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Abstract Classical plasticity and damage models for
porous quasi-brittle media usually suffer from math-
ematical defects such as non-convergence and non-
uniqueness. Yield or damage functions for porous
quasi-brittle media often have yield functions with
contours so distorted that following those contours to
the yield surface in a return algorithm can take the
solution to a false elastic domain. A steepest-descent
return algorithm must include iterative corrections; oth-
erwise, the solution is non-unique because contours
of any yield function are non-unique. A multi-stage
algorithm has been developed to address both spuri-
ous convergence and non-uniqueness, as well as to
improve efficiency. The region of pathological isosur-
faces is masked by first returning the stress state to
the Drucker–Prager surface circumscribing the actual
yield surface. From there, steepest-descent is used to
locate a point on the yield surface. This first-stage solu-
tion, which is extremely efficient because it is applied
in a 2D subspace, is generally not the correct solution,
but it is used to estimate the correct return direction.
The first-stage solution is projected onto the estimated
correct return direction in 6D stress space. Third invari-
ant dependence and anisotropy are accommodated in
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this second-stage correction. The projection operation
introduces errors associated with yield surface curva-
ture, so the two-stage iteration is applied repeatedly
to converge. Regions of extremely high curvature are
detected and handled separately using an approxima-
tion to vertex theory. The multi-stage return is applied
holding internal variables constant to produce a non-
hardening solution. To account for hardening from pore
collapse (or softening from damage), geometrical argu-
ments are used to clearly illustrate the appropriate scal-
ing of the non-hardening solution needed to obtain the
hardening (or softening) solution.

Keywords Plasticity · Return algorithms ·
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Damage · Uniqueness

1 Introduction

Owing to their simplicity and numerical efficiency,
smeared damage models are often used in engineer-
ing simulations of fracture and fragmentation. As illus-
trated in Fig. 1, supplementing a damage model with
revisions accounting for uncertainty and scale effects
can mitigate mesh sensitivities and improve predictions
of irregular localized cracking (Brannon et al. 2007).
Given that smeared damage models show this potential
for large-scale engineering fracture simulations, robust
and efficient solvers are needed that address some
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134 R. M. Brannon, S. Leelavanichkul

Fig. 1 Comparison of simulation and experiment for dynamic
indentation of silicon-carbide ceramic; the simulation uses a con-
ventional damage model with uncertainty and scale effects in
strength and cohesion parameters

of the numerical problems that are common to these
plasticity-based damage models.

In plasticity theory, the yield surface is the zero iso-
surface of the yield function, and negative isosurfaces
describe the elastic domain. Isosurfaces are otherwise
arbitrary. The isosurfaces in common engineering mod-
els for cracked and porous media often have shapes
that deviate significantly from the overall shape of the
yield surface, which can produce pathological con-
vergence problems in numerical solvers. Nonconver-
gence or, more insidiously, convergence to an incorrect
solution is one of several verification issues that tend
to undermine predictiveness of engineering damage
models.1

For general-purpose plasticity models that support a
variety of yield surface shapes, isosurface pathologies
can be managed through piecewise differentiable yield
functions applied in different zones of stress space. For
example, a quasibrittle porous medium (such as rock
or concrete) is often modeled using pressure varying
strength with a hydrostatic cap to allow pore collapse.
These models often have pathological isosurfaces away
from the yield surface. However, by using a circum-
scribing cone, the stress state can be brought to a region
of well-behaved yield contours that are subsequently
followed to the yield surface.

Solution of the incremental form of classical plas-
ticity equations demands that the updated stress must
be a projection of the trial elastic stress onto the yield
surface. Regardless of the details of the yield func-
tion, the stress must be returned to the yield surface

1 Verification, defined as a confirmation that the governing equa-
tions are solved correctly, is distinct from the subsequent pro-
cess of validation to assess appropriateness of the equations to
model physical observations (The American Society of Mechan-
ical Engineers 2006).

along a specific trajectory that is uniquely implied by
the exact solution of the incremental plasticity equa-
tions. Returning the trial stress state to the yield sur-
face along any other trajectory will result in a plasticity
algorithm that converges to the wrong result. An expen-
sive six-dimensional return can be replaced with a far
more efficient two-dimensional return if the 2-D solu-
tion (which is not generally correct) is projected onto
the correct 6-D return projection direction as part of a
two-stage iterator.

This paper is structured as follows: Sects. 2 and 3
discuss yield function pathologies and review formu-
las for converting isotropic yield criteria from functions
of principal stress to functions of standard invariants,
thus simplifying evaluation of yield function gradients.
A nested multi-stage return algorithm and an example
for returning stress to the yield surface along the proper
unique trajectory are then presented in Sects. 4 and 5,
where it is also shown that a return algorithm to a sta-
tionary (non-hardening) yield surface can be used to
return the stress to a moving (hardening or softening)
yield surface.

2 Pathologies of yield functions

In this paper, we follow the engineering mechanics
convention that stress is positive in tension. How-
ever, because compression is prevalent in applications,
some subsequent expressions might employ an over-
bar to denote the negative of a quantity. For example,
σ̄k ≡ −σk and z̄ ≡ −z. In what follows, numerically
subscripted eigenvalues (σ1, σ2, σ3) will not be pre-
sumed to be ordered. They might reside in any sextant
of stress space. If ordered eigenvalues are required, they
will be subscripted with “L”, “M”, or “H” (standing
for low, middle, and high) so that (σL ≤ σM ≤ σH ).
The “ordered” principal stresses (σL , σM , σH ) can be
expressed in Lode cylindrical coordinates (r, θ, z) as
follows

σL = z√
3

− r√
2

[
cos θ − sin θ√

3

]

= I1

3
− √
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where the Lode coordinates are defined by (Brannon
2007; Lubliner 1990)

r = √
2J2, sin 3θ = J3

2

(
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, z = I1√
3
. (4)

The three independent invariants in Eq. 4 are

I1 = trσ = σ1 + σ2 + σ3 (5)
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(s2
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2 + s2

2 ) (6)
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3
(s3

1 + s3
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3), (7)

where σ1, σ2, and σ3 are the eigenvalues of the Cauchy
stress tensor σ , and s1, s2, and s3 are the eigenvalues
of the stress deviator S. The solution for ordered eigen-
values in Eqs. 1–3 may be used to transform any yield
or limit function f (σL , σM , σH ) expressed in terms of
ordered principal stresses into the form f (I1, J2, J3) or
f (r, θ, z), thereby avoiding expensive eigenvalue anal-
yses and simplifying the evaluation of yield function
gradients.

