
On 4-5 December 1998 researchers from several universities, national laboratories,
software companies, and government funding agencies met at Santa Fe, NM for the
1998 Scientific Integrated Development Environments for Knowledge, Information, and
Computing Workshop. The purpose of this meeting was to summarize the state-
of-the-art in the area of problem-solving environments (PSEs) for scientific and
engineering computation, and to map out directions for future research in the area. This
report presents some of the results from the meeting and recommends promising areas
for further work. This report begins with a justification of the need for PSEs, which are
also commonly called computational workbenches. Next a listing of characteristics that
many PSEs share is presented, followed by a small sample listing of current systems.
Design goals and future directions, with an emphasis on research issues, are outlined,
followed by summary findings and conclusions.

1. Reasons for PSEs in Scientific and Engineering Computing

Computation and simulation have become major driving forces in modern scientific research and engineering
design, and have been significant engines for national productivity and knowledge. Computational methods
provide tools that take us to the quantum level of sub-nuclear forces in quantum chromodynamics, to the
literally universal level of cosmology, and to a generally broader scientific understanding by allowing us to
encompass and digest systems as large-scale as ocean and climate modeling.

Increasingly, however, the complexity of the scientific computing process has become a major hindrance to
further progress. The computations have become more complex both in size and the amount and types of
computer-assisted facilities required. Ten years ago modeling fluid flows in a system with 5000 elements was
adequate to significantly advance the understanding of fluid dynamics; now scientists routinely must solve

problems with 106 or more elements. Additional physical phenomena such as thermal effects, moving
boundaries, and shock wave resolution must be modeled where previously they could be ignored or roughly
approximated. Scientists are using real-time data collection instruments, accessing and using large distributed
databases, and relying on sophisticated visualization systems for applications. The limits of current software
methodologies are being reached, and significantly more time is being spent in debugging and validating
code � in spite of the widespread availability and use of sophisticated debugging systems. This growth in
computational complexity requires computational researchers to move to a higher level of abstraction in
dealing with their computing systems. Problem-solving environments furnish that higher level of abstraction.

Other forces are also driving the development of computational workbenches. While even five years ago
most scientists using computational methods wrote and managed all of their own computer programs, now a
typical lab must use libraries and packages from a variety of sources, and those packages might be written in
many different computer languages. Engineers and scientists now have a wide choice of computational
modules and systems available, enough so that navigating this large design space has become its own
challenge. Scientists and engineers are seeking to couple large computational systems to get more accurate

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

1 of 18

simulations; prominent examples are combining ocean and climate models, or handling the interactions
between fluid flows and the structures containing those flows. This means teamwork and multidisciplinary
approaches are vital, since few can master all the required fields of expertise needed for a single one of those
coupled computations. PSEs provide a natural platform to enable collaboration and leverage expertise from
different fields. A computational workbench, for example, can provide resources for structures modeling
developed by a mechanical engineer, which a scientist can then use as part of a fluid flow simulation.

In addition to this horizontal leveraging, PSEs provide a basis for vertical integration of computational
knowledge. Most researchers will lack a knowledge of all the levels of techniques that are part of a major
simulation: the relevant disciplinary knowledge, the best computational techniques, the use of algorithms and
data structures, the associated programming techniques, the relevant GUI and HCI design principles, and
methods for mapping the computations to high-performance computer architectures. Computational
workbenches allow specialists at all levels of this computational hierarchy to contribute, without having to
become experts in all the other levels. Even when it is feasible for a single person or research group to master
the necessary details, it is a poor utilization of a researcher�s time: astronomers should be free to carry out
research in astronomy instead of spending significant time developing a visualization package. At the same
time, computational workbenches can give their users a choice in the level of details presented, so that an
astronomer who wants to customize or even develop a visualization package is still free to do so.

In all fields of computational science, the largest cost has shifted from computer expenses to researchers�
time. There is strong informal and some formal evidence that PSEs provide a significantly decreased time to
solution, implying reduced overall cost for the solution as well as more timely research. For example, the
PDE solving system DEQSOL was measured (compared to Fortran) in the late 1970s to provide a decrease in
programming time by a factor of about 100 and a decrease in execution time by a factor of about 3. For
another example, an informal survey by some workshop participants indicates that computational scientists
spend about half their time building tools rather than doing the actual science. In some fields which are
starting to use computational workbenches this is literally the difference between life and death � for
example, better techniques for computing and visualizing the location of brain cancers. By allowing
computations such as visualization or systems of equations solvers to be shared, it avoids unnecessary
duplication of effort. Finally, the integrated environments provided by PSEs help manage both the temporal
and spatial coherence that leads to efficient computations. This applies to the user�s mental model as well as
the data locality characteristics of the computation: Computational workbenches help people manage the
complexity that the scientific computing process introduces.

2. Common Characteristics of PSEs

As originally defined by John Rice,

A PSE is a computer system that provides all the computational facilities needed to solve a target
class of problems. These features include advanced solution methods, automatic and
semiautomatic selection of solution methods, and ways to easily incorporate novel solution
methods. Moreover, PSEs use the language of the target class of problems, so users can run them
without specialized knowledge of the underlying computer hardware or software. By exploiting
modern technologies such as interactive color graphics, powerful processors, and networks of
specialized services, PSEs can track extended problem solving tasks and allow users to review
them easily. Overall, they create a framework that is all things to all people: they solve simple or
complex problems, support rapid prototyping or detailed analysis, and can be used in
introductory education or at the frontiers of science.

