The material point method has successfully been used to solve a
wide variety of solid mechanics problems including fluid–structure
interaction [6], finite-deformation plasticity [7], fracture mechan-
ics [8,9], and impact/penetration [10,11]. Many potential areas of
application of the MPM involve material softening (i.e., loss of
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strength due to inelastic deformation). When softening occurs,
plastic deformation often localizes into a discrete region, which
has been shown to result in a loss of hyperbolicity and ill-posed-
ness of the governing equations [12,13]. The consequence of this
ill-posedness, in numerical simulations, is that the localization
zone becomes proportional to the mesh spacing. As the mesh is re-
fined, the localization zone therefore becomes ever smaller, and
the work to failure after the peak load is reached approaches zero.
In a real material, the size of a localization zone would be
determined by the length scale of the underlying material
micro-structure (grain size, void distribution, etc.). However, local
material models possess no intrinsic length scale from which the
size of a localization zone can be established.

Spatially nonlocal plasticity theory has been developed to intro-
duce an intrinsic length scale to plasticity models. This intrinsic
length scale results in two important characteristics. First it serves
as a localization limiter, which restores the well-posedness of the
initial boundary-value problem by limiting the width of a localiza-
tion zone [14–16]. Second, it results in the prediction of a size-
effect, which causes the length scale of a structure relative to the
material’s structure to influence its mechanical response, as has
been observed in the laboratory [17,18]. This is in contrast to a tra-
ditional local continuum material where no intrinsic length scale is
associated with the material, and hence, no size effect is predicted.

Here the term nonlocal is used to describe any type of plasticity
model that includes an intrinsic length scale. Two classes of non-
local models have emerged in the literature: strongly nonlocal
and weakly nonlocal. The strongly nonlocal formulations include
nonlocal models of the integral type, as well as the implicit
gradient model of Engelen and Geers [19,20]. The weakly nonlocal
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models include the explicit gradient models [16,21]. For a compar-
ison of the explicit gradient, implicit gradient, and integral-type
nonlocal models see the paper by Peerlings et al. [22]. For a more
complete survey of the various nonlocal models that have been
developed see the papers by Baz̆ant and Jirásek [23] and Di Luzio
and Bazant [24].

In terms of implementation, a local plasticity model results in
an uncoupled set of algebraic constitutive equations, whereas non-
local formulations, when discretized, result in a coupled set of con-
stitutive equations. The integral-type formulation results in a
coupled set of integral equations [15,25]. The explicit gradient for-
mulation results in a partial differential equation which must be
solved over the plastic portion of the domain [21]. The implicit gra-
dient formulation results in a partial differential equation of the
Helmholtz type which must be solved simultaneously with the
equations of motion or equilibrium [19]. Various methods have
been employed to solve these additional equations. The focus of
this paper is solving the equation of the integral-type nonlocal
models.

The integral-type nonlocal models have a few distinct advanta-
ges and disadvantages as compared to the gradient models. Both
the integral-type and implicit gradient models are strongly non-
local, which makes them effective at limiting the size of localized
regions and thereby restoring the well-posedness to localization
problems. An advantage of integral-type nonlocal models is that
the treatment of nonlocal terms at material boundaries is more
transparent and physically meaningful as compared to the physi-
cally ambiguous boundary conditions that must be specified with
both implicit and explicit gradient models. The primary disadvan-
tage to the integral-type models is the difficulty of solving the
resulting system of integral equations. The purpose of this paper
is to present a new method of solving this coupled system of inte-
gral equations using the material point method (MPM).

The approach taken in this paper is closely related to that used
by Stromberg and Ristinmaa with the FEM [25]. The unique contri-
butions of the present work are:

1. Whereas integral-type nonlocal models have been imple-
mented previously using other methods [15,25–28], this is the
first paper to present a nonlocal plasticity algorithm for the
MPM.

2. A method for evaluating the nonlocal integrals is presented that
uses the MPM background grid rather than body-fixed Lagrang-
ian points. This scheme eliminates the need to maintain a list of
‘‘neighboring’’ material points within the support domain of the
nonlocal weighting function around each material point. This is
particularly important for large deformation problems where
the number and identity of the particles within the nonlocal
support domain of a particle changes in time.

3. A straightforward method for deriving a convergence criterion
for the new method is presented. Stromberg and Ristinmaa
demonstrated that their iteration scheme converged for the
problems considered in that work, but they did not derive a
general convergence criterion. In the present work, we show
that a similar iteration scheme may be derived using a multi-
variate fixed-point iteration scheme. Using a Drucker–Prager
yield model, Section 4 summarizes various fixed-point systems
that can be derived from the same set the yield equations. The
Banach contraction mapping theorem is used to derive a gen-
eral convergence criterion for two of these possible iteration
schemes for the Drucker–Prager model. The resulting conver-
gence criteria reveal under what conditions each fixed-point
formulation is preferred.

The organization of the paper is as follows. Section 2 is a brief
overview of the MPM. Section 3 provides an overview of the equa-
tions of nonlocal plasticity. In Section 4 we derive two fixed-point
iteration schemes for a nonlocal Drucker–Prager plasticity model.
Section 5 discusses the implementation of the fixed-point iteration
scheme within the MPM. Finally, in Section 6, results are presented
from two simple localization problems. The nonlocal plasticity
method presented here is shown to cause the localization zone
to converge to a finite width as the mesh is refined. The width of
the localization region is shown to be proportional to the nonlocal
length scale parameter. Additionally, the behavior of a structure is
shown to depend upon the ratio of the specimen length scale and
the nonlocal length scale.

