
Lattice Cleaving: A Multimaterial Tetrahedral
Meshing Algorithm with Guarantees

Jonathan Bronson, Student Member, IEEE, Joshua A. Levine, Member, IEEE, and

Ross Whitaker, Senior Member, IEEE

Abstract—We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains

consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral

meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so

its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, to reduce element

counts in regions of homogeneity. Additionally, we provide proofs showing that both element quality and geometric fidelity are bounded

using this approach.

Index Terms—Tetrahedral meshing, multimaterial, multilabel, biomedical, conformal meshing, watertight, mesh quality, adaptive

meshing, guaranteed meshing

Ç

1 INTRODUCTION

THE finite-element method (FEM) is ubiquitous in the
field of scientific computing when employing partial

differential equations on complicated domains. Its combi-
nation of flexibility and numerical consistency makes it the
method of choice for simulations across a wide range of
physical phenomena including electromagnetics, fluid
dynamics, and solid mechanics. FEM relies on a decom-
position of a domain into a union of discrete elements, in
the form of a mesh. These elements conform to important
geometries in the domain, such as the interfaces between
materials or boundary conditions. While FEM allows for a
wide range of grid types and topologies, in practice many
implementations use tetrahedral domain decompositions
because they offer a good compromise between simplicity
of mesh generation, generality, ability to conform to
complex geometries, and numerics.

With FEM, the solutions of PDEs are associated with a
linear system induced by the operator and the boundary
conditions. The approximated differential operator depends
on the mesh elements, and the shapes of these elements
impact the structure of this matrix—most importantly its
condition number [7]. The condition number of the linear
system, which is usually quite large, in turn controls the
speed and/or accuracy of the numerical solution to the
linear system. Thus, a second important requirement of
the underlying mesh is the quality of the underlying
elements. The dual requirements of meshes that conform
to geometry and meshes that have good quality elements
are often in conflict. Thus, meshing algorithms must make
tradeoffs between quality and geometric fidelity.

These mesh requirements also interact with the specific
nature of the geometric constraints and the mechanisms by
which they are specified. In this work, we consider FEM
simulation problems that specify materials volumetrically.
That is, the physical materials are given by functions on the
domain that evaluate to the appropriate material at a given
location, and material interfaces are where these functions
transition from one value to another. This volumetric
specification is natural in biomedical simulations based on
images [37], where material boundaries are derived from
segmentations or labels, as well as simulations that rely on
implicit representations of physical interfaces [14]. In this
paper, we specifically address tetrahedral meshing with
multimaterial interfaces, where the geometric constraints are
nonmanifold structures with higher-order junctions of three
and four materials.

Contributions. In this paper, we describe a new meshing
algorithm, lattice cleaving, for generating tetrahedral meshes
for multimaterial domains that are specified as a collection
of continuous indicator functions. The output meshes
conform approximately to interfaces between materials,
including nonmanifold regions, where multiple materials
meet. The output meshes have tetrahedral elements with
provably bounded dihedral angles as well as a guaranteed
fidelity of sufficiently large features. Lattice cleaving relies
on a regular background lattice, with a resolution deter-
mined by the user, which is subdivided or cleaved to
conform to material boundaries. For each cleaved back-
ground tetrahedron, it applies and modifies a stencil, used
to approximate the geometry while not destroying the good
quality of elements in the background lattice. Lattice
cleaving requires a small, fixed number of passes through
the background grid and, therefore, leads to reliably fast
runtimes. Results on biomedical volumes and fluid simula-
tions demonstrate the algorithm reliably achieves fast
runtimes, geometric fidelity, and good quality elements.
This paper builds on a preliminary publication of the
material [8].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014 223

. The authors are with the School of Computing, University of Utah, 3893
Warnock Engineering Building, Salt Lake City, Utah 84112-9205.

Manuscript received 27 Sept. 2012; revised 17 Apr. 2013; accepted 28 July
2013; published online 13 Aug. 2013.
Recommended for acceptance by B. Levy.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-09-0211.
Digital Object Identifier no. 10.1109/TVCG.2013.115.

1077-2626/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

2 RELATED WORK

The literature on unstructured 3D mesh generation is vast,
partly as a byproduct of the wide utility of these meshes to
application areas in science and engineering. Here, we
divide the discussion along the two major constraints on
this meshing problem: 1) producing high-quality elements
and 2) conforming to complex surfaces. In addition, we
review lattice-based meshing algorithms which use, in part,
similar techniques to our own.

2.1 Boundary Conforming Mesh Generation

In the past decade, a significant amount of effort has gone
into building high-quality surface meshes [21], particularly
through Delaunay triangulations [10]. One of the most
popular strategies relies on Delaunay refinement [16], [39],
which iteratively inserts sample points on the domain
boundary until conditions are met for sufficiently capturing
both the topology and geometry of surfaces. These surface
meshes are typically inputs for conformal tetrahedral
meshing algorithms, with further refinements of the
volumetric regions. Boissonnat and Oudot [5] and Cheng
et al. [13] pioneered the first variants on provable
algorithms for performing Delaunay refinement that cap-
ture the topology of smooth, surface-boundary constraints.
Extending these ideas to more complex, piecewise-smooth,
and nonmanifold domains followed [12]. However, these
algorithms rely on various strategies for protecting features
on the material boundaries, and the implementations of
these schemes are challenging. Thus, simplifying assump-
tions are required in the protection scheme to make them
practical [6], [18], [38].

The local, greedy strategy of Delaunay refinement
schemes tend to find suboptimal configurations for vertices.
Variational meshing schemes attempt to overcome this
limitation by positioning vertices according to some global
energy function. These strategies typically decouple, to
various degrees, the vertex placement problem from the
triangulation/tetrahedralization problem. Meyer et al. [33]
use a variational scheme similar with repulsion between
particles (points) to sample multimaterial interfaces and
then connect these samples using a Delaunay triangulation.
Bronson et al. [9] build on this formulation to build highly
adaptive surface meshes for CAD geometries, but do not
require expensive precomputations. Yan et al. [49] use an
energy formulation based on centroidal Voronoi tessella-
tions to drive particle movements. Tournois et al. [45]
alternate between Delaunay refinement insertions and
vertex optimizations for high-quality meshes for non-
smooth shapes. These types of optimizations are nonlinear
and require multiple iterations on gradient-descent-based
strategies to find local minima. Thus, they are time
consuming, are sensitive to initializations and parameter
tuning, and do not provide typical criteria to establish
guarantees on the quality of the output.

While these works represent only a taste of the most
recent work in boundary-constraint meshing, they have a
number of interesting shared characteristics. First, each
algorithm requires at least one expensive computation,
either a Delaunay triangulation in 3D, or a vertex optimiza-
tion, or both (each of which necessitates an Oðn2Þ computa-
tion), while the variational schemes may require multiple
iterations on these computations. Second, these algorithms

all decouple the surface constraint of boundary conforming
from the volumetric quality constraint, by requiring that the
algorithm first construct a mesh of the boundary and then
next construct a volume mesh given this surface mesh as
input (surface first, then volume). As a result, they often deal
with very poor quality mesh elements, in particular slivers
or tetrahedra with nearly cocircular vertices [11], [45]. In
contrast, the proposed method follows the strategy of
volume first, then surface, which has the benefit of being more
flexible in how we manage the inevitable compromises
between geometry and quality.

2.2 Tetrahedral Element Quality

While a large number of measurements and ratios are used
to judge the quality of elements in meshes, in this work we
focus on isotropic measures of quality applicable to linear
finite elements [41]. These qualities, while somewhat
generic, have the advantage of being numerically useful
for the large class of elliptic operators that appear in FEM
simulations of many physical phenomena, such as incom-
pressible flows, diffusion, and electric fields. While there
are many reasonable measures of tetrahedral mesh quality,
we rely on the worst-case dihedral angles (both minimum
and maximum) over all tetrahedra. The distance of dihedral
angles from 0 and 180 degrees correlates with most other
common element quality measures.

Measures of quality are typically independent of element
size. Adaptivity of mesh size/resolution provides another
key ingredient in the definition of element quality. Both
Delaunay refinement [40] as well as variational schemes [1]
have been used to improve and adapt volumetric element
quality, as well as more greedy optimizations driven by
local mesh improvements [20], [28]. Moreover, isotropic
element quality is also indifferent to element orientations;
i.e., it penalizes anisotropy in all directions equally. The
proposed work provides graded meshes with smaller
elements near surfaces, but does not address the problem
of adaptivity and anisotropy directly.

