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Summary. We present a particle-based approach for generating adaptive triangular
surface and tetrahedral volume meshes from CAD models. Input shapes are treated
as a collection of smooth, parametric surface patches that can meet non-smoothly
on boundaries. Our approach uses a hierarchical sampling scheme that places parti-
cles on features in order of increasing dimensionality. These particles reach a good
distribution by minimizing an energy computed in 3D world space, with movements
occurring in the parametric space of each surface patch.

Rather than using a pre-computed measure of feature size, our system automat-
ically adapts to both curvature as well as a notion of topological separation. It also
enforces a measure of smoothness on these constraints to construct a sizing field that
acts as a proxy to piecewise-smooth feature size. We evaluate our technique with
comparisons against other popular triangular meshing techniques for this domain.
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1 Introduction

Tetrahedral mesh generation is a key tool in the computer-aided design (CAD)
pipeline. In particular, the conversion of shapes presented by the output CAD
systems and solid modeling geometry kernels is necessary to provide input
meshes for structural analysis, CFD and other CAE applications. The data
from these systems is usually in the form of a boundary representation (B-
Rep) made up of hierarchical connectivity (topology) and associated geomet-
ric entities. When the B-Rep is manifold and topologically closed, shapes
of arbitrary geometric complexity can be produced. Care must be taken to
provide accurate representations of these inherently piecewise-smooth solids
while robustly preserving the curved features defined by the input topological
description [18].

While many types of meshes are suitable for visualization and simulation,
simplicial meshes have emerged as one of the dominant forms. Their popularity
can be attributed to both the ease at which simplicial meshing algorithms
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can be implemented as well as the guarantees of termination and quality that
can often be shown. Technologies to construct simplicial meshes vary greatly.
Some of the most important paradigms include advancing-front [19, 20, 26],
Delaunay refinement [10, 25, 29], and particle systems [22, 33]. However, to
build meshes that are adaptive, many variants of these techniques require an
input oracle that evaluates a sizing field over the domain [4, 8, 23, 27, 32].
An early exception is the approach of Dey et al. [12] that uses Delaunay
refinement for meshing smooth domains. Using the dual Voronoi diagram
and the concept of poles [2], this algorithm automatically refines based on
a simultaneously computed approximation of the local feature size (distance
to the medial axis) of the shape whose accuracy increases as mesh density
increases.

Local feature size of smooth shapes is a natural choice to use as a field
to adapt to; however, most CAD models are inherently non-smooth. A no-
tion of local feature size for piecewise-smooth shapes has been defined [8] by
coupling local feature size for the smooth regions with a topological condition
called gap size [9]. Computing this measure robustly is a significant challenge.
The approach in this work aims to automatically infer a global sizing field of
equivalent expressivity to [8] while using only locally available information as
done by [12]. Such a technique must force a compromise, ours is to construct
a proxy for feature size that is Lipschitz continuous by coupling curvature
adaptivity with a topological separation condition.

Particle systems are an ideal framework for sampling parametric domains
since they only require local calculations. We can minimize energy by move-
ments solely within the parameter space of each surface patch while knowing
each particle stays within the confines of the surface in world space. Com-
puting good quality triangulations from these samples can leverage the same
benefits. We directly build triangulations on the particles in parameter space
using 2D Delaunay triangulations (implemented by Triangle [28]). As 3D De-
launay triangulations can be expensive to compute, this provides a significant
savings when only surface meshes are required. While this approach cannot
immediately build triangles that are 3D Delaunay, we can improve their qual-
ity significantly by local modifications (e.g. edge flipping) that consider the
world space positions of vertices. The resulting surfaces meshes make ideal
inputs for volumetric meshing approaches, such as TetGen [30].