In computational plasticity, the yield function f
must satisfy the following minimal admissibility
criteria:

1. f < 0 for elastic states
2. f = 0 on the yield surface
3. f > 0 outside the yield surface

The yield surface is often additionally required to be
convex. The yield surface is the “level set” or “iso-
surface” corresponding to f = 0. Isosurfaces corre-
sponding to f �= 0 are unrestricted as long as the
above sign conventions are satisfied. In other words,
the yield surface is unique, but the yield function is not
unique. For example, the functions f (r, θ, z)=r −k and
f (r, θ, z)= (r/k)2−1, where k is a constant, both have
the same elastic states and yield surfaces. Both func-
tions satisfy the above three admissibility constraints,
but these functions are not equal, nor are their gradients
equal. Thus, their convergence properties in numeri-
cal return algorithms are different. Non-uniqueness of
yield functions can lead to pathological problems in
numerical plasticity solvers, and this paper suggests
additional constraints on yield functions to avoid such
problems.

In light of the symmetry properties of isotropic
yield functions, it is always possible in principle to
cast the yield criterion in the form r = g(θ, z) for
which an admissible yield function could then be sim-
ply f (r, θ, z) = r − g(θ, z). At a given value of the
Lode angle θ , the meridional profile of the yield surface
is described by a function of the form r = G(z), where
the function G depends implicitly on the selected “mas-
ter” Lode angle θ at which the meridian is sought. The
relationship r = G(z) may be written more generally
in the form F(r, z) = 0, which, like the general yield
function f (r, θ, z), must satisfy F < 0 inside the yield
surface and F > 0 outside the yield surface. If a satis-
factory meridional yield function F(r, z) can be found,
then the Lode angle dependence may be reintroduced
by writing the general yield function as

f (r, θ, z) = F(r�(θ, z), z) (8)

The function �(θ, z), which describes the shape of the
octahedral yield profile at a given value of z, must be
normalized to equal 1 at the “master” Lode angle so
that the meridional profile is defined by F(r, z) at that
angle. A master Lode angle of θ = −30◦ is typically
selected because this Lode angle corresponds to axi-
symmetric compression, where the majority of data is
usually available (Fossum and Brannon 2004).

Because computational plasticity models routinely
evaluate the yield function at points outside the yield
surface, and because the yield function gradient at these
points is often needed to return the stress to the yield
surface, an essential requirement is that the yield func-
tion must have reasonably conforming nonsingular iso-
surface contours everywhere. By this, we mean that, for
any point in stress space, a return algorithm that moves
perpendicular to the isosurfaces must converge to a
point on the yield surface. This supplemental admis-
sibility criterion for yield functions does not require
the returned stress to necessarily equal the stress state
that satisfies the governing equations of plasticity—it
only has to be any point on the yield surface. At such
a point, where the outward normal to the isosurface
is unaffected by ambiguity of yield functions, correc-
tions can be applied to project the returned stress onto
the return direction that is uniquely determined from
the governing equations. This approach is similar to
that of Bicanic and Pearce (1998) except that it is rec-
ognized that the correct return direction is not to the
closest point and the projection must be performed in
6D stress space—not 3D Haigh–Westergaard space—
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136 R. M. Brannon, S. Leelavanichkul

because the principal directions of the updated stress
are generally different from those of the trial stress.

Figure 2 illustrates qualitative distinctions between
cracked-only, porous-only and combined crack/pore
meridional yield profiles. Research over the past few
decades (Sandler and Rubin 1979; Foster et al. 2005)
has aimed to describe the combined effect of cracks and
pores. Early two-surface models (Sandler and Rubin
1979) achieved a yield profile similar to that in Fig. 2c
by simply placing a “cap” (often elliptical in shape)
positioned at the critical elastic limit under hydrostatic
compression. While being relatively easy to parame-
terize in terms of standard experiments, this approach
leads to a yield function that is not continuously dif-
ferentiable at the yield surface and often requires iter-
ations for cap placement. An advance over the two-
surface approach was introduced by Fossum (Foster
et al. 2005), who generated a smoothly differentiable
meridional yield profile similar to Fig. 2c by multiply-
ing a fracture function r = Gc(z) times a normalized
(but again elliptical) cap function G p(z).

Fossum’s yield function satisfies the first two yield
function admissibility criteria, but it violates the third
criterion. In fact, the vast majority of geomaterial yield
functions, not just the Fossum function, seem to suffer
from this problem. As illustrated in Fig. 3, there exist
stress states outside the desired yield surface for which
f < 0. Consequently, checking the sign of these inad-
missible yield functions is insufficient for determining
if a trial elastic stress state lies outside the yield surface.
Moreover, as seen in Fig. 3, there exist regions outside
the yield surface for which f > 0 but for which moving
perpendicular to yield function contours in a steepest-
descent return algorithm would take the stress to the
false elastic domain.

Violation of criterion #3 has even been seen in
“classical” yield functions such as

f = 4J 3
2 − 27J 2

3 − 36k2 J 2
2 + 96k4 J2 − 64k6, (9)

where k is a constant. This function is often erroneously
claimed to represent the Tresca model (Lubliner 1990).
However, as illustrated in Fig. 4a, it violates admissi-
bility criterion #3.

In terms of ordered principal stresses (σL ≤ σM ≤
σH ), an admissible yield function for the Tresca crite-
rion is

f = (σH − σL)/2 − k. (10)

By using Eqs. 1–3, this admissible Tresca function may
be cast in the form of Eq. 8 as

f = r√
2

cos θ − k, (11)

f = √
J2

{
cos

[
1

3
sin−1

(
J2

2

(
3

J2

)3/2
)]}

− k.