2. Review of the material point method

With the material point method (MPM), the problem domain is
discretized into a set of Lagrangian material point particles. Each
MPM particle represents a finite Lagrangian volume of the mate-
rial, and is used to track the properties of that volume (e.g., mass
mp, volume Vp, density qp ¼ mp=Vp, stress rp, deformation gradient
tensor Fp, internal variables, etc.). The method also makes use of a
‘‘background’’ grid. Though it is not required by the method, a uni-
form, structured Eulerian background grid is often used. Using an
Eulerian grid is equivalent to resetting the grid at the end of each
time step and treating the ‘‘reset’’ grid as the kinematic reference
configuration for each time step. In this way the kinematic ap-
proach of the MPM is essentially equivalent to that of the updated
Lagrangian finite-element method. For each time step, the equa-
tions of motion are solved on the background grid in the same
manner as with the finite element method (FEM). Accordingly,
the lumped mass array is given by

mi ¼
Z

X
qðxÞSiðxÞdV ; ð1Þ

where q is the mass density, and Si is the shape function associated
with the ith grid node. With the FEM, the integral in Eq. (1) is broken
up, without loss, into a sum of integrals over element domains.
With the MPM, on the other hand, the integral in Eq. (1) is broken
up into a sum of integrals over non-overlapping particle domains
Xp:

mi ¼
P

p
qp

Z
Xp

SiðxÞdV ; ð2Þ

where qp is the density of the pth particle, which is assumed to be
constant over the particle domain. Similarly, the internal force array
is

f int
i ¼ �

P
r p

�
Z

Xp

rSiðxÞdV : ð3Þ

In principle, each integral over the particle domain may be eval-
uated exactly if Xp is treated as the Voronoi cell for the particle. To
avoid the need for finding the Voronoi tessellation, these integrals
may be approximated as follows:

mi ¼
P

p
mp/ip ð4Þ

and

f i ¼
P
r p

� Gip; ð5Þ

where

/ip ¼
1

V�p

Z
X�

S�i ðxÞvpðxÞdV ; ð6Þ

Gip ¼
1

V�p

Z
X�
rS�i ðxÞvpðxÞdV ð7Þ
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and

V�p ¼
Z

X�
vpðxÞdV : ð8Þ

Eqs. (6) and (7) have introduced a generalized integration domain
X�, as well as a weight function vpðxÞ, and possibly an alternative
shape function to allow these integrals to reduce to the various
MPM formulations in the literature. If S�i ðxÞ ¼ SiðxÞ; X� ¼ Xp, and
vp is the Dirac delta function, then the result is the standard MPM
formulation [1]. If S�i ðxÞ ¼ SiðxÞ; X� ¼ Xu, with vp ¼ 1 on Xu and 0
elsewhere, where Xu is an nondeforming cuboid, then the result is
the ‘‘uGIMP’’ formulation [2]. Finally, if S�i ðxÞ ¼ Sapp

i ðxÞ, where
Sapp

i ðxÞ is a linear interpolating function across the generalized do-
main X� ¼ XCPDI, and vp ¼ 1 on XCPDI and 0 elsewhere, where XCPDI

is a parallelepiped that deforms with the particle’s deformation gra-
dient, then the result is the CPDI formulation [29]. For a quantitative
comparison of the error of standard MPM and GIMP, see the paper
by Wallstedt and Guilkey [30], and for a comparison of GIMP and
CPDI see the paper by Sadeghirad et al. [29]. Additionally, an im-
proved velocity projection method has been developed by Wallstedt
and Guilkey [31], but is not considered in the present work.

Regardless of the MPM formulation that is used, the internal
force vector, along with any external force vector f ext

i , and the
lumped mass mi are used to solve for the nodal acceleration vector:

ai ¼
f int

i þ f ext
i

mi
: ð9Þ

The updated grid velocities v i, are found using an explicit forward-
Euler time integration scheme:

vnþ1
i ¼ vn

i þ aiDt: ð10Þ

The velocity gradient at each particle is calculated using:

rvnþ1
p ¼

P
i

Gipvnþ1
i : ð11Þ

The deformation gradient tensor is then update using:

Fnþ1 ¼ Fnðrvnþ1
p þ IÞ: ð12Þ

The polar decomposition of Fn and Fnþ1 is used to find the material
rotation tensor at the beginning and end of the step. To satisfy
frame indifference, the symmetric part of the velocity gradient
and the stress tensor at the beginning of the step are both unrotated
prior to calling the constitutive model. After the constitutive model
computes the updated stress tensor, it is re-rotated using the mate-
rial rotation tensor at the end of the time step.

The symmetric part of the velocity gradient tensor is then used
to update the stress state of each particle. Finally, the particle posi-
tion, velocity are updated according to:

xp ¼ xn
p þ

P
i
/ipv iDt ð13Þ

and

vp ¼ vn
p þ

P
i
/ipaiDt; ð14Þ

respectively.
As mentioned, all problem data (density, stress, etc.) are saved

at particles. Accordingly, the continuous approximation to any field
hðxÞ is then described on the background grid as

hðxÞ ¼
P

i
hiSiðxÞ; ð15Þ

where hi is the nodal value on the grid, calculated from particle val-
ues, hp, by

hi ¼
1

mi

P
p

/iphpmp: ð16Þ
The MPM formally belongs to the class of meshless methods for
which fields are described by

hðxÞ ¼
P

p
hpBpðxÞ ð17Þ

in which BpðxÞ are particle basis functions. The computational
advantage of the MPM is that these particle basis functions do not
need to be constructed explicitly. In particular, substituting Eq.
(16) into (15) shows that the MPM particle basis functions are