2.3 Lattice-Based Meshing Approaches

A very common strategy for building meshes is to start with
a high-quality (e.g., regular) background mesh and modify
it to adhere to geometric constraints. However, the problem
of making a regular lattice conform to an arbitrary surface
presents some challenges, especially when tetrahedral
quality is a concern. One strategy is to cut (or cleave) the
cells of the input lattice to match the surface, an idea
popularized by the well-known marching cubes algorithm
for isosurfacing [31], and the related dual contouring
method [27]. Constrained delaunay triangulation [15],
[42] can then be applied to generate volume-filling tetra-
hedra [51]. The different configurations of surface/cell
intersections are typically represented by stencils with the
appropriate topology. Several authors propose surface
reconstruction with a piecewise linear approximation of
surfaces as they cut through the tetrahedra of a body-
centered cubic (BCC) lattice [4], [35], with extensions to
nonmanifold surfaces using a collection of indicator
functions (instead of the single scalar field for isosurfacing).
These algorithms examine indicator functions locally at
each vertex of the mesh element. Depending on which

224 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

indicator is maximal, they next label each vertex with a
material, a generalization of inside/outside for isosurfacing.

Working with lattices has advantages beyond just
surfacing. For instance, an octree can be used on a regular
lattice to facilitate adaptively sized elements [50]. Zhang
et al. [52] use a regular lattice and encodings to achieve
surface simplification while preserving topological fea-
tures. This work was extended to generate tetrahedral as
well as hexahedral elements [53] and within multimaterial
domains [55].

Another strategy for conforming is to warp a back-
ground lattice so that primitives align with boundaries [22].
Molino et al. [34] use a BCC lattice coupled with a red-green
subdivision strategy, which they then optimize to conform
to the surface. That work empirically achieves good quality
tetrahedra, albeit with no proof of bounds. Labelle and
Shewchuk [29] propose a combination of lattice warping
and stenciling, with appropriate rules that decide which
combination of strategies to use, based on the input data, to
ensure good quality. They describe a computer-assisted
proof to compute quality bounds for their isosurface stuffing
algorithm. Wang and Yu [47] employ a similar approach.
The proposed method shares several aspects of the Labelle
and Shewchuk method. Like their algorithm, we cut a BCC
lattice to conform to a boundary mesh, and like their
algorithm we rely on a threshold � to locally warp the
lattice to remove short edges and maintain high-quality
elements. However, instead of considering a single smooth
isosurface, the multimaterial boundary constraints present
nonsmooth and nonmanifold structures. This adds con-
siderable complexity to the algorithm, which in the past has
only been approached using additional levels of subdivi-
sion, such as in Liu et al. [30] or dual-contouring [54]. Here,
we show instead that a carefully designed stencil set
combined with appropriate rules for application provides
quality guarantees for the resulting tetrahedra.

3 METHODOLOGY

The proposed tetrahedral meshing algorithm operates on a
collection of indicator functions. We sample these functions
onto a BCC lattice. Similar to many surfacing and meshing
algorithms [23], [31], we rely on a set of stencils that capture
local material configurations. We use the strategy of Labelle
and Shewchuck [29] to construct a set of rules for each
background BCC lattice tetrahedron that switch between
two cleaving modes—either deforming the background
BCC lattice or splitting the background tetrahedra to
conform to boundary surfaces.

Within this context, the multimaterial meshing problem
presents several important challenges. Unlike the isosurface
case, one cannot easily restrict the size of features because
feature size [1] will always go to zero, where three or more
materials meet. The complexity within each lattice cell is
also challenging. Considering only the material labels at
vertices, the number of cases is daunting. Furthermore,
even if one represents indicator functions along lattice
edges as linear, the number of possible interfaces passing
through a single edge grows with the number of materials,
regardless of the conditions at the vertices. Therefore,
geometric and topological approximations are essential.

3.1 Indicator Functions

There are many papers on extensions of implicit surfaces or
level sets to multimaterial interfaces. Here, we represent
multimaterial interfaces using a set of K-smooth, volu-
metric indicator functions, F ¼ ffijfi : V 7! <g [32], [37]. A
material label i is assigned to a point xx 2 V if (and only if)
fiðxxÞ > fjðxxÞ 8 j 6¼ i. For any single material j, a continuous,
inside-outside function can be constructed as ~fjðxxÞ ¼
fjðxxÞ �mini6¼jðfiðxxÞÞ, and the zero functions of various
materials will coincide at shared boundaries.

3.2 Background Lattice and Material Interfaces

Stenciling algorithms rely on a set of regular cells. The
configuration of the interfaces on these cells is used to
generate an index that corresponds to some predefined
tessellation. We employ a BCC lattice (Fig. 1), where each
cell is composed of eight normal or primal cubic lattice
vertices, plus a ninth dual vertex in the center. In addition to
the 12 edges of a regular cubic cell, there are eight diagonal
edges connecting each dual vertex to its cell’s primal
vertices, and six connecting dual to dual. Fanning out from
the dual vertex are 24 lattice tetrahedra, each of which spans
two lattice cells. Each lattice tetrahedron is identical in
shape, as is each lattice face. The edges connecting both
primal and dual vertices differ in length than the edges
connecting only primal or only dual vertices. We refer to
these edges as long and short, respectively.

For stencils to be applicable, decisions about the
structure of each cell must be strictly local and enumerable
a priori. Our strategy for mapping data onto the lattice
entails several approximations. Initially, each lattice vertex
represents a single material at that point, which is given by
the indicator function with maximum value. If two or more
functions are comaximal, the tie is settled by a very small
push away from a prioritized (or random) material. Any
lattice edge that contains vertices with two different labels
contains a material transition, called a cut-point, or cut [29].
These edge-cuts sample a surface separating two materials.

A similar logic applies to junctions of more than two
materials. A lattice face with three unique material labels on
its vertices must have an associated transition point where
all three materials meet. We refer to this point as a triple-
point (triple). The collection of triple-points in the domain
define curves where three materials meet. A lattice
tetrahedron may have up to four unique material labels.
The four vertices, and the four function values associated
with the material labels on each vertex, define a single,
isolated, material transition point. We refer to this point as a
quadruple-point (quadruple).

We restrict the number of material transitions defined on
a tetrahedron. Each lattice simplex may contain at most a

BRONSON ET AL.: LATTICE CLEAVING: A MULTIMATERIAL TETRAHEDRAL MESHING ALGORITHM WITH GUARANTEES 225

Fig. 1. The BCC lattice is composed of two grids of primal and dual

vertices [29]. Each vertex is incident to 14 edges, 36 faces, and

24 tetrahedra.

single transition point matching its dimensionality: an edge
may have only a single cut, each face a single triple, and
each tetrahedron a single quadruple. These approximations
are the multimaterial generalizations of the approximation
that underlies stencil-based isosurface algorithms, which
ignore features that pass between vertices. Fig. 2 illustrates
how such a situation might manifest on an edge. These
various material interfaces are defined as the points
where the values of indicator functions of the materials on
the vertices are equal, and, in general, we assume these
locations are given by an oracle. In the absence of an oracle,
these points can instead be computed, for instance, by a
system of linear equations.

For an edge, these transitions lie on the line segment
connecting the two vertices. However, for triple or quad-
ruple-points, they could lie outside of the corresponding
triangular face or tetrahedron, respectively. In such cases,
these points are projected back onto the tetrahedron, so that
local stencils can apply (Fig. 3). These approximation lead to
a smoothing or removal of thin features that fall below the
resolution of the grid—i.e., the exceptions to the above
conditions are indicative of features that fit between grid
points, as proved in Section 4.1.

3.3 Stencil Keys

Selection of the appropriate stencil for any given cell is
determined by a key. For the single isosurface case, this key
is an ordered concatenation of labels for each vertex of the
simplex being stenciled. These labels indicate whether a
vertex is inside (�1), outside (þ1), or directly on the
isosurface (0). If we were to restrict vertex labels to be
strictly inside and outside, this leads to 16 configurations,
with only eight unique valid cases. Allowing a vertex to sit
on the isosurface would lead to 81 possible configurations.
In the multimaterial case, this approach to indexing stencils
is problematic for several reasons. First, inside of one

material is outside of another. This means a label for each
material in the volume is needed. The length of the key will
need to grow to accommodate data sets with larger
numbers of materials. Consequently, the number of cases
of stencils would need to fill the space of cases, with many
duplicates for similar topologies with differing materials.

One approach to solving this issue is to instead store bits
only signifying the number of materials found on a vertex.
In this scenario, the case table becomes tractible, but
distinguishing element materials during stenciling becomes
more difficult. This task requires expensive bookkeeping
and may still lead to ambiguous material regions without
explicit rules to avoid them.

The solution in the proposed approach bypasses this
problem by only defining stencils on lattice tetrahedra
with precisely one material per vertex. Intermediate
topologies, where multiple materials reside on a single
vertex, are generated by various edge collapses on
the original stencil. In this way, the challenges of
exhaustive case tables and ambiguous regions are avoided.
The key for a generic set of stencils in this multimaterial
case would be a 6-bit key, each bit indicating whether a
particular edge of the lattice tetrahedra contains an edge-
cut. This leads to only 64 possible configurations, with
many cases being invalid. In Section 3.6, we show that by
generalizing all stencils to a single case, we can avoid the
need for a lookup table altogether.