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

2 of 18

Some synonyms are computational workbenches, component frameworks, and webs of science solvers. In this
paper we use these terms interchangeably, but tend to emphasize the computational workbench aspects for
issues dealing with human interaction. These systems share certain common characteristics:

A target class of science or engineering design problems.1.

Their use appears natural to people in the target application area, both in user interaction and ways of
thinking.

2.

Ease of use, reliability of results and low execution costs are all-important objectives.3.

Execution times and data sets are often enormous � this is often a distinguishing characteristic for
scientific and engineering computing.

4.

Large complicated generic science components are used. Such components may encapsulate, for
example, complete PDE solvers, or computer algebra systems.

5.

Large, opaque legacy components are used. An example is the use of a component that provides a
sparse linear solver, which the user need not examine in detail in order to use.

6.

Because few algorithms are robust or accurate for the entire range of applicable problems, multiple
solution paths or algorithms are provided.

7.

Algorithms are parameterized to account for problem features, solution requirements and resource
availability.

8.

Currently, considerable effort goes into building a typical PSE. This typically means that the effort
must be justified by building features that lead to an extended software life span. This brings
expectations of extensibility, architecture independence and portability.

9.

The computational workbench must handle a wide range of user expertise, from undergraduate students
to expert researchers.

10.

The computational workbench provides multiple levels of abstraction, separating user from layers of
details, and hides details on a given layer from the higher levels.

11.

Although not every PSE shares all of these characteristics, those used in science and engineering applications
will exhibit most of them.

3. Some Current Systems

The need for PSEs in scientific and engineering computations is in part evidenced by their proliferation. One
of the goals of the SIDEKIC workshop was to discuss existing systems to find what commonalties they have,
and what parts of those systems can either be shared, or generalized to a service that can be developed
independently and then shared. The PSEs discussed below are not an exhaustive listing and were selected
primarily to provide a sampling of the wide range of applications and capabilities modern computational
workbenches handle. They have been organized into large categories: workbench frameworks, component

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

3 of 18

composition frameworks, code composition and generation frameworks, and collaboration frameworks.
However, most of these systems fit into several or all of these categories and the classification is somewhat
arbitrary. The Problem Solving Environments web sites http://www-cgi.cs.purdue.edu/cgi-bin/acc/pses.cgi
and http://www.cs.vt.edu/~pse/ provide more PSE examples and related information.

3.1 Workbench frameworks

These provide the user with a sense of an arena in which the work is carried out. That arena often takes the
form of a computer window in which user enters commands or creates the application. Such systems include:

Matlab (http://www.mathworks.com), originally a high-level interface to numerical linear algebra
computations which has been extended via "toolboxes" to provide PSEs for applications including
signal processing, process modeling, and image processing. Matlab has also been extended in a natural
way to handle parallel computation through exploitation of its programming language�s operator
overloading feature.

Maple (http://www.maplesoft.com) and Mathematica (http://www.mathematica.com), computer
algebra systems that provide symbolic computing capabilities, formatted output, some code generation
capabilities (in C, C++, or Fortran) and graphics and visualization systems.

PELLPACK (http://www.cs.purdue.edu/research/cse/pellpack), which targets PDE-based applications
on high-performance parallel machines. Subsystems include finite element methods, foreign system
solvers, parallel execution, and a graphical user interface for problem specification and solution.

PETSc (http://www.mcs.anl.gov/petsc/petsc.html), a suite of data structures and routines for the
scalable parallel solution of scientific application problems modeled by partial differential equations,
which is being extended to wider categories of applications.

NetSolve (http://www.cs.utk.edu/netsolve), allows users to access both hardware and software
computational resources distributed across a network. NetSolve searches for computational resources
on a network, chooses the best one available and returns the computational solution to the user. Current
research is making NetSolve interoperable with a similar object-oriented system called Ninf
(http://ninf.etl.go.jp).

The AirShed Modeler (http://www.eng.uci.edu/mae/Faculty/dabdub/modeling.html), that provides a
workbench for simulations with different air quality models and algorithms.

Soliton Explorer (http://penguin.mcs.drexel.edu/Soliton/), an environment for exploring soliton
geometry.

Cumulvs (http://www.epm.ornl.gov/cs/cumulvs.html), a software infrastructure for the development of
collaborative environments which supports interactive visualization and remote computational steering
of distributed applications by multiple collaborators.

Webpellpack http://webpellpack.cs.purdue.edu) allows a user to define and run PELLPACK based
computations on a PC cluster located at Purdue University from any brouser. The remote user has
virtual access to the PELLPACK GUI and can upload/download the results of the computations. The
user can run the parallel PELLPACK solvers with limited overhead or knowledge of parallel
computing.

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

4 of 18

3.2 Component composition systems

These are characterized by providing a more generalized framework in which users can wire together
components to create a complete application. The components themselves are often binaries or executable
objects, but can represent resources as diverse as database servers, visualization systems, or remote
instruments. The components interact on a peer-to-peer basis rather than as clients and servers.

