
Thicket: Seeing the Performance Experiment Forest for the
Individual Run Trees

Stephanie Brink
Lawrence Livermore National Laboratory

Livermore, CA, USA
brink2@llnl.gov

Michael McKinsey
Texas A&M University
College Station, TX, USA
mckinsey@tamu.edu

David Boehme
Lawrence Livermore National Laboratory

Livermore, CA, USA
boehme3@llnl.gov

Connor Scully-Allison
University of Utah

Salt Lake City, UT, USA
cscullyallison@sci.utah.edu

Ian Lumsden
University of Tennessee, Knoxville

Knoxville, TN, USA
ilumsden@vols.utk.edu

Daryl Hawkins
Texas A&M University
College Station, TX, USA
dhawkins@tamu.edu

Treece Burgess
University of Tennessee, Knoxville

Knoxville, TN, USA
tburges6@vols.utk.edu

Vanessa Lama
University of Tennessee, Knoxville

Knoxville, TN, USA
vlama@vols.utk.edu

Jakob Luettgau
University of Tennessee, Knoxville

Knoxville, TN, USA
jluettga@utk.edu

Katherine E. Isaacs
University of Utah

Salt Lake City, UT, USA
kisaacs@sci.utah.edu

Michela Taufer
University of Tennessee, Knoxville

Knoxville, TN, USA
taufer@utk.edu

Olga Pearce∗
Lawrence Livermore National Laboratory

Livermore, CA, USA
pearce8@llnl.gov

ABSTRACT
Thicket is an open-source Python toolkit for Exploratory Data
Analysis (EDA) of multi-run performance experiments. It enables
an understanding of optimal performance configuration for large-
scale application codes. Most performance tools focus on a single
execution (e.g., single platform, single measurement tool, single
scale). Thicket bridges the gap to convenient analysis in multi-
dimensional, multi-scale, multi-architecture, and multi-tool perfor-
mance datasets by providing an interface for interacting with the
performance data.

Thicket has a modular structure composed of three components.
The first component is a data structure for multi-dimensional per-
formance data, which is composed automatically on the portable
basis of call trees, and accommodates any subset of dimensions
present in the dataset. The second is the metadata, enabling distinc-
tion and sub-selection of dimensions in performance data. The third
is a dimensionality reduction mechanism, enabling analysis such as
computing aggregated statistics on a given data dimension. Extensi-
ble mechanisms are available for applying analyses (e.g., top-down
on Intel CPUs), data science techniques (e.g., K-means clustering
from scikit-learn), modeling performance (e.g., Extra-P), and inter-
active visualization. We demonstrate the power and flexibility of
Thicket through two case studies, first with the open-source RAJA
Performance Suite on CPU and GPU clusters and another with a
∗Also with Texas A&M University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HPDC ’23, June 16–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0155-9/23/06.
https://doi.org/10.1145/3588195.3592989

large physics simulation run on both a traditional HPC cluster and
an AWS Parallel Cluster instance.

KEYWORDS
HPC, exploratory data analysis, performance analysis, parallel pro-
file, multi-dimensional

ACM Reference Format:
Stephanie Brink, Michael McKinsey, David Boehme, Connor Scully-Allison,
Ian Lumsden, Daryl Hawkins, Treece Burgess, Vanessa Lama, Jakob Luettgau,
Katherine E. Isaacs, Michela Taufer, and Olga Pearce. 2023. Thicket: Seeing
the Performance Experiment Forest for the Individual Run Trees . In Proceed-
ings of the 32nd International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’23), June 16–23, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3588195.3592989

1 INTRODUCTION
The rise of complexity in HPC simulations, software stacks, and het-
erogeneous architectures presents increased challenges for perfor-
mance optimization. Applications often exhibit many parameters,
a complex software ecosystem, heterogeneous hardware configura-
tions, and sophisticated execution context, requiring multiple tools
to collect and analyze performance data. Effectively managing and
exploring this data is a significant bottleneck to finding actionable
insights about the application’s performance slowdowns. To address
these challenges, we present an open-source Python toolkit called
Thicket. Our solution enables rapid exploration and hypothesis
testing of the multi-dimensional, multi-scale, multi-architecture,
and multi-tool performance data collected from performance ex-
periments.

Code developers, users, and site operators experience challenges
related to multi-dimensional performance analysis. Application
developers have to select library and compiler options for every

https://doi.org/10.1145/3588195.3592989
https://doi.org/10.1145/3588195.3592989


HPDC ’23, June 16–23, 2023, Orlando, FL, USA Brink et al.

Figure 1: Performance analysis workflow using Thicket.

platform on which their code is used. They deal with raw perfor-
mance data collected at various system levels and often have to
divert valuable developer time to keep pace with new technologies
integrated into supercomputers. Application users run the codes on
different computing platforms and settings, validating results with
collaborators at other sites, or running on larger systems as their
applications scale up. Site operators make optimization decisions
by comparing the performance of available choices, i.e., by profil-
ing the target application in a range of different configurations on
different systems and potentially multiple complementary profiling
tools. Analyzing the results of these ensembles requires considering
multiple sources and data types. This includes raw performance
data such as runtime per function, additional metrics collected by
external tools such as cache misses, and metadata such as the build
settings and execution context for individual performance profiles.
Performing Exploratory Data Analysis (EDA) on a holistic view of
all collected performance data can result in actionable insights and
limit performance being left on the table. Still, there does not exist
comprehensive tool that supports the structured analysis of un-
structured data. We design Thicket based on the experiences and
insights of application code developers, users, and site operators to
address these needs.

Thicket improves accessibility and lowers the barrier of entry
to performance data exploration by providing a comprehensive
interface to drive the decision-making process of application code
developers, users, and site operators while allowing the preser-
vation of important information about the execution context and
other metadata. To achieve these goals, Thicket is designed as
a Python data analysis toolkit. Its crucial element, the thicket
object, unifies data collected from multiple tools across multiple
executions so it can be easily manipulated, modeled, and visualized.
Capabilities include manipulation operations of performance data
(e.g., filtering, grouping, and querying), statistical operations and
data modeling to derive data across dimensions and metadata with

the support of popular external libraries such as scikit-learn and
Extra-P; and visualization of data in an intuitive call tree context.
The capabilities of Thicket are accessible through powerful Jupyter
notebooks for interactive analyses and multi-variate visualizations.
We demonstrate how Thicket supports a variety of performance
analysis tasks through two case studies, one evaluating the RAJA
Performance Suite across CPU and GPU configurations and one
evaluating a multi-physics simulation across a traditional cluster
and a cloud configuration.

The contributions of this paper are as follows:
• We present Thicket and its components (i.e., performance
data, metadata, and aggregated statistics) designed to unify
multi-run performance data for EDA;

• We describe the EDA capabilities in Thicket;
• We showcase Thicket on two use cases. First, we study
the scalability of RAJA on CPU and GPU using performance
data generated by Caliper by running the RAJA Performance
Suite. Second, we study the performance of a multi-physics
simulation on cloud (AWS) and HPC resources.