3.4 Quality Criteria

Within a lattice tetrahedron, we approximate the material
interfaces as a set of triangular facets that connect the
various cut-points with the correct topology. With no
additional processing of the mesh data, there are only five
unique topological cases, distinguishable by the number of
edges that contain a cut: 0, 3, 4, 5, or 6. It is impossible for a
lattice tetrahedron to contain only one or two edge-cuts. As
illustrated in Fig. 4, these cases are composed of three types
of polyhedra: tetrahedra, triangular prisms, and hexahedra.

While these polyhedra admit multiple consistent tessel-
lations, the output tetrahedra could become arbitrarily bad
(regardless of the tessellation chosen) depending on where
interface points are located. Thus, we define a set of violation
conditions that characterize the configurations of interface
points that lead to bad tetrahedra. These conditions are

226 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 2. An edge with materials a and b maximum on its endpoints, but

with a third material c becoming maximum on the interval between.

Fig. 3. (a) Triples (b) and quadruples are forced to lie within the primitive

that contains the associated edge-cuts.

Fig. 4. The five unique interface topologies determined by the number of

cut-points present on a lattice tetrahedron.

used to decide when it is appropriate to warp the back-
ground lattice (changing topology) and when it is appro-
priate to leave a configuration intact. The conditions entail a
threshold on the proximity between features, denoted �,
and are expressed as a fraction of the edge lengths on the
background lattice.

There are three different ways in which an interface
might be violating. First, an interface point of any type may
violate a lattice vertex. A cut violates a lattice vertex if it lies
within a distance � to it along the shared edge. As shown in
Fig. 5a, even in 2D, no matter how you choose to tessellate a
face, there will always be an angle that is arbitrarily bad as
the cut approaches the lattice vertex. This principle extends
to interface points of higher order (i.e., triples and
quadruples). Triple-points can move within the 2D space
interior to a lattice face, and so their vertex violation region
is a quadrilateral patch. This patch is formed by the
intersection of two half-spaces. Each half-space is defined
by connecting the point at distance � on one edge, to the
opposite lattice vertex (Fig. 5b). Similarly, quadruple-points
can be anywhere inside the lattice tetrahedron, so their
vertex violation regions are formed by the intersection of
three half-spaces defined by planes. (Fig. 5c).

The second group of violations pertain to edges.
Degenerate tetrahedra can also arise if triple-points or
quadruple-points lie too close to an edge. We define the
notion of edge violation in a manner consistent with vertex
violations, similarly bounding the angles. Dividing lines are
formed between each vertex on the edge and the respective
� position on the edge opposite that vertex (Figs. 5d and 5e).
Finally, a quadruple-point has one additional violation
condition, arising from its distance to adjacent faces. This
violation region for faces follows the same logic as the
others (Fig. 5f). Three planes are defined using the alpha
parameters. Each plane contains two vertices on the face in
question, and the alpha position on the edge incident to
neither of these two vertices. The intersection of the half-
spaces defined by these three planes forms the 3D violation
space. With these violation rules in place, the next section
provides a set of operations that can remedy any set of
interface points that are in a violation condition.

3.5 Topological and Geometric Operations

The lattice cleaving algorithm uses two fundamental
operations to ensure mesh quality. A snap operation merges
an interface point with another point of lower order,
collapsing the implicit edge between them in an output
stencil. This operation is performed on interface points that
are in violation, ensuring output stencil tetrahedra do not
span bad angles. In conjunction, lattice vertices are warped
spatially to conform to the interface surfaces.

The multimaterial cases introduce additional complexity
into processing the snaps and warps. In the two-material
case, Labelle and Shewchuk [29] warp a lattice vertex to a
single violating cut and remove all adjacent cuts, effectively
pulling them into the warped vertex. In the multimaterial
case, this is unsatisfactory because the adjacent cuts could
be interfaces to several different material sets.

If interfaces of different material sets are violating a
lattice vertex, no single warp position can satisfy the surface
constraints. Therefore, a number of strategies may be used
to choose a suitable warp location. We use the center of
mass of these violations because it is both easy to compute
and distributes error proportionally among each interface.
Alternative approaches might be to minimize a quadric
error term for each surface, or to choose a preferred surface
representative.

After snapping and warping a vertex to remove its
violations, additional material interfaces may still be
present on the incident edges and faces. Because these
edges and faces will also be warped by the movement of
the lattice vertex, the implicit surfaces may intersect them
at new locations. Thus, we must update the locations of
the remaining cuts and triples on incident edges appro-
priately, either by geometric intersection tests or via
querying the oracle.

When an edge moves because one of its vertices is
warped, any cut on that edge must move along the interface
the cut represents. In practice, we use a linear approxima-
tion to the interface surface to perform this update. If the cut
interface is of the same type as the violating cut that caused
the warp, it naturally gets pulled into the snap like the 2-
material case. If the new location of the cut is no longer on
the edge (e.g., moves off of one of the ends), we bring it
back onto the line segment at the appropriate end point. In
this way, the stenciling operation remains local. We call this
operation of recomputing the position of an interface on the
warped lattice a projection, shown in Fig. 6. If the new cut
position is violating, we perform a snap to the lattice vertex,
and warp the vertex only if it has not already been warped
previously. In this way, each lattice vertex undergoes at
most one warp.

BRONSON ET AL.: LATTICE CLEAVING: A MULTIMATERIAL TETRAHEDRAL MESHING ALGORITHM WITH GUARANTEES 227

Fig. 5. An interface point violates a feature if it falls within an intersection

of half-spaces defined using �. Vertices can be violated by (a) cuts,

(b) triples, and (c) quads. Edges can be violated by (d) triples and

(e) quadruples. Faces can only be violated by (f) quadruples.

Fig. 6. When a vertex warps (green arrow), (a) cuts and (b) triples on
incident faces must be updated (blue arrow) to reflect the their new
locations on the surfaces.

If a lattice face moves because one of its vertices is

warped, any triple on that face may also move. We update

its location using the same strategy as with edges. If the

triple leaves the face, we bring it back on, and follow-up

with appropriate snaps and warps as needed. Quadruples

need no projection unless a face moves in such a way that

the quadruple falls outside of the new tetrahedron—in

which case it will be moved onto the nearest edge/face and

collocated with the corresponding cut/triple on that face.
This strict hierarchy of interface types raises another

complexity unique to the multimaterial case. Snaps may
cause material interfaces to degenerate such that they
violate the hierarchy of interface types. For example,
consider a face with a triple-point. If the cuts on two
adjacent edges snap to the same lattice vertex, the triple-
point is now representing only a 2-material interface, with
a degenerate material region along the remaining line
segment. To fix this degeneracy, the triple-point joins the
two associated cuts at their warp destination, as in Fig. 7. A
triple-point snap may also cause cuts to become degen-
erate, and a quadruple-point snap may cause cuts and
triples to become degenerate. The number of these cases is
quite limited, and each one is tested and corrected in a way
that ensures a consistent hierarchy of features and a
consistent mesh.

3.6 Generalized Stencil

After snapping and warping, the polyhedra from the

topological cases described in Section 3.4 may have

collapsed into intermediate topologies. Each such topology

demands not only a valid tessellation stencil, but also one

that does not permit degenerate tetrahedra when interface

points are in nonviolating configurations. Moreover, each

such stencil must be consistent both within the lattice

tetrahedron, as well as across lattice faces (Fig. 8). One of the

contributions of this paper is presenting a single generalized

stencil that can be used as a master stencil for all achievable

topologies. Not only does this keep the problem of

stenciling local (avoiding inconsistency issues), but also it

removes the requirement of implementing and storing a

large stencil table that is prone to construction and
transcription errors [19].

The generalized stencil is constructed from the most
complicated topological case, the 6-cut case. An edge is
formed between every pair of points that could be snapped,
ensuring the snapping procedure of Section 3.5 always
simplifies the topology in a manner equivalent to a series of
edge collapses. On each lattice face, edges star out from the
triple-point to every edge-cut and vertex on the boundary of
the face. Similarly, on the interior of the lattice tetrahedron,
edges star out from the quadruple-point to every triple-
point, edge-cut, and vertex on the boundary of the lattice
tetrahedron (Fig. 9). In the regular case, this is equivalent to
barycentric subdivision of the tetrahedron. This construc-
tion tessellates the lattice tetrahedron into 24 stencil
tetrahedra, each composed of a single vertex, cut, triple,
and quadruple.

For every lattice tetrahedron that does not have this full
complexity of material interfaces (6-cuts), we choose
vertices, cuts or triples, to have virtual material boundaries,
as if they had already snapped. This allows us a consistent
way to tetrahedralize the polyhedra in the multimaterial
stencils without worrying about inconsistencies or tangles
across faces between stencils, keeping the stenciling
operation local.

The procedure to generalize a lattice tetrahedron to the 6-
cut case proceeds as follows: First, virtual edge-cuts are
created for any edge missing a cut. The remaining virtual
points all cascade into place from the location of these
virtual cuts. For a face that has no triple-point, we label one
of the three cuts as a virtual triple-point. To maintain valid
topologies, we always choose a cut that lies on an edge that
already contains a virtual cut. If there is no virtual cut, a
predetermined cut is chosen. Finally, if a quadruple-point is
not present, we must choose a triple-point location to
represent the virtual quadruple-point. We pick a triple-
point using the same method a triple uses to pick a cut-
point. If there are multiple options, we choose the point that
is collocated with the most other points, virtual or real.