1.1 Contributions

This work focuses on automatic techniques for building triangular meshes
of the boundary surface, and ultimately tetrahedral representations of the
interior solid. We also improve the state-of-the-art for particle system-based
techniques; our contributions can be summarized as the following:

• An automatic technique for constructing isotropic surface meshes by min-
imizing a world-space energy through parameter-space movements.
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• Hierarchical sampling of features in increasing dimension, inspired by
weighted Delaunay-based approaches [8, 11].

• Algorithmic control for both uniform and adaptive sampling, without re-
quiring a pre-computation of global feature size needed by similar particle-
based approaches [23].

• Fast mesh generation of these samples through the use of the 2D Delaunay
triangulation in parameter space and 3D Delaunay edge flipping [6].

• Experimental evaluation that compares our approach to existing tech-
niques [7, 15] for mesh generation of CAD domains.

2 Related Work and Background

While the history of tetrahedral mesh generation began much earlier, a shift
in the emphasis of techniques has become popular within the past decade.
In particular, variational approaches, i.e. based on energy minimization, have
become one of the most important tools for mesh generation. Alliez et al. [1]
describe a variational technique for mesh generation that couples Delaunay
refinement with a relaxation process for vertex locations. This algorithm and
later variants [31, 32, 34, 37] base their energy minimization on a sizing field
for particle density coupled with an energy minimization grounded in the
notion of a centroidal Voronoi diagram [14] and its dual, the optimal Delaunay
triangulation [5]. Consequently, these meshing algorithms can generate nearly
isotropic elements, as a byproduct of the centroidal Voronoi condition, as well
as leveraging many of the benefits of Delaunay refinement techniques.

However, one deficiency is the need for knowledge of an element sizing field
a priori. Computing a sizing field is considered expensive. Often, approaches
for computing sizing fields are based on the medial axis [13] or quadratures of
mesh elements [3], and thus can require O(n2) computations of dense point
clouds to build accurate results. One recent solution of Tournois et al. [32]
solves this problem by alternating a variational phase with a refinement phase.
After each level of refinement, the sizing function is updated before switching
back to variational phase. This interleaving allows the available information
to drive the computation of a sizing field instead of necessitating a prepro-
cessed computation. We aim to improve upon this theme by allowing an energy
minimization based on particle systems to automatically improve its approx-
imation of the sizing field.

A second thrust of recent algorithms is to provide provably algorithms for
meshing piecewise-smooth shapes. This general class describes shapes with a
topological description in the form of a piecewise-smooth complex of k-cells
that are compact subsets of k-manifolds. We use the same definition as Cheng
et al. [8]. In summary, surface patches (2-cells) can meet non-smoothly at
curves (1-cells) bounded by points (0-cells). Two k-cells are adjacent if one is
on the boundary of the other.
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Similar to the B-Rep definition, each k-cell has an associated geomet-
ric description. Recent Delauany-based approaches [8, 24] for meshing this
domain have been able to provide topological correctness guarantees using
either weighted Delaunay triangulations [8] or bounding the angle deviations
between smooth patches [24]. A missing piece to the implementations of these
algorithms is the ability to adapt to a sizing field, primarily because there is
no consensus on what is the correct sizing field for non-smooth shapes and
how best to compute it. However, they do show that a careful sampling of
points on sharp creases can preserve the features of a shape. Our approach is
a natural extension of this work, but instead of requiring an accurate sizing
field to guarantee topological correctness, our scheme will build watertight
meshes provided a few easily satisfied conditions are met by the particle sys-
tem (described in Section 4.3).

2.1 Particle Systems

At the core of our meshing scheme is a paradigm for sampling shapes using
particles. The idea of using repulsive point clouds to (re-)sample a mesh was
first introduced by Turk in the context of polygonal remeshing [33]. The first
full particle system for meshing was later developed by Witkin and Heck-
bert [35]. Their technique was primarily used as a mechanism to sample and
control implicit surfaces, which was notoriously difficult under other schemes
at the time. The key idea behind their work was the introduction of a Gaussian
energy function to control the interaction between particles. Improvements to
their scheme were made by Hart et al. [17]. Yamakawa and Shimada pro-
posed a meshing scheme similar to particles by using packings of ellipsoidal
bubbles [36].

