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We introduce TOPOMS, a computational tool enabling detailed

topological analysis of molecular and condensed-matter systems,

including the computation of atomic volumes and charges

through the quantum theory of atoms in molecules, as well as

the complete molecular graph. With roots in techniques from

computational topology, and using a shared-memory parallel

approach, TOPOMS provides scalable, numerically robust, and

topologically consistent analysis. TOPOMS can be used as a

command-line tool or with a GUI (graphical user interface), where

the latter also enables an interactive exploration of the molecular

graph. This paper presents algorithmic details of TOPOMS and

compares it with state-of-the-art tools: Bader charge analysis v1.0

(Arnaldsson et al., 01/11/17) and molecular graph extraction

using Critic2 (Otero-de-la-Roza et al., Comput. Phys. Commun.

2014, 185, 1007). TOPOMS not only combines the functionality of

these individual codes but also demonstrates up to 43 perfor-

mance gain on a standard laptop, faster convergence to fine-grid

solution, robustness against lattice bias, and topological consis-

tency. TOPOMS is released publicly under BSD License. VC 2018

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.25181

Introduction

An important aspect of exploring the physical and chemical

properties of complex molecular and condensed-matter sys-

tems is to understand the charge transfer between atoms and

identify the presence of ionic charges and bonding structures.

However, atomic charges in molecules are not directly observ-

able through experimentation or simulation. Instead, the den-

sity of electronic charge can be calculated through quantum

mechanical theory, which can then be used to compute

atomic charges and other related properties.

This research direction, called the Quantum Theory of Atoms

in Molecules (QTAIM),[1–3] suggests that it is possible to under-

stand intra- and intermolecular interactions based on the

topology of the electron charge density. According to the

QTAIM, the topological features of the electron charge density

field, i.e., its critical points, basins, and ascending and descend-

ing manifolds, have physical meaning and can be used to par-

tition the space into topological basins*—regions in space

associated with individual atoms. Each such atomic basin typi-

cally contains a single charge density maximum and is sepa-

rated from other basins by interatomic- or zero-flux surfaces—

surfaces on which the normal component of the gradient of

the electron charge density is zero. QTAIM analysis† enables

computing atomic properties such as atomic volume and

atomic charge by integrating within atomic basins, and facili-

tates downstream analysis by describing atomic interactions,

especially chemical bonding. Since it relies only on the elec-

tron charge density, the QTAIM has proven to be a versatile

and general framework for exploring molecular and

condensed-matter systems, and can be used to explore the

data obtained through various sources, e.g., quantum mechan-

ical calculations and X-ray crystallography.

Performing QTAIM analysis, however, is not a simple task

and poses many computational challenges. Several tools with

increasing accuracy and robustness have been developed.[4–14]

While these tools have been successfully utilized over many

years, they do not take advantage of parallel computing archi-

tectures, and therefore can be prohibitively slow when applied

to large-scale data. Furthermore, these tools generally focus

on computing atomic volumes and corresponding charges

only, even though the underlying framework, topological anal-

ysis, can provide richer information about the data. For exam-

ple, the so-called molecular graph[15] describes how the atoms

(maxima of the electron charge density corresponding to

atom centers) are connected, and is a subgraph of the
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complete topological graph, which describes the connectivity

between all critical points in the field.

By providing an abstraction that encodes the structural

properties of the underlying function, a general topological

framework can enable direct reasoning using the features of

interest. Detailed topological analysis of scalar functions, in

general, has proved useful for a variety of other scientific

applications, such as combustion science,[16,17] turbulent mix-

ing of fluids,[18] and cosmology.[19] In the context of chemistry,

topological techniques have primarily been applied to perform

bond detection.[20,21] Furthermore, a more general research

field, the Quantum Chemical Topology (QCT),[22] aims at under-

standing the topology of other relevant fields, such as electron

localization function and molecular electrostatic potential.

Although there exist tools, such as Critic[23] and Critic2,[24]

for detailed topological analysis to support the QTAIM and the

QCT, they have significant limitations. For instance, although

Critic2 offers versatile functionality, it can generate topologi-

cally inconsistent results, typically due to the presence of noise

and discretization artifacts.[24]

In this work, we present TOPOMS, a scalable, numerically

robust, and topologically consistent computational tool to per-

form the two key tasks aforementioned: (1) analysis of atomic

basins, i.e., the computation of atomic volumes and associated

charges, and (2) the extraction of detailed molecular graphs.