SCIRun (http://www.cs.utah.edu/~sci/scirun), is a scientific programming environment that allows the
interactive construction, debugging and steering of large-scale scientific computations. SCIRun can be
used for interactively for example to: change 2D and 3D geometry models (meshes), control and
change numerical simulation methods and parameters, and perform scalar and vector field
visualization. SCIRun uses a visual programming dataflow system and is extensible to a variety of
applications. SCIRun has been designed to work with third party modules written in Fortran, C, and
C++.

Component Architecture Toolkit (http://www.extreme.indiana.edu/cat/index.html), is a
component-based software toolkit designed to facilitate the construction of high-performance scientific
applications that can efficiently operate in heterogeneous distributed computing environments. CAT
provides tools for the dynamic location and use of distributed hardware and software resources.

Workbench for Interactive Simulation of Ecosystems (http://fedwww.gsfc.nasa.gov), is a modeling
environment to design ecosystem models by coupling different energy simulation simulations,
population dynamics engines, and databases.

3.3 Code composition/generation frameworks

These are distinguished by having as an end product code in a programming language, which is then
compiled and executed in a standard fashion. They differ from simple integrated development environments
in addressing parallel or distributed computing platforms and in conveying more of the high-level application
specific information which can then be used to provide end code which is better targeted for the run-time
platform. Examples include

POOMA/PAWS (http://www.acl.lanl.gov/PoomaFramework), is a set of C++ class libraries for
developing scientific computing code running on machines ranging up to supercomputers with
hundreds of processors, and a compact easy-to-read interface.

ATHAPASCAN (http://www-apache.imag.fr/software/ath1/), a high-level plug-in template library to
express parallelism in a generic way.

Spatial Aggregation Language (http://www.cis.ohio-state.edu/insight/sa.html), a framework for
organizing computations around image-like, analogue representations of physical processes in data
interpretation and control tasks.

SciNapse (http://www.scicomp.com), an environment for rapidly developing and prototyping programs
for solving partial differential equations by providing a high-level symbolic representation interface It
can also generate C or Fortran code implementing the solution strategy.

Falcon (http://www.csrd.uiuc.edu/falcon/falcon.html), an environment for the rapid prototyping,
development, support, and use of high-performance numerical programs and libraries for scientific
computation. Users develop programs in MATLAB and Falcon automatically generates parallel Fortran

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

5 of 18

or C++ code.

3.4 Collaboration frameworks

These concentrate on providing frameworks that allow multiple users at widely separated sites to work
together on a single problem. The form of collaboration can range from intelligent sharing of
experimenter�s electronic workbooks to actual real-time composition or steering of an application.

TechTalk (http://penguin.mcs.drexel.edu/~techtalk/), is a framework supporting shared Matlab, Maple
and chat sessions between users distributed on the network.

Shastra (http://www.ticam.utexas.edu/CCV/projects/shastra), is a computer supported cooperative
work system for geometric modeling, simulation, interrogative visualization and design prototyping
environments

Intelligent Archive (http://www.llnl.gov/ia/ia.html), environment integrates custom software with
commercial and public-domain software such as database systems and World Wide Web technologies
to provide access to disparate types of information, including computed and experimental data, papers,
reports, and notes.

In addition to these existing systems, several are under active development for applications ranging from the
DOE�s ASCI project to dynamic database formatting systems. As can be seen from the brief descriptions
these systems share several characteristics. More importantly, there is a tremendous amount of conceptual
overlap in their subsystems: many of them provide visualization modules, or access to libraries of standard
mathematical services such as eigenvalue solvers, etc. In spite of this, little code is reused among PSEs
because of the lack of interface standards between subsystems, and financial disincentives to provide reusable
software in research computing. One workshop recommendation in Section 6 deals with this.

4. Design Principles for PSEs

Given the wide range of application targets, system goals, and user base that existing systems address, it is
surprising that there is a set of design principles to which many PSE developers and users agree. These can be
grouped into three general categories: human-centered design layered, component-based architecture, and
ways of interacting with science and engineering resources.

There was unanimous agreement on the need to maintain the user as the center of design for PSEs. When
addressing the human-centered issues raised by development of PSEs, the metaphor of a computational
workbench proves to be a helpful tool with which to think about problem solving environments and how they
should be designed. For example, a laboratory notebook analog is one of the standard tools on a researcher's
workbench so a notebook is a critical generic component for any computational workbench. It is a component
which, if designed properly, can be reused in a number of different computational environments. Although
there may be a few cases where the metaphor doesn't quite fit, there seem to be few instances where it is
necessary to violate the computational workbench metaphor in thinking about the design and development of
computational support for scientific problem solving.

Design principle 1: A human-centered view should drive decisions about the architecture of computational
workbenches or problem solving environments. Illustrations of this fundamental design principle are detailed
in additional design principles and in the discussion of future directions for PSE work. Some of the design
principles described below are corollaries of this first principle rather than truly independent principles.

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

6 of 18

Design principle 2: The problem domain interaction style and interface of a computational workbench
should be structured or configured around how working scientists (the end-users) think about their scientific
problems and not around the underlying computational architectures required to support the computational
workbench. One useful model for thinking about this principle is that of talking to a colleague and explaining
what needs to be done and/or which tools are needed and how they are to be applied. The computational
workbench or PSE should provide for and allow the composition of components into a functioning system.
Thus the notations, tools, and components should mirror human thought patterns and ways of working on
projects. This design principle does not necessarily mean that software tools must imitate "manual" practices,
but it does mean that human cognitive characteristics and ergonomic factors should always be taken into
account.