Meyer et al. [21] formulated a more robust and stable solution for evolving
particle systems. The new energy kernel was a modified cotangent function,
with finite support. By falling off to a finite range, the resulting particle sys-
tems were more stable and more quickly lead to ideal packings. Additionally,
this kernel was nearly scale invariant. Meyer et al. [23] later introduced a hier-
archical scheme for particle-based sampling multi-material surfaces. For such
datasets, the boundaries between the different materials can be represented
as a piecewise-smooth complex. While without the formal guarantees of [8],
they use a similar strategy of hierarchically sampling topologically features in
increasing dimension to build consistent, watertight meshes.

3 Particle System Formulation

In this section we provide the mathematical formulation behind our particle
system. We define the total energy in the system as the sum of each energy
Ei calculated with respect to particle pi. Each particle pi has a corresponding
σi value representing the radius of its ball of influence Bi centered at pi. It
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is the varying of σi that provides adaptivity. Each energy Ei is the sum of
the energies between particle pi and all neighboring particles pj . Particles pi
and pj are considered neighbors if either pj falls within Bi or if pi falls within
Bj . We use a variation of the modified cotangent for the energy (1) between
any two particles, Eij . By varying σi, the potential function must be scaled
to account for this new lopsided interaction between particles. Thus, we scale
both the modified cotangent function and its derivative (2) by σi.

Eij = σij cot(
|rij |
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π

2
) +
|rij |
σij

π

2
− π

2
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dEij
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π
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π

2
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In this form, |rij | is the distance between particles pi and pj and the value
σij is taken to be the max of σi and σj . The hexagonal packings that result
from this and related particle systems requires the particles to reach a critical
density on the surface being sampled. For any surface and any set of σ values,
there will always be an ideal number of particles, but calculating this number
is not tractable. Like previous systems, we use splitting and deleting to control
energy densities. Particles follow the rules:

E∗i = Ei (1 + ε) (3)
if E∗i < 0.35Eideal

i Split (4)
if E∗i > 1.75Eideal

i Delete (5)

Using a hexagonal packing as our notion of an ideal distribution, the ideal
energy Eideal

i for a particle pi is six times the energy felt between pi and pj
at the characteristic distance of approximately 0.58 [21]. Given that a two-
ring particle pj is at distance 1.0, Equation (6) describes this relationship.
Additionally, we scale this value by σi to match the scaling of actual energies.

Eideal
i = σi6E(β), with

|rij |
σij

= β =
0.5

cos(π/6)
≈ 0.58 (6)

Since one cannot predict what an ideal neighborhood will look like in
the adaptive case, the ideal energy is less precise than in the constant case.
This leads to more frequent splits and deletes for higher local variation, but
ultimately provides much better packings than if the original energy was not
scaled proportional to σ. An alternative to this approach would be to use
a notion of scaled distance d′ = d

σ , and forego the σi scaling. Then, to still
achieve the high quality packings, a different scheme for deletion of poorly
configured particles would need to be devised.

To allow the system to adapt to splits and deletes, Ei is biased by a small
random number, 0 ≤ ε ≤ 1, in Equation (3). This makes the discrete energy
jumps have less of an impact on the speed at which the system stabilizes, by
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allowing time for the system to adapt between jumps. Additionally, this can
help resolve any regions which are stuck in bad configurations. As the solution
to the system converges, this bias can be adjusted to stop splits and deletes
all together, ensuring termination.