To accomplish this, TOPOMS computes the Morse–Smale com-

plex (MSC), a topological construct that captures the overall

shape of a function by studying its gradient behavior, and uti-

lizes it for analysis. TOPOMS stands for topological analysis of

molecular systems using Morse–Smale complexes. While

exploratory MSC techniques have previously been applied to

the analysis of chemical systems,[20,21] TOPOMS is the first-of-its-

kind software package that explicitly maps these concepts to

QTAIM analysis, and leverages their advantages in software. In

particular, the focus of TOPOMS and the contributions of this

paper are listed below.

� Scalability. TOPOMS uses a shared-memory parallel

approach for the computation of topological basins and

the complete topology of the given function. Our embar-

rassingly parallel algorithm scales with the available num-

ber of cores, and shows up to 43 performance gain on a

standard laptop computer.

� Topological consistency and numerical robustness. By

using a combination of highly accurate numerical integra-

tion and robust discrete representations, TOPOMS provides

numerically robust results and guarantees a topologically

consistent molecular graph. We demonstrate fast conver-

gence to fine-grid results and stability with respect to the

mesh orientation, i.e., low lattice bias.

� Interactive denoizing. TOPOMS provides an interactive

interface to explore the impact of noise and discretiza-

tion artifacts on the resulting molecular graph. The topol-

ogy of the data can be simplified by systematically

removing noisy features in order of their importance.

� Simple and open-source API. TOPOMS provides a simple-

to-use API, and can be used as both a command-line

tool or with an associated GUI (graphical user interface)

alongside a viewer. This paper describes the architecture

of TOPOMS, which is released open source under BSD

license on https://github.com/LLNL/TopoMS.

Although the scope of this paper and the first version of

TOPOMS introduced here is limited to a detailed analysis of

electron charge density, our software framework allows

expanding the scope to encompass other chemical fields, i.e.,

the computation of QCT, which is planned for the future.

Fundamentals

The definitions used in the QTAIM[1–3,15] find strong parallels in

Morse theory,[25] a well-studied branch of scalar-field topology.

Indeed, when properly accounting for the singularities at atom

locations, the QTAIM’s “stable configurations” induced by the

electronic charge density field satisfy the nondegeneracy

requirements that define a Morse function.[25, Chapter 1] Our

principal motivation for recasting the QTAIM in terms of Morse

theory is that many efficient and robust algorithms have been

introduced for the computation and manipulation of the

topology of the latter,[26–30] enabling fast, accurate, and self-

consistent topological analysis of electron charge density

fields. In particular, by first computing the Morse–Smale com-

plex,[26] a topological structure that encodes the gradient flow

behavior of a function, it becomes straightforward to extract

nuclear positions, atomic interaction lines, interatomic surfaces,

and basins of attractors directly from the charge density,

which can then be mapped consistently to the meta-

information about the system under investigation. This section

first discusses the relevant background in topological analysis

of scalar fields, and then connects it to the QTAIM.

Topology of scalar fields

Given a smooth function in three-dimensional (3D) space

f : M! R, a point pc is called a critical point if the gradient of

f at pc is zero, i.e.,

rf ðpcÞ5
of

ox
;
of

oy
;
of

oz

� �
pc

5 0:

A critical point is nondegenerate if the Hessian, i.e., the matrix

of second partial derivatives at the point, is invertible. Equiva-

lently, a critical point is nondegenerate if the rank x (number

of nonzero eigenvalues) of the Hessian matrix equals 3 (in 3D).

A nondegenerate critical point pc of f can be classified based

on its signature r, which is the algebraic sum of the signs of

the eigenvalues of the Hessian.[25] The number of negative

eigenvalues is also called the index of the critical point.‡ Table

1 shows the four types of critical points that can exist for func-

tions in 3D.