Section 2 provides an overview of Thicket and its three com-
ponents. Section 3 describes the multi-dimensional architecture
of thicket objects. Section 4 showcases the current Exploratory
Data Analysis (EDA) capabilities in Thicket. Section 5 showcases
extensive CPU and GPU analyses of the RAJA Performance Suite
and an evaluation of MARBL on AWS and HPC resources. Section 6
compares our work with state-of-the-art, and Section 7 summarizes
our achievements and future work.

2 THICKET: UNIFYING PERFORMANCE DATA
FOR EDA

Thicket fills the missing "last step" in the exploratory analysis
workflow for multi-dimensional performance data, providing users
with the tools needed to comprehensively study an ensemble of



Thicket: Seeing the Performance Experiment Forest for the Individual Run Trees HPDC ’23, June 16–23, 2023, Orlando, FL, USA

jobs. Figure 1 illustrates integration of Thicket into a traditional
performance analysis workflow. Thicket provides essential steps
for studying performance data after conventional operations, such
as linking code to monitoring tools, running applications, and gath-
ering metrics into call tree profiles, are completed.

Running applications with the support of measurement tools
(Step 1 in Figure 1) is traditionally the first step required to collect
performance data. Users integrate a profiling library with their
applications and target specific regions of interest by inserting in-
strumentation points into the code. There are many tools available
for collecting the performance data, such as HPCToolkit [4, 28],
TAU [35], and Score-P [23]. In our work, we use Caliper [9] to
collect primary inclusive and exclusive timings per MPI rank, hard-
ware performance counters on the CPU architectures, and GPU
measurements on NVIDIA GPUs. We also use NVIDIA’s Nsight
Compute (NCU) [3] tool to collect additional GPU metrics.

Generating performance profiles (Step 2 in Figure 1) leaves users
with many unstructured performance datasets from the ensemble
of executed jobs. Collected data may include quantitative metrics,
such as the total time spent on each annotated source-code region,
and qualitative metrics, such as hardware and compiler information.
Caliper writes both metadata and performance data for each run in
a call tree profile; the metadata includes application build settings
and execution context, while the measured performance metrics
are assigned to nodes in a call tree. The call tree represents the
application structure, where each call tree node represents executed
functions or nested source code regions. The call tree nodes de-
fine connectivity in the call tree, and each call tree node stores its
children and parents. The performance metrics are the measure-
ments collected at runtime using the profiling libraries, such as
time durations or hardware-counter values. While call tree profiles
have proven effective in structuring performance data of single
runs, extracting knowledge from ensembles of profiles remains an
arduous task.

Thicket uses the collected data to instantiate a thicket object
composed of three components: (1) Performance data, (2) Metadata,
and (3) Aggregated statistics (Step 3 in Figure 1). Performance data
is a multi-dimensional table of measured and derived performance
metrics (e.g., job runtimes and L2 miss rate) per node in the call tree
profiles for each run of the application. Metadata is a structured
collection of information about each run, including the applica-
tion’s build settings and execution context (e.g., cluster name and
time of the run). Aggregated statistics provides a summary of the
performance metrics collected by several runs (e.g., variance in run-
time across multiple runs, average L2 misses). Figure 2A shows an
example of a code with four call sites (functions). Each function has
a row of collected performance metrics (Figure 2B). In the example,
the code is run twice, generating two profiles. This results in a
thicket object with a performance data table containing two rows
per function (Figure 2C), a metadata table with the metadata per
profile (Figure 2D), and a set of aggregated statistics (Figure 2E)
computed across the two profiles.

Thicket provides powerful analysis tools in a set of Jupyter
notebooks (Step 4 in Figure 1) with built-in functionality and cus-
tomized studies to aggregate, visualize, and export performance
data from thicket objects. This enables users to explore the col-
lected performance data and extract collective knowledge through

Figure 2: Relation between nodes in the call tree and rows in
a performance data table. In the figure, (A) a code with four
call sites (functions) has (B) a row of performancemetrics per
function. Two profiles are generated, one per code execution,
resulting in (C) a performance data table with the two-profile
performance metrics and (D) metadata in a thicket object.
We can subsequently generate (E) aggregated statistics about
the two program executions.

exploratory performance analysis (EDA). Examples of EDA avail-
able in Thicket include examining and manipulating performance
datasets; calculating statistics across experiments; applying exter-
nal functions such as clustering or principal component analysis
(PCA) from scikit-learn; or generating performance models with
Extra-P.

3 ARCHITECTURE OF THE THICKET OBJECT
A thicket object is a flexible data model that enables the struc-
tured analysis of unstructured performance data. We designed its
architecture by following a holistic approach that allows studying
the different performance dimensions by linking the three object’s
components — performance data, metadata, and aggregated statis-
tics — through primary and foreign keys, as shown in the entity
relationship diagram in Figure 3.

3.1 Thicket Components
The performance data table is a multi-dimensional, multi-indexed
structure with one or more rows of data associated with each node
of the call tree, each row representing a different execution (i.e.,
profile index) of the associated call tree node. The (call tree node,
profile index) pair shown in Figure 3 uniquely identifies each row
in the performance data. The metadata table stores the applications’
metadata (i.e., application’s build settings and execution context);
each row represents a single execution of the application and is
identified by a unique profile index. The aggregated statistics ta-
ble supports an order-reduction mechanism and stores processed
applications’ performance. Each row of the aggregated statistics
table holds data aggregated across all profiles associated with a
particular call tree node. Thicket provides users with capabilities
for computing common aggregated statistics on their performance
data, such as mean and variance.

Figure 3 shows how the three components relate to each other
through indices (i.e., primary and foreign keys). In the figure, the
primary keys are in bold and are fixed. The values in the tables are
populated dynamically based on the type of analysis. The meta-
data and aggregated statistics tables are relationally linked to the
performance data table through profile index and call tree node



HPDC ’23, June 16–23, 2023, Orlando, FL, USA Brink et al.

Figure 3: An entity relationship diagram describing the links
among the components of a thicket object: (i) performance
data, (ii) metadata, and (iii) aggregated statistics. The keys
in bold are fixed and link the components of the thicket
object. The values are examples of metrics collected during
the execution.

indices, respectively. A single profile in the metadata table can link
to multiple nodes in the performance data table. This is because
the metadata is stored per profile run, so only one set of metadata
is associated with a profile run. The same relation holds for the
aggregated statistics table as each row in the aggregated statistics
table contains data aggregated across all profiles associated with a
particular call tree node.

3.2 Multi-dimensional Performance Data
Composition

Each code execution generates a profile with its metadata (i.e.,
build settings, execution context) and performance data for a set of
metrics selected by the user. Possible metadata attributes include:

• Problem sizes and simulation parameters;
• Time series (i.e., states of the simulation over time);
• Amount of resources for strong or weak scaling studies (e.g.,
number of processors or threads);

• Types of architectures (e.g., CPU and GPU);
• Executables (e.g., different compilers or optimizations);
• Data collected by different tools/libraries (e.g., Caliper, NCU).

Thicket relies on the observation that executions of a code using
different build settings or execution contexts (e.g., running on differ-
ent hardware architectures or varying the problem sizes) typically
yield similar or identical call trees, making the call trees an ideal
basis for composing large ensembles of code runs. To compose sim-
ilar runs, Thicket considers their call trees and solves the graph
isomorphism problem [15] to find intersections of the call trees. We
design Thicket to allow users to compose the performance data
of multiple profiles. Users can compose multiple profiles into a
single thicket object, or compose multiple thicket objects with
the same hierarchical index to create a new data dimension for
analysis.