To find the ideal packing of particles, we use a Newton-Raphson scheme,
updating particle information after each movement (Equations (7), (8), and
(9)). Each particle maintains its position in both worldspace (xxyzi ) and pa-
rameter space (xuvi ). Particles move with a velocity vi generated by inter-
particle forces between neighbors. Though the energies between particles are
computed in 3D world space, particles move strictly in parametric space (9),
avoiding the error-prone projection onto the surface that results from 3D
movements. Taking these steps in parametric space only requires a change of
coordinates, using the inverse Jacobian, J−1.

vxyzi =
∑
j∈N

dEij ·
rij
|rij |

(7)

vuvi = vxyzi · J−1 (8)
xuvi = xuvi + vuvi (9)

As mentioned earlier, we use a hierarchical sampling scheme, which works
well for parametric models. First, we place particles on the 0-cells, the inter-
section of edges on the models. Next, particles are placed on the 1-cells and
are optimized. Finally, particles are placed on the surface patch interiors and
the final optimization proceeds. At each phase, the new optimization uses the
fixed positions from the previous phase, ensuring consistency across surface
patch boundaries.

3.1 Inferred Sizing Field

We recognize that there are several factors that often determine good sizing
fields: local curvature, some notion of feature size, and a desired level of adap-
tivity. Additionally, users may have desires for mesh resolution limits, both
minimum and maximum triangle or edge size. Other domain-specific factors
also often come into play. In this section, we illustrate the constraints we
would like to place on a sizing field. We show that these constraints can be
inferred in a reliable way and used to form a smooth sizing field during energy
minimization.

We aim for meshes that provide arbitrary levels of geometric accuracy
and adaptivity, using high quality isotropic elements. In order to provide high
quality elements, particle systems require enough spatial freedom to be able
to move to lower energy states. Thus, the distance between nearby k-cells
imposes its own sizing constraint on the particles. Thus, in order to determine
the sizing field value σi at a particular point pi on a model, we must consider
the constraints placed on this location by curvature, topological distance, and
desired level of adaptive continuity. We refer to these constraints as σκ, στ ,
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and σL, respectively. The actual sizing field value at a particle location is
resolved by finding the σi that respects all constraints. This can be expressed
compactly as:

σi = max {σmin, min {σmax, σκ, στ , σL}} (10)

Curvature

Since the curvature at a point is defined as the inverse of the radius of the
osculating circle at that point, a reasonable default sizing field value is the ra-
dius of that circle itself. Thus, we use σκ = 1

κ , which can be easily computable
for parametric surfaces, or queried by middleware packages.

σκ

r

Fig. 1. Default curvature
constraint on sizing field.

To increase or decrease the field relative to
this radius, a scaling factor sκ is exposed as a
user parameter. Given a unit system, this value
can be used to provide constraints to respect ge-
ometry to arbitrary levels of accuracy. Finally,
κmin and κmax values are user parameters used
to handle straight edges and arbitrarily high cur-
vature, respectively. These form the total bounds
for the sizing field as:

σmin = 1/ (sκκmax) (11)
σmax = 1/ (sκκmin) (12)

For 2-cells, we use the maximum principal curvature, since this size will
dominate an isotropic sampling. For 1-cells, using the curvature of the edge
itself is insufficient. The maximum principal curvature on both intersecting
surfaces must also be considered, since the curve may either be a trim or a
boundary curve, and there is no way of knowing which curvature will domi-
nate. Last, 0-cells use the maximum curvature of all 1-cells terminating at its
point.

Gap Size

If available, using the distance to the model’s medial axis would provide a
sizing field constraint that generates good samplings in a particle system.
However, computing the medial axis on parametric models is a difficult task
and still an active area of research. Instead, we use the notion of gap size,
introduced by Chang & Poon [9] in the context of piecewise linear mesh gen-
eration. For a point p on a k-cell c, its gap size is the distance to the nearest
non-adjacent (i.e. not on the boundary of c) cell. This measure also preserves
topological features inherent to the model’s decomposition into parametric
patches. Depending on the model and the way it was created, this measure
may sometimes be equivalent to definitions of local feature size. Figure 2 shows
an example where the two are equivalent by a factor of one half.
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We make the assumption that the topological representation provided as
input for the CAD model should be respected in an output mesh. A byprod-
uct of this approach is that some models have adaptivity in regions that are
of little benefit to representing the geometry of the model. One could remove
adaptivity in regions that do not actually need it by taking a pass over the
model and detecting topological junctions that are G1 continuous, and flag-
ging them to be ignored. The remaining geometrically discontinuous junctions
could then be preserved using our sampling scheme.

medial axisστ

Fig. 2. Gap size constraint on sizing
field. In this case, the gap size is equiv-
alent to the distance to the medial axis
by a factor of two.