A function f is a Morse function if all its critical points are

nondegenerate; any smooth function f can be infinitesimally

‡The reader may encounter an alternate definition of index as the number

of positive eigenvalues in some literature.[31]
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perturbed into a Morse function. An integral line in f is a path

in M whose tangent vector agrees with the gradient of f at

each point along the path. The integral line passing through a

point p is the solution to

o

ot
LðtÞ5rf ðLðtÞÞ 8t 2 R; (1)

with initial value Lð0Þ5p. Each integral line has an origin and

destination at critical points of f corresponding to the limits as

t respectively approaches 21 and 1. Ascending and descend-

ing manifolds are obtained as clusters of integral lines having

a common origin and destination, respectively. The descending

manifolds of f form a cell complex that partitions M; this parti-

tion is called the Morse complex. Similarly, the ascending mani-

folds also partition M in a cell complex. In a d-dimensional

domain, an index-i critical point is the destination for an i-

dimensional descending manifold and the origin of a ðd2iÞ-
dimensional ascending manifold. A Morse function f is a

Morse–Smale function if ascending and descending manifolds

of its critical points intersect only transversally. This intersec-

tion forms a cell complex known as the Morse–Smale complex,

whose 1-skeleton is formed by nodes at critical points of f, and

arcs, the 1-manifold integral lines connecting nodes that differ

in index by one.

A fundamental result in topology is the Poincar�e–Hopf theo-

rem, which connects the topology of a given domain with the

space of possible vector functions on that domain. In the context

of Morse theory, an equivalent result states that the alternating

sum of critical points by index, also called the Morse sum, equals

the Euler characteristic vðMÞ of the underlying domain M, i.e.,

vðMÞ5
X

i

ð21Þici; (2)

where ci is the number of critical points of index i. Since the

Euler characteristic is an invariant of M and does not depend on

f, the strong implication of this result on the topology of f is that

there cannot exist a physically consistent f that does not satisfy

this property. Therefore, any unwarranted critical points, e.g.,

due to noise, must always exist as pairs of critical points of con-

secutive indices: a local maximum and a 2-saddle, a 2-saddle

and a 1-saddle, or a 1-saddle and a local minimum. Morse theory

also defines a systematic way of canceling these pairs of critical

points such that the result described above remains valid.[31]

Nonperiodic domains, such as often used to simulate isolated

molecular systems, are homeomorphic (topologically

equivalent) to a 3-ball (3D filled sphere), with v511. However,

domains periodic in all three directions, which are often used to

represent condensed-matter systems, are homeomorphic to a 3-

torus, for which v 5 0. To be topologically consistent, an analysis

must, at least, respect these invariants.

The quantum theory of atoms in molecules (QTAIM)

QTAIM analysis[1–3,15] is a powerful and widely used tool to

study chemical bonding, in particular, by analyzing the charges

captured by atoms in molecules. The QTAIM utilizes topologi-

cal ideas to provide mathematically rigorous and physically

intuitive descriptions of atomic properties. By studying the

gradient behavior of the electron charge density q, the QTAIM

decomposes the space into regions associated with individual

atoms. Such a decomposition is computed by considering the

critical points of q. The QTAIM associates each type of critical

point with an element of the chemical structure, as summa-

rized in Table 1. At the positions of atomic nuclei, (local) max-

ima of q are found; such maxima are called nuclear critical

points (NCPs). In the QTAIM with ideal point-nuclei, a nuclear

maximum is not a true critical point, as rq is discontinuous

there. However, in nature, nuclei are finite (though small) and

so critical points exist at nuclear positions. Furthermore, in

pseudopotential calculations, potentials are smooth at the

nuclear positions and so critical points exist there. The gradi-

ent trajectories described in the QTAIM are equivalent to inte-

gral lines in scalar functions. Between two NCPs, there may

exist a bond critical point (BCP) or 2-saddle if the correspond-

ing atoms share electrons. The BCP, therefore, describes the

“position” of the bond, and the gradient trajectories describe

the atomic interaction lines, which correspond to bond paths[15]

when the forces on all atoms vanish. In terms of Morse theory,

these atomic interaction lines are identified by the 2-saddle-

maximum arcs of the Morse-Smale complex, or equivalently,

the ascending 1-manifolds of 2-saddles. The basin of attraction

associated with an NCP, i.e., the region whose gradient trajec-

tories of q terminate at the NCP, defines the atomic basin

occupied by the corresponding topological atom. These atomic

basins are identified by descending 3-manifolds of the maxima

of the Morse–Smale complex. Basins are separated by

interatomic surfaces, which satisfy the zero-flux condition, i.e.,

rqðxÞ � n̂ðxÞ50; for every point x on the surface, where n̂ðxÞ
is the unit normal to the surface at x. These separation surfa-

ces are equivalent to the descending 2-manifolds of 2-saddles

of the Morse–Smale complex. A more detailed discussion of

different types of critical points, gradient paths, and manifolds

was provided by Malcolm and Popelier.[32]