(12)

As illustrated in Fig. 4b, all contours for this admissible
Tresca yield function are perfect concentric hexagons.
Moreover, for a starting point lying anywhere away
from the vertices, a Newton iterator will converge to the
yield surface in exactly one iteration, or two iterations
if the starting point falls within the cone of normals that
would make the first iteration move into a new sextant.

The yield function in Eq. 12 is problematic at the
hexagon vertices. Even away from those vertices, there
is potential for generating a returned state that has a dif-
ferent eigenvalue ordering from that at the starting state
(i.e., a change in sextant). Such behavior is undesirable
according to Bicanic and Pearce (1998). One way to
circumvent these problems, and at the same time sal-
vage the previous inadmissible Eq. 9, is to restrict the
domain over which Eq. 9 can be applied. Specifically,
one can define

f =

⎧⎪⎨
⎪⎩

4J 3
2 − 27J 2

3 − 36k2 J 2
2

+96k4 J2 − 64k6 if J2 < 4
3 k2

√
J2 if J2 > 4

3 k2

(13)

This discontinuous yield function, illustrated in
Fig. 4c, applies the inadmissible function of Eq. 12 only
if the stress state falls within the circle circumscribing
the Tresca hexagon. Outside this circle, the yield func-
tion is of von Mises form. Although unsavory in some
respects, using simpler yield functions in this way (i.e.,
to mask inadmissible domains) is straightforward and
expedient, especially when more “clever” yield func-
tions such as that in Eq. 12 are not available. Such is
often the case with yield functions for geological mate-
rials which have a pronounced vertex on the tensile
hydrostat.

Non-uniqueness of yield function isosurfaces will
cause non-uniqueness of the answers for any return
algorithm that relies exclusively on tracking through
yield function contours to reach the yield surface. As
mentioned earlier, this non-uniqueness of return algo-
rithms can be removed with a projection correction.
Thus, locating the correct point on the yield surface is
an iterative process of applying an inexpensive (pos-
sibly even 2D) isosurface tracking return algorithm
followed by a 6D projection correction. Since the
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A multi-stage return algorithm 137

Fig. 2 Qualitative
meridional profile shapes
resulting from a porosity
alone, b microcracks alone,
and c a combination of
porosity and microcracks
(Fossum and Brannon 2004)

Fig. 3 Violation of the third
admissibility criterion
a False elastic domains at or
near the tensile limit in the
meridional plot for a typical
geomaterial model.
b Differences between a
desired return location
(dashed) and the return
location found by moving
perpendicular to
pathological yield contours
(solid)

Fig. 4 Octahedral
isosurfaces for a the
unacceptable Eq. 9 b the
admissible Eq. 12, and c the
admissible Eq. 13

projection correction can take the returned state off
the yield surface, these steps must be repeated until
convergence.

3 Pathologies of hardening and flow functions

Let Fi j denote components of the gradient of the yield
function with respect to stress σi j . For an isotropic yield
function, f (I1, J2, J3),

Fi j = ∂ f

∂σi j
= ∂ f

∂ I1

∂ I1

∂σi j
+ ∂ f

∂ J2

∂ J2

∂σi j
+ ∂ f

∂ J3

∂ J3

∂σi j

= ∂ f

∂ I1
δi j + ∂ f

∂ J2
Si j + ∂ f

∂ J3
Ti j , (14)

where Si j are components of the stress deviator and Ti j

are components of the deviatoric part of the square of
the stress deviator.

Although yield functions are not unique, their zero
isosurface defined by f = 0 is unique (it is the yield
surface). Therefore, even though Fi j is not unique, the
outward unit normal to the yield surface,

Ni j = Fi j√
Frs Frs

, (15)

is unique when evaluated on the yield surface.
The stress rate σ̇i j during plastic loading (i.e., when

the stress is on the yield surface and remains on the
yield surface) is typically governed by
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138 R. M. Brannon, S. Leelavanichkul

σ̇i j =
[

Ei jkl − Ei jrs Grs Fpq E pqkl

Fst EstvwGvw + h

]
ε̇kl , (16)

where ε̇kl is the strain rate, Ei jkl is the elastic stiffness,
h is a hardening scalar, Fi j is the gradient of the yield
function, and Gi j is defined as

Gi j = ∂g

∂σi j
(17)

in which “g” is a flow function. For uncoupled associa-
tive plasticity, the flow function is identical to the yield
function “ f ”. However, models for cracked and porous
media often use non-associative plasticity (g �= f ),
ostensibly to better match data. Usually, the flow func-
tion is taken to have the same form as the yield function,
but with different values for the parameters. If, as was
done in Eq. 15, we define

Mi j = Gi j√
Grs Grs

, (18)

then Eq. 16 may be written

σ̇i j =
[

Ei jkl − Ei jrs Mrs Npq E pqkl

Nst Estvw Mvw + H

]
ε̇kl , (19)

where the “ensemble hardening modulus” H is defined
(Brannon 2007)

H = h√
Frs Frs

√
Grs Grs

. (20)

Equation 19 is cast in terms of unique quantities Mrs ,
Npq , and H . Hence, Eq. 19 is far superior to Eq. 16
which depends on ambiguous tensors Grs and Fpq and
an ambiguous hardening scalar h. The fact that h is
ambiguous can be demonstrated by recognizing that its
formula (not shown) depends on the yield function in a
way that causes its value to change if the yield function
changes to some other equivalent yield function (i.e.,
one with the same zero isosurface, but different nonzero
isosurfaces). This ambiguity of h applies for both asso-
ciative and non-associative plasticity. When perform-
ing numerical verification tests, one implementation of
a theory agrees with another researcher’s implementa-
tion of the same theory only if the ensemble hardening
modulus H in Eq. 20 is the same for both implemen-
tations. Unfortunately, this comparison is almost never
possible because implementations of plasticity models
rarely output values for H . The hardening scalar h is
devoid of physical meaning because it is affected by
ambiguity of yield functions. The ensemble hardening
modulus H , on the other hand, has an appealing phys-
ical interpretation: it is the normal displacement of the

yield surface in stress space per unit change in the mag-
nitude of plastic strain. As will be discussed in Sect. 4,
this fact can be exploited to find accurate estimates for
the location of an evolving yield surface at the end of
a plastic step (Brannon 2007).