3.2.1 Composition of a set of profiles into a thicket object. After
executing a set of runs, users might be interested in analyzing
their data as a set of profiles to quickly inspect which simulation
parameters are present in the set or to see which performance
metrics were collected. The user calls the thicket constructor with
the set of profiles. Thicket uses the call tree to join the profiles
giving each profile its own profile index. A user can specify the
profile index (e.g., using a study-relevant metadata column such as
problem size) or let Thicket generate a unique hash value.

Figure 4 shows a small example of a performance data table
containing performance data for five call tree nodes (call tree node
names are in the left column; the call tree itself is not shown). In
this example, the user has two profiles, one with a problem size of
1,048,576 and the other with a problem size of 4,194,304. Thicket
joins the profiles on the call tree nodes, using the problem size as
a secondary index, and the resulting thicket object contains two
rows (i.e., one row per profile) per call tree node.

3.2.2 Hierarchical composition of multiple thicket objects. When
the user has several thicket objects from profiles generated on
different architectures or using different measurement tools, the
user may be interested in comparing the performance metrics. The
user calls the thicket constructor with the thicket objects as
input. A new thicket object is constructed using the (call tree
node, profile index) hierarchical index for values that exist in all
input thicket objects. The new thicket object has an additional
index generated for the columns.

Figure 4 shows an example of composing a CPU thicket object
and a GPU thicket object. For each (call tree node, profile index) in-
dex present in both input thicket objects, themetrics from the CPU
thicket object (i.e., time (exc), Reps, Retiring, and Backend bound)
and the metrics from the GPU thicket object (i.e., time (GPU),
gpu__compute_memory_throughput, gpu__dram_throughput, and
sm__throughput) are composed with an additional index for the
columns (i.e., CPU, GPU).

4 ENABLING EXPLORATORY DATA ANALYSIS
(EDA)

Thicket is implemented in Python, providing easy integration
with other open-source libraries, such as scikit-learn. We leverage
Jupyter notebooks [21] to interface with Thicket as they offer an
environment for portability and reproducibility of iterative work-
flows and in-situ visualization [20, 33, 34]. To enable Exploratory
Data Analysis (EDA), Thicket provides a wide range of capabilities
including manipulation of thicket objects (e.g., filtering, grouping,
and querying), generation of statistics and performance models (e.g.,
built-in aggregated statistics, integration with external libraries),
and visualization of data using built-in functions or interactively
through Jupyter notebooks.

4.1 Manipulating the Thicket Objects
Thicket enables users to study the different dimensions of thicket
objects through the manipulation of their performance data and the
metadata components. We implement three processing capabilities
to explore the different dimensions: (1) filtering, (2) grouping, and
(3) call tree querying. Applying any of the three capabilities to
one or more thicket objects creates one or more new thicket



Thicket: Seeing the Performance Experiment Forest for the Individual Run Trees HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Figure 4: Example of multi-dimensional performance data for studying code performance for two problem sizes. CPU metrics
are collected in profiles from the CPU, and GPUmetrics are collected in profiles from the GPU. The user constructs one thicket
object using the two CPU-generated profiles (one per problem size) and one thicket object using the two GPU-generated
profiles. The user then hierarchically composes these thicket objects into a single thicket object with an additional column
index (i.e., CPU, GPU).

objects with subsets of profiles from the original ones based on
specified criteria. After loading profiles into a thicket object, a
common starting point is to obtain an overview by consulting the
metadata table. The first column of the metadata table is a unique
profile index followed by metadata providing additional details
about the build settings and execution context. Figure 5 presents an
example of a thicket metadata table from four application runs of
the RAJA Performance Suite, one of our case studies discussed in
more detail in Section 5.1. In our work, the application metadata
has been collected with the performance metrics into a profile per
run. Example metadata includes the compiler and RAJA versions
used to build the application, the cluster and problem size used
for the runs, the launch date of the run, and the user who ran the
application.

Figure 5: Example metadata table in Thicket containing four
RAJA Performance Suite profiles generated on two clusters.

4.1.1 Filtering. When studying the impact of build settings or exe-
cution context, it is not always feasible to aggregate across all loaded
profiles, for example, when different problem sizes or compilers
are considered. For this reason, Thicket makes it easy to filter the
profiles based on specific metadata. Given a metadata table, a user
defines a set of criteria for filtering profiles. To avoid unintended
modifications to the original thicket object, the filtering operation
generates a new thicket object containing only the data from the
selected profiles in the metadata table and the performance data
table. Figure 6 shows an example of filtering profiles based on the

compiler column of the metadata table from Figure 5. In the ex-
ample, we are interested in the profiles for which the clang-9.0.0
compiler was used.

t_obj.filter_metadata(
lambda x: x["compiler"]=="clang -9.0.0"

)

Figure 6: The resulting metadata table after a filter operation
on the compiler column from Figure 5.

4.1.2 Grouping. When performing a grouping of profiles, a user
defines a list of metadata attributes (i.e., columns in the metadata
table) to form a new thicket object. Specifically, this capability
allows grouping profiles based on their unique values in a column
or a unique combination of values in multiple columns. It generates
a list of new thicket objects combining the unique values in the
columns. Figure 7 shows an example of grouping profiles based on
the unique combination of values from the compiler and problem
size columns of the metadata table in Figure 5. With two unique
values for the compiler (i.e., clang-9.0.0 and xlc-16.1.1.12) and two
unique values for the problem size (i.e., 1,048,576, 4,194,304) in the
metadata table in Figure 5, a total of four new thicket objects are
created.

4.1.3 Querying the Call Tree. Thicket enables users to extract a
set of paths from a call tree and its corresponding performance
data by leveraging the Call Path Query Language in Hatchet [27].
To extract a call path, the user first creates a query describing the
properties that a path must have. A query is defined as a sequence
of query nodes, whereas a query node comprises a quantifier and
a predicate. The quantifier defines how many actual nodes in a
call tree path to match to a query node. The predicate defines what



HPDC ’23, June 16–23, 2023, Orlando, FL, USA Brink et al.

t_obj.groupby(
["compiler ," "problem size"]

)

Figure 7: The resulting metadata table from Figure 5 after the
profiles have been grouped based on unique combinations
of values from the compiler and problem size columns.

conditions must be satisfied for an actual node to match a query
node. After creating a query, a user applies it to a call tree and its
corresponding performance data, finding all the paths in the call
tree that match the properties described by the query. The filtered
call tree nodes are returned as a new thicket object. The example
shown in Figure 8 queries for a call path containing nodes with
.block_128 in the name.

4.2 Statistics and Modeling
Thicket enables users to make decisions and predictions based
on their performance data by providing capabilities for computing
aggregated statistics on their performance data and returning re-
sults in a form suitable for a wide range of advanced analysis and
visualizations.