Once atomic basins are identified, various physical proper-

ties can be computed for each atom. For example, given the

atomic basin X of a topological atom, the corresponding

atomic volume VX and atomic charge qX,§ can be computed

by integrating over the basin, i.e.,

Table 1. Four types of critical points exist for 3D scalar functions, each

having a specific meaning in the QTAIM. Critical points are classified

based on their index, the number of negative eigenvalues of the Hessian

matrix, or equivalently, their rank x and signature r.

(x; r) Index Type of critical point Name in the QTAIM

(3;23) 3 Local maximum Nuclear critical point (NCP)

(3;21) 2 2-saddle Bond critical point (BCP)

(3;11) 1 1-saddle Ring critical point (RCP)

(3;13) 0 Local minimum Cage critical point (CCP)

§Also known as Bader charge in the literature.
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VX5

ð
X

dx;

qX5ZX2

ð
X
qðxÞ dx;

where dx is the volume element and ZX is the charge of the

corresponding nucleus.

Overview of combinatorial underpinnings

One of the fundamental techniques of computational science

is to represent functions via discrete samples, e.g., on the ver-

tices of a grid. While Morse theory (and the QTAIM) is well

defined for continuous functions, discretization imposes chal-

lenges for subsequent analysis of the functions, as the interpo-

lation used to reconstruct functions between sample points

often biases analysis results. Challenges in direct numeric com-

putation of Morse–Smale complexes include consistent identi-

fication of critical points and ensuring that integral lines do

not cross separatrices. The approach taken in TOPOMS embraces

the discrete world of the mesh representation of space, allow-

ing for robust, combinatorial computation, ensuring consis-

tency in the computed Morse–Smale complex that forms the

basis for extracting features of the QTAIM. The adaptation of

continuous Morse theory to meshes, called discrete Morse

theory, was introduced by Forman,[33] and has formed the

basis for the most successful algorithms for computing Morse–

Smale complexes for volumetric data.[27–29] The motivation for

using discrete Morse theory is that in computing an integral

line (as in eq. (1)) and its destination, the limit as t !1
reduces to a simple traversal of cells according to a discrete

flow operator U. TOPOMS combines both numeric and combina-

torial approaches to attain an unbiased, accurate decomposi-

tion of space while retaining consistency in the topological

representation.

We provide a brief introduction to the terminology and the-

oretical background of discrete Morse theory that is used in

TOPOMS. Let M be a mesh representation of M, and f : V ! R

be a scalar-valued function defined on V , the set of vertices of

M. For volumes represented as 3D regular grids, M is com-

posed of cells of dimension 0, 1, 2, and 3, called vertices, edges,

quadrilaterals, and hexahedra, respectively. The boundary of a

cell a, denoted @a, is composed of the lower dimensional cells

whose vertices form a proper subset of a. For cells a, b 2 M, a
is a face of b, denoted a < b, if and only if a is on the bound-

ary of b. In this case, b is a co-face of a. Furthermore, if

dim ðaÞ5dim ðbÞ21, we say a is a facet of b and b is a co-facet

of a, and denote this a _<b. For example, a hexahedron in a 3D

regular grid has six facets: the two quadrilaterals bounding the

hexahedron in each axis direction, whereas the faces of a

hexahedron include six quadrilaterals, twelve edges, and eight

vertices. The star of a cell a, denoted StðaÞ, is the set of co-

faces of a in M. The lower star of a vertex a, denoted St2ðaÞ
is the subset of StðaÞ where for each b 2 St2ðaÞ, a is the ver-

tex with highest value among faces of b. For consistent resolu-

tion in cases of equal values, we use the simulation of

simplicity[34] to assign a unique value f � to each vertex vi in V .

In particular, any given function f can be perturbed into an

injective function f � : V ! R, e.g., by using the memory loca-

tion of the function values to break ties, i.e., f �ðviÞ5f ðviÞ1i�,

for � > 0, when f ðviÞ5f ðvjÞ for vi 6¼ vj 2 V.