Note that these rules for generalizing lattice tetrahedra
operate once; they are merely the mechanism for generating
a consistent set of stencils. These generalizations can even
be computed offline, for all stencil cases, and then chosen
from a lookup table at runtime. These rules for choosing
arbitrary, but consistent, transitions from the 6-cut case to
all of the others produce different (but valid and good
quality) tetrahedralizations of the similar cut patterns,

228 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 7. Degenerate triples or quadruples are removed by subsequent
snaps.

Fig. 8. Stencils for lattice tetrahedra must be consistent across faces. In
this example, the blue quad patch shared between the tetrahedra is
tesselated in two different ways.

Fig. 9. The generalized stencil is constructed from the 6-cut case. Edges
connect each interface point to its associated lower order features.

depending on their orientation on the BCC lattice. This
mechanism for ensuring consistency is a multimaterial
alternative to the parity scheme used in the two-material
case [29]. This procedure as described is merely one
solution within a space of valid possibilities.

3.7 Grading

Like other meshing algorithms built upon the BCC lattice,
we take advantage of its structure to achieve graded meshes
through the use of an octree. Any cell that contains at least
one edge-cut is created as leaf in this tree. We utilize the
same stencil as found in Isosurface Stuffing, where bisected
and quadrisected BCC tetrahedra are used to span
neighboring octree cells that differ in height by one level.
Since these graded tetrahedra only appear in regions of
homegeneity, the introduction of multiple materials has no
effect on their structure.

3.8 Algorithm

The full lattice cleaving algorithm utilizes the rules
developed in this section and proceeds as follows: Using
an octree structure to reduce storage and allow grading, we
first sample and label each BCC lattice vertex. Alternatively,
a search strategy can be employed at this point to reduce
storage and time searching for interfaces. If a tie occurs, we
add an epsilon adjustment to a random material, creating
cuts one or more incident edges. Next, cuts, triples, and
quadruples are computed for each lattice tetrahedron that
has multiple unique material labels on its vertices. The
octree stores leaves only for the cells containing cuts, and it
is balanced such that neighboring cells never differ by more
than a height of one.

Any lattice tetrahedron that is not the 6-cut case is then
generalized to be so, by labeling the locations of virtual cuts,
triples, and quadruples. This operation completes in a
single pass over the lattice tetrahedra, either directly or
through the use of a precomputed lookup table. Once all
lattice tetrahedra have been generalized, three phases of
snapping and warping begin.

In the first phase, all violated lattice vertices are
identified and visited exactly once. Any violating interfaces
on incident edges, faces, or tetrahedra are snapped to the
vertex, and the vertex warps to the center of mass of the
interfaces, distributing any round off equally. All adjacent
nonviolating interface points are projected to remain on
their respective simplices. If an oracle is available, the new
interface points should be queried directly. All degeneracies
are fixed with additional snaps, as described in Section 3.5.
After completion of this phase, all lattice vertices will be
free from violations.

In the second phase, all violated lattice edges are
identified and visited exactly once. If one or more triples
or quadruples violate an edge, we snap them to the cut on
that edge, wherever it may be. Sometimes a triple-point
violates an edge that no longer contains a cut because it has
already snapped to a lattice vertex. In such cases, the triple-
point would snap to that lattice vertex as well. These snaps
are designed so that a lattice edge may contain singular
points of transitions or be a single material across its
entirety; we do not allow material interfaces to lie on the
half-edge. An alternative approach would be to project

these triple-points to the nearest location on the edge, and
split the edge with a new cut, tessellating the output stencil
tetrahedra incident to that edge. This would provide
increased fidelity but also increased element count.

In the final phase, we address the problem of quadruple-
points that are too close to lattice faces. Using the face
violation condition, we snap any such quadruple-point to
the triple-point on the face that was violated. Similar to the
second phase, sometimes a quadruple-point violates a lattice
face that no longer contains a triple-point. It may have
snapped to an edge-cut, or to a vertex. The quadruple-point
always follows the triple-point, maintaining the hierarchy of
features on each edge and face. Again, a splitting procedure
could be utilized to retain higher fidelity.

Finally, we output all stencil tetrahedra that contain
four unique vertices, skipping over any that were
collapsed during the warping and snapping process.
Octree cells at higher levels are also filled with appropriate
tetrahedra for grading, though there is no need to delay
this step until the end.

The complexity of this algorithm is worst case OðnÞ,
where n is the number of voxels in the input image.
However, in practice, it is rare that a set of interface surfaces
would fill the entire volume. We find the complexity is most
often sublinear. Additionally, while we implemented this
algorithm as an in-core solution, requiring memory for the
whole volume and mesh throughout the algorithm, this
need not be the case. All of the operations act locally on sets
of adjacent lattice cells. Therefore a streaming solution, or
moving window approach could also be employed to
process lattice cleaving. The benefits of such an approach
would include reduced memory footprint, and possibly
better cache performance.

4 BOUNDED DIHEDRAL ANGLES

The algorithm described in Section 3 is designed to ensure
that both dihedral angles are bounded and geometric
distortion of input surfaces is controlled. In what follows,
we prove these properties hold true.

The violation rules defined in Section 3.4 disallow vertex
positions that could lead to undesirable tetrahedra. These
proofs rely on these carefully designed rules for vertex
placement, a particular set of properties in the generalized
stencil set, and their interaction with the background lattice.

There are multiple ways to classify types of bad
tetrahedron [2], [11]. One useful partitioning groups such
tetrahedra into two sets: tetrahedra whose vertices are
nearly collinear, and tetrahedra whose vertices are nearly
coplanar (Fig. 10). This classification includes not only
tetrahedra with bad dihedral angles, but also tetrahedra
with bad solid angles (i.e., the spire).

It is also useful to classify the types of bad triangular
faces that can occur on these undesirable tetrahedra,
namely, daggers and blades. These triangles have vertices
that are nearly collinear. While a tetrahedron may still be
badly shaped without their presence, (e.g., slivers), a
tetrahedron that contains poor quality triangles will itself
also be of poor quality.

The rules comprising our algorithm make it impossible
for output tetrahedra to become badly shaped (and
consequently, they have bounded dihedral angles). First,

BRONSON ET AL.: LATTICE CLEAVING: A MULTIMATERIAL TETRAHEDRAL MESHING ALGORITHM WITH GUARANTEES 229

we show that background lattice tetrahedra stay of good
quality. This property induces constraints on the polyhedra
of our output stencils. Finally, we show that these
constraints, combined with our violation conditions for
warping and snapping, always lead to tetrahedra with
bounded dihedral angles. Unlike the computational proof
of Labelle and Shewchuk, which relies on interval arith-
metic and a numerical search, this approach does not give a
specific angle bound. The multimaterial problem introduces
enough additional degrees of freedom to make a similar
computational approach currently intractible. This direct
proof does, however, provide insights into why this
algorithm is successful at achieving bounded dihedral
angles and gives a foundation for modifications and
extensions. We begin by introducing several definitions.

Definition 1. A dihedral angle � is the angle between two planes.

A tetrahedron contains six internal dihedral angles. The
dihedral angle between triangular faces can be expressed as
a function � : V 2 7! < of the face unit normals n̂1 and n̂2:

� ¼ arccos n̂1 � n̂2ð Þ: ð1Þ

Definition 2. The aspect ratio, arf ¼ h
l , for a triangular face, f ,

where h is the height of the shortest altitude and l is the length
of the longest edge.

Definition 3. The aspect ratio, art ¼ h
l , for a tetrahedron, t,

where h the height of the shortest altitude and l is the length of
the longest edge.

For triangles, the aspect ratio goes to zero as the vertices
approach collinearity. For tetrahedra, aspect ratio is a
measure for how close the vertices of a tetrahedron are to
being either collinear or coplanar. It turns out that when
tetrahedra degenerate in these ways, it must be the case that
there are either dihedral angles of 0, 180 degrees, or both.
All unwarped BCC lattice tetrahedra have aspect ratios
art ¼ 0:866025, and dihedral angles of 60 and 90 degrees.
We next define the notion of �-good.

Definition 4. For � > 0, let �min and �max be the minimum and

maximum dihedral angles for all possible tetrahedra with
art > �. A dihedral angle, �, is called �-good if and only if
�min � � � �max. Similarly, let �min and �max be the minimum

and maximum interior angles, respectively, of all triangles
with arf > �. We call a planar angle, �, �-good if and only if
�min � � � �max.

Lemma 1. For a triangle, t, with minimum and maximum
interior angles �min and �max, arf > 0 iff there exists � > 0
such that � < �min and �max < 180� � �.