There are many arguments against non-associativ-
ity (Brannon 2007). However, since the physical justi-
fications for the governing equations are not the focus
of this paper, we will discuss only the questionable
assumption that a flow potential function even exists,
because this assumption leads to ambiguity in solving
the equations. Like yield functions, flow functions are
non-unique. If the algebraic form for a flow function is
the same as that of the yield function (but with different
parameters), then the only meaningful isosurface of a
flow function is the zero isosurface. Ambiguity of the
yield function was not disruptive because the govern-
ing equations are evaluated only at the yield surface
where the corresponding unit normal is unique. How-
ever, since a stress located on the zero isosurface of
the yield function is not generally at a zero isosurface
of the flow function, evaluation of the flow direction
Mi j as a gradient of a flow function g is ambiguous.
Whereas Ni j does not change when f is changed, the
flow direction Mi j does change when g is changed.
In fact, an Mi j tensor evaluated using a flow function
might change pathologically if the flow function con-
tours are as erratic as those of a typical geomaterial
yield function. If one believes that Mi j �= Ni j is truly
necessary, then we recommend that Mi j not be evalu-
ated using a flow function. If, for example, a normality
rule is found to over-predict dilatation, then an alterna-
tive flow model might simply define

Mi j = α(N dev
i j + βN iso

i j ), (21)

where 0 < β < 1 is a control parameter and α is set to
the value necessary to generate a unit tensor. Not only
would this approach be more computationally efficient,
it would also not be subject to ambiguities of flow func-
tions.

4 Nested return algorithm

Note that Eq. 19 may be written

σ̇ = σ̇ E − �̇P (22)
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Fig. 5 Projection of an elastic trial stress to the yield surface
along a specified trajectory

where

σ̇ E
i j = Ei jkl ε̇kl (23)

Pi j = Ei jrs Mrs (24)

�̇ = Npq E pqkl

Nst Estvw Mvw + H
ε̇kl . (25)

To first order accuracy, this implies that the stress at the
end of a time step must equal the trial elastic stress pre-
dictor σ E minus a corrector �P , where the multiple,
� = �̇
t , must be selected such that the returned state
is on the yield surface. For a non-hardening yield sur-
face, this process is illustrated in Fig. 5. For a harden-
ing yield surface, the multiplier � is smaller than that
depicted in Fig. 5 to account for expansion of the yield
surface under hardening. For a softening yield surface,
the multiplier is larger to account for contraction of the
yield surface (i.e., loss of strength). This section first
addresses how to project to a stationary surface. Then
appropriate corrections accounting for motion of the
target surface are presented.

For return to a stationary target surface, a nested iter-
ative algorithm is proposed. The algorithm is nested
because each of its iterations makes use of a secondary
“helper” return algorithm. The helper return algorithm
might be, for example, a closest point algorithm or it
might be any other existing return algorithm that is rec-
ognized to be “flawed” (intentionally or inadvertently)
because it fails to return the stress along the required
projection direction P . Presumably, the helper return
algorithm is fast and robust. The helper algorithm pro-
duces a returned stress σ F that is not generally the cor-
rect solution. To be a correct solution, σ E − σ F must
be a multiple of P .

If σ P denotes the desired properly projected stress
on the yield surface, then we seek a scalar multiplier �

(illustrated in Fig. 5) such that

σ P = σ E − �P . (26)

The correct value for the multiplier � is the zero of
the following objective function for a stationary yield
surface:

g(�) ≡ f (σ P ) = f (σ E − �P) = 0. (27)

A basic (inefficient and non-robust) Newton solver
would find � by applying the iterator

�0 = 0; �n+1 = �n − g(�n)

g′(�n)
(28)

where, by the chain rule,

g′(�) ≡ dg

d�
= d f

dσ P
: ∂σ P

∂�
= −G : P . (29)

Here, G is the yield function gradient evaluated at the
current estimate for σ P . In other words,

G = d f (σ )

dσ

∣∣∣
σ=σ E −�P

. (30)

An efficiency disadvantage of this basic algorithm is
that σ E and P might not share the same eigenvectors,
making it impossible to reduce the dimension of the
space in which this sort of return algorithm operates.
If a yield function is isotropic, and if σ and P happen
to share the same eigenvectors (which is not generally
the case), then it would be possible to return to the
yield surface using an algorithm that is cast entirely
within 3D principal stress space rather than in the full
6D symmetric tensor space required in the above gen-
eral algorithm. Of course, even if a 3D iterator were
possible, it would still generally require a return trajec-
tory of a particular unique orientation. A basic Newton
solver like the one above can also suffer from non-
convergence or false-convergence if the yield function
has erratic isosurfaces away from the yield surface.

Our goal is to use any existing return iterator (which,
in general, will not converge to the correct result but is
presumably efficient and robust) as a helper that may
be used in the design of a correct nested iterator. Let σ F

denote the converged output of the fast “helper” return
iterator. Then σ F − σ E is not, in general, a multiple
of P . Therefore, even though σ F is on the yield sur-
face, it is not the solution to Eq. 27 that we seek (i.e.,
σ F �= σ P ). Below, we assert that an approximation for
the correct solution σ P can be obtained by obliquely
projecting σ F − σ E onto P .

As illustrated in Fig. 6, it is always possible to write

σ P − σ E = (σ P − σ F ) + (σ F − σ E ). (31)

Therefore, letting GF denote the yield gradient at the
“fast solution” helper state σ F ,

(σ P − σ E ) : GF = (σ P − σ F ) : GF

+(σ F − σ E ) : GF . (32)
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140 R. M. Brannon, S. Leelavanichkul

Fig. 6 Even in this grossly exaggerated sketch, the segment con-
necting σ P and σ F is approximately tangent to the yield surface
and therefore approximately perpendicular to the yield surface
gradient GF

Note from Fig. 6 that σ P − σ F is approximately
tangent to the yield surface and therefore

(σ P − σ F ) : GF ≈ 0. (33)

This approximation is exact on yield surface flats and
becomes increasingly accurate the nearer σ F is to σ P .