A vector in the discrete sense is a pairing of cells ha;bi,
where a _<b; we say that an arrow points from a to b, where a
is the tail and b is the head of the arrow. The direction of the

arrow relates the combinatorial notion of the pairing to the

geometric interpretation of the flow, and is given by

BðbÞ2BðaÞ, where BðaÞ denotes the barycenter of a cell, i.e.,

the average coordinate location of its vertices. A discrete vector

field V on M is a collection of vectors ha;bi of cells of M
such that each cell is in at most one vector of V. Cells that do

not appear as the head or tail of a discrete vector in V are

defined as critical cells, with the index of criticality equal to the

dimension of the cell. For example, for 3D regular grids, critical

vertices, edges, quads, and hexahedra are minima, 1-saddles,

2-saddles, and maxima, respectively. A discrete gradient field is

illustrated in Figure 1. We can now define the flow operator U,

which acts as the combinatorial equivalent of an integration

Figure 1. Discrete gradient field of a simple synthetic function. Left: Blue arrows illustrate the pairing of 0-cells (vertices) with 1-cells (edges), and red

arrows show the pairing of 1-cells (edges) with 2-cells (faces). Right: Critical i-cells are shown as blue (i 5 0), yellow (i 5 1), and red (i 5 2) squares, which

are the minima, saddles, and maxima, respectively, of the underlying function. The discrete gradient field defines the Morse–Smale complex, with combina-

torial separatrices (blue and red lines) connecting the critical cells. [Color figure can be viewed at wileyonlinelibrary.com]
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step in the direction of the gradient in eq. (1). Formally, for an

i-cell a,

UðaÞ5oi21vðaÞ; (3)

where we use vðaÞ to denote mapping the tail of a discrete

vector to its head, i.e., vðaÞ5b if ha;bi 2 V, and 1 otherwise,

and @ i21 maps a cell to its facets. The combinatorial equivalent

of an integral line (as in eq. (1)) is a V-path, a sequence of cells

a0;b0;a1;b1;a2; . . . ;br;ar11

such that for each j50; . . . ; r, the vector haj;bji 2 V, and aj and

aj11 are both facets of bj. Note that the discrete flow operator

produces V-paths, i.e., ai 2 Uðai21Þ. A discrete vector field in

which each nontrivial V-path has disjoint start and end points

is a discrete gradient field, denoted G, of a discrete Morse func-

tion. Note that this condition implies that a discrete gradient

field G does not contain any loops. The discrete gradient field

G is the combinatorial analogue of rf ; thus, the discrete

ascending and descending manifolds of a critical cell are given

by the collections of V-paths starting and ending at that criti-

cal cell, respectively. By convention, discrete gradient vectors

point in descending directions with respect to f �, each V-path

therefore having cells with monotonically decreasing vertices.

Related Work

The early approaches for QTAIM analysis were based on ana-

lytic formulations of electron charge density and correspond-

ing topological elements, e.g., analytic representations of zero-

flux surfaces and their application in computing properties of

corresponding topological atoms. Such techniques[3,6–10,12,35,36]

were useful for small molecular systems, but had limited scal-

ability. One example of contemporary and well-maintained

software in this category is AIMAll,[13] which performs the anal-

ysis starting from molecular wavefunction data.

With increasing computational and simulation capabilities,

many recent advances have focused on improving grid-based

methods,[4,5,11,37–47] although initial ideas were proposed much

earlier.[48,49] The key advantage of such approaches is their

reduced computational cost. Furthermore, since the grid-based

data is readily available in density functional theory (DFT)

applications, such techniques are particularly useful for real-

space and planewave-based DFT calculations. Such techniques

work with sampled data on regular (or adaptive[43]) grids by

detecting critical points and tracing gradient paths to deter-

mine atomic basins.

A particularly relevant grid-based technique was presented

by Henkelman et al.[5] This technique finds the atomic basins

by integrating gradient-ascent trajectories from every grid

point. Each trajectory was represented as a sequence of grid

points, with the algorithm extending a trajectory in the direc-

tion of steepest ascent among the 26 neighbors of a point. To

improve the computational efficiency, the trajectory integra-

tion could be stopped if it encountered a previously assigned

grid point, making this approach scale linearly with system

size. Nevertheless, since the integration picked steepest-ascent

trajectories, this algorithm introduced a bias that caused inter-

atomic surfaces to artificially follow the orientation of the lat-

tice. Sanville et al.[40] first pointed out this limitation and

presented a modified algorithm to remove this bias, where tra-

jectories were not constrained to the grid, yet retained the lin-

ear scaling of the original approach. Tang et al.[41] also

improved the original algorithm[5] to remove the lattice bias.