4.2.1 Built-in Aggregated Statistics. Aggregated statistics that sum-
marize the distribution of the data is useful for quick introspection.
Thicket generates an aggregated statistics table to store such in-
formation using extendable order-reduction mechanisms of com-
mon aggregation and statistics functions. The built-in functions
in Thicket include variance, standard deviation, maximum and
minimum, percentiles, correlation coefficient, mean, and median.
Users can also filter the aggregated statistics table using a similar
mechanism to the metadata table described in Section 4.1.1. The
table at the top of Figure 9 shows an example in which a user has
computed the standard deviation of the Retiring, Backend bound,
and time (exc) columns that are in the corresponding performance
data table.

4.2.2 Leveraging External Libraries: Scikit-Learn. In addition to
supporting traditional performance analyses such as top-down,
Thicket enables users to easily leverage their performance data

query = (
QueryMatcher ().match(".",

lambda row: row["name"].apply(
lambda x: x == "Base_CUDA").all()

)
.rel("*")
.rel(".",
lambda row: row["name"].apply(

lambda x: x.endswith("block_128")).all()
)

)

Figure 8: The call tree before (top) and after (bottom) applying
the query language on a thicket object to find leaf nodes
with the name ending in block_128. The call trees show the
exclusive time for each node.

t_obj.filter_stats(
lambda x: x[stats_filter_column] in
["Apps_NODAL_Accumulation_3D", "Apps_VOL3D"]

)

Figure 9: The aggregated statistics table with standard
deviation calculations for Retiring, Backend bound, and
time (exc) before (top) and after (bottom) filtering for
Apps_NODAL_ACCUMULATION_3D and Apps_VOL3D nodes.

in more general data science techniques. By building Thicket in
Python, the performance data, metadata, and aggregated statis-
tics can quickly be passed to other common Python data science



Thicket: Seeing the Performance Experiment Forest for the Individual Run Trees HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Figure 10: Results of K-Means clustering for the retiring and
backend bound top-down metrics concerning speedup (rela-
tive to -O0) for "Stream" kernels from the RAJA Performance
Suite. The frontend bound and bad speculation top-down
metrics are omitted because they each represented less than
10% of the total execution time for all kernels.

libraries, such as scikit-learn [31]. An example of applying scikit-
learn to performance data is shown in Figure 10. In this example,
four profiles are collected by running the RAJA Performance Suite
on Quartz (see more details in Section 5.1). Each run is performed
with a problem size of 8,388,608 and a different compiler optimiza-
tion level (i.e., -O0, -O1, -O2, and -O3). After reading all the profiles
into a thicket object, we use the Query Language (described in
Section 4.1.3) to extract the performance data associated with the
"Stream" kernels from the RAJA Performance Suite. We calculate
speedup using the kernel performance with a -O0 optimization level
as the baseline. We normalize the data associated with each top-
down metric and the corresponding speedup using scikit-learn’s
StandardScaler, and we determine the ideal number of clusters
using Silhouette analysis [32]. We pass the normalized data into
scikit-learn’s implementation of K-means clustering [26]. Finally,
we plot the results of the clustering using seaborn.

Figure 10 shows the results of the clustering. We show the results
of clustering the retiring and backend bound metrics (the frontend
bound and bad speculation metrics in the top-down analysis com-
prised a negligible percentage of the kernel runtime). For both
metrics, three clusters are generated. Cluster 0 contains points cor-
responding to the Stream_ADD, Stream_COPY, and Stream_TRIAD

Figure 11: Extra-P models of a MARBL function on RZTopaz
(i.e., CTS) and AWS ParallelCluster. Red dots represent per-
formance measurements of the M_solver->Mult function in
MARBL. The blue line is a scaling function computed by
Extra-P from the performance measurements.

kernels with optimization levels -O1, -O2, and -O3. Cluster 1 con-
tains points corresponding to all kernels with the -O0 optimiza-
tion level. Finally, Cluster 2 contains points corresponding to the
Stream_DOT and Stream_MUL kernels with optimization levels -
O1, -O2, and -O3. From these clusters, we can conclude that the
compiler optimizations affect the performance of the Stream_ADD,
Stream_COPY, and Stream_TRIAD kernels similarly. We can also
conclude that the optimizations similarly affect the performance
of the Stream_DOT and Stream_MUL kernels. Finally, the plots in
Figure 10 also show that the -O2 optimization level produces the
best performance for all kernels. All of this information can be used
in further optimizing the performance of the "Stream" kernels.



HPDC ’23, June 16–23, 2023, Orlando, FL, USA Brink et al.

Figure 12: The heatmap and histogram visualizations in
Thicket are useful for identifying outliers in the data. In
this example, the heatmap identifies two nodes as outliers
given their values for the standard deviations of Backend
bound and exclusive time. We dive deeper into exploring the
outliers by looking at the the histogram plots for the nodes
of interest (see insets).

4.2.3 Performance Modeling using Extra-P. Performance models
are valuable tools for studying scalability expectations and limi-
tations of parallel programs and algorithms. Thicket can gener-
ate performance models of ensemble data automatically using the
Extra-P [2] library. Given an ensemble of performance profiles
covering one or more modeling parameters as input, Extra-P de-
rives an analytical performance model (i.e., a function) that best
matches the input data [11]. A common use case is a scalability
model where we use an ensemble of performance measurements
taken at small numbers of MPI ranks (e.g., 1, 4, 8, 16, and 64 ranks)
to generate an analytical scaling function which allows us to ex-
trapolate performance at higher rank counts (e.g., 512 ranks). By
generating such performance models in bulk for an entire set of
code regions, developers can easily identify regions which might
become scalability bottlenecks. Thicket is an ideal entry point for
modeling studies with Extra-P since the thicket object holds all of
the required input data (modeling parameters like number of MPI
ranks, together with the associated performance data) in one place.
We added a convenient high-level interface in Thicket that gives
developers easy access to Extra-P’s modeling functionality.

Figure 11 showsmeasured times and the automatically generated
Extra-P scaling model for one compute-heavy function in MARBL,
our second case study discussed in more detail in Section 5.2. With
Thicket, we can easily load the required set of performance profiles
for this scaling study and generate scaling models for all annotated
regions. In addition to identifying scalability bottlenecks, we can
also use the models to compare scaling behavior between differ-
ent systems. Figure 11 tells us that the selected solver function in
MARBL is faster on AWS ParallelCluster (bottom) than RZTopaz
(top), while the similar structure of the generated scalability models
suggests that the function scales similarly well on both systems.

4.3 Data Visualization
Data visualization is a key element of the EDA process. It lever-
ages human visual perception to identify points of interest in the
data, such as trends, outliers, or possible bad data, simultaneously
across multiple facets, especially when the analysis questions are
vague. It also helps communicate findings to others in the commu-
nity. We provide static built-in visualizations in Thicket for quick

overviews and more advanced, interactive visualizations through
Jupyter notebook templates.

4.3.1 Built-In Visualization Functions. Thicket has a growing col-
lection of commonly needed visualizations to quickly gain an overview
of the data. Two visualization capabilities in Thicket are a heatmap
and histogram to aid with the identification of outliers or deter-
mining relationships between variables by visualizing their value
distributions.