Noting from Eq. 26 that σ P − σ E = −�P , Eq. 33
may be used to approximate the exact relationship in
Eq. 32 by

− �P : GF ≈ (σ F − σ E ) : GF (34)

and therefore

� ≈ −(σ F − σ E ) : GF

P : GF
(35)

and an approximate solution for σ P therefore follows
by substituting this result into Eq. 26. This result moti-
vates the following iterative algorithm for σ P :

1. Set n = 0 and set �n = 0 so that σ Pn = σ P0 = σ E .

2. Let σ Fn+1 be the result of any (presumably
efficient) return of σ Pn to the yield surface.

3. Compute the yield gradient GFn+1 evaluated at
σ Fn+1 (and, if desired, also update P itself, which
typically depends on the normal).

4. Compute �n+1 using Eq. 35.
5. Then the improved estimate for σ P is σ Pn+1 ≈

σ E − �n+1P .

6. If �n+1 −�n > some tolerance, then set n = n+1,
and go to step 2. Otherwise exit with the converged
solution given by � = �n+1.

As long as solutions exist for both σ P and σ F , con-
vexity of the yield surface ensures that the denominator
P : GF in the formula for � will be positive. The algo-
rithm would diverge if, at any point, � evaluates to a

Fig. 7 Two iteration cycles in which an incorrect (but presum-
ably efficient) “helper” solution σ F is projected onto the required
unique level set to obtain an estimate of the actual solution σ P .
This figure illustrates that nested convergence is extremely rapid
even when the fast helper solution is grossly inaccurate and even
when the yield surface is highly curved

negative number, but this will not occur so long as the
helper algorithm does not “cut across” elastic states to
find the second solution that always exists on the other
side of the convex yield surface.

Interpreted geometrically, Eq. 35 implies that the
segment connecting σ P and σ F is approximately a
type-1 oblique projection of the segment connecting
σ F and σ E onto the level set defined by P . Hence, as
illustrated in Fig. 7, each iteration treats the current esti-
mate for σ P as if it were σ E . The stress that is predicted
by the (presumably fast and robust) “helper” return
algorithm is simply projected onto the required level
set following a path that is tangent to the yield surface.

This nested iterator converges in one step whenever
Eq. 33 holds exactly. This will occur whenever the fast
helper solution σ F happens to hit on the exact solu-
tion σ P or whenever σ F and σ P happen to reside on a
flat portion of the yield surface. Otherwise, as should
be clear from Fig. 7, the number of nested iterations
increases with increasing yield surface curvature. The
closer the fast iterator can come to the exact solution,
the faster the nested iterator will be. This concludes the
discussion of return to a stationary yield surface.

For hardening or softening, the yield surface evolves
in response to changes in the internal state vari-
ables (ISVs). The rate form of the governing equation
continues to be of the form in Eq. 22 and therefore, the
updated stress is still of the form in Eq. 26. The multi-
ple � must still be selected such that the updated stress
is on the updated yield surface. However, the updated
location of the yield surface is unknown because it
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Fig. 8 Using the plastic strain increment (�∗) from non-
hardening to determine the actual increment (�) with hardening
(Brannon 2007)

depends on the amount of change in the ISVs during
the time step. The magnitude of the plastic strain incre-
ment, which is needed to update the ISVs, is actually
the unknown multiplier �.

This problem of needing to project to a surface
whose location is unknown can be solved by consid-
ering the geometric meaning of the consistency equa-
tion, which is the equation requiring stress to remain on
the evolving yield surface during plastic loading incre-
ments. When using unit normal and unit flow direction
tensors, N and M, the consistency equation is

σ̇ : N = H �̇ (36)

where H is the ensemble hardening modulus in Eq. 20
and �̇ is the magnitude of the plastic strain rate defined
in Eq. 25. Because the normal in this equation is a unit
tensor and because the stress is moving with the yield
surface, the left-hand-side of this equation is the nor-
mal velocity of the yield surface in stress space. There-
fore, multiplying by the timestep 
t gives a first-order
approximation to the normal displacement of the yield
surface during the time step, as labeled in Fig. 8.

Equating distances labeled in Fig. 8 and solving for
� gives

� = �∗ (P : N)

P : N + H
. (37)

Here, �∗ is the � multiplier that returns the elastic
trial stress state to the yield surface at the beginning
of the step (which is at a particular instant in time
and therefore stationary). Once � has been found, the
plastic strain and internal variables can be immediately
updated. For example, 
ε p = �M.

5 Proposed case studies for algorithm verification

For simple preliminary verification of the proposed
algorithm, the two-stage return algorithm was imple-
mented as a user-defined routine in a commercial

finite element code, LS-DYNA. Three case studies
are considered. Solutions are obtained from single-
element simulations using LS-DYNA, and compared
with closed-form analytical solutions. Each case study
is described below, starting with a complicated problem
having time-varying principal stress directions with-
out changes in principal stresses. Then the next exam-
ple involves time-varying principal stresses without
changes in principal directions. Both of these exam-
ples allow verification of the algorithm in situations
where the stress must move along a curved trajectory
to remain on the curved yield surface. The final exam-
ple, which is probably the easiest, is a non-associative
linear Drucker–Prager problem that allows verification
that the correct return direction has been enforced.

Example 1 Transient stress eigenvectors with
stationary eigenvalues

For the return to a stationary surface, a distinguish-
ing feature of the two stage algorithm is that it allows for
the possibility that the elastic trial stress and the updated
stress might have different eigenvectors. Therefore, this
section presents the analytical derivation of a manu-
factured solution (Roache 1998) that is used in a sim-
ulation to verify the proposed nested return algorithm.
By design, this problem involves significant changes
in the principal stress directions without changes in the
eigenvalues. This problem serves as a verification prob-
lem for implementation of the nested return algorithm
that is more challenging than simple monotonic load-
ing problems. In this verification problem, the material
is subjected to a strain rate that, by design, will cause
the eigenvectors of the stress tensor to change during
plastic loading while not changing the eigenvalues.