In their approach, although the trajectories are constrained to

grid points, a correction vector between the true trajectory

and the discretized “on-grid” trajectory is calculated and prop-

agated alongside. When the correction vector becomes large

enough, the discrete trajectory is corrected. Nevertheless, the

piecewise-constant interpretation of the gradient induces inte-

gration error that scales linearly with grid spacing, requiring a

finely sampled grid, which limits the application to large and

complex systems. Yu and Trinkle[44] further advanced the state

of the art by presenting a technique for subgrid accuracy in

the computation of atomic volumes. They introduced a

weighting scheme to represent the fraction of a voxel (a vol-

ume element in a 3D grid) to be associated with a surround-

ing grid point, and therefore, with a surrounding atomic basin.

These techniques[5,41,44] form the basis of one of the most

widely used and publicly available tools for QTAIM analysis,

which was published by Arnaldsson et al.[4]

There also exist other approaches for grid-based analysis,

such as the work of Rodr�ıguez et al.,[42,43] which utilize cellular

grids, both fixed and adaptive, and compute the QTAIM prop-

erties without explicitly computing the zero-flux surfaces. This

technique has been implemented in the commercial ADF

Modeling Suite.[14]

In the context of critical point computation, Rodr�ıguez[46]

proposed a grid-based approach using the Newton-Raphson

(NR)[50] method for root finding. By applying filtering on start-

ing points and appropriate vectorization and parallelization, a

modified NR approach was implemented. Hern�andez-Esparza

et al.[47] provided a GPU (graphics processing unit) implemen-

tation of this approach for better scalability.

Topological analysis of several other related fields of interest,

such as the electron localization function and molecular electro-

static potential, has also been explored: an overview was pro-

vided by Popelier.[22] An example in the context of the QTAIM is

the analysis of the Laplacian of the electron charge density.[51,52]

We shall focus here on a recent open-source software package,

Critic2,[23,24] developed by Otero-de-la-Roza et al., which can be

used for a detailed exploration of such fields. In particular, Critic2

can be used not only to compute the charge inside atomic

basins, but also to extract the complete molecular graph of the

system, which contains all bond paths in the system. The molec-

ular graph provides rich information about the system under

investigation by capturing the bonding structures through auto-

mated analysis. Critic2 builds upon several published approaches,

including some of the integration techniques discussed above,

such as that given by Yu and Trinkle.[44]

The tool presented in this paper, TOPOMS, offers two impor-

tant features: QTAIM analysis of atomic volumes and charges,

and the extraction of molecular graphs. In this context, we
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consider Bader charge analysis v1.0[4] and Critic2[24] as repre-

sentatives of the current state of the art for the two types of

analysis, respectively. Section “TopoMS: Experiments and

Results” will discuss the results of analysis using TOPOMS in

terms of qualitative, quantitative, and performance compari-

sons with these established tools.

Many algorithms have been proposed to compute discrete

gradient vector fields, with variants for large-scale data,[27] fast

parallel computation,[29,30] or accuracy with respect to some

underlying continuous interpretation of the gradient.[28] The

most practical approaches rely on an embarrassingly parallel

formulation, restricting discrete gradient vector assignment to

the lower star of a vertex.[29] Within the lower star, discrete

gradient arrows are constructed in the direction of steepest

descent. Gyulassy et al.[28] showed that such local optimization

leads to compounding errors in a V-path compared to a

numerically traced integral line, leading to features heavily

biased along the axis directions of the underlying computa-

tional grid. While the authors presented a solution, the algo-

rithm required a serial traversal, and is too slow for practical

use for QTAIM analysis. Instead, in TOPOMS, we utilize an

approach that allows fast parallel computation of discrete gra-

dient fields that also conforms to a prior labeling computed

through numeric integration.[53]

TOPOMS: Algorithmic Details

TOPOMS is developed for the exploration of large-scale molecu-

lar and condensed-matter systems through topological analysis

of relevant physical fields. In particular, TOPOMS provides two

types of analysis: (1) computation of the atomic basins as a

volumetric decomposition of the domain with associated

atomic charges, (2) the extraction of the complete molecular

graph for a more general analysis of molecular fields, such as

electron charge density or electrostatic potential. Thus, TOPOMS

can be used as a single comprehensive solution for topological

analysis of such systems.