BpðxÞ ¼
P

i

mp

mi
/ipSiðxÞ: ð18Þ
3. Nonlocal plasticity

In nonlocal plasticity theory, as in classical elastoplasticity the-
ory, the strain rate _� is assumed to be additively decomposed into
elastic and plastic parts, _�e and _�p, respectively:

_� ¼ _�e þ _�p: ð19Þ

The stress rate tensor _r is given by elasticity theory according to

_r ¼ C : _�e; ð20Þ

where C is the fourth-order elastic tangent stiffness tensor. The
plastic strain rate is described by the flow rule according to Eq. (21):

_�p ¼ _kcM ; ð21Þ

where _k is the ‘‘rate-like’’ plastic multiplier and cM is a unit tensor
defining the direction of the plastic strain rate tensor.

Bazant and Lin’s nonlocal plasticity model included a nonlocal
average of the plastic strain rate tensor in the strain rate decompo-
sition equation [15]. In that seminal work, every occurrence of the
plastic strain rate tensor in classical theory was replaced with a
nonlocal average. Subsequent work demonstrated that this is not
necessary (and, in some cases, not sufficient) to regularize the gov-
erning equations [25,24]. Specifically, nonlocal terms are needed
only in the evolution equations for the internal state variables that
drive softening.

As in classical plasticity, the yield function f is a scalar function
of the stress tensor and a set of internal state variables that change
in response plastic loading. Each internal state variable may either
be a local or nonlocal variable. For simplicity, only one local inter-
nal state variable, g, and one nonlocal internal state variable, f, will
be considered. Extension of the theory to account for any number
of local or nonlocal internal state variables should be self-evident.

The standard Karush–Kuhn–Tucker plastic complementarity
conditions are:

f _k ¼ 0; f 6 0; _k P 0: ð22Þ
These equations may equivalently be written as (c.f. [25]):

f ¼ w; w _k ¼ 0; w 6 0; f 6 0; _k P 0: ð23Þ

where w is a so-called ‘‘slack’’ variable. The solution to the comple-
mentarity problem consists of finding w and _k, at least one of which
must be zero, at each material point. In practical terms, this involves
determining which particles are undergoing plastic deformation in
a given time step, and determining the value of _k during that step. If
w < 0, the actual value of w is not of interest.

Although within the plasticity community Eq. (23) is an uncom-
mon way of expressing the plastic complimentarity condition, this
form highlights the fact that determining which particles are
undergoing plastic deformation is an important part of the solution
procedure. For a local model this involves only checking the sign of
the yield function. As will be shown, for a nonlocal model, making
this determination is not so trivial. The complementarity form of
the consistency equation also results in a more straightforward
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means of expressing the iteration scheme described in the next
section.

The local internal state variable g evolves according to

_g ¼ hg _k; ð24Þ

where hg is the local hardening/softening modulus. The nonlocal
internal state variable f evolves according to

_f ¼ hfh _ki; ð25Þ

where hf is the nonlocal hardening/softening modulus, and h:i is the
nonlocal averaging operator defined by a weighted average integral
over the entire problem domain X:

h _ki ¼ 1
Vb

Z
X

bðx� sÞ _kðsÞds: ð26Þ

Here, x is the location of a given particle and bðxÞ is the nonlocal
weighting function, and

Vb ¼
Z

X
bðx� sÞds: ð27Þ

The divisor Vb normalizes the nonlocal average, and also serves an
important role at boundaries. The internal state variables g and f
are generally initialized to zero, which is equivalent to assuming
that the material is in a virgin state, or at least in the same state
as the material used to calibrate the constitutive model. The
weighting function of a particle that is adjacent to a material
boundary will have a portion of its support outside of X. This por-
tion of the weighting function will not contribute to Vb, thus reduc-
ing the value of Vb compared to that of an interior particle. In this
way the amplitude of the weighting function near a boundary is in-
creased so that the nonlocal averaging remains normalized despite
the truncation of the portion of the weighting function that extends
beyond the boundary. Whereas gradient-type models require set-
ting boundary conditions on the plastic strain field, this is the only
special treatment of the boundaries that is necessary with an inte-
gral-type model.

A truncated Gaussian bell-curve is used for the nonlocal weight-
ing function:

bðxÞ ¼ Exp½�ðkkxk=lÞ2�; 0 6 kxk 6 lbðxÞ ¼ 0; kxk > l; ð28Þ

where k ¼ 6
ffiffiffiffi
p
p� �1

3 for a 3D simulation, 2 for a 2D simulation,
ffiffiffiffi
p
p

for a
1D simulation, and l is the nonlocal length scale. This choice for the
nonlocal weighting function is not unique. The critical properties of
the weighting function are the extent of the function’s support, and
the smoothness. It has been reported in the literature that a smooth
weighting function results in a higher rate of convergence [15].

The generalized nonlocal model described here allows for both
local and nonlocal hardening/softening. If hg were zero, the result
would be a purely nonlocal model, and if hf were zero, a purely lo-
cal model is recovered. Several studies in the literature advocate
using both local and nonlocal terms [25,32,24]. Stromberg and Ris-
tinmaa’s model of this type, which was called an overlocal model
by Di Luzio and Bazant [24], is obtained by letting hg > 0 and
hf < 0. If each internal variable is defined such that an increase
in the internal variable tends to increase the yield strength, then
an overlocal model corresponds to local contributions to hardening
and nonlocal contributions to softening.