Consider a non-hardening linear Drucker–Prager
material whose yield criterion is given by

r = ry − (tan φ)z, (38)

where ry and φ are material constants and

r ≡ √
2J2 = √

Si j Si j and z ≡ I1√
3

= σkk√
3
. (39)

We will assume normality. Then, taking the yield func-
tion to be f = r cos φ + z sin φ − ry cos φ, the flow
direction equals the unit normal to the yield surface,
given by

M = N = (cos φ)Ŝ + (sin φ)Î, (40)

where Ŝ is a unit tensor in the direction of S, and Î is
similarly a unit tensor in the direction of the identity
tensor I . Specifically,
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Ŝ = S
‖S‖ and Î = I

‖I‖ = I√
3
. (41)

Assuming linear elasticity (shear modulus G and
bulk modulus K ) and no elastic-plastic coupling, the
projection direction tensor is then

P = E : M = (2G cos φ)Ŝ + (3K sin φ)Î (42)

For simplicity of the analysis, we use the following
values for the material properties:

Shear modulus: G = 500 MPa

Poisson’s ratio: ν = 1

3

Bulk modulus: K = 4, 000

3
MPa

Yield parameters:

ry = 5 MPa, cos φ = 4

5
, sin φ = 3

5
Using these parameters, it follows that

M = N = 4Ŝ + 3Î
5

(43)

P = E : M = 800(Ŝ + 3Î) MPa (44)

For this problem, the first (elastic) leg loads to the yield
surface using isochoric (volume preserving) axisym-
metric compression in which both the stress and strain
tensors are multiples of⎡
⎣−2 0 0

0 1 0
0 0 1

⎤
⎦. (45)

More generally, this is the principal component
matrix for any tensor that is a positive multiple of

I − 3nn (46)

where n is the axisymmetry axis and the second order
tensornn is a dyad (i.e., its i j component is ni n j ). Equa-
tion 45 is a special case of Eq. 46 obtained by choosing
n to point in the 1-direction. The magnitude of the ten-
sor in Eq. 46 is

√
6. Therefore, letting r = √

2J2 denote
the magnitude of the stress deviator, the stress tensor
can be written in the form

σ = r√
6
(I − 3nn) (47)

and the associated elastic strain tensor is

εe = σ

2G
. (48)

The rate of the stress tensor is

σ̇ = ṙ√
6
(I − 3nn) −

√
3

2
r(ṅn + nṅ) (49)

In this section, we design a total strain history ensuring
that the stress remains always of the form in Eq. 47. The
strain history consists of two legs: an elastic loading to
the yield surface, followed by plastic loading. During
the elastic leg, the symmetry axis n is held fixed. The
elastic leg ends at a pre-selected time ty . During the
plastic leg, r is held fixed at ry , but the principal stress
directions are made to vary by rotating the symmetry
axis n. In particular, we design a total strain history
such that the symmetry axis is of the form

n =
⎧⎨
⎩

e1 during elastic leg
cos (ωT )e1

+ sin (ωT )e2 during plastic leg
(50)

where ek denotes the k th laboratory basis vector, ω is
the angular velocity and T = t −ty . We design the total
strain history such that

ω =
{

0 during elastic leg
constant during plastic leg

(51)

and

r =
⎧⎨
⎩

ry

(
t

ty

)
during elastic leg

ry during plastic leg
(52)

Because the stress is, by design, always deviatoric, the
associated elastic strain is found simply by dividing the
stresses by 2G. Thus,

εe = r

2G
√

6
(I − 3nn). (53)

Fig. 9 Solution corresponding to the driving strains as described
in Example 1. The analytical results thick lines are shown along
with a numerical simulation from LS-DYNA using a user-defined
model with nested return algorithm (thin black lines)

123



A multi-stage return algorithm 143

The elastic strain history associated with a prescribed
stress history is determined uniquely (as we have done
here) by applying Hooke’s law. However, for non-hard-
ening plasticity, the plastic strain history is not uniquely
determined from the stress history. For our reverse engi-
neered design of a total strain history, we will seek a
plastic strain history for which the magnitude of the
plastic strain rate tensor is a specified constant a. Then
the plastic strain rate must be given by

M = N = (cos φ)Ŝ + (sin φ)Î (54)

ε̇ p = aM (55)

or, using Eqs. 40 and 47,

ε̇ p = a

(
cos φ√

6
(I − 3nn) + (sin φ)

I√
3

)
(56)

During the plastic leg, the only time varying part of the
above equation is the dyad nn, which, in matrix form is

[nn]=1

2

⎡
⎣1 + cos (2ωT ) sin (2ωT ) 0

sin (2ωT ) 1 − cos (2ωT ) 0
0 0 0

⎤
⎦. (57)

This tensor, along with the constant tensors in Eq. 56 is
easily integrated through time to obtain a time history
for the plastic strain tensor εP (t), which may then be
added to the time varying elastic strain tensor in Eq. 53
to ultimately obtain the time varying total strain ten-
sor that will produce the stress history and equivalent
plastic strain rate that we seek. The stresses correspond-
ing to the driving strains in this problem are shown in
Fig. 9. The exact solution is represented by the thick
lines while the thin black lines represent the solution
obtained from a single-element simulation using the
proposed nested return algorithm.

The functions in Table 1 give the components of ten-
sors with respect to a fixed basis {e1,e2,e3}, which are
the components that would be computed in a plastic-
ity code. These functions are plotted in the left-hand
column of Fig. 10. The right hand column shows the
tensor components with respect to a basis {e∗

1,e∗
2,e∗

3}
that is defined such that e∗

1 is aligned with the compres-
sion symmetry axisn. With respect to this rotated “star”
basis, a tensor component Y ∗

i j is e∗
i ·Y ·e∗

j . Less trivially,

Ẏ ∗
i j = e∗

i ·Ẏ ·e∗
j , which is not the same as dY ∗

i j/dt , Given
that the stress invariants remain constant, the stress will
appear to be stationary in principal stress space upon
reaching yield. However, the stress varies because its
principal directions change.

The span of the following tensors defines a 3D man-
ifold in 6D symmetric tensor space:

⎡
⎣−1 0 0

0 1 0
0 0 0

⎤
⎦

⎡
⎣0 −1 0

−1 0 0
0 0 0

⎤
⎦

⎡
⎣−1 0 0

0 −1 0
0 0 2

⎤
⎦
(58)

Throughout the duration of this problem (both elastic
and plastic legs), the stress tensor may be expressed as
a linear combination of the above three tensors. Letting
{σ A, σ B, σC } denote the projection of the stress tensor
onto these three tensors gives a time varying triplet of
numbers that may be plotted parametrically as shown in
Fig. 11 to demonstrate that the stress state is moving in
a circle in 6D tensor space even though it is stationary
in principal stress space.