Figure 12 shows a heatmap of the Retiring_std, Backend bound_std,
and time (exc)_std metrics that are computed in the aggregated sta-
tistics shown in the top table of Figure 9. We show the heatmaps on
two different sets of axes due to the scale of the metric values. The
dark color indicates a node and metric pair with a high standard de-
viation. The histogram plots are used to show detailed distribution
of the data for these nodes of interest, that is Polybench_GESUMMV
and Lcals_HYDRO_1D. The visualizations rely on the matplotlib and
seaborn libraries and support passing most of their standard param-
eters as additional keyword arguments to allow for user-specified
customization.

4.3.2 Interactive Visualization through Jupyter Templates. While
our suite of built-in visualizations enable quick analysis of the
thicket data object, more in-depth visual analysis is supported by
the multi-linked, interactive visualizations available through our
Jupyter Notebook templates. These provide a graphical interface
for directly manipulating the data and can be used with the built-
in programmatic manipulation available through our Python API.
Specifically, we provide two main linked visualizations. The tree +
table visualization pairs the thicket call tree with a collection of
metric charts, ordered to show trends in the data, enabling compar-
ison across the whole ensemble of performance runs. The paired
parallel coordinate and scatter plot visualization shows correlations
among the numerous variables in the dataset. Analysts can interac-
tively choose variables to focus on and re-order the visualization by
variables of interest. We demonstrate these visualizations as part
of our case study, with examples shown in Figure 14 and Figure 18.

5 CASE STUDIES
In this section, we introduce the applications and the environmental
setup (including build settings and execution context) used to show-
case the EDA capabilities of Thicket. We study the performance of
two applications, the open-source RAJA Performance Suite [13, 25]
on CPUs and GPUs, and MARBL, a multi-physics simulation on
AWS and HPC architectures.

5.1 RAJA Performance Suite
The RAJA Performance Suite [13, 25] is designed to explore perfor-
mance of loop-based computational kernels found in HPC applica-
tions. RAJA [6, 24] is a C++ library providing software abstraction
to enable architecture portability of HPC applications. RAJA has
two main goals: 1) enable application portability while minimiz-
ing changes to existing algorithms and programming styles and
2) achieve performance comparable to directly using, for example,
OpenMP or CUDA.

We run the RAJA Performance Suite on two different node ar-
chitectures in Quartz and Lassen. We used the OpenMP and CUDA



Thicket: Seeing the Performance Experiment Forest for the Individual Run Trees HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Figure 13: Summarized view of the RAJA Performance Suite configurations used in this paper.

variants on Quartz and Lassen, respectively. The details of each of
the node architectures are given below. Figure 13 summarizes the
RAJA Performance Suite experiments we performed and used in
the studies for this paper.

Quartz. Each compute node has 36 (2x18) Intel Xeon E5-2695 v4
hyper-threaded cores and 128GB of RAM. Our software develop-
ment environment for RAJA Performance Suite included both Clang
9.0.0 and GCC 8.3.1 to create two executables. We ran the OpenMP
variant of RAJA Performance Suite on a single node with 36 threads.

Lassen. Each compute node features two Power9 CPUs and four
Volta GPUs connected via three NVLINK2 connections. Each GPU
has 16GB of memory and the node has 256GB of system memory.
Our software development environment for the RAJA Performance
Suite included CUDA 11.1.1 for the GPU compiler and XL 16.1.1.12
for the CPU compiler.

5.1.1 Top-down visualization and analysis on Intel CPUs. Top-down
analysis [39] is a quick and practical performance analysis method
for out-of-order processors, using designated hardware perfor-
mance counters in a structured hierarchical approach to identify
dominant bottlenecks. The analysis breaks down the observed CPU
pipeline utilization into four broad categories: retiring, frontend
bound, backend bound, and bad speculation. Each category is hierar-
chically divided into more detailed sub-categories to narrow down
specific performance bottlenecks, however, in this work we only
focus on the top-level categories. Yasin [39] describes the detailed
top-down model and its derivation from specific performance coun-
ters for Intel Core architecture processors. Caliper has a built-in
module to collect the required performance counters and compute
the top-down metrics for annotated code regions, which we used
to collect top-down metrics for the RAJA Performance Suite.

Figure 14 shows a purpose-built top-down analysis visualiza-
tion in Thicket. This visualization leverages a tree + table para-
digm to relate measured performance data back to the nodes from
which they came. The top-down data is rendered as a series of
stacked bar charts, color coded by the associated top-down metric.
The metrics in a single bar are percentages of boundedness and
accordingly add up to 1. Each bar represents a single profile in
our ensemble and bars are grouped and sorted by an independent
variable of interest. Through this grouping and vertical alignment
with associated nodes, users can quickly see how the bounded-
ness of their program scales for particular nodes of interest. This
can inform users about function-level optimization opportunities.

In this example, we have 10 individual profiles for each config-
uration, and we group the bars by the RAJA Performance Suite
problem size ranging from 1,048,576 to 8,388,608. We identify that
the Apps_VOL3D kernel is more compute-bound than the other ker-
nels, as it has a higher percentage of retiring instructions. The
Apps_NODAL_ACCUMULATION_3D kernel is heavily backend bound as
the problem size increases. The Lcals_HYDRO_1D and Stream_DOT
kernels are similarly backend bound, however they become more
backend bound as the problem size scales, indicating data satura-
tion.

5.1.2 Multi-Architecture Analysis. NVIDIA’s Nsight Compute (NCU)
is a vendor-specific profiling tool to gather GPU performance met-
rics, such as kernel time and memory throughput. NCU profiling is
capable of producing hundreds of detailed metrics per GPU kernel,
which we append to the metrics from our CPU profiles to enhance
our analyses and provide more insights into GPU performance. We
leverage Caliper annotations in RAJA Performance Suite to enable
NCU to profile these kernels.

Figure 15 is an example of multi-dimensional performance data
in a thicket, demonstrating how Thicket composesmetrics across
two different architectures — CPU and GPU — into a centralized,
digestible format. The table is comprised of four different profiles
that have been composed horizontally. The table also composes
the profile data side-by-side: (1) basic CPU metrics under the CPU
header, (2) top-down metrics from caliper’s top-down analysis mod-
ule under the CPU top-down header, (3) time on the GPU under
the GPU header, and (4) GPU-specific metrics from NCU under the
GPU Nsight Compute header. Due to space constraints, we include
a small set of kernels and performance metrics of interest for our
analysis.

We use the composed performance data to compute the CPU to
GPU speedup of two RAJA Performance Suite kernels, Apps_VOL3D
and Lcals_HYDRO_1D, and store these values in a new speedup col-
umn under the Derived header in Figure 15. We focus on these two
kernels because they are different in their execution behaviors. The
speedup of Lcals_HYDRO_1D is not as big as that of Apps_VOL3D,
and we use the composed performance data to look into the avail-
able top-down and GPU metrics to understand why this occurred.
The Lcals_HYDRO_1D kernel is 90% backend bound, while Apps_VOL3D
is more evenly split between backend bound and retiring at 54% and
37%, respectively. The higher retiring percentage in the Apps_VOL3D
kernel indicates that it is more compute-heavy and has potential
for leveraging higher gains on the GPU. Thicket enabled more



HPDC ’23, June 16–23, 2023, Orlando, FL, USA Brink et al.