Proof. Let t be a triangle composed of vertices v1, v2, and
v3. Let L be the length of the longest edge, joining v2

and v3, and H be the height of the shortest altitude,
incident to v1. v1 can be moved along the line parallel to
edge v2v3, without changing the height of this altitude
(Fig. 11). If H > 0, a planar angle � can only approach
0 or 180 degrees as it moves infinitely in either
direction. However, as v1 moves in either direction,
either edge v1v2 or v1v3 lengthens. Eventually, this
length will become longer than L, and the aspect ratio
will change. Therefore, the movement of v1 is bounded
to keep arf fixed. The worst minimum angle possible
becomes �min ¼ arcsinðarfÞ, and the maximum �max ¼
180� � arcsinðarfÞ. tu

Lemma 2. For a tetrahedron, t, with minimum and maximum

dihedral angles �min and �max, art > 0 iff there exists � > 0
such that � < �min and �max < 180� �.

Proof. The dihedral angle, �, between two incident
triangular faces may be computed using the 3D face
normals, as in (1). There is an equivalent planar angle, �,
formed by projecting these faces along the axis coincid-
ing with their shared edge (Fig. 12).

The lengths of the two line segments that form this
angle in 2D are equivalent to the lengths of the two
triangle altitudes. The distance of the projection of each
vertex not incident to the shared edge, to the opposite
face becomes the height of an altitude in 2D projective
space. This gives an equivalent equation for both the
planar and dihedral angle associated with these vertices:

� ¼ arcsin
ht
hf

� �
; ð2Þ

where ht is the height of the tetrahedron altitude in
3D (and equivalently the height of the triangle altitude

230 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 10. Types of undesirable tetrahedra: (a-e) vertices are nearly

collinear. (f-i) Vertices are nearly coplanar.

Fig. 11. The space of triangles with aspect ratio H=L. v1 is restricted to

move along the axis parallel to edge v2v3 such that L and H do not

change. This 1D space is bounded on both sides.

Fig. 12. (Left) Three-dimensional dihedral angle (Right) projected to 2D

with altitude.

in 2D), and hf is the height of the altitude of the
incident face (and equivalently the length of the
incident edge in 2D). tu
Because the altitudes are orthogonal to the shared edge,

by the Triangle Inequality, the lengths of the two altitudes
are bounded by the edge lengths of the two triangular faces.
Let L be the longest edge of the two faces and H the shorter
of the two 3D altitudes between them. It must be the case
that arcsinðHLÞ <¼ arcsinðhili Þ for all i. Because this relation-
ship holds for each pair of faces of a tetrahedron, t, it also
must be the case that arcsin ðHmax

Lmin
Þ <¼ arcsinðhili Þ for all i, or:

arcsinðartÞ <¼ � <¼ 180� arcsinðartÞ for all � in t.

Lemma 3. There exists a set of violation parameters �short and
�long for which all BCC lattice tetrahedra maintain �-good
dihedral angles after warping as described in Section 3.5.

Proof. Let t be a BCC lattice tetrahedron and r� be the
radius of a ball around each vertex. Each ball contains
the possible set of points to which its vertex may warp,
given the violation parameters �short and �long (the
violation parameters for short and long edges, respec-
tively). If r� ¼ 0, no warping takes place, and t has aspect
ratio art ¼ 0:866025. Because the worst dihedral angle of
a tetrahedron can be defined as a continuous function of
vertex positions, by the intermediate value theorem, there
must exist an r� for which art ¼ � > 0. Thus, by
Definition 4, there must exist an �short and �long for
which the lattice tetrahedra maintain �-good dihedral
angles after warping. tu

Definition 5. Let p be a polyhedron subdivided into a set of
polyhedra S. A polyhedral face f from the set S is considered
external if it is incident to @p.

Lemma 4. All stencil polyhedra with nonviolating vertices
maintain �-good dihedral angles around edges incident to at
least one external face.

Proof. For every dihedral angle of a stencil polyhedron that
spans an edge incident to an external face, either one
face or both faces are external. If both faces are external,
then the dihedral angle equals that of the enclosing
background polyhedron. By Lemma 3, we know this is
an �-good dihedral angle. If one face is internal and
the other external, there is at least one vertex, vi, on the
internal face that is not incident to the external face. The
only way for the dihedral angle to lose the �-good
property is by moving vi arbitrarily close to the external
face, its edges, or its vertices. In each case, a violation
condition from Section 3.4 would be triggered making
these impossible. tu

Lemma 5. All output tetrahedra span at least two stencil
polyhedron faces that meet at �-good dihedral angles.

Proof. In general, any two faces may either both be external,
one external and one internal, or both internal. If both are
external, by Lemma 4 we know that the dihedral angle
between these faces will remain �-good. If one is external
and the other internal, by the violation conditions of
Section 3.4 we know these faces are �-good. The case of
two internal faces is prevented through stencil selection.
There are five regular topological stencil cases before
snaps. Snapping can only simplify polyhedra, never

creating additional internal faces. Thus, if no tetrahedra
span two internal faces of the polyhedra in the regular
topological cases, it is also the case that no tetrahedra
span two internal faces after edge collapses. Among the
regular topological cases, only the 5-cut and 6-cut cases
have the potential for multiple internal tetrahedron faces.
The generalized stencil is designed specifically to avoid
any tetrahedra spanning the faces that are not guarded
by violation conditions. tu

Lemma 6. All stencil triangles maintain �-good planar angles
after snapping and warping, as described in Section 3.5.

Proof. All output stencils are composed from only four
types of vertices: (lattice) vertices, cuts, triples, and
quadruples, abbreviated v, c, t, and q, respectively. The
vertices of a stencil triangle can exist in three ways.
Either all three vertices lie on the same lattice face, two
vertices lie on the same lattice face, or all three lie on
unique lattice faces.

If all three vertices lie on the same lattice face, the
violation conditions for cuts and triples guard against
such an aspect ratio. There are only three sets of points
that can become collinear, and our stencils specifically
preclude triangles spanning them: vcv, vtc, and ctc.

If two vertices lie on the same lattice face, the
triangle’s aspect ratio, arf , can only fall below � if
the third vertex is in violation of the face containing the
other two. This includes the third vertex violating an
edge of the lattice face containing the two vertices.

Finally, if all three vertices lie on unique lattice faces,
the triangle’s aspect ratio, arf can only fall below � if all
three vertices are violating the vertex incident to all three
lattice faces. tu

Lemma 7. All output tetrahedron have �-good dihedral angles.

Proof. Let t be an output tetrahedron. By Lemma 5, t has at
least two faces joined at an �-good dihedral angle along
an edge e. By Lemma 6, the triangles incident to edge e
are �-good. The existence of one good dihedral angle
with two good faces incident to it implies t must have �-
good dihedral angles everywhere. tu

Theorem 1. There exists a dihedral angle, �� > 0�, such that the
dihedral angles of all tetrahedra are bounded from below by ��

and above by 180� � ��.
Proof. By Lemmas 7 and 2. tu

This proof shows that the meshes from the lattice-cleaving
algorithm never degenerate, in fact Lemma 6 also ensures we
produce no bad solid angles (e.g., “spires”), despite they
lacking bad dihedral angles. Moreover, in practice, with
proper choice of �, this bound, ��, is significant, and
empirical results in Section 5 corroborate this fact.

4.1 Geometric Fidelity

We next make a statement about the quality of the surface
approximation. Let � be the interface surface, the complex of
smooth surface patches where two materials meet, as well
as the associated curves where three materials are coin-
cident, and the points where four meet. � is a CW-complex,
and geometrically behaves as a piecewise-smooth complex
[12]. It also has a well-defined medial axis M� that we

BRONSON ET AL.: LATTICE CLEAVING: A MULTIMATERIAL TETRAHEDRAL MESHING ALGORITHM WITH GUARANTEES 231

define as the closure of the set of points in IR3 that have at
least two closest points in �. Each point in M� is the center
of a ball that meets � only tangentially. Using the medial
axis, we can quantify of the scale of features at each point
p 2 �. In particular, we define local feature size, lfs : �! IR,
as the distance from each surface point to the medial axis.
Local feature size is well studied in smooth surfaces [1]. In
our setting, local feature size approaches zero near triple
junctions, which meet nonsmoothly. Consequently, we
define the set of h-regular points, �h ¼ fp 2 � j lfsðpÞ > hg
and restrict our claims to these.

Given a tetrahedron c in the mesh, we make a claim
regarding its vertices. For c, let �jc be the restriction of � to c,
defined as � \ c. We define an h-regular tetrahedron c as one,
where the set of p 2 �jc are regular.

Lemma 8. Given an h-regular tetrahedron c constructed from
BCC lattice edges that are no longer than h, any vertex v of c
that is labeled as having two materials (surface vertex) lies on �.