Example 2 Transient stress eigenvalues with stationary
eigenvectors

This example solves non-hardening von Mises plas-
ticity equations for the case of a constant strain rate that
is not aligned with the yield normal (see Fig. 12). This
example demonstrates that the nested return algorithm
can still project the stress to the correct position despite
the presence of the curvature. The strain path is cho-
sen such that the stress deviator is rotated. The material
parameters and a simple piecewise linear strain table in
which the strain eigenvectors are fixed are presented in
Tables 2 and 3, respectively. Here, the structure is first
loaded under triaxial extension (TXE) until the stress
reaches yield. The strain is then steered away from the
TXE state into other Lode angles.

The exact solution for the stress ( MPa) is (Krieg and
Krieg 1977; Kossa and Szabó 2009)

σ11 =

⎧⎪⎪⎨
⎪⎪⎩

−474.0t if 0 < t ≤ 0.201
−95.26 if 0.201 < t ≤ 1
189.4+0.1704

√
a−0.003242a

1+0.00001712a if 1 < t ≤ 2
189.4 as t → ∞

(59)

σ22 =

⎧⎪⎪⎨
⎪⎪⎩

−474.0t if 0 < t ≤ 0.201
−95.26 if 0.201 < t ≤ 1
76.87+1.443

√
a−0.001316a

1+0.00001712a if 1 < t ≤ 2
76.87 as t → ∞

(60)
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Table 1 Example 1: solution table

Elastic leg Plastic leg
0 < t < 1 1 < t < 5

ε11
−2t

200
√

6

6
√

2 cos
(

π t
2

) − π
[
3 + 4

√
2 − 3t + √

2t + 15
√

2 sin
(

π t
2

)]

4000
√

3π

ε22
t

200
√

6
−

6
√

2 cos
(

π t
2

) + π
[
3 + 4

√
2 − 3t + √

2t − 15
√

2 sin
(

π t
2

)]

4000
√

3π

ε33
t

200
√

6

−3 + 8
√

2 + (3 + 2
√

2)t

4000
√

3

ε12 0

√
3
(−2 + 5π cos

(
π t
2

) + 2 sin
(

π t
2

))
2000

√
2π

ε̇e
11

−2

200
√

6
− 1

800

√
3

2
π cos

(
π t

2

)

ε̇e
22

1

200
√

6

1

800

√
3

2
π cos

(
π t

2

)

ε̇e
33

1

200
√

6
0

ε̇e
12 0 − 1

800

√
3

2
π sin

(
π t

2

)

ε̇
p
11 0 −−3 + √

2 + 3
√

2 sin
(

π t
2

)
4000

√
3

ε̇
p
22 0

−
√

2
3 + √

3 + √
6 sin

(
π t
2

)
4000

ε̇
p
33 0

(3 + 2
√

2)

4000
√

3

ε̇
p
12 0

√
3
2

[
cos

(
π t
2

)]
2000

σ11 MPa −5t

√
2

3

−5
[
3 sin

(
π t
2

) + 1
]

2
√

6

σ22 MPa
5t√

6

5
[
3 sin

(
π t
2

) − 1
]

2
√

6

σ33 MPa
5t√

6

5√
6

σ12 MPa 0
5

2

√
3

2
cos

(
π t

2

)

λ̇ = ‖ε̇ p‖ 0
1

800

N11
1

15

(
3
√

3 − 4
√

6
)

−−3 + √
2 + 3

√
2 sin

(
π t
2

)
5
√

3

N22
3 + 2

√
2

5
√

3

1

5

[
−
√

2

3
+ √

3 + √
6 sin

(
π t

2

)]

N33
3 + 2

√
2

5
√

3

3 + 2
√

2

5
√

3

N12 0
1

5

√
6 cos

(
π t

2

)

P11 MPa −800(−3 + √
2)√

3
−

200
[
−12 + √

2 − 3
√

2 sin
(

π t
2

)]
√

3

P22 MPa
400(6 + √

2)√
3

200
[
12 − √

2 + 3
√

2 sin
(

π t
2

)]
√

3
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Table 1 continued

Elastic Leg Plastic Leg
0 < t < 1 1 < t < 5

P33 MPa
400(6 + √

2)√
3

400(6 + 2
√

2)√
3

P12 MPa 0 200
√

6 cos

(
π t

2

)

σ33 =

⎧⎪⎪⎨
⎪⎪⎩

948.0t if 0 < t ≤ 0.201
190.5 if 0.201 < t ≤ 1
−112.5+1.272

√
a−0.001926a

1+0.00001712a if 1 < t ≤ 2
112.5 as t → ∞,

(61)

where a = e12.33t . The comparison of the computed
stresses are shown in Fig. 13.

Example 3 Single-element test for a linear Drucker–
Prager yield with nonassociativity

Similar to Example 1, a linear Drucker-Prager yield
function of the following form is considered,

f = r

r0
+ z

z0
. (62)

The parameters and strain path used in this example
are given in Tables 4 and 5. The strain path for this
example is devised such that the first two yield events
occur exactly halfway through the second and third
legs. Moreover, as illustrated in Fig. 14, the strain path
is designed so that the trial elastic stress rate will be
exactly parallel to the return projection direction in the
second leg and it will be exactly parallel to the yield sur-
face normal in the third leg. The exact solution to this
problem is given in Table 6. Figure 15 shows the com-
parison of stresses obtained from the exact solution and
the single-element simulation using a user-defined rou-
tine with nested algorithm implemented in LS-DYNA.

6 Discussion and conclusions

This paper has called attention to pathological shapes
of yield function contours (isosurfaces) and violations
of yield-function sign conventions that are often inad-
vertently present in typical in engineering models for
cracked and porous media. This topic is important

because numerical return algorithms rely on the yield-
function sign convention to decide if a trial stress state
is outside the yield surface, and because numerical
return algorithms rely on well-behaved yield contours
to return the trial stress to the yield surface. Some sim-
ple strategies were discussed for handling pathological
yield functions in numerical solvers.