Figure 14: Top-down analysis visualization built for Thicket and designed for embedding in Jupyter notebooks. This visualization
leverages a tree + table paradigm for showing top-down metrics adjacent to its associated node in the call tree. The top-down
metrics are rendered as a series of stacked bar charts, color coded by the associated top-down metric: retiring, frontend bound,
backend bound, and bad speculation.

detailed performance analysis by providing a holistic performance
data table containing a variety of metrics in a centralized structure.

5.2 MARBL
MARBL is a next-generation,massively-parallel, GPU-enabledmulti-
physics code under development at Lawrence Livermore National
Laboratory. MARBL supports 1D, 2D, and 3D unstructured meshes
with high-order numerical discretizations, Arbitrary Lagrangian-
Eulerian (ALE) solution methods, and adaptive mesh refinement
(AMR). MARBL was designed to simulate high-energy density
physics (HEDP) experiments including high-explosive, magnetic,
or laser driven experiments [5].

The MARBL team is collaborating with Amazon Web Services
(AWS) to demonstrate the ability to run advanced multi-physics
codes on cloud resources at scale. To that end, we reproduce a set
of scaling studies in the AWS cloud that was originally performed
on commodity clusters at LLNL and Sandia National Laboratory
(SNL) [36]. In our study, we are focusing on a modestly-sized, 3D
triple-point shock interaction benchmark problem, and compare
results from the off-the-shelf cluster (RZTopaz) with an AWS cloud
instance (AWS ParallelCluster). The details of each system are given
below. Figure 16 summarizes the MARBL experiments we used in
this study. We study six different configurations with 1 through 32
compute nodes and 36 to 1,152 MPI ranks. We run MARBL with 36
MPI ranks per node on both systems.

RZTopaz. RZTopaz is an Intel Xeon system with 36 (2x18) E5-2695
v4 cores and 128GB of RAM per node and Intel Omnipath intercon-
nect.

AWS ParallelCluster. AWS ParallelCluster is an AWS instance with
C5n.18xlarge compute nodes using the AWS Elastic Fabric Adapter
(EFA) interconnect with placement groups. Each compute node has
36 (2x18) Intel Xeon Platinum 8124M cores and 192GB RAM.

5.2.1 Scaling Analysis. In our first case study with MARBL, we use
Thicket’s statistical capability to perform a strong scaling study

on this ensemble. Strong scaling is a common analysis for studying
the performance of applications. It uses a fixed global number of
unknowns and varies the number of compute nodes. Note that ideal
scaling has a slope of -1.

Figure 17 shows the results of a strong scaling study of a 3D triple-
point problem in MARBL. For this strong scaling study, we used up
to 2,304 MPI ranks across 64 compute nodes on each cluster. Each
data point in this study is the average of five MARBL runs. Shaded
areas show the deviation from the average. We used Thicket to
load in the ensemble performance data from our strong scaling
study, and then used matplotlib to quickly generate a line plot. Our
line plot shows that both Intel MPI and OpenMPI scale well up to
16 nodes on both RZTopaz and AWS ParallelCluster.

5.2.2 Interactive Visualization. Thicket provides customnotebook-
embedded visualizations to explore relationships across multiple
parameters in the metadata and performance data spaces of our
performance ensembles. Figure 18 shows custom metadata visual-
izations with the cluster name, number of MPI ranks, walltime, and
maximum elements per rank as variables. Like our top-down visu-
alization, it was designed to be embedded in Jupyter notebooks to
support the script-heavy, exploratory analysis workflows enabled
by Thicket. This visualization provides two scatterplots and a par-
allel coordinate plot (PCP) to give users many different perspectives
on their data.

The left scatterplot plots metadata values on the x-axis against
a per-function measured metric on the y-axis. This plot enables
users to relate independent variables stored as metadata against
dependent variables stored as performance data. Specifically, the
scatterplot here shows how the number of elements processed
affects the measured runtime for the timeStepLoop function of our
application.

The right scatterplot enables users to view relationships between
two variables in the performance data. This plot aids in identifying



Thicket: Seeing the Performance Experiment Forest for the Individual Run Trees HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Figure 15: Multi-dimensional performance data of two kernels in RAJA Performance Suite run on a CPU (e.g.,Quartz) and a GPU
(e.g., Lassen) architecture. The data is assembled from multiple profiles. The time (exc), Bytes/Rep, and Flops/Rep columns are
from a CPU run with no profiling overhead; the Retiring and Backend bound time columns are from a CPU run with top-down
analysis, the time (gpu) is from a GPU run, and gpu__compute_memory_throughput, gpu__dram_throughput, sm__throughput,
and sm__warps_active are collected by Nsight Compute. The speedup column is derived from 𝐶𝑃𝑈 ,𝑡𝑖𝑚𝑒 (𝑒𝑥𝑐 )

𝐺𝑃𝑈 ,𝑡𝑖𝑚𝑒 (𝑔𝑝𝑢 ) .

Figure 16: Summarized view of MARBL configurations used in this paper.

Figure 17: Strong scaling results for MARBL 3D triple-point
shock interaction.

interesting clusters of profiles and outliers based on multiple vari-
ables. It further enables users to relate interesting subsets of data
back to the metadata via the PCP.

The PCP shows the relationships between many metadata vari-
ables stored in the thicket object. Each axis corresponds to a
column in the metadata table and each colored line traces the meta-
data values associated with a single profile. The crayon icons to
the left of each axis enable users to color lines and points based on
the associated metadata. In our example shown in Figure 18, all the
data is colored according to which architecture (arch) it was run
on: RZTopaz or AWS ParallelCluster.

In Figure 18 we see a case study of how these components can
provide insight into larger trends which occur in ensembles of
performance profiles. By coloring profiles according to their archi-
tecture, a clear pattern emerges both in the scatter plots and the
PCP. As the problem size increases, MARBL performs better on the
AWS ParallelCluster than RZTopaz. This holds for both the indi-
vidual function being examined here (timeStepLoop) as evidenced

by the scatterplots as well as the overall runtime of the program
evidenced by the walltime axis in the PCP.

This visualization also provides an easy way to verify the scal-
ability of applications at a glance by showing trends between the
number of MPI ranks and overall runtime. We see that the MARBL
software scales well to increased parallelism because there is a lot
of cross-over between the the walltime and mpi.world.size axes.
This kind of criss-crossing structure generally indicates inverse
correlations in PCPs. In this specific case, more MPI ranks are as-
sociated with lower runtimes, with the AWS ParallelCluster being
consistently lower than RZTopaz.

6 RELATEDWORK
There is a variety of community-driven and commercial HPC per-
formance analysis tools covering a wide range of measurement
methodologies and use cases. Comprehensive performance analy-
sis frameworks like HPCToolkit [4, 28], Score-P [23], and TAU [35]
collect detailed per-thread execution profiles or traces for in-depth
analyses. These tools focus on recording performance data and
conducting interactive analyses of individual program executions,
but they typically do not provide specific capabilities for analyzing
ensembles of runs.