Design principle 3: Problem statements should be natural to the application and not limited to idealized or
standardized mathematics/physics definitions. Effectively, the problem definitions required by the PSE
should include or make it possible for the end-user to specify both the symbolic representation of the problem
and the desired performance features of a solution. The PSE user interface might even include images of
laboratory equipment or devices that can be directly manipulated by the user to define the computation. For
example, it should be possible for the user to specify a cost-evaluation function to be used for resource
tradeoffs and optimization. That is, a user should be able to request a quick first approximation to a solution
or to specify that a very precise answer is more important than the time it takes to get that answer.
Consequently, wherever possible, the user should be allowed to make declarative problem specifications, i.e.,
users should only have to say what they want done but not how it needs to be done.

Design principle 4: Use participatory design in developing the architecture of the entire PSE, especially
those features allowing customization or tailorability. Engaging the scientific researchers (the end-users) as
collaborators in the development of their own computational workbench and tool set is essential in
facilitating interaction design choices and in preventing major, hard to fix design decisions which are
incompatible with the researchers� needs. Also, engaging end-users as collaborators in the development of
their own computational workbench and tool set is a proven and successful way of promoting the
development of ideas for new tools and new applications of existing tools.

Design principle 5: Make tailoring and customization easy and optional. Given that it is important to use
configuration(s) of components that are natural to people/problems, it is important to recognize that some
configurations are more natural than others are and should be favored in development work. Furthermore, a
computational workbench should incorporate some sort of programming language or other type of glue as a
fallback when nothing that suits a present need has been built or included in the current composition or
palette of tools, or when new components need to be incorporated in novel or innovative ways.

Design principle 6: It should be possible for the scientist to treat systems, tools, components and even
assemblies or combinations of components as a black box if desired. On the other hand, the researcher should
also be able to open up and modify various tools, components, or environments as desired. We anticipate that
the primary desire will be to simply use the mature, proven technologies and, as trust of the technology grows
over time, we anticipate less desire to examine the contents of a black box. Thus the user should retain the
control privilege of being able to give more detailed procedural descriptions when desired.

Design principle 7: Recommender systems are tools which provide advice for navigating among several
choices (problem formulation, algorithm selection, resource choices, etc.) Recommnder systems should be
context sensitive in providing people with advice that is customized to their background, expertise, and
current goals. It should be easy to turn on and off the advice system. It should be possible to tailor a

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

7 of 18

recommender to be automatic or suppressed when dealing with what a particular user considers routine tasks.
Similarly, the advice giving should be sensitive to "receiving" advice from the user at various levels ranging
from general guidelines to specific decisions. In addition, the computational workbench needs to make
domain-specific advice available at a variety of levels. Preferably the advice should be declarative, since it is
less of a burden on the user to specify what needs to be done without saying exactly how to do it. However, a
wide variety of advice should be possible, ranging from declarations in the problem definition through
keyword hints about techniques to use, to the use of programming or detailed manual configuration of
components.

Design principle 8: Computational workbenches or PSEs should support the tracking and recording of
problem requests, of partial experiment designs, of partial data, and of intermediate and final results. Since
the problem of which things should be included in the tracking and recording of information is in part a
domain-dependent, problem-specific issue, the user should have tailorable control over the process or the
configuration of what is being tracked, recorded or preserved for future use. At a minimum, the tracking and
recording done by the PSE should include check pointing and version control.

Design principle 9: There are different categories of users involved with computational workbenches and it
is desirable to have different sets of features for different categories of users. Computational workbenches
have the following three classes of users: the end-user/scientist/engineer, the integrator/vertical
customizer/domain expert, and the developer of PSE infrastructure and base components. People may have
different roles at different times or in different contexts, and it is important to recognize is that their goals and
needs can differ between roles. It is important to keep the easy stuff easy, even for developers, and
recognizing these three different roles facilitates making design choices.

Design principle 10: Collaboration technologies should be an integral part of computational workbench
design. For example, end-users should be able to create shared artifacts that they and their research
collaborators can see, annotate, and communicate about, regardless of whether the research group are
co-located. Their real-time collaboration on tasks should be possible quickly, transparently, and over diverse
and distributed locations. Furthermore, their communication about a shared artifact may need to be either
synchronous or asynchronous.

Design principle 11: Easy navigability and accessibility of the software architecture of the PSE helps makes
the PSE more usable. The software architecture should be layered and component-based with clear
separations. Layering refers to not just the usual design of software systems by separating hardware
resources, communication protocols, computational libraries, and user APIs, but also to provide different
levels of abstraction. Presenting separate layers of expression of the computation that range from the user
down to the computing infrastructure is also necessary, so that developers and users can operate at different
levels of expertise as needed. For example, a PDE solver may have a topmost symbolic interface for a user, a
lower level that allows entering C or Fortran expressions defining the PDE, and a bottom layer that allows the
user to directly tie together low-level numerical libraries. A naïve user need not navigate software levels of an
inappropriate level.

Design principle 12: Provide users with multiple levels of information about the computation. A biologist
may just need to be presented with summary results of a phylogenetic tree computation, while a developer of
tree similarity algorithms may need to find details of memory usage, computation rates, and load balancing
on a parallel machine for the same problem. The general goal is for a computational workbench to enable its
user to manage the complexity of designing an application, but this management needs to be supplied
simultaneously for users with a range of interests. At the same time the layers need to be clearly separated so
that operating at one level is independent of knowledge of requirements at a lower level.