To circumvent difficulties associated with patho-
logical yield function contours, and also to improve
numerical efficiency, a multi-stage return algorithm for
solving the classical damage component of constitutive
models for rocks and rock-like media was proposed.
Using an incorrect, but presumably more straightfor-
ward fast return iterator, the nested iterator is designed
to apply a correction that mitigates problems that can
occur under large excursions of the trial stress state
from the yield surface. Such issues are particularly rel-
evant in softening problems because the yield surface
can collapse in such a way that return algorithms have
difficulty locating the damaged surface. The two-stage
return algorithm allows using a robust return to the yield
or limit surface at the beginning of a time step as a
helper in finding the returned state at a softened yield
surface at the end of the step. Since the helper return
algorithm is robust (i.e., it always finds a point on the
yield surface), the only means of non-convergence is
potentially oscillating solutions in the correction step,
as is also a risk with Newton solvers.

The proposed multi-stage return algorithm is also
applicable to hardening. It is particularly attractive
because it can be used to improve existing return
algorithms that are robust but inaccurate because they
employ an incorrect return direction. The second stage
of the return algorithm is a correction of a predictor
obtained using a presumably efficient and robust return
algorithm.

The correction is exact if the yield surface is flat.
Otherwise, the corrected stress state is used as the start-
ing point for calling the original (fast, but incorrect)
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Fig. 10 Comparison of the fixed basis tensor components left
column with components as seen by an observer rotating with n
right column. The differences illustrate that the rotation of prin-
cipal stress directions cannot be interpreted as merely a basis

change of a fixed axis problem. The two are fundamentally dif-
ferent. The stress invariants remain constant after reaching yield,
but the stress tensor itself is not constant because its principal
directions change
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Fig. 11 Stress trajectory in the 3D submanifold spanned by the
tensors in Eq. 58. After yielding, the stress moves along a circular
path in this space that, despite appearances, should not be con-
fused with the octahedral plane in principal stress space. There
is no motion of the stress in the octahedral plane. Motion of the
stress in this plot occurs because the octahedral plane itself varies
in time

Fig. 12 Example 2: von Mises Plasticity under a constant strain
rate γ̇ . E1 is a unit tensor in the direction of the strain rate devi-
ator. E2 is a unit tensor orthogonal to E1. N0 is a unit tensor in
the direction of the initial stress deviator

Table 2 Example 2: material parameters

Parameter Value

Yield in shear, τy 165 MPa

Shear modulus, G 79 GPa

return algorithm, and applying the projection again.
The fast return function might return the stress to an
incorrect location either inadvertently (because of a

Table 3 Example 2: strain table

Time (s) ε11 ε22 ε33

0 0 0 0

1 −0.003 −0.003 0.006

2 −0.0103923 0 0.0103923

Fig. 13 The solution to the von Mises plasticity problem defined
in Example 2. The thick colored lines are the analytical solution.
The Thin black lines that overlay the exact solution a results
from a a user-defined routine with nested return algorithm imple-
mented in LS-DYNA

Table 4 Example 3: model parameters

Parameter Value

Bulk modulus, K 10,000

Poisson’s ratio, ν 1/3

Young’s modulus, E 10,000

Shear modulus, G 3,750

Lame modulus, λ 7,500

r0 50

z0 50
√

3

Yield normal, N
3S + I

2
√

3

Flow direction, M
6S + I√

39

Table 5 Example 3: strain table

Time (s) ε11 ε22 ε33

0 0 0 0

1 −0.009444 −0.009444 −0.009444

2 −0.04410 0.02122 0.02122

3 0.02788 −0.004776 −0.004776
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Fig. 14 Stress trajectory in r–z space for Example 3. The path
begins at the origin with an initial hydrostatic leg. The second
leg might appear to only briefly touch the yield surface, but it is
actually stagnating under extended plastic deformation. Align-
ment of the trial stress rate with P during that leg ensures that
there is no motion in stress space

theoretical oversight) or intentionally. In the latter cat-
egory, for example, the fast return algorithm might be
a simple radial return that scales down the magnitude
of the stress deviator, and then the superimposed itera-
tor projects this result onto the correct return direction.
In this case, the fast iterations are in one dimension
(possibly even analytical if the yield function is simple
enough), while the projection is generally applied in 6D

Fig. 15 Solution corresponding to the driving strains prescribed
in Table 5. The analytical results (thick lines) are shown along
with a numerical simulation from LS-DYNA using a user-defined
model with nested return algorithm (thin black lines)

stress space. By eliminating numerous higher dimen-
sional iterations, the nested algorithm can potentially
boost efficiency.

To date, the nested return algorithm and masking
of pathological yield contours have been implemented
and confirmed in a standard suite of over 30 benchmark
problems, several of which include analytical solutions.
This paper has presented additional case studies that
compare the numerical solver with analytical solutions.
Two of these case studies involved motion of the stress
around regions of curvature, either from the rotation of
the principal stress directions with no motion in prin-
cipal stress space or vice versa. The final case study
allowed verification of a proper return direction under
non-associative plasticity.

Table 6 Example 3: solution table

Leg End time Reason for ε11 ε22, ε33 σ11 σ22 σ22
ending leg

1E 1 Change in prescribed − 17

1800
− 17

1800
−850

3
−850

3
−850

3
strain rate

2E
3

2
Yield −9 + 16

√
6

1800
−9 − 8

√
6

1800
−50

3
(9 + 4

√
6)

50

3
(2

√
6 − 9)

50

3
(2

√
6 − 9)

2P 2 Change in prescribed −1 + 32
√

6

1800
−1 − 16

√
6

1800
−50

3
(9 + 4

√
6)

50

3
(2

√
6 − 9)

50

3
(2

√
6 − 9)

strain rate

3E
5

2
Yield

5 − 8
√

6

1800

5 + 4
√

6

1800

50

3
(2

√
6 − 3) −50

3
(3 + √

6) −50

3
(3 + √

6)

3P 2 Change in prescribed
11 + 16

√
6

1800

11 − 8
√

6

1800
160

√
2

3
− 110 −10

3
(33 + 8

√
6) −10

3
(33 + 8

√
6)

strain rate
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