LLNL’s ubiquitous performance analysis approach [8] provides
a workflow for automatically collecting performance profiles and
program metadata for a set of program executions, e.g. as part of a
nightly testing setup. A web interface with specialized graphical
tools for filtering and comparing large sets of runs allows users to
explore the collected performance data. Thicket users can utilize
elements of the ubiquitous performance analysis system, in partic-
ular Caliper [9] and Adiak [1] for recording performance profiles
and run metadata, respectively. However, instead of a limited set
of pre-built visualizations, Thicket provides a fully programmable
framework for analyzing ensemble performance data.

Prior work in ensemble analysis exists with performance data
management tools such as PerfDMF [16] and PerfTrack [18, 19, 22],
which are designed to analyze and compare performance data from



HPDC ’23, June 16–23, 2023, Orlando, FL, USA Brink et al.

Figure 18: Visualization of MARBL metadata using the parallel coordinate plot (PCP) in Thicket.

different runs of an application. PerfDMF provides robust, interop-
erable components for performance data management. It serves as
the SQL-based storage backend for PerfExplorer2 [17], a data min-
ing framework with capabilities to correlate performance data and
metadata for various types of ensemble analyses, such as scaling
studies. The PerfTrack framework also uses a SQL database to store
profile data from multiple experiments, and provides interfaces to
the data store, a GUI for interactive analysis, and modules to au-
tomatically collect experiment metadata. Our thicket framework
builds upon many of the elements developed in these performance
data management tools, but provides a programmable interface
and integration with modern Python data analysis tools to enable
flexible and customizable ensemble studies.

Hatchet [7, 10] is an open-source Python library capable of read-
ing in profiling output from several tools, such as HPCToolkit and
Caliper, and enables programmatic analyses on hierarchical perfor-
mance profiles. Its functionality is limited to performing analysis on
one or two profiles at a time with such use cases as computing load
imbalance across nodes in a single run, or computing the speedup
of a single core to many cores. Thicket uses Hatchet’s readers for
loading in a single profile at a time, and provides additional tools for
Exploratory Data Analysis of multi-run performance experiments.

An alternative to using Pandas dataframes as Thicket’s internal
representation is Xarray [14]. Xarray offers a rich programming
interface to interact with labeled multi-dimensional data that is
leveraging Dask and Pandas internally. While Xarray already im-
plements various aggregation and statistics operations it primarily
targets non-sparse data leading to undesired data duplication for
the performance data we would like to represent in Thicket.

The custom built visualizations for Thicket were informed by
prior work in the visualization domain. Several works [30, 37, 38]
describe the use of parallel coordinate plots for visualizing ensemble
data produced from scientific simulations. We adapt their insights

to the performance analysis domain. The top-down visualization
was informed by Juniper [29] and Lineup [12]. Lineup explores
techniques for organizing bar charts while Juniper introduces a
tree+table design for multivariate visualization. A recent work on
the intentional design of notebook embedded visualizations [34]
informed our development and design of the top-down analysis
visualization and the metadata visualization.

7 CONCLUSIONS
We present Thicket, an open-source Python toolkit for understand-
ing and optimizing simulation performance on supercomputers. It
provides an interface for interacting with the multi-dimensional,
multi-scale, multi-architecture, and multi-tool performance data
through a modular structure. Thicket enables Exploratory Data
Analysis (EDA) of performance data, including interactive visual-
ization, performance modeling, and data science techniques. We
explore two case studies to highlight the capabilities of our toolkit,
first with the open-source RAJA Performance Suite run on CPU and
GPU clusters, and second with a large multi-physics code known
as MARBL run on an HPC cluster and an AWS instance.

ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-844468). Additionally,
Connor Scully-Allison and Katherine E. Isaacs were supported by
the Department of Energy under DE-SC0022044.

The authors thank Matt Legendre, Magnus Strengert, Sergei
Shudler, Holger Jones, and Todd Gamblin for their feedback on this
work.

REFERENCES
[1] Adiak. http://github.com/LLNL/adiak

http://github.com/LLNL/adiak


Thicket: Seeing the Performance Experiment Forest for the Individual Run Trees HPDC ’23, June 16–23, 2023, Orlando, FL, USA

[2] Extra-p. http://github.com/extra-p/extrap
[3] NVIDIANsight Compute Profiling Tool. https://docs.nvidia.com/nsight-compute/

NsightCompute/index.html
[4] Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,

Tallent, N.R.: HPCToolkit: Tools for Performance Analysis of Optimized Parallel
Programs. Concurrency and Computation: Practice and Experience 22(6), 685–
701 (2010)

[5] Anderson, R., Black, A., Busby, L., Blakeley, B., Bleile, R., Camier, J.S., Ciurej, J.,
Cook, A., Dobrev, V., Elliott, N., Grondalski, J., Harrison, C., Hornung, R., Kolev, T.,
Legendre, M., Liu, W., Nissen, W., Olson, B., Osawe, M., Papadimitriou, G., Pearce,
O., Pember, R., Skinner, A., Stevens, D., Stitt, T., Taylor, L., Tomov, V., Rieben,
R., Vargas, A., Weiss, K., White, D.: The Multiphysics on Advanced Platforms
Project. Tech. rep., Lawrence Livermore National Laboratory (LLNL) (Nov 2020)

[6] Beckingsale, D.A., Scogland, T.R., Burmark, J., Hornung, R., Jones, H., Killian, W.,
Kunen, A.J., Pearce, O., Robinson, P., Ryujin, B.S.: RAJA: Portable Performance for
Large-Scale Scientific Applications. In: 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). pp. 71–81. IEEE,
Denver, CO, USA (Nov 2019). https://doi.org/10.1109/P3HPC49587.2019.00012

[7] Bhatele, A., Brink, S., Gamblin, T.: Hatchet: Pruning the Overgrowth
in Parallel Profiles. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. SC
’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3295500.3356219, https://doi.org/10.1145/3295500.3356219

[8] Boehme, D., Aschwanden, P., Pearce, O., Weiss, K., LeGendre, M.: Ubiquitous Per-
formance Analysis. In: Chamberlain, B.L., Varbanescu, A.L., Ltaief, H., Luszczek,
P. (eds.) High Performance Computing. pp. 431–449. Springer International Pub-
lishing, Cham (2021)

[9] Boehme, D., Gamblin, T., Beckingsale, D., Bremer, P.T., Gimenez, A., LeGendre,
M., Pearce, O., Schulz, M.: Caliper: Performance Introspection for HPC Software
Stacks. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’16, IEEE Press (2016)

[10] Brink, S., Lumsden, I., Scully-Allison, C., Williams, K., Pearce, O., Gam-
blin, T., Taufer, M., Isaacs, K.E., Bhatele, A.: Usability and Performance
Improvements in Hatchet. In: 2020 IEEE/ACM International Work-
shop on HPC User Support Tools (HUST) and Workshop on Program-
ming and Performance Visualization Tools (ProTools). pp. 49–58 (2020).
https://doi.org/10.1109/HUSTProtools51951.2020.00013

[11] Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using Automated Performance Mod-
eling to Find Scalability Bugs in Complex Codes. In: Proc. of the ACM/IEEE
Conference on Supercomputing (SC13), Denver, CO, USA. pp. 1–12. ACM (No-
vember 2013). https://doi.org/10.1145/2503210.2503277