Gap size is approximated directly
from inter-particle relationships. Parti-
cles store which k-cell they lie on, and
each k-cell stores which particles lie on
it. We define the topological constraint
στ to be the shortest distance from par-
ticle pi to another particle pj lying on
a non-adjacent feature. That is, a 0-cell
particle interacting with another 0-cell
particle, a 1-cell particle interacting with
another 1-cell particle, or a 0-cell parti-
cle interacting with a 1-cell particle that
does not terminate at that 0-cell. This
notion can be extended to 2-cells as well.

We further provide a scaling factor sτ as a user parameter to allow for higher
densities of particles within these regions. This proves useful when sampling
highly elongated surfaces, with parallel k-cells. Scaling the distance στ allows
more rows of particles, allowing for better energy minimization, and ultimately
better triangulations.

Lipschitz Continuity

In order to provide finer control over the adaptivity of the particle samples,
the system adheres to a Lipschitz constraint σL that enforces the Lipschitz
continuity L on the sizing field. The Lipschitz condition can be expressed in
terms of our formulation as:

|σi − σj | ≤ L |xi − xj | (13)

The σL induced by this constraint is simply the minimum allowable value that
satisfies this condition:

σL = min
j∈N
{|rij | L+ σj} (14)

Respecting this Lipschitz continuity provides more gradual adaptivity between
areas of high and low particle densities. Lower values of L produce samplings
that result in more isotropic triangles, while large values provide increased
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levels of adaptivity, at the cost of isotropy. In the limit when L goes to zero, a
uniform sizing field is produced, fitting the smallest constraint on the model.
We found a default value of 0.3 provides a good trade-off between triangle
quality and adaptivity.

It is worth noting that the Lipschitz continuity is not satisfiable for arbi-
trary surfaces. Since we place samples hierarchically, it is possible the sizing
field may need to adapt more quickly on the interior of the surface than it
does on the edges. In these situations, the Lipschitz constraint needs to be
relaxed to allow the sizing field to adjust.

4 Algorithm

Our implementation takes as input a parametric model and outputs a trian-
gular mesh. We use the middleware package CAPRI [16] to provide us direct
geometry access to shapes generated by CAD software. It also gives access to
the topology of the model, including access to the 0-cells, 1-cells, and 2-cells,
and their boundary adjacencies. In this section, we elaborate only on the parts
of the update algorithm that are independent from the middleware.

4.1 Particle Optimization

The sampling algorithm consists of three phases: Phase 1 optimizes 0-cell and
1-cell samples based strictly on the curvature and the Lipschitz constraints,
σκ and σL. Phase 2 continues the 0-cell/1-cell optimization, but includes the
topological constraint στ . Finally, Phase 3 optimizes samples with surface
patches. A phase is considered complete when the change from one iteration
to the next drops below some threshold.

We initialize Phase 1 by placing one particle on each 0-cell, and one par-
ticle on the midpoint of each 1-cell. Along the 1-cells, splitting happens to
increase particle density as the sizing field is inferred. Similarly, if user pa-
rameters make any 1-cell particle unnecessary, it will be deleted. Phase 3 is
initialized by placing k random samples in the parameter domain of the sur-
face. Each iteration of the optimization, a particle updates both its position as
well as its sizing field value σi. A scaling factor λi is used to increase stability.
Pseudocode for the updates of particle positions is shown in Algorithm 1.