Proof. Because v has two materials, it is the byproduct of a
warp and snap to bring it to the �. Prior to this, v
underwent a sequence of operations that depended on
the cuts of edges incident to v. As long as there was only
one such cut, v only warped once, and directly to the
surface as computed by our indicator function oracle. We
prove that because c is h-regular, this is always the case.
Assume, for sake of contradiction, that there were
multiple cuts, of different materials, on edges incident
to v (if the materials were identical we preferentially pick
the closest cut to move to). Without loss of generality,
assume there are two cuts of material type AB and BC,
we call x and y. Both x and y lie in the violating zone, on
an edge incident to v. They are no further apart than
2h�short < h. This indicates that the two surface patches
defining these cuts are no further apart than h as well.

We show there must be a medial axis point within
distance h of �jc. Consider the medial axis for any single
connected material region. By definition, it is a deforma-
tion retract of this region, and in addition, it touches any
point where three materials meet. Thus, within a single
region the medial axis is a single connected component
that connects all triple-points. If we walk along the line
segment joining x and y, we must therefore cross the
medial axis because otherwise it would violate the above
property. As a result, there is a medial axis point at this
crossing. This medial axis point must be within distance
h of v. However, because v lies on �jc, this violates the
fact that c is h-regular, leading to a contradiction.

In generalizing this case to when more than two cuts
are adjacent v, the same logic holds for any pair of
them, which is sufficient to create the same contra-
diction above. tu

All h-regular tetrahedron are well behaved; in general,
they act just like the tetrahedra in the isosurface stuffing
algorithm [29]. Most importantly, when they do mesh a
piece of the surface, they geometrically approximate the
surface. As with any pointwise probe, it is impossible to
guarantee that there are no tiny features missed on account
of the mesh resolution being too coarse. However, we
can guarantee that for h-regular tetrahedra containing

surface patches of �, every point on an interface triangle
representing this patch lies close to �. This “one-sided”
notion of distances mirrors [29, Theorem 2] (only the
distance of every mesh vertex to � is bounded). When the
mesh is of fine enough resolution and each surface patch of
� sufficiently smooth, the distance bound for h-regular
tetrahedra becomes two sided—the claim follows for
distances from � to the mesh.

5 RESULTS and DISCUSSION

Our implementation of lattice cleaving is extremely fast,
requires virtually no user interaction, and achieves
bounded dihedral angles. These bounds depend on choices
of the violation parameters �long and �short. In this section,
we discuss the importance of these choices, demonstrate the
lattice cleaving algorithm on various data sets, and discuss
other aspects of the algorithm.

5.1 Parameter Choice

The �long and �short parameters determine the distances
along an edge, beyond which an edge-cut is considered
“safe,” or nonviolating. They decide the tradeoff between
snapping/warping and stencil cleaving. A user who is
primarily interested in visualization might choose to turn off
violations completely by using �long ¼ 0 and �short ¼ 0. This
will give the most accurate geometric representation with
possibly degenerate elements. As the alpha values increase,
the severity of the worst possible dihedral angles decreases,
up until a point. With sufficiently large alpha values, lattice
tetrahedra may become flat or even inverted. If a user is
interested in only one side of the interface, flat elements can
be tolerated by stripping them from the surface.

Because our meshes represent volumes on both sides of
each interface surface, the most appropriate parameters
would seem to be those used by Labelle and Shewchuk [29]
in the double-sided surface case. However, our multimaterial
violation conditions use slightly more conservative bounds
to take into account the dihedral angles near triples and
quadruples. We picked the parameters �short ¼ 0:357 and
�long ¼ 0:203 and found they achieved a worse case
minimum angle of 2.76 degree and worst case maximum
angle of 175.426 degree. In practice, after simulating many
hundreds of times steps of several dozen fluid simulations,
corresponding to hundreds of millions of tetrahedra, we see
much better angles for the vast majority of meshes.

5.2 Aliasing

A fundamental aspect of the lattice cleaving algorithm is
that it operates at a fixed resolution. Any feature that falls
below grid width will not be captured in the output mesh.
For 2-material interfaces, this simply results in the smooth-
ing of a surface, or removal of small topological features.
For 3-material interfaces, the behavior becomes more
interesting. As the feature size around a 3-material interface
always goes to zero, there will always be some degree of
approximation. But beyond that, the interaction of the
background lattice faces with this approximation can lead
to regular patterns of topological aliasing.

Fig. 13 illustrates a scenario that can arise in 2D. In the
scenario, two material interfaces come together at a sharp

232 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

corner. Because the BCC lattice contain vertices from two

sets of regular grids, (primal and dual), neighboring lattice

faces alternate having either two or three unique material

labels on their vertices. This leads to a saw-tooth-like pattern

of spikes and pillars that form topologically distinct regions.
These aliasing artifacts are sometimes taken care of

through the snapping and warping procedure because the

sharp spikes that form are often in a violating condition

anyway. However, since there is a space of cases which are

not handled by snapping, explicit solutions for this problem

are needed. A range of possible solutions exist, such as

smoothing, tightening [48], or morphological operations

such as dilation and erosion. If the input data cannot be

smoothed, one could also design discrete local operators

that intelligently change material labels on lattice vertices to

avoid aliasing.

5.3 Examples

To illustrate some of the data sets for which lattice cleaving

can be used, we provide several examples. Runtimes for

these data sets were calculated on a machine with an Intel

Core i7 3.2-GHz CPU and 12 GB of RAM.

Fig. 14 shows a mesh generated from a segmented
MRI scan of a human head. The algorithm completed in
about 100 seconds and produced a mesh with roughly
5 million elements, all with dihedral angles between 4.33
and 157.98 degrees. Fig. 15 shows a mesh generated from a
similar scan of a human torso. The algorithm completed
in under a minute and produced a mesh with roughly
12 million elements, all with dihedral angles between 5.11
and 159.91 degrees.

It is often necessary to visualize multimaterial tetrahe-
dral meshes before any simulation work is conducted. This
spans from the need to qualitatively verify results are
accurate, to spotting unexpected features that might
influence solutions. Fig. 16 shows a visualization generated
from a segmented frog MRI. The input volume was 260�
245� 150 in size, and took just over a minute to mesh. The
surface meshes can be extracted from the lattice cleaving
algorithm as postprocess or generated alongside the
tetrahedral mesh using the same stencil set.

This work also applies to multiphase fluid simulation
and animation. To demonstrate this, we utilize the lattice
cleaving algorithm in the core of a multiphase viscous fluid
simulation. Fig. 17 shows a rendering and cutaway view of
the underlying mesh used for physics. This simulation
used a 643 background lattice (primal vertices), required
8 seconds to mesh, and produces, on average 1.2 million
tetrahedra. Fig. 18 shows a histogram of the dihedral angles
generated from 350 simulation frames. The majority of
elements are of excellent quality, with small tails near the
expected bounds. Counts for angles belonging to unwarped
background lattice tets are scaled down.

BRONSON ET AL.: LATTICE CLEAVING: A MULTIMATERIAL TETRAHEDRAL MESHING ALGORITHM WITH GUARANTEES 233

Fig. 13. (a) Three materials meet in a sharp corner feature. (b) Using

material labels at each lattice vertex results in aliasing artifacts.

(c) Preprocessing (e.g., smoothing) indicator functions eliminates this

problem.

Fig. 14. Meshes generated from MRI scan of a human head.

Resolution: 264� 264� 264. Dihedral angles: ½4:33� � 157:98��. 	 5:3

million elements.

Fig. 15. Meshes generated from MRI scan of a human torso.

Resolution: 208� 96� 208. Dihedral angles: ½5:11� � 159:91��. 	 12:6

million elements.

Fig. 16. Visualization using surface meshes generated from a

segmented frog MRI. Resolution: 260 � 245 � 150. Dihedral angles:

½6:06� � 154:28��. 	 14:8 million elements.

5.4 Algorithm Comparison

We evaluate our new meshing algorithm against two
other packages commonly used in biomedical meshing:
BioMesh3D v1.0 [3], [33] and CGAL v3.9 [44]. BioMesh3D
uses variational optimization [33] to sample a domain
and TetGen [43] to construct a Delaunay tetrahedrelization
of those samples. CGAL’s 3D mesh generation package
contains an engine based on Delaunay refinement [16],
[39], [40].

We compare these methods through their performance
in three state-of-the-art simulation experiments. The first
simulation is from an osseointegrated bone implant experi-
ment, studying the effects of using direct current cathode
stimulation to enhance the ability of implants to fuse into
the skeletons of rabbits [26]. The second simulation is used

for modeling the effects of EEG source on a human skull
[17]. The third simulation used is for modeling ICD
placement for defibrillation in children and adults [46].

Tables 1, 2, and 3 show the results of the simulations for
these three biomedical applications, using the meshes
generated by the three methods. For each of these
experiments, we tuned parameters of the different system
to get approximately the same number of elements (within
a factor of 2). We analyzed the geometric quality of the
mesh (dihedral angles), the condition numbers of the
resulting stiffness matrices, and the number of iterations
the solver took to converge. All of these simulations use
the finite-element method with linear elements and they
are solved using the SCIRun 4.5 [24] implementation
of the minimal residual (MINRES) method [36] (a variant
of the conjugate gradient method), combined with a
Jacobi preconditioner.