[12] Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., Streit, M.: LineUp: Vi-
sual Analysis of Multi-Attribute Rankings. IEEE Transactions on Vi-
sualization and Computer Graphics (InfoVis) 19(12), 2277–2286 (2013).
https://doi.org/10.1109/TVCG.2013.173

[13] Hornung, R.D., Hones, H.E.: RAJA Performance Suite
[14] Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. Journal

of Open Research Software 5(1) (2017). https://doi.org/10.5334/jors.148, https:
//doi.org/10.5334/jors.148

[15] Hsieh, S.M., Hsu, C.C., Hsu, L.F.: Efficient Method to Perform Isomorphism
Testing of Labeled Graphs. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K.,
Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) Computational Science and Its
Applications - ICCSA 2006. pp. 422–431. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

[16] Huck, K., Malony, A.D., Bell, R., Li, L., Morris, A.: PerfDMF: Design and implemen-
tation of a parallel performance data management framework. In: International
Conference on Parallel Processing (ICPP’05) (2005)

[17] Huck, K.A., Malony, A.D., Shende, S., Morris, A.: Knowledge support and au-
tomation for performance analysis with PerfExplorer 2.0. Scientific programming
16(2-3), 123–134 (2008)

[18] Karavanic, K.L., May, J., Mohror, K., Miller, B., Huck, K., Knapp, R., Pugh, B.:
Integrating Database Technology with Comparison-based Parallel Performance
Diagnosis: The PerfTrack Performance Experiment Management Tool. In: Super-
computing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference. pp. 39–39
(Nov 2005). https://doi.org/10.1109/SC.2005.36

[19] Karavanic, K.L., Miller, B.P.: Experiment management support for performance
tuning. In: SC’97: Proceedings of the 1997 ACM/IEEE Conference on Supercom-
puting. pp. 8–8. IEEE (1997)

[20] Kery, M.B., Radensky, M., Arya, M., John, B.E., Myers, B.A.: The story in the
notebook: Exploratory data science using a literate programming tool. In: Pro-
ceedings of the 2018 CHI conference on human factors in computing systems.
pp. 1–11 (2018)

[21] Kluyver, T., Ragan-Kelley, B., Pérrez, F., Granger, B., Matthias, B., Frederic,
Jonathan adn Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila,
Damiánn adn Abdalla, S., Willing, C., Team, J.D.: Jupyter Notebooks — a pub-
lishing format for reproducible computational workflows, pp. 87–90 (2016).
https://doi.org/10.3233/978-1-61499-649-1-87

[22] Knapp, R.L., Mohror, K., Amauba, A., Karavanic, K.L., Neben, A., Conerly, T., May,
J.: PerfTrack: Scalable application performance diagnosis for linux clusters. In:
8th LCI International Conference on High-Performance Clustered Computing.
pp. 15–17. Citeseer (2007)

[23] Knüpfer, A., Rössel, C., Mey, D.a., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philippen,
P., Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg, B.,
Wolf, F.: Score-P: A Joint Performance Measurement Run-Time Infrastructure
for Periscope,Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S., Nagel,
W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011. pp. 79–91.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[24] LLNL: RAJA. http://github.com/LLNL/raja (Dec 2022)
[25] LLNL: RAJA Performance Suite. http://github.com/LLNL/rajaperf (Dec 2022)
[26] Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information

Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489
[27] Lumsden, I., Luettgau, J., Lama, V., Scully-Allison, C., Brink, S., Isaacs,

K.E., Pearce, O., Taufer, M.: Enabling Call Path Querying in Hatchet to
Identify Performance Bottlenecks in Scientific Applications. In: 2022 IEEE
18th International Conference on e-Science (e-Science). pp. 256–266 (2022).
https://doi.org/10.1109/eScience55777.2022.00039

[28] Mellor-Crummey, J.: HPCToolkit: Multi-platform tools for profile-based per-
formance analysis. In: 5th International Workshop on Automatic Performance
Analysis (APART) (November 2003)

[29] Nobre, C., Streit, M., Lex, A.: Juniper: A Tree+Table Approach to Multivariate
Graph Visualization. IEEE Transactions on Visualization and Computer Graphics
(InfoVis) 25(1), 544–554 (2019). https://doi.org/10.1109/TVCG.2018.2865149

[30] Obermaier, H., Bensema, K., Joy, K.I.: Visual trends analysis in time-varying
ensembles. IEEE transactions on visualization and computer graphics 22(10),
2331–2342 (2015)

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

[32] Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65
(1987). https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7, https://www.
sciencedirect.com/science/article/pii/0377042787901257

[33] Rule, A., Tabard, A., Hollan, J.D.: Exploration and explanation in computational
notebooks. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. pp. 1–12 (2018)

[34] Scully-Allison, C., Lumsden, I., Williams, K., Bartels, J., Taufer, M., Brink,
S., Bhatele, A., Pearce, O., Isaacs, K.E.: Designing an Interactive, Notebook-
Embedded, Tree Visualization to Support Exploratory Performance Analysis.
arXiv preprint arXiv:2205.04557 (2022)

[35] Shende, S.S., Malony, A.D.: The Tau Parallel Performance System.
Int. J. High Perform. Comput. Appl. 20(2), 287–311 (may 2006).
https://doi.org/10.1177/1094342006064482, https://doi.org/10.1177/
1094342006064482

[36] Vargas, A., Stitt, T.M., Weiss, K., Tomov, V.Z., Camier, J.S., Kolev, T., Rieben,
R.N.: Matrix-free approaches for GPU acceleration of a high-order finite element
hydrodynamics application using MFEM, Umpire, and RAJA. Int. J. High Perform.
Comput. Appl. 36(4), 492–509 (Jul 2022)

[37] Wang, J., Hazarika, S., Li, C., Shen, H.W.: Visualization and visual analysis of en-
semble data: A survey. IEEE transactions on visualization and computer graphics
25(9), 2853–2872 (2018)

[38] Wang, J., Liu, X., Shen, H.W., Lin, G.: Multi-resolution climate ensemble parameter
analysis with nested parallel coordinates plots. IEEE transactions on visualization
and computer graphics 23(1), 81–90 (2016)

[39] Yasin, A.: A Top-Down Method for Performance Analysis and Counters Ar-
chitecture. In: 2014 IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS). pp. 35–44. IEEE, CA, USA (Mar 2014).
https://doi.org/10.1109/ISPASS.2014.6844459

http://github.com/extra-p/extrap
https://docs.nvidia.com/ nsight-compute/NsightCompute/index.html 
https://docs.nvidia.com/ nsight-compute/NsightCompute/index.html 
https://doi.org/10.1145/3295500.3356219
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
http://github.com/LLNL/raja
http://github.com/LLNL/rajaperf
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482

	Abstract
	1 Introduction
	2 Thicket: Unifying Performance Data for EDA
	3 Architecture of the Thicket Object 
	3.1 Thicket Components
	3.2 Multi-dimensional Performance Data Composition

	4 Enabling Exploratory Data Analysis (EDA)
	4.1 Manipulating the Thicket Objects
	4.2 Statistics and Modeling
	4.3 Data Visualization

	5 Case Studies
	5.1 RAJA Performance Suite
	5.2 MARBL

	6 Related Work
	7 Conclusions
	References