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

8 of 18

Design principle 13: Use component-based software to build PSEs. As much as possible, subsystems of a
PSE need to be based on interchangeable, plug-and-play components that allow developers and users to
readily swap out components like visualization, or linear solvers, etc. Such architecture allows a wider range
of capabilities and updating of a PSE dynamically, without having to tear it down and rebuild it. An analogy
is automobile repair � changing the air filter should not require disassembling the transmission.
Component-based systems also allow experts in different fields to contribute, maintain, and improve
algorithms and capabilities within a component without requiring similar expertise from the PSE builders.
Furthermore, the PSE must not be restricted to one of anything: user interaction mechanism, formats,
algorithms, visualization, etc. For example, the same computational workbench should be usable from a GUI,
a scripting language, a programming language, or even another computational workbench. Scientific
computation often involve large size of active data objects so the component design must be able to move
components to the data as well as move data to the components; large data may even be immobile.

Design principle 14: Integrate the PSE with science and engineering instruments and devices. This is related
to design principle 8 above, but extends to direct connections to data gathering instruments as needed �
whether those instruments are physical (like remotely controlled telescopes) or virtual (such as a simulated
telescope.) Modern simulations often integrate data generating tools (e.g., data mining systems, remote
sensors, and lab equipment), with data presentation tools (e.g., visualization, production of papers, and
electronic publication on the Web) to provide faster turnaround for the complete scientific exploration
process.

Again, not every PSE will satisfy all of these design principles. The fundamental one, however, has universal
agreement: keep the human explorer as the center of the system, whether that explorer is a high-school
student or a senior research scientist.

5. Future Directions

Before outlining promising areas for future research and development work in computational workbenches, it
is important to state the long-term goals, ones that are both desirable and technologically manageable. This
leads to a non-exhaustive list of potential research directions and questions that should be addressed in the
development of computational workbenches. Part of this list consists of the fundamental problems that must
be solved in computer science infrastructure. Future work should target some specific criteria for success, and
lines of research and development that can not meet these relatively liberal standards should probably be
re-thought or abandoned.

5.1 Design goals

In keeping with the human-centric design principle, the goals are stated in terms of what the users need to
have:

It should be possible for researchers to design and/or analyze objects, systems, and experiments.

It should be possible for researchers to model how things work.

It should be possible for researchers to set up, execute and record "what-if?" experiments and studies.

It should be possible to automate routine repetitive tasks and partially automate any task with user
guidance.

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

9 of 18

It should be possible to translate between notations naturally and automatically. A scientist working on
a conceptually difficult problem may well need multiple notations and/or representations to think about
different aspects of the problem. Although not obviously part of a physical workbench, the notations
used to sketch out a computational workbench design before even starting to build something are a way
to match the workbench to the end-user.

The user should be offered a "palette" of tools and the ability to compose them. Typically a physical
workbench has a nearby palette of tools which are available for movement onto and use with the
workbench. The craftsperson should have ready to hand the complete set of tools needed to accomplish
the work to be performed and can bring each to bear on the artifact being created as the need arises.
Similarly, in scientific computing a well-designed environment has sets of tools and components that
build the structures indicated by the users� notations. These toolsets include both a basic set designed
to work together smoothly without gaps, and also some more specialized tools for efficiency. While the
creation of good physical work benches has had the chance to evolve over time, the creation of future
scientific PSEs in new domains requires careful design, domain analysis, and knowledge engineering
to identify appropriate tools and new ways to facilitate the interaction between tools and between tools
and users.

These should be recommender systems that are sensitive to the overall criteria used by the user in
formulating the problem and the current configuration of tool sets. The advice-giving systems should
be able to provide problem-specific hints on both the computational environment and on the domain
problem.

A computational workbench should be able to communicate with other entities. These entities include
other computational workbenches and desktop tools, components running on remote servers, remote
control instruments and data-gatherers, and people traveling or working from home without the full
workbench immediately available.

5.2 Research issues

The research questions that future work requires follow immediately from the above goals. These questions
range from generic human-computer interaction issues to fundamental technological and computer systems
research. Further progress in PSE technology requires significant research in all areas of computer science.
As an experimental systems field, this research must be coupled with development for validation and testing,
which significantly raises the cost.

Directions for Future PSE Development.

In thinking about the future research directions which need to be opened up to enhance the development of
computational workbenches for scientists and engineers, there are several topics which need to be explored.
Some derive from the design principles articulated above. Others derive from consideration of the current
state-of-the-art in PSE development. Still others derive from general considerations related to the broader
context created by current directions of computational capabilities. We do not pretend that the list described
below is exhaustive.

Research issue 1: Currently a number of bottlenecks inhibit communication between humans and PSEs
about goals and tasks. To remove these bottlenecks it is important to understand what they are and the
appropriate realm of solutions, i.e., which functions are to be performed by human users and which by the
computational workbench?

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

10 of 18

Research issue 2: As a part of the ongoing extension of computational workbenches, and in the interests of
reusability of components all the way from shared code to extensible tools, better understanding is needed of
problem notations and representations used by scientists and engineers. Which existing notations or problem
representations work well in which domains? Which representations or notations are domain-specific? How
can we best automate translation between notations?