We see from these simulations that the proposed
meshing algorithm gives better overall bounds on dihedral
angles and thereby avoids badly shaped tetrahedra. For the
simulations, the proposed mesher and BioMesh perform
similarly, while both mesh techniques generally outperform
CGAL, requiring roughly half the number of iterations for
the numerical solvers to reach convergence.

234 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 17. A multiphase viscous fluid simulation. Each frame uses a

conforming mesh to compute fluid physics.

Fig. 18. A histogram of all the angles produced through the fluid

simulation. Purple bars have 20� the counts shown.

TABLE 1
Torso Simulation: 10 Materials, 208 � 96 � 208

TABLE 2
Head Simulation: Eight Materials, 264 � 264 � 264

Some of these differences are also seen qualitatively
looking at renderings of these meshes, as in Fig. 19. Here,
we see the rough, aliasing-type artifacts that result from the
fact that CGAL operates only on discrete label maps—a
reasonable explanation for the differences in simulation
outcomes. Qualitatively, the proposed method and Biomesh
are similar, but exhibit different strategies on grading/
adaptivity. Besides the bounds on dihedral angles, the
proposed method has significant advantages in reliability,
robustness, and ease of use. All of the results for the
proposed method were produced in one pass using one free
parameter, which is the resolution of the finest mesh, and
each took between 30 to 300 seconds. CGAL performance
was competitive, each mesh taking only a few minutes to
complete. BioMesh3D performs a series of variational
optimizations with a set of interacting particles, and has a
variety of free parameters. The BioMesh3D results required

trial and error testing for parameter tuning to obtain valid
mesh results. Each full mesh took over 12 hours to compute.

6 CONCLUSION

We have developed an extremely fast and robust conforming
tetrahedral meshing algorithm for multimaterial volumetric
domains. This method is guaranteed to produce meshes with
bounded element quality and empirically this bound is
significant, between 2.76 and 175.426 degrees. In practice,
angles tend to be much better. An open-source implementa-
tion of this method, called Cleaver [25], is now available.

The method falls under the category of stenciling
algorithms, operating locally on portions of a volume. As
such, it is highly parallelizable and amenable to hardware
acceleration. Moreover, a single generalized stencil is used
for all stencil cases, removing the need for error-prone case
tables while ensuring consistent meshes.

An octree structure is used to reduce element count by
providing didadic grading in homogenous regions. Future
work worth exploring is achieving grading on interface
surfaces, which may be sufficiently smooth as to not require
finest grid resolution elements. Similarly, alternative back-
ground lattices and stencils should be examined for the
purpose of achieving anisotropic elements, which are
invaluable for particular domains.

The simplifying restriction of at most one material
transition per edge was instrumental in making this
problem tractible. However, this restriction also places
requirements on the smoothness of the input surfaces to
avoid artifacts. Allowing for up to two transitions per edge
might also relax this smoothness restriction significantly, if
a suitable set of safe and compatible stencils can be
constructed.

ACKNOWLEDGMENTS

Thanks to Adam Bargteil and Darrell Swenson for the
simulation and experiment data sets. This work was
supported by grants from the National Center for Research
Resources (5P41RR012553-14) and the National Institute of
General Medical Sciences (8 P41 GM103545-14) from the
National Institutes of Health.

REFERENCES

[1] N. Amenta, S. Choi, T.K. Dey, and N. Leekha, “A Simple
Algorithm for Homeomorphic Surface Reconstruction,” Int’l J.
Computational Geometry & Applications, vol. 12, nos. 1/2, pp. 125-
141, 2002.

[2] M. Bern, P. Chew, D. Eppstein, and J. Ruppert, “Dihedral Bounds
for Mesh Generation in High Dimensions,” Proc. Sixth Ann. ACM-
SIAM Symp. Discrete Algorithms, pp. 189-196, 1995.

BRONSON ET AL.: LATTICE CLEAVING: A MULTIMATERIAL TETRAHEDRAL MESHING ALGORITHM WITH GUARANTEES 235

TABLE 3
Rabbit Leg Simulation: Six Materials, 520 � 520 � 300

Fig. 19. Cross sections of the tetrahedral head meshes generated using
(top) CGAL (middle) BioMesh3D and (bottom) Lattice Cleaving.

[3] BioMesh3D, “Quality Mesh Generator for Biomedical Applica-
tions,”Scientific Computing and Imaging Inst. (SCI).

[4] J. Bloomenthal and K. Ferguson, “Polygonization of Non-
Manifold Implicit Surfaces,” Proc. ACM SIGGRAPH, pp. 309-
316, 1995.

[5] J.-D. Boissonnat and S. Oudot, “Provably Good Sampling and
Meshing of Surfaces,” Graphical Models, vol. 67, no. 5, pp. 405-451,
2005.

[6] D. Boltcheva, M. Yvinec, and J.-D. Boissonnat, “Feature Preserving
Delaunay Mesh Generation from 3d Multi-Material Images,”
Computer Graphics Forum, vol. 28, no. 5, pp. 1455-1464, 2009.

[7] L. Branets and G.F. Carey, “Condition Number Bounds and Mesh
Quality,” Numerical Linear Algebra with Applications, vol. 17, no. 5,
pp. 855-869, 2010.

[8] J. Bronson, J. Levine, and R. Whitaker, “Lattice Cleaving: A
Multimaterial Tetrahedral Meshing Algorithm with Guarantees,”
Proc. 21st Int’l Meshing Roundtable (IMR), Page to Appear, 2012.

[9] J.R. Bronson, J.A. Levine, and R.T. Whitaker, “Particle Systems for
Adaptive, Isotropic Meshing of CAD Models,” Proc. 19th Int’l
Meshing Roundtable (IMR), pp. 279-296, Oct. 2010.

[10] S. Cheng, T. Dey, and J. Shewchuk, Delaunay Mesh Generation. CRC
Press, 2012.

[11] S.-W. Cheng, T.K. Dey, H. Edelsbrunner, M.A. Facello, and S.-H.
Teng, “Sliver Exudation,” Proc. 15th Ann. Symp. Computational
Geometry, pp. 1-13, 1999.

[12] S.-W. Cheng, T.K. Dey, and E.A. Ramos, “Delaunay Refinement
for Piecewise Smooth Complexes,” Discrete & Computational
Geometry, vol. 43, no. 1, pp. 121-166, 2010.

[13] S.-W. Cheng, T.K. Dey, E.A. Ramos, and T. Ray, “Sampling and
Meshing a Surface with Guaranteed Topology and Geometry,”
SIAM J. Computing, vol. 37, no. 4, pp. 1199-1227, 2007.

[14] N. Chentanez, B.E. Feldman, F. Labelle, J.F. O’Brien, and J.R.
Shewchuk, “Liquid Simulation on Lattice-Based Tetrahedral
Meshes,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation (SCA), pp. 219-228, Aug. 2007.

[15] L.P. Chew, “Constrained Delaunay Triangulations,” Proc. Third
Ann. Symp. Computational Geometry (SCG ’87), pp. 215-222, 1987.

[16] L.P. Chew, “Guaranteed-Quality Mesh Generation for Curved
Surfaces,” Proc. Ninth Ann. Symp. Computational Geometry, pp. 274-
280, 1993.

[17] M. Dannhauer, B. Lanfer, C.H. Wolters, and T.R. Knsche,
“Modeling of the Human Skull in EEG Source Analysis,” Human
Brain Mapping, vol. 32, no. 9, pp. 1383-1399, 2011.

[18] T.K. Dey, F. Janoos, and J.A. Levine, “Meshing Interfaces of Multi-
Label Data with Delaunay Refinement,” Eng. with Computers,
vol. 28, no. 1, pp. 71-82, Jan. 2012.

[19] T. Etiene, L. Nonato, C. Scheidegger, J. Tienry, T. Peters, V.
Pascucci, R. Kirby, and C. Silva, “Topology Verification for
Isosurface Extraction,” IEEE Trans. Visualization & Computer
Graphics, vol. 18, no. 6, pp. 952-965, June 2012.

[20] L.A. Freitag and C. Ollivier-Gooch, “Tetrahedral Mesh Improve-
ment Using Swapping and Smoothing,” Int’l J. Numerical Methods
in Eng., vol. 40, no. 21, pp. 3979-4002, 1997.

[21] P. Frey and P. George, Mesh Generation. John Wiley & Sons, 2010.
[22] A. Fuchs, “Automatic Grid Generation with Almost Regular

Delaunay Tetrahedra,” Proc. Seventh Int’l Meshing Roundtable
(IMR), pp. 133-147, 1998.

[23] A. Guéziec and R.A. Hummel, “Exploiting Triangulated Surface
Extraction Using Tetrahedral Decomposition,” IEEE Trans. Visua-
lization & Computer Graphics, vol. 1, no. 4, pp. 328-342, Dec. 1995.

[24] S. Institute, “SCIRun: A Scientific Computing Problem Solving
Environment,” Scientific Computing and Imaging Inst. (SCI),
http://www.scirun.org, 2012.