4.2 Corner Cases

The motivation for splitting the optimization of 0-cells and 1-cells into two
phases is illustrated in Figure 3. When it comes to enforcing the topological
condition, just as feature size goes to zero in discontinuous corners, so does our
notion of topological feature size. Left unchecked, particles in corners would
continually shrink their στ , split and move in closer to the corner.
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Algorithm 1 Position Update
1: for all particles do
2: Compute energies Ei, dEi (Equations 1,2)
3: Compute velocity vxyzi (Equation 7)
4: Transform to parameter space, obtain v∗i (Equation 8)
5: Compute scaling v∗new

i = λiv
∗
i

6: Compute new particle position unew
i (Equation 9)

7: Transform to world space xnew
i

8: Compute the new energy value, Enew
i

9: if Enew
i >= Ei then

10: if λi <= λmin then
11: skip to next particle on list
12: end if
13: decrease λi by a factor of 10 and go back to Step 3.
14: end if
15: end for

To curtail this response, we detect and label corners in the first phase.
Figure 3(a) shows what one corner might look like after Phase 1 has completed.
Notice only the curvature and Lipschitz constraints have been met. The σi
value of the particle on the 0-cell is saved as the size of the 0-cell’s corner ball.
This is similar to the protecting ball idea in Delaunay meshing [9]. Figure 3(b)
shows the same corner have Phase 2 has completed. The topological constraint
is satisfied for all particles that lie outside of the corner ball. The particles
inside adapt smoothly and guarantee the sampling terminates. An alternative
approach would be to fix the position of particles laying on this corner ball
boundary. The downside to such an approach is that it could easily violate the
Lipschitz constraint. With corner cases considered as part of the σi constraint,
the pseudocode for the sigma update is shown in Algorithm 2.

(a) (b)

Fig. 3. (a) Phase 1, respecting only curvature and Lipschitz constraints. (b) Phase
2, additionally respecting topology constraints outside the corner ball.
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Algorithm 2 Sigma Update
1: for all particles do
2: if pi ∈ 1-cell then
3: for all pj ∈ N do
4: if edge(pi) 6= edge(pj) and not in corner then
5: Update topology constraint στ = min {στ , |xi − xj |}
6: end if
7: Update Lipschitz constraint σL = min {σL, |rij | L+ σj}
8: end for
9: end if

10: Satisfy Eq. 10: σi = max {σmin, min {σmax, sκσκ, sτστ , σL}}
11: end for

4.3 Triangulation in Parameter Space

Our formulation builds a distribution of samples in 3D. To construct a mesh
from these samples, one alternative would be to directly build a 3D Delaunay
triangulation of the point cloud. Through pruning and filtration one could
construct the surface triangulation and interior tetrahedralization. However,
because of the parametric nature of the system, we can instead construct
triangulations for each 2-cell and its boundary in the parameter space. This
dimensional reduction gains us speed in terms of building the triangulation.
However, particles distributed well in 3D may be in poor configurations in
their corresponding parameter space, we account for this using local modifi-
cations after constructing an initial triangulation.

Since the parameter space set of samples may be highly distorted, we first
perform an affine scaling to regularize the 2-cell as much as possible. We
obtain this transform by solving the least squares solution to the transform
that best preserves Euclidean distances. This constraint can be expressed as:

A |ui − uj | = |rij | (15)

Next, for each 2-cell we construct the 2D Delaunay triangulation of its particle
samples as well as the samples on its boundary curves using Triangle [28].
This triangulation has two problems which we address. (1) This triangulation
includes extra triangles (within the convex hull) that may in fact be trimmed
portions of the uv-space. (2) The quality of the triangles lifted back in 3D
may be poor.