Research issue 3: Compared with traditional modes of working, which useful communication
techniques/notations are missing from computational workbenches (e.g. geometry, back of the envelope
diagrams)? How can they be incorporated? Are there functionally equivalent alternatives that offer greater
ease of use or more power as a way of thinking about the scientific problems being solved?

Research issue 4: Given the potential of the computer to record massive amounts of information, which
information is useful to the problem solver in tracking and logging? What techniques are useful in finding out
about or recapturing a particular state in the problem solving process? What information is useful to PSE
developers and algorithm designers in order to assess and improve PSE performance and reliability? How can
this information be collected as input to data mining systems? Can generic database systems be used here? If
so, how?

Research issue 5: Recommender systems have the potential to provide advice or automatic selections for
options in problem formulation, algorithms, and computer resources. Which knowledge is most useful for
good recommendations in these areas? How is this knowledge collected for data mining or learning? Can
ordinary production use of a PSE provide useful information for the knowledge base of a recommender
system? Can generic recommender systems be constructed analogous to systems for visualization, symbolic
mathematics, etc.? In what form should the advice be couched? Is it possible to anticipate the user�s needs
for advice in ways that solve both the immediate goal of helping the user past a difficulty and that of
facilitating the long-range goal of improving the user�s expertise with the system and the problem domain?

Research issue 6: Computational workbenches should support both individual and multi-user tracking,
recording, etc. so which actions, activities and results need to be tracked or logged? Collaborative problem
solving may involve people at globally distributed sites. How is an appropriate record of collaboration
presented? In addition, while user control over the collaboration set up must potentially be available to
multiple users? What are the mechanisms for maintaining a master control token? Collaboration technologies
need to become an integral part of PSE design so that people can create shared intellectual artifacts, which
can be viewed, annotated, and communicated quickly and transparently among diverse distributed locations.
What mechanisms best enable this kind of scientific teamwork?

Research issue 7: One cost-mitigating approach is to leverage existing and commercial software whenever
possible and reasonable. Interoperability with desktop tools enable scientific applications to increase
scientific productivity and save development costs for auxiliary capabilities such as text editors, word
processors, spread sheets, and graphics programs. How can high performance scientific computing best be
made interoperable with desktop computing environments? Can these tools be tightly interpreted into PSEs?

Research issue 8: Because the commercial market does not fully support scientific and engineering
computing per se, sharing software development among scientific research groups is another promising
approach. Several subsystems of current and planned computational workbenches can be shared amongst
groups. One example is symbolic computer algebra systems � a PSE for solving differential equations may
need such a system for user input and basic preliminary manipulations - whose development cost can be
shared with workbenches for performing chemical equation balancing, research into computer algebra, or

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

11 of 18

numerical linear algebra. In part this code development sharing is a primary driver behind the move to
component-based architectures. Preventing wheel reinvention and "not invented here" syndromes is essential
to leverage expertise, particularly when scientific computing must compete economically with business and
financial for technologically trained personnel. How can workbench developers best collaborate and share
software creation?

Research issue 9: Shifting to a component-architecture basis for computational workbenches requires the
development of high-level standards for scientific component interfaces and interoperability, so that a
component can be easily plugged into multiple computational workbenches. It also implies the creation of an
economic marketplace to support the design of scientific components and frameworks. Such an economy
need not be completely monetarily based, but some reward mechanisms must be in place to encourage
component developers to invest the additional 30-50% effort that software engineering research indicates is
necessary to create reusable code. What form should interface standards take? How can the scientific
computing world best encourage reusability in components?

Research issue 10: Distributed components in PSEs are required to spread the work load among compute,
visualization, and remote instrument servers as well as to support collaborative problem solving. This entails
its own set of difficulties. Computational workbenches need to provide quality of service functionality and
fault tolerance for processors, network connections, and system information that allows objects to be moved
around adaptively in the distributed environment. How should migratory behavior, with components seeking
suitable hosts and hosts reinstantiating components that failed on other hosts, be achieved? Components that
provide introspective and reflective capabilities need to be investigated to allow highly dynamic problem
solving, with new algorithms and components hot-wired into an application in the midst of a session.
Information about these dynamically introspective interfaces also need to be provided at some level to users
and PSEs, so they can be notified about the availability of these new resources. More generally, practical user
interfaces to distributed computing and networked resources must be provided for both developers and users.
How can the advantages of distributed computing be added to computational workbenches? How can its
shortcomings be mitigated?

Research issue 11: Error detection and handling are critical issues for scientific PSEs. There should be
mechanisms that check or assist checking for errors in problem formulation, computational scheme used,
lower level software execution, and hardware faults. Many of these mechanisms are already present in robust
problem solving environments and often automatic compensation is possible. However, many errors require
attention from the user. What mechanisms can provide high reliability for PSE computations? A typical
validation method is to compare computed results with other supposedly identical results. The latter can come
from other computations, analytic solutions or experiments. How can PSEs best facilitate the validation of
answers? The error and exception handling is seriously compounded in distributed environments where one
may have difficulty even identifying the software or hardware component that failed, and it needs to be made
more robust even in standard single-platform PSEs. Part of error handling is checkpoint and restart
capabilities, which are needed for long running problem sessions subject to system failures. While much
research is needed to provide checkpointing for PSEs, their application-tailored nature provides opportunities
not available in general scientific computing. For example, instead of saving gigabytes of data representing
the entire state of a discretized PDE, it may be more efficient to store a few hundred bytes giving its symbolic
representation and recreate the discretized system when restart is required. A computational workbench can
potentially provide the level of application-specific knowledge needed to optimize error detection and
handling. How should validation, error handling, exception handling, and restart/checkpointing capabilities
be provided to computational workbenches?