[25] S. Institute, “Cleaver: A MultiMaterial Tetrahedral Meshing
Library and Application,” Scientific Computing and Imaging Inst.
(SCI), http://www.sci.utah.edu/software/cleaver. 2012.

[26] B.M. Isaacson, L.B. Brunker, A.A. Brown, J.P. Beck, G.L. Burns,
and R.D. Bloebaum, “An Evaluation of Electrical Stimulation for
Improving Periprosthetic Attachment,” J. Biomedical Materials
Research Part B: Applied Biomaterials, vol. 97B, no. 1, pp. 190-200,
2011.

[27] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual Contouring of
Hermite Data,” Proc. ACM 29th Ann. Conf. Computer Graphics and
Interactive Techniques (SIGGRAPH ’02), pp. 339-346, 2002.

[28] B.M. Klingner and J.R. Shewchuk, “Aggressive Tetrahedral Mesh
Improvement,” Proc. 16th Int’l Meshing Roundtable (IMR), pp. 3-23,
2007.

[29] F. Labelle and J.R. Shewchuk, “Isosurface Stuffing: Fast Tetra-
hedral Meshes with Good Dihedral Angles,” Proc. ACM SIG-
GRAPH, 2007.

[30] Y. Liu, P. Foteinos, A. Chernikov, and N. Chrisochoides, “Multi-
Tissue Mesh Generation for Brain Image,” Proc. 19th Int’l Meshing
Roundtable (IMR), pp. 367-384, Oct. 2010.

[31] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Proc. ACM
SIGGRAPH, pp. 163-169, 1987.

[32] B. Merriman, J.K. Bence, and S.J. Osher, “Motion of Multiple
Junctions: A Level Set Approach,” J. Computational Physics,
vol. 112, no. 2, pp. 334-363, 1994.

[33] M.D. Meyer, R.T. Whitaker, R.M. Kirby, C. Ledergerber, and H.
Pfister, “Particle-Based Sampling and Meshing of Surfaces in
Multimaterial Volumes,” IEEE Trans. Visualization & Computer
Graphics, vol. 14, no. 6, pp. 1539-1546, Nov. 2008.

[34] N. Molino, R. Bridson, J. Teran, and R. Fedkiw, “A Crystalline,
Red Green Strategy for Meshing Highly Deformable Objects with
Tetrahedra,” Proc. 12th Int’l Meshing Roundtable (IMR), pp. 103-114,
2003.

[35] G.M. Nielson and R. Franke, “Computing the Separating Surface
for Segmented Data,” Proc. IEEE Visualization, pp. 229-233, 1997.

[36] C. Paige and M. Saunders, “Solution of Sparse Indefinite Systems
of Linear Equations,” SIAM J. Numerical Analysis, vol. 12, no. 4,
pp. 617-629, 1975.

[37] A.A. Pasko, V. Adzhiev, A. Sourin, and V.V. Savchenko,
“Function Representation in Geometric Modeling: Concepts,
Implementation and Applications,” The Visual Computer, vol. 11,
no. 8, pp. 429-446, 1995.

[38] J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau, M. Yvinec, and
R. Keriven, “High-Quality Consistent Meshing of Multi-Label
Data Sets,” Proc. 20th Int’l Conf. Information Processing in Medical
Imaging (IPMI), pp. 198-210, 2007.

[39] J. Ruppert, “A Delaunay Refinement Algorithm for Quality 2-
Dimensional Mesh Generation,” J. Algorithms, vol. 18, no. 3,
pp. 548-585, 1995.

[40] J.R. Shewchuk, “Tetrahedral Mesh Generation by Delaunay
Refinement,” Proc. 14th Ann. Symp. Computational Geometry,
pp. 86-95, 1998.

[41] J.R. Shewchuk, “What Is a Good Linear Element? Interpolation,
Conditioning, and Quality Measures,” Proc. Int’l Meshing Round-
table (IMR), pp. 115-126, 2002.

[42] J.R. Shewchuk, “General-Dimensional Constrained Delaunay and
Constrained Regular Triangulations I: Combinatorial Properties,”
Discrete and Computational Geometry, vol. 39, pp. 580-637, 2005.

[43] H. Si, “TetGen: A Quality Tetrahedral Mesh Generator and Three-
Dimensional Delaunay Triangulator,” http://tetgen.berlios.de/,
2013.

[44] CGAL, “Computational Geometry Algorithms Library,” http://
www.cgal.org, 2013.

[45] J. Tournois, C. Wormser, P. Alliez, and M. Desbrun, “Interleav-
ing Delaunay Refinement and Optimization for Practical
Isotropic Tetrahedron Mesh Generation,” ACM Trans. Graphics,
vol. 28, no. 3, article 75, 2009.

[46] J.K. Triedman, M. Jolley, J. Stinstra, D.H. Brooks, and R. MacLeod,
“Predictive Modeling of Defibrillation Using Hexahedral and
Tetrahedral Finite Element Models: Recent Advances,” J. Electro-
cardiology, vol. 41, no. 6, pp. 483-486, 2008.

[47] J. Wang and Z. Yu, “Feature-Sensitive Tetrahedral Mesh Genera-
tion with Guaranteed Quality,” Computer-Aided Design, vol. 44,
no. 5, pp. 400-412, 2012.

[48] J. Williams and J. Rossignac, “Tightening: Curvature-Limiting
Morphological Simplification,” Proc. ACM Symp. Solid and Physical
Modeling (SPM), 2004.

[49] D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang, “Isotropic
Remeshing with Fast and Exact Computation of Restricted
Voronoi Diagram,” Computer Graphics Forum, vol. 28, no. 5,
pp. 1445-1454, 2009.

[50] M.A. Yerry and M.S. Shephard, “Automatic Three-Dimensional
Mesh Generation by the Modified-Octree Technique,” Int’l J.
Numerical Methods in Eng., vol. 20, pp. 1965-1990, 1984.

[51] Z. Yu, M.J. Holst, and J.A. McCammon, “High-Fidelity Geometric
Modeling for Biomedical Applications,” Finite Elements in Analysis
and Design, vol. 44, no. 11, pp. 715-723, 2008.

[52] N. Zhang, W. Hong, and A. Kaufman, “Dual Contouring with
Topology-Preserving Simplification Using Enhanced Cell Repre-
sentation,” Proc. IEEE Visualization (VIS ’04), pp. 505-512, 2004.

236 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

[53] Y. Zhang, C. Bajaj, and B.-S. Sohn, “3d Finite Element Meshing
from Imaging Data,” Computer Methods in Applied Mechanics and
Eng., vol. 194, no. 4849, pp. 5083-5106, 2005.

[54] Y. Zhang, T. Hughes, and C.L. Bajaj, “Automatic 3d Mesh
Generation for a Domain with Multiple Materials,” Proc. Int’l
Meshing Roundtable (IMR), pp. 367-386, 2007.

[55] Y. Zhang and J. Qian, “Resolving Topology Ambiguity for
Multiple-Material Domains,” Computer Methods in Applied Me-
chanics and Eng., vol. 247/248, pp. 166-178, 2012.

Jonathan Bronson received the MS degree
in computer science from the University of
Maryland, Baltimore County, in 2008. He is
currently working toward the PhD degree in
computer science at the University of Utah. His
research interests include computational geo-
metry and mesh generation, scientific and
information visualization, as well as image
processing. He is a student member of the IEEE.

Joshua A. Levine received the PhD degree in
computer science from the Ohio State University
and completed a postdoc from the Scientific
Computing and Imaging Institute of University of
Utah. Currently, he is an assistant professor at
Visual Computing division in the School of
Computing, Clemson University. His research
interests include geometric modeling, scientific
visualization, mesh generation, medical imaging,
and computational geometry. He is a member of

the IEEE and ACM.

Ross Whitaker received the graduate degree
summa cum laude with BS degree in electrical
engineering and computer science from
Princeton University in 1986. At UNC, he
received the Alumni Scholarship Award, and
received the PhD degree in computer science in
1994. From 1986 to 1988, he was with the
Boston Consulting Group, entering the Univer-
sity of North Carolina at Chapel Hill in 1989.
From 1994 to 1996, he was at the European

Computer-Industry Research Centre in Munich Germany as a research
scientist in the User Interaction and Visualization Group. From 1996 to
2000, he was an assistant professor in the Department of Electrical
Engineering at the University of Tennessee and received the US
National Science Foundation (NSF) Career Award. Since 2000, he has
been at the University of Utah where he is a professor in the School of
Computing and a faculty member of the Scientific Computing and
Imaging Institute. He teaches discrete math, scientific visualization, and
image processing. He has led graduate-level research group in image
analysis, geometry processing, and scientific computing, with a variety
of projects supported by both federal agencies and industrial contracts.
He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BRONSON ET AL.: LATTICE CLEAVING: A MULTIMATERIAL TETRAHEDRAL MESHING ALGORITHM WITH GUARANTEES 237

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