If a backward Euler implicit integration scheme is used for
updating r;g, and f, the first equation in (23) may be written at
the end of time step k as

f rn þ _rnþ1Dt;gn þ hg
_knþ1Dt; fn þ hfh _kinþ1Dt

� �
¼ wnþ1; ð29Þ

where the superscripted n refers to the time step number. In
general the hardening moduli can change during plastic loading
increments, but are often simply taken to be constant over a time
step. Eqs. (19)–(21) can be combined to give:

_r ¼ C : _�� _kA; ð30Þ

where A ¼ C : cM . Substituting Eq. (30) into Eq. (29) gives

f ðrtrial � Dknþ1Anþ1
;gnþ1; fnþ1Þ ¼ wnþ1; ð31Þ

where

gnþ1 ¼ gn þ hg _knþ1Dt; ð32Þ
fnþ1 ¼ fn þ hfh _kinþ1Dt ð33Þ

and

rtrial ¼ rn þ C : _�nþ1Dt: ð34Þ

The objective of the nonlocal plasticity algorithm is to find the fields
_knþ1, and wnþ1, that satisfy Eq. (31), ensuring that the plastic consis-
tency condition is satisfied at each time step.

4. Fixed-point iteration scheme for linear Drucker–Prager yield
function

For simplicity, we restrict the discussion to a linear Drucker–
Prager yield function with linear isotropic hardening/softening.
The discretization method used here may nevertheless be used
for any yield function desired. The Drucker–Prager yield function
is:

f ðr;g; fÞ ¼
ffiffiffiffi
J2

p
þ aI1 � ko � g� f; ð35Þ

where J2 ¼ 1
2 S : S; S is the deviatoric stress tensor, and I1 ¼ TrðrÞ.

The material parameters are a, and ko. These parameters are propor-
tional to the friction angle and cohesion, respectively. The direction
of the plastic strain rate tensor is prescribed to be proportional to
the unit normal to the plastic flow potential surface. The plastic
flow potential is taken to have the same functional form as the yield
function. The only material parameter affecting the direction of the
plastic strain rate tensor is the dilatation parameter ap. The dilata-
tion angle controls the ratio of volumetric to deviatoric plastic
strain. If ap is chosen to coincide with a, then the plastic potential
and the yield surface are identical, which is called an associated
model. The plastic flow direction is then

cM ¼
1ffiffi
2
p Snþ1

Snþ1k k þ apIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ 3a2

p

q ; ð36Þ

where, consistent with the backward-Euler scheme, Snþ1 is the
deviatoric stress tensor at the end of the time step, and I is the sec-
ond-order identity tensor. Using the yield function in (35), and
substituting these expressions into Eq. (31) for plastic particles
ðw ¼ 0Þ under the additional assumption that the elastic stiffness
is constant and isotropic, the yield function at the end of the step
evaluates to

f ðrtrial � DkA;gnþ1; fnþ1Þ ¼ ftrial � Dk
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2þ 3a2

p

q � Dk
9aKapffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2þ 3a2

p

q
� hgDk� hfhDki ¼ 0; ð37Þ

where G is the shear modulus, K is the bulk modulus, Dk ¼ _kDt, and

ftrial ¼ f ðrtrial;gn; fnÞ: ð38Þ

Since hDki is an integral operator that includes contributions
from other particles, Eq. (37) gives a coupled system of integral
equations to be satisfied at each plastic particle. The new technique
presented in this paper solves this system by first transforming it
into an equivalent system of fixed-point equations.
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There are several ways of transforming Eq. (37) into a system of
fixed-point equations, some resulting in better convergence behav-
ior than others. In most cases, convergence depends upon the se-
lected material parameters. To illustrate this point, two fixed-
point expressions of Eq. (37) are examined. These two choices are
not unique, and many of the possible choices of fixed-point formu-
las may not converge for any choice of initial conditions or material
parameters. Despite the multitude of choices for setting up the
fixed-point system, there are some basic guidelines for wisely
choosing a fixed-point system. These guidelines will be discussed
below by appealing to the convergence criteria for the two example
methods presented here. The first is generated by taking all local
values of Dk to be the updated value, with the nonlocal term being
evaluated using the previous estimate for Dk. This gives

ftrial � Dkkþ1 Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ 3a2

p

q � Dkkþ1 9aKapffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ 3a2

p

q � hgDkkþ1 � hfhDkki ¼ 0;

ð39Þ

where k is the iteration number. Solving this expression for Dkkþ1

gives

Dkkþ1 ¼ ftrial � hfhDkki
Gffiffiffiffiffiffiffiffiffiffi

1
2þ3a2

p

p þ 9aKapffiffiffiffiffiffiffiffiffiffi
1
2þ3a2

p

p þ hg
: ð40Þ

The other fixed-point equation considered is the same as that in
Eq. (40) except that the local hardening term (i.e., coefficient of hg)
is evaluated using the previous estimate for Dk:

ftrial � Dkkþ1 Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ 3a2

p

q � Dkkþ1 9aKapffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ 3a2

p

q � hgDkk � hfhDkki ¼ 0:

ð41Þ

The resulting fixed-point equation is

Dkkþ1 ¼ ftrial � hgDkk � hfhDkki
Gffiffiffiffiffiffiffiffiffiffi

1
2þ3a2

p

p þ 9aKapffiffiffiffiffiffiffiffiffiffi
1
2þ3a2

p

p : ð42Þ

The convergence criterion for each of these fixed-point schemes
is found by computing the derivative of Dkkþ1 with respect to Dkk.
Applying the Banach fixed-point theorem, this fixed-point scheme
will converge to a unique fixed-point if