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

12 of 18

Research issue 12: One area closely related to error and exception handling is performance information.
Because computational workbenches shield the user from low levels of programming details, they also tend
to hide sources of poor performance from the user�s scrutiny. A common example is with computer algebra
systems: expanding and simplifying algebraic expressions sometimes causes an explosion in the size and
complexity of the underlying data structures used for the computations. The user only knows that the package
runs out of memory, or takes extremely long amounts of time � but has no clue of how to improve that
situation. Mechanisms need to be developed to provide better performance information to users so they can
ask the questions

Is there a problem with execution?

Where are the resource limits causing performance problems?

When will the computation complete?

Will the computation run faster if more resources are provided?

Research issue 13: One difficult aspect of complex computations is handling general geometric shapes.
Unlike for numerical, symbolic or discrete computations, facilities are missing that reflect the common
geometry operations that people use in problem solving. Examples here include "use this shape", "join these
points or curves", "subdivide this curve into 5 smooth pieces", "make these 2 point corners to fit to these
data", and let x be a point near the center of this domain". Mesh and grid generators are used to discretize
geometry but this software is very complex and less than completely robust. Is it feasible to create a generic,
natural geometry processing/manipulation language and system for geometry? If so, how is this done? If not,
what are the best alternatives? Can we even make mesh/grid generators that are generic and robust?

Research issue 14. The final important research issue is the integration of modeling, simulation, and
visualization components. While this is related to the "reusability" of components, there is a more
fundamental issue � how to leverage the integrated architecture and nature of a PSE. How do we define the
underlying data structures, scheduling issues, coherence issues, etc. to provide interoperability between
components that address fundamentally different objectives? For very large-scale (ASCI type) problems this
may require, for example, using the same mesh for both computation and visualization. How can we provide
future optimization encompassing the entire computational science pipeline of components? Can we develop
algorithms that optimize the integrated modeling, simulation, and visualization pipeline, instead of the current
approach of locally optimizing each component separately?

In addition to these research issues, several other technological areas must be addressed before PSEs can be
more widely used:

Creation of architecture-independent PSE components

More flexibility and adaptivity in PSEs

Reuse of PSE frameworks for multiple application areas

Scalability of PSEs, both upwards to advanced multiprocessor systems and downwards to off-the-shelf
component PCs

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

13 of 18

Integration with database and data mining systems

Control of instruments as well as their access

Security and functional guarantees for PSE systems

Mixed symbolic-numeric-intelligent-geometric problem solving

Some of these challenges are common to computational science and engineering research, but addressing
them for PSEs provides tremendous utility for multiple application in multiple areas �the potential rewards
are too great to ignore or postpone the work.

5.3 Evaluation guided development of PSEs and tools

In the context of a research and development project there are many lines of research that can and should be
pursued, developed, evaluated, and then either abandoned or pushed further. However, the ultimate reason for
developing PSEs for science and engineering lies in their use by one or more target groups of users. Any
computational workbench, PSE, or computational tool intended for "industrial strength" use ought to be able
to demonstrate relative performance advantages rooted in the end-user�s needs. In other words, speed of
computation is not the only performance metric that must be served. The dominant cost of most science and
engineering computing projects is in software development.

At a generic and domain independent level, criteria for assessing the success of a particular computational
workbench or tool seem quite straightforward. In addition to being stable and reliable and in addition to
producing correct results at the desired level of precision, a successful PSE should be able to demonstrate
examples of successful problem solution in some problem domain area close to the evaluator and/or user. The
successful computational workbench should enable the user to do something new which could not have been
done before or it should enable the user to complete old tasks much faster (3- 10 times) than before and with
at least a 50-60% decrease in workload for the user.

6. Findings

Whether known as PSEs, computational workbenches, webs of science solvers, or component frameworks,
there is an emerging class of high-level software systems that provide support for a wide range of scientific
and engineering endeavor, and which present an opportunity to boost national productivity in areas affected
by technology. Given their breadth of applicability and the diverse nature of groups developing them, it is
surprising but encouraging that broad agreement holds on what needs to be done.

Computational workbenches help manage complexity, by abstracting the problem solving process to a level
more natural to the application users. This entails an entire set of difficult issues of just how people interact
with computer systems: what are the natural communication protocols and how can computer systems
facilitate the collaborative mechanisms that users find natural? Unlike business and PC applications,
scientists and engineers also need the capability to interact with their computational workbenches at multiple
levels. Those levels need to be insulated from each other, but open to users who need to look "under the
hood" for performance or other reasons.

The need now is for collaboration, software reuse and component sharing amongst computational workbench
researchers and developers. The human capital available is too limited to allow a "not invented here"

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

14 of 18

syndrome to continue in scientific software research. More support is needed for common and shared
infrastructure support (such as visualization or symbolic computing components), and to support researchers
who expend the additional effort to turn their work into reusable components. Collaboration between
government labs, funding agencies, industry, and researchers needs to be encouraged to hasten the transfer of
research PSE technology to the emerging component framework marketplace.