Our hierarchical sampling scheme is devised in part to correct for the first
concern. The samples of the 1-cells create a dense sample of each curve, in
both spaces. Moreover, the particle energies on these samples repel particles
within neighboring 2-cells away. As a result, these samples act in a role similar
to a weighted sample used in recent Delaunay refinement schemes [8]. If each
curve is sampled dense enough so that in the 2D triangulation each pair of
adjacent 1-cell particles has a Delaunay edge, then we can recover the 1-cell.
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While an explicit proof is out of the scope of this work, we note that our exper-
imentation indicates we can handle arbitrarily sharp edges, without the need
for a weighted Delaunay. If we were using a full 3D Delaunay triangulation
without weights, we would suffer from angle limitations, as noted by [24].

Having the 1-cells recovered as a sequence of edges in the 2D Delaunay
triangulation is sufficient to prune away triangles that are exterior to trims.
Once we have pruned these triangles, the remaining triangles are lifted to form
the surface triangles of the 2-cell in 3D. However, because of the distortion
of the 2-cells parameterization, they may be of poor surface quality. A recent
result of Cheng and Dey [6] discusses a scheme to use edge flipping to recover
Delaunay surface triangulations. A Gabriel property is enforced for each tri-
angle, requiring that each triangle’s diametric ball is empty (a stronger version
of the Delaunay property). We use a similar scheme, for each edge, we check if
two triangles that share that edge have diametric balls that do not contain the
opposite, unshared vertex. If they do not, we flip. The recent theoretical result
of Cheng and Dey showed this property would only work for ε-dense surface
triangulations; however, we found our point sets to be flippable in nearly all
cases. A few rare edges could flip indefinitely. To break these ties, we selected
the triangle pair that maximize the minimum circumradius (similar to the
Delaunay property).

4.4 Tetrahedralization

The resultant triangulations are not true 3D Delaunay as we do not ensure
that each triangle has a circumball empty of all other points. However, we
found they still had two desirable properties. First, nearly all triangles had ex-
cellent aspect ratio (shown in the experimental results). Second, these meshes
were quite suitable for a constrained Delaunay triangulation that preserves
each triangle. We use TetGen [30] to generate high quality tetrahedralizations
of these surface meshes.

5 Evaluation

We break the evaluation of this meshing technique into two parts. First, we
compare it with two other popular triangular meshing techniques for this
domain. Then, we evaluate the technique for its own sake, including: strengths,
weaknesses, and convergence properties.

5.1 Method Comparison

We compare our particle system technique (PSYS) to DelPSC [7] and CAPRI’s
meshing algorithm [15]. We chose these methods because they were both read-
ily available, and actively used in practice. We evaluate the three methods
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using surface triangle aspect ratio and volume tetrahedra aspect ratio. To
provide a fair test environment, we hand tuned the parameters of each al-
gorithm to generate surface meshes of approximately the same number of
vertices. PSYS uses default settings of sκ = 2, sτ = 0.5, and L = 0.3 for all
input models.

Figure 6 shows the output volume meshes of PSYS while Figure 4 shows a
comparison of the surface meshes for each of the three algorithms. In the insets
in Figure 4 we show close up views of mesh to highlight how PSYS’s adaptivity
can build superior geometric approximations using the same number vertices.
While the shape of elements is good for all meshes, PSYS can be especially
isostropic triangles. Even in areas of high variability for curvature, PSYS was
able to adapt especially well without sacrificing element quality.

To investigate this aspect further, we report the geometric quality of ele-
ments on both the surface triangulation as well as the volume tetrahedra. We
use the aspect ratio (circumradius to shortest edge length ratio) as a criteria
for mesh element quality. Figure 5 shows plots of both mesh quality statis-
tics for the mesh of each model using each algorithm. For triangle quality,
in Figure 5(a), it is interesting to note that PSYS did exceptionally well in
the median case. DelPSC has a user parameter to bound triangle quality, the
conservative theoretical bounds to guarantee termination require it to be set
near 1.0. In addition, DelPSC does improve element quality near sharp fea-
tures. As a result, it outperforms CAPRI’s surface meshing scheme (which
has no refinement parameters for triangle quality), but its median behavior is
slightly worse than PSYS.