L ¼ Nb
@Dkkþ1

@Dkk

�����
����� < 1; ð43Þ

where Nb is the number of particles within the support of bðxÞ. L is
called the Lipschitz constant of the system of equations. The Lips-
chitz constant for the first iteration scheme is bounded by

L1 6 Nb
hf

Gffiffiffiffiffiffiffiffiffiffi
1
2þ3a2

p

p þ 9aKapffiffiffiffiffiffiffiffiffiffi
1
2þ3a2

p

p þ hg

�������
�������; ð44Þ

where, referring to Eq. (26), use has been made of the fact that

@hDkii
@Dkj

¼ @

@Dkj

1
Vb

P
n

Dknbðxp � xnÞ ¼
1

Vb

P
n

@Dkn

@Dkj
bðxp � xnÞ

¼ 1
Vb

P
n

dnjbðxp � xnÞ ¼
1

Vb
bðxp � xjÞ 6 1; ð45Þ

where dnj is the Kroneker delta. Similarly the Lipschitz constant for
the second fixed-point scheme is bounded by:

L2 6 Nb
hg þ hf

Gffiffiffiffiffiffiffiffiffiffi
1
2þ3a2

p

p þ 9aKapffiffiffiffiffiffiffiffiffiffi
1
2þ3a2

p

p
�������

�������: ð46Þ
By comparing Eqs. (44) and (46) some observations can be made
regarding how to wisely choose the most effective fixed-point sys-
tem for a given yield function. In the derivation of Eq. (40) all occur-
rences of Dk except the occurrence in the nonlocal average were
taken to be the new estimate for Dk, whereas in the derivation of
Eq. (42) the local hardening term was taken to be the previous esti-
mate for Dk. The result was that Eq. (40) has a more generous con-
vergence domain than does Eq. (42). Therefore, a general guideline
in converting a yield function to a fixed-point system is to take as
many occurrences of Dk as possible to be the updated value. In gen-
eral, the more occurrences of Dk that are taken to be the updated
value, the smaller the Lipschitz constant of the resulting fixed-point
system will be.

Smaller values of the Lipschitz constant correspond to faster
convergence to the fixed point. Notice that for the local case
ðhf ¼ 0Þ the Lipschitz constant for the first scheme is zero, indicat-
ing that the scheme will converge to the exact solution in one step.
This is to be expected since purely local linear hardening/softening
corresponds to a single uncoupled linear equation. For a nonlocal
or overlocal model, the rate of convergence depends upon the
material parameters (hg; hf;G;K;a and ap), as well as the number
of particles within the support of the nonlocal weighting function
ðNbÞ. With the MPM it is generally a good practice to keep the num-
ber of particles per cell constant as the mesh is refined [30]. How-
ever, this practice leads to an increase in Nb as the mesh is refined,
resulting in a reduction in the convergence rate. Of course, if the
Lipschitz constant becomes greater than unity, the fixed-point
scheme may diverge. Therefore, for materials for which the soften-
ing modulus is large enough to produce a Lipschitz constant great-
er than one, this fixed-point iteration scheme may not be suitable.
However, as will be demonstrated with the first case study prob-
lem in Section 6, the structural response may become brittle as a
result of either a large softening modulus, or as a result of the
structure’s length scale being much larger than the length scale
of the material’s micro-structure. Thus a structure may behave in
a very brittle manner without necessarily requiring a large soften-
ing modulus.

For nonlinear hardening/softening it would not generally be
possible to algebraically transform the yield condition into a
fixed-point system. While not demonstrated here, the same gen-
eral procedure may nevertheless be used, but instead of algebrai-
cally solving the yield equation for Dkkþ1, a Newton iteration
scheme can be used to generate a fixed-point equation. Stromberg
and Ristinmaa’s algorithm [25] is a special case of this method. In
this case a convergence criterion can be derived in the same way as
when the fixed-point equations are algebraically derived. Such a
scheme is a nonlinear generalization of the Gauss–Seidel method.
A detailed discussion of such schemes can be found in a text by
Ortega and Rheinboldt [33].
5. Solution strategy for the MPM

This section describes how the fixed-point iteration scheme
presented in the previous section may be incorporated into the
MPM. As mentioned in Section 1, the MPM saves field data at
particles, and projects the data to grid nodes for solving field
equations.

Referring to Eqs. (15) and (16), the standard MPM solution pro-
cedure uses particle values of a field, hp, to construct a grid-based
representation of that field, hðxÞ. The new nonlocal algorithm pre-
sented in this paper is distinguished from other nonlocal solvers in
the literature by its use of this MPM mapping to evaluate the non-
local integrals in the yield equations. As discussed below, this tech-
nique makes it unnecessary to build and maintain a list of which
particles are involved in the nonlocal average of each particle. An
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outline of the algorithm is shown in Algorithm 1, and each step is
described in detail below.

The first step in the nonlocal algorithm is to generate an initial
estimate for which particles are undergoing plastic deformation,
and an initial estimate for Dk at those particles. As is done with tra-
ditional local constitutive models, the trial stress is computed using
the symmetric part of the velocity gradient, which is given in Eq.
(11). If evaluating the yield function with the trial stress results in
a negative value of the yield function, the particle is tentatively con-
sidered to be an elastic particle (i.e., _k ¼ 0; w – 0). If the trial stress
state results in a zero or positive value for the yield function, then
the particle is considered to be plastic (i.e., _k > 0; w ¼ 0). An initial
estimate for the increment of the plastic multiplier is found by
neglecting nonlocal effects and using a backward Euler integration
scheme [34]. Using Eq. (16), the estimate for the plastic multiplier
increment is then projected to the grid nodes as

Dki ¼
1

mi

P
p

/ipDkpmp; ð47Þ

Once the initial estimate for the plastic multiplier increment
has been projected to the grid nodes, the initialization for the iter-
ative scheme is complete.