Computational workbenches are excellent tools to introduce students to scientific computing early, and
provide opportunities for integrating research and education at universities. At the same time, students in
science and engineering should be exposed to more tools and high quality software as early as possible. This
implies more funding for introducing commercial quality software into the classroom.

7. Funding Recommendation

The issues of Section 5 present an enormous agenda of challenging research projects. Some issues are
focused on PSEs (e.g., issues 1 and 4) and others have broad scope (e.g., issues 6 and 9). Some issues involve
fairly mature methodology (e.g., issues 10 and 12) and others are in nearly virgin territory (e.g., issues 3 and
13). Rather than try to prioritize these, we observe two facts. First, substantial progress needs to be made for
all these issues in order for PSEs to achieve their potential. Second, several of these issues could justifiably
consume the entire budget of a typical NSF program for a decade or so.

What is the potential of PSE technology? It can revolutionize computational science and engineering by
dramatically reducing software costs. Recall that software costs dominate the budgets of most computational
science projects. This is true even for the Department of Energy's ASCI project where very visible $100
million machines are being purchased. The President's new information technology initiative (PITAC)
emphasizes an attack on "the software problem". PSEs are a major part of the solution of the software
problem for science and engineering. Further, much of the technology and infrastructure is generic and can be
transferred to medicine, finance, management, manufacturing, etc.

Advances in PSE technology can be funded in two ways. First, groups with large, important projects develop
a PSE for their application. The R&D cost of the PSE is folded into the project budget and largely invisible as
it is primarily salaries. Second, groups can develop the infrastructure for PSEs and collaborate with
application groups to create specific PSEs. The R&D cost here is quite visible as infrastructure expenditure. It
is clear that the second way is more effective and economical, yet most of the PSE work is funded the first
way. There is an unfortunate practice in the national science establishment (both government and industry)
not to fund software infrastructure directly. Hundreds of millions, even billions, are spent on science
infrastructure items like telescopes, ships, reactors, accelerators and wind tunnels. But relatively little is spent
on software infrastructure; projects are expected to develop most of their software from scratch, and with
money diverted from applications

The workshop's recommendation for funding is simply:

A major investment is required to support software infrastructure in general and, for the science
and engineering communities in particular, to support PSE development.

8. Bibliography

A comprehensive bibliography on PSEs is included in the report by E. Gallopoulos et al.; it contains 140
items up to 1991. This bibliography has been expanded by Gallopoulos to contain about 420 items up to

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

15 of 18

1999. It will appear in the book Problem Solving Environments for Computational Science (E. Houstis et al.,
eds.) to be published in 2000 by IEEE Press.

Figure 1. PSE related publications by years (left) and cumulative (right).

Appendix: List of Workshop Participants

Name Institution Email

Kamal Abdali National Science Foundation kabdali@nsf.gov

Peter Beckman Los Alamos National Laboratory beckman@lanl.gov

Randall Bramley CACR, Caltech bramley@cacr.caltech.edu

Bruce Char Drexel University bchar@mcs.drexel.edu

Richard Fateman Berkely Laboratory fateman@cs.berkeley.edu

Dennis Gannon Indiana University gannon@indiana.edu

Steve Hague Numerical Algorithms Group steve@nag.co.uk

Thomas Hewett Drexel University hewett@drexel.edu

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

16 of 18

Joe Hicklin MathWorks joe@mathworks.com

Benjamin Hinkle Waterloo Maple Inc bhinkle@maplesoft.com

Jan Hull Los Alamos National Lab jhull@lanl.gov

William Humphrey Los Alamos National Lab bfh@lanl.gov

Chris Johnson University of Utah crj@cs.utah.edu

Jeremy Johnson Carnegie Mellon University jjohnson@mcs.drexel.edu

Lennart Johnsson University of Houston johnsson@cs.uh.edu

Erich Kaltofen North Carolina State Univ. kaltofen@math.ncsu.edu

Elaine Kant SciComp Inc. kant@scicomp.com

Steve Karmesin Los Alamos National Lab karmesin@lanl.gov

Thomas Kitchens Department of Energy kitchens@er.doe.gov

Suresh Kothari Iowa State University kothari@cs.iastate.edu

Robert Lucas Lawrence Berkeley Lab rflucas@lbl.gov

David Padua UIUC padua@cs.uiuc.edu

Steve Parker University of Utah sparker@cs.utah.edu

James C. T. Pool Caltech jpool@cacr.caltech.edu

Naren Ramakrishnan Virginia Tech naren@cs.vt.edu

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

17 of 18

John Reynders Los Alamos National Lab reynders@lanl.gov

John Rice Purdue University jrr@cs.purdue.edu

Mary Anne Scott Department of Energy scott@er.doe.gov

Neil Soiffer Wolfram Research soiffer@wri.com

Alina Spectrov Los Alamos National Lab alina@lanl.gov

Martin Staley Los Alamos National Lab

Andrew Strelzoff UC Santa Barbara strelz@engineering.ucsb.edu

Kothari Suraj Iowa State University

Boleswaw Szymanski Renesselaer Polytechnic szymansk@rpi.edu

Marsha Valdez Los Alamos Technical Associates mvaldez@lata.com

Report of workshop on Problem-Solving Environments and Scientific IDEs for Knowledge, Information, and Computing

18 of 18