For volume meshing, the algorithms all behave quite similarly in the me-
dian case as shown by Figure 5(b). Since TetGen is used for two of the al-
gorithms, this is not an unexpected result. The full 3D Delaunay refinement
used by DelPSC also achieves results on par with the other algorithms. We
remark that setting näıve parameters to CAPRI’s meshing algorithm would
build surfaces meshes not suitable to TetGen. Since CAPRI provides no direct
control over the quality of surface triangles, if their angles are too sharp Tet-
Gen’s refinement could require an impossible number of insertions. We found
that PSYS’s good quality triangles always lead to suitable inputs for TetGen.

5.2 Evaluating PSYS

For most models, we are able to obtain good distributions in only a few hun-
dred iterations total. The convergence rates for the particle system to find
optimal distributions are based primarily on the number of particles needed
and the level of adaptivity. Thus, most iterations take place in Phase 3 of
the algorithm. It should be clear why more samples require more iterations,
as information has a longer path to travel before reaching equilibrium. How
adaptivity comes into play is more subtle. We enforce the Lipschitz condition
at every iteration, which means boundary values pull down local σ values very
quickly. This change propagates outward to areas that can otherwise tolerate
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DelPSCCAPRI PSYS

DelPSCCAPRI PSYS

DelPSCCAPRI PSYS

DelPSCCAPRI PSYS

DelPSCCAPRI PSYS

DelPSCCAPRI PSYS

Fig. 4. Various models meshed. From top to bottom we show the Block, Disk, Hanoi,
Screw, Table, and WingNut meshes for PSYS. Insets show comparison between
CAPRI, DelPSC, and PSYS. For some inputs (such as the Block and WingNut)
DelPSC approximated smooth regions without sampling topological curves.
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Fig. 5. Box plots of the aspect ratios (circumradius/shortest edge length) on a log
scale. We show for triangles (a) and tetrahedra (b) of each output mesh of each
algorithm. These plots show the minimum, 25th percentile, median, 75th percentile,
and maximum aspect ratio over all elements in each mesh.

a larger σ. This means surfaces may become oversampled prior to fitting the
Lipschitz continuous field. As the field values increase, so do energies, and
particles begin to delete to make room for particles of larger σ values. Relax-
ing the Lipschitz condition towards the beginning of the energy minimization
could provide improved converge rates. Additionally, relaxing the energy re-
quirements for insertion and deletion can improve convergence rates, but at
the cost of less ideal packings.

6 Conclusions & Future Work

The high quality results generated from our algorithm illustrate how well-
suited such particle systems are for sampling parametric domains. Compared
to the other methods we evaluated, our system was able to generate better
quality triangle meshes with the added benefit of adaptively sized elements.
Moreover, the sizing field we adapt to can be inferred directly from the point
samples, removing the need for model preprocessing.

The success of this technique indicates that there are many unexplored
avenues to take with respect to particle meshing. The approach in this paper is
centered around generating quality isotropic surface meshes, which happen to
be good inputs to a constrained 3D Delaunay solution. However, optimizing a
particle system directly in 3D space from the start may allow for high-quality,
isotropic tetrahedral meshes similar to other variational techniques [1]. An
interesting direction would be to infer the tetrahedralization without requiring
computing a 3D Delaunay triangulation.

Another avenue we believe could prove fruitful is the introduction of
anisotropic kernels to the energy formulation. Doing so could provide an easy
and powerful method for generating anisotropic surface and volume meshes.
Coupled with adaptivity, these meshes could provide ideal inputs to simula-
tions across many application areas.
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The work in this paper was motivated by quality, and our implementation
is not optimized for speed. There have been various acceleration strategies
for other particle systems that can greatly reduce the running times. Recent
work in GPU algorithms have also showed that n-body systems can achieve
massive performance gains over what would otherwise be an O(n2) algorithm.

Fig. 6. From left to right, top to bottom: the output volume meshes of PSYS for
the Block, Disk, Hanoi, Screw, Table, and Wingnut models.
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