Step two of the nonlocal algorithm is the main iteration loop.
For each iteration, the nonlocal integral is evaluated for each plas-
tic particle. This is done by first identifying which grid nodes are
within the support domain of the nonlocal weighting function
bðxÞ. Then, the incremental form of the nonlocal integral in Eq.
(26) is approximated by a discrete sum using

hDkip ¼
1

Mb

P
i
bðxp � xiÞDkimi ð48Þ

and

Mb ¼
PNb

i¼0
bðxp � xiÞmi: ð49Þ

By using the nodal mass mi in the integral, nodes that lie outside
of a material boundary are automatically excluded from the sum
since mi ¼ 0 for such nodes.

Once the nonlocal integral has been evaluated for a given plastic
particle, a fixed-point expression, such as any of those discussed in
Section 4, can be used to calculate an improved estimate for the lo-
cal plastic multiplier, Dkkþ1

p , where k is the iteration number. The
nonlocal internal state variables are also updated using back-
ward-Euler time integration of Eq. (25).

During the loop over the particles, the estimate from the previ-
ous iteration Dkk

p can be removed from the grid nodes using

Dki  Dki �
mp

mi
/ipDkk

p ð50Þ

for each grid node that receives information from the particle. The
updated value of Dkp can then be placed on these grid nodes using

Dki  Dki þ
mp

mi
/ipDkkþ1

p : ð51Þ

By immediately replacing Dkk
p with Dkkþ1

p on the grid nodes, all
remaining plastic particles for the iteration will be using the most
up-to-date data, making the scheme a Gauss–Seidel iteration rather
than a Jacobi iteration.

After each loop over the plastic particles, if the maximum value
of j Dkkþ1

p � Dkk
p j is less than some specified tolerance, the solution

is considered converged and the iteration scheme is terminated.
After a converged solution for the field of plastic multipliers has

been computed, the nonlocal internal state variables must be up-
dated for the elastic particles as well. This is due to the unique fea-
ture of nonlocal models that allows plastic deformation at a given
particle to change the state of another particle a finite distance
away, even if that particle is not undergoing plastic deformation it-
self. This phenomenon is called plastic diffusion. This also intro-
duces the possibility that the yield surface of a particle that was
initially considered to be elastic will contract due to plastic diffu-
sion such that it begins to undergo plastic deformation. If this oc-
curs, the particle must be reclassified as a plastic particle and the
field of plastic multipliers must be recomputed, including the
new plastic particle. As discussed in Section 3, this illustrates
why nonlocal plasticity is best viewed as a complementarity prob-
lem where determining which particles are undergoing plastic
deformation is an important nontrivial aspect of the solution.
Algorithm 1: Nonlocal plasticity algorithm for the material
point method with a Drucker–Prager yield function

Step 1: Initialization
Initialize Dki  0 at each grid node i.
for each particle p do

Compute trial stress, and evaluate ftrial using Eq. (38)
if ftrial P 0 then

Compute initial guess for Dkp by omitting hDkip in Eq.
(42).

Project Dkp to the ith grid node using
Dki  Dki þ ðmp=miÞ/ipDkp

else
Dkp  0

end if
end for
Step 2: Main Iteration Loop
Initialize iteration counter: k 0
while ERROR > TOLERANCE do

k kþ 1
for each plastic particle p do

initialize: hDkip  0;Mp  0
for each node i within nonlocal support domain do
hDkip  hDkip þ bðxp � xiÞDkimi

Mb  Mb þ bðxp � xiÞmi

end for
hDkip  hDkip=Mb; fnþ1  fn þ hfhDkip
Calculate Dkk

p using Eq. (40) or (42)
Update stress using Eq. (30)

Project Dkk
p to the grid nodes using Eqs. (50) and (51).

gnþ1  gn þ hgDkk
p

end for

ERROR max j Dkk
p � Dkk�1

p j
� �

end while
Step 3: Evaluate Nonlocal ISVs for elastic particles
for each elastic particle p do

for each node i within nonlocal support domain
hDkip  hDkip þ bðxp � xiÞDkimi

Mb  Mb þ bðxp � xiÞmi

end for
hDkip  hDkip=Mb; fnþ1  fn þ hfhDkip
ftrial  f ðrtrial;gn; fnþ1Þ
if ftrial P 0

Add particle to list of plastic particles
end if

end for
If the list of plastic particles changed, return to Step 2;

otherwise stop.



Fig. 1. Schematic of the case study geometry. A symmetric boundary condition is
used along the bottom surface, a prescribed velocity boundary condition is used
along the top surface, and the lateral faces are stress free. The plate is in a state of
plane strain.

Fig. 3. Non-convergence of applied stress versus apparent axial strain (i.e., % change
in plate height) when using a local von Mises plasticity model at three different
mesh sizes, h.
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6. Numerical examples

In this section, two simple 2D localization problems are solved
to illustrate the effectiveness of the nonlocal MPM algorithm just
described.

6.1. Axial compression with von Mises plasticity

As illustrated in Fig. 1, this problem consists of 4 m wide and
5 m tall rectangular plane strain plate with a symmetry (i.e., roller)
boundary condition at the bottom and a 1 m square region with re-
duced yield strength at the lower left-hand corner. The top surface
of the plate is subject to a prescribed axial velocity, with all other
velocity components on that surface set to zero. The lateral sur-
faces of the plate are traction free.

The bulk modulus is chosen to be 76 GPa, the shear modulus
26 GPa and the yield strength, ko, was set to 375 MPa in the weak-
ened region, and 400 MPa in the rest of the domain. For both the
local and overlocal cases, a von Mises model was used. This is
equivalent to setting a ¼ ap ¼ 0 in Eq. (35). This algorithm was
implemented into the Uintah explicit dynamics MPM code [35].
This code along with the CPDI interpolation scheme [29] was used
to solve the case study problem. Using this interpolation scheme,
each particle domain is initially rectangular, and deforms into a
parallelogram determined from the deformation gradient of the
particle. The prescribed velocity of the top surface was chosen to
be 7.5 m/s. Artificial viscosity was used to help dampen out the
transient portion of the solution. The time step was chosen to be
Fig. 2. Contour plot of the magnitude of the plastic strain tensor using a local von Mises
reduces with mesh spacing, h.
20% of the Courant–Friedrichs–Lewy stable time step. For all mesh
resolutions used, four material point particles were used in each
cell, two in each direction.

The case study problem was first solved using a local von Mises
plasticity model with linear softening. The local hardening modu-
lus, hg, was set to �4.0 GPa, where the negative sign indicates soft-
ening. Fig. 2 shows a contour plot of the magnitude of the plastic
strain tensor for a mesh spacing, h, of 0.5 m, 0.25 m, and
0.125 m. With all mesh resolutions, a shear band nucleates at the
weakened region in the lower left-hand corner of the domain.
The anomalous lack of convergence, as seen by the dependence
of the shear band width on mesh size, and as further seen in the
mesh-dependent post-peak stress–strain response of Fig. 3, is con-
sistent with well-known observations from the literature using
other analytical and numerical methods [36,13]. In this case and
all others, the applied stress is computed by dividing the total reac-
tion force at the prescribed velocity boundary by the cross-sec-
tional area, assuming unit thickness.

To illustrate the effectiveness of nonlocal theory at eliminating
mesh-sensitivity, the axial compression problem was solved using
an overlocal von Mises plasticity model using the nonlocal MPM
algorithm outlined in Section 5. The local hardening modulus
was set to hg ¼ 2 GPa, and the nonlocal hardening modulus was
set to hf ¼ �4 GPa. This is equivalent to setting Stromberg and Ris-
tinmaa’s [25] overlocal parameter to m ¼ 2, with the hardening
modulus set to h ¼ �2 GPa. The nonlocal length scale was set to
L ¼ 0:5 m. With these values the nonlocal iteration scheme con-
verged in fewer than seven iterations for each time step. Fig. 4
shows contour plots of the magnitude of the plastic strain tensor
using the overlocal model and three different mesh spacings. As
the plots indicate, the shear band converges to a fixed width with
plasticity model with isotropic softening. The width of the shear band anomalously



Fig. 4. Contour plot of the magnitude of the plastic strain vector using an overlocal von Mises plasticity model with isotropic softening. With mesh refinement, the width of
the shear band converges to a fixed value proportional to the nonlocal length scale.

Fig. 5. Plot of the applied stress versus apparent axial strain in the plate using an
overlocal von Mises plasticity model and three different mesh resolutions, h, as
indicated. With the overlocal model the stress/strain curve converges with mesh
refinement.

Fig. 6. Plot of the applied stress versus apparent axial strain in the plate using an
overlocal von Mises plasticity model and two different plate widths, W, as
indicated. All other lengths have been scaled as well so that the two curves are
for geometrically similar plates. The difference in the response is due to the size
effect that results from nonlocal models.

Fig. 7. Schematic of the slope stability problem solved. The lower surface has a
fixed boundary condition applied, the surface on the left-hand side has the
displacement fixed in the horizontal direction. All other surfaces are traction free. A
vertical gravitational field is increased with time at a rate of 4.9 m/s3. The material
is in a state of plane strain.
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mesh refinement. The width of the shear band is controlled by the
nonlocal length scale.

Unlike the results found using a local model, the overlocal
stress–strain curve in Fig. 5 converges with mesh refinement. Spe-
cifically, the post-peak stress–strain response is driven by the
problem geometry and material parameters rather than by the
mesh spacing.

In addition to the convergence of the shear band width to a fi-
nite value, nonlocal models also have the advantage of being able
to capture a size effect. Specifically, two structures of the same
shape but different sizes will behave differently under the same
applied tractions. With a nonlocal model, the ratio of the length
scale associated with the problem geometry to the nonlocal length
scale becomes a significant parameter. This is an important charac-
teristic for a model to be capable of predicting large-scale problems
based on small-scale laboratory experiments. To illustrate the size
effect, the 2D plate case study was also solved using a specimen
that is 8 m wide and 10 m high, which is exactly double the size
of the original problem. The velocity at the top surface was pre-
scribed to be 15 m/s, which is also exactly double the rate in the
previous problem. The result is that the bulk strain rate in the plate
is the same as with the original problem. The resulting apparent
axial stress versus strain plot, along with that of the original prob-
lem, is shown in Fig. 6. Both the original problem and the scaled-up
problem were solved with a mesh resolution of h ¼ 0:25 m. As the
plot indicates, the apparent structural response for the problem
with the larger length scale is more brittle than with the original
problem. This illustrates the fact that a brittle structural response
can result from either a large softening modulus, or from a material
micro-structure with a length scale much smaller than the struc-
ture’s length scale.

6.2. Slope stability problem with Drucker–Prager plasticity model

To demonstrate the use of the nonlocal MPM formulation for
frictional materials a slope stability problem is solved using a
strain-softening linear Drucker–Prager model. A similar slope sta-
bility problem was previously solved by Ortiz et al. [37] using spe-
cialized localization elements and by Pamin and de Borst [38]
using a gradient plasticity model. As shown in Fig. 7, the problem
consists of a 10 m thick, 20 m long rectangular elastoplastic do-
main. The top surface of the domain is traction free. The bottom



Fig. 8. Contour plot of the magnitude of the plastic strain using a local Drucker–Prager plasticity model with isotropic softening. With mesh refinement, the width of the
shear band becomes increasingly small while the magnitude of the plastic strain increases without bound.

Fig. 9. Contour plot of the magnitude of the plastic strain using an overlocal Drucker–Prager plasticity model with isotropic softening. With mesh refinement both the width
of the shear band as well as the magnitude of the plastic strain within the shear band converge to a fixed value.
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surface is prescribed to have zero displacement in any direction
while the left-hand surface of the domain is prescribed to have
zero horizontal displacement, but is free to displace in the vertical
direction. As with the previous example, the CPDI formulation of
the MPM is used. The bulk modulus is chosen to be 82.7 GPa while
the shear modulus is chosen to be 49.6 GPa. A nonassociated Druc-
ker–Prager yield model is used with a ¼ 0:15 and ap ¼ 0:0. The
problem is first solved using a local linear softening plasticity mod-
el with hg ¼ �689:5 MPa. The problem is also solved with an over-
local plasticity model with hg ¼ 1:38 GPa; hf ¼ �689:5 MPa, and a
nonlocal length scale of L ¼ 2 m.

Fig. 8 shows the plots of the magnitude of the plastic strain field
at t ¼ 2:0 seconds for three different mesh resolutions with the lo-
cal plasticity model, while Fig. 9 shows the overlocal solutions at
the same time with the same three mesh resolutions. As with the
von Mises plasticity example described in the previous section,
with the local plasticity model the shear band width becomes
increasingly narrow as the mesh is refined and the magnitude of
the plastic strain within the shear band becomes increasingly large,
and therefore the numerical solution is mesh-dependent. With the
overlocal solution the shear band converges to a fixed width and
the magnitude of the plastic strain within the shear band also con-
verges to a fixed value, yielding a mesh-independent solution. The
width of the shear band with the overlocal model is proportional to
the nonlocal length scale. These results are in good agreement with
those of Ortiz et al. [37] and Pamin and de Borst [38], though since
the regularization approach used in the those works is different
from the nonlocal plasticity approach taken here the results would
not be expected to be identical.
7. Conclusion

Whereas nonlocal iteration schemes in the literature are typi-
cally specialized to apply to a particular choice of yield function,
a general framework for deriving a nonlocal iterative solver has
been elucidated in this work to apply to any general yield function.
Moreover, a straightforward rigorous basis for deriving a corre-
sponding convergence criterion scheme has been here developed
using the Banach fixed-point theorem.
While these methods can be applied to any host code frame-
work, they are particularly well suited to incorporation into the
material point method (MPM). Specifically, by using the MPM
background grid to evaluate the nonlocal integrals, there is no need
to maintain a list of particles within the nonlocal neighborhood of a
given particle. This attribute not only produces a matrix-free algo-
rithm, but it is especially appealing for large-deformation prob-
lems in which the number and identity of material points in the
vicinity of any given material point change in time.
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[23] Z.P. Bažant, M. Jirasek, Nonlocal integral formulations of plasticity and
damage: survey of progress, J. Engrg. Mech. 128 (2002) 1119–1149. <http://
dx.doi.org/10.1061/*ASCE*0733-9399*2002*128:11*1119*>.
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[36] Z.P. Bažant, Instability, ductility, and size effect in strain-softening concrete,
ASCE J. Engrg. Mech. Div. 102 (2) (1976) 331–344.

[37] M. Ortiz, Y. Leroy, A. Needleman, A finite element method for localized failure
analysis, Comput. Methods Appl. Mech. Engrg. 61 (1987) 198–214.

[38] J. Pamin, R. de Borst, Numerical simulation of localization phenomena using
gradient plasticity, Heron 1 (1995) 71–92, TNO Built Environment and
Geosciences, Delft, and the Netherlands School for Advanced Studies in
Construction.

http://dx.doi.org/10.1016/j.jmps.2006.05.007
http://dx.doi.org/10.1016/j.cma.2003.07.014
http://dx.doi.org/10.1061/*ASCE*0733-9399*2002*128:11*1119*
http://dx.doi.org/10.1061/*ASCE*0733-9399*2002*128:11*1119*
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.038
http://dx.doi.org/10.1016/j.commatsci.2009.03.044
http://dx.doi.org/10.1002/nme.3110
http://dx.doi.org/10.1016/j.jcp.2008.07.019
http://dx.doi.org/10.1016/S0020-722(03)00027-2
http://www.sci.utah.edu/publications/dav00/uintah-hpdc00.pdf
http://www.sci.utah.edu/publications/dav00/uintah-hpdc00.pdf

	A nonlocal plasticity formulation for the material point method
	1 Introduction
	2 Review of the material point method
	3 Nonlocal plasticity
	4 Fixed-point iteration scheme for linear Drucker–Prager yield function
	5 Solution strategy for the MPM
	6 Numerical examples
	6.1 Axial compression with von Mises plasticity
	6.2 Slope stability problem with Drucker–Prager plasticity model

	7 Conclusion
	References