TOPOMS has been designed keeping in mind three important

considerations: (1) computational cost and scalability, (2)

numerical robustness and consistency, and (3) flexible and

easy-to-use API. Where possible, algorithms have been

designed to utilize multicore architectures using shared-

memory parallelism. Compounded effects of numerical errors

in algorithms can often create inconsistent configurations, e.g.,

overlapping atomic basins. Special care has been taken to

ensure consistency in the derived results. Finally, TOPOMS has

been designed in a modular fashion to allow adding new fea-

tures as the software expands in the future, with the possibil-

ity of interfacing with standard simulation packages such as

VASP.[54]

We extract an accurate and consistent topological represen-

tation of features from the QTAIM by computing a discrete

gradient vector field in a manner that matches numerically

computed integral lines. First, we generate a map L from ver-

tices V to maximal vertices by tracing integral lines numeri-

cally. For the case where only atomic basins are of interest,

the computation returns this decomposition, matching atoms

to basins, and computing required statistics. Further computa-

tion of a molecular graph uses this map L as a constraint in

combinatorial construction of a discrete gradient vector field,

ensuring that no V-paths cross the boundaries of atomic

basins identified in the numeric integration. As a result, topo-

logical features can be extracted from the discrete gradient

using simple combinatorial algorithms, with guarantees of con-

sistency, while having the accuracy of the numerical approach.

The remainder of this section discusses implementation

details for the numeric integration to create the map L assign-

ing each vertex of V to a maximum of q (see Section

“Computation of atomic basins”), and construction of the dis-

crete gradient field and subsequent molecular graph extrac-

tion (see Section “Extraction of molecular graph”). Note that,

by convention in discrete Morse theory, discrete gradient

arrows point in the direction of descent, and critical points of

index-d occur on d-cells of the mesh. However, the primary

decomposition of space in the QTAIM is into atomic basins X,

i.e., maxima of charge density and the integral lines that

terminate there. To simplify the intuition of using discrete

Morse theory for QTAIM analysis, we let f (and hence f �) be

the negative of the charge density, f ðaÞ52qðaÞ. In this way,

vertices at local maxima in q occur at local minima in f, and

the atomic basin X of an atom in q is equivalent to the verti-

ces in V-paths terminating at the associated minimum in f, its

discrete ascending manifold.

Computation of atomic basins

Atomic basins are the descending 3-manifolds of maxima in

the charge density q, which can be computed as the limit as t

approaches 1 of eq. (1). Approximating this integral can be

done with numeric integration, with values of rq evaluated

between samples using some interpolation scheme. However,

straightforward computation reveals several problems with

this approach. For example, integral lines may terminate at

nonmaximum critical points, and the interpolating function

may create spurious critical points where integral lines termi-

nate. Furthermore, evaluating an integral line from every ver-

tex in the domain, tracing all the way to a maximum, is

computationally prohibitive. Steps 1 and 2 given below discuss

using combinatorial stopping criteria to both reduce the

appearance of spurious maxima and decrease the number and

length of integral lines that must be traced, and Step 3

presents the integration technique along with path compres-

sion optimizations to further reduce the computational cost.

Step 1: Avoiding computation in “vacuum” regions. Although

topological atoms fill all space, i.e., every point in space

belongs to a topological atom, regions far away from atomic

centers typically contain zero or near-zero values of electronic

charge density. Regions with extremely low charge values may

be dominated by floating-point error, noise introduced by

basis (e.g., Fourier series) truncation, and other such errors

associated with the methodology used to produce the data.

For practical purposes (e.g., numerical integration over an

atom’s volume and visualization), Popelier[55] implemented an

envelope of constant density, typically set at 0.001 a.u.,[2] to
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define a practical boundary. Rodr�ıguez et al.[42] also used this

idea of “screening” the data to filter small values, both to

improve computational efficiency and avoid numerical noise.

Similarly, we define “vacuum regions” as regions with charge

density below a user-specified vacuum threshold.

Although all subsequent processing in our approach han-

dles these regions without issue, we pre-screen the data to

reduce computational cost. To eliminate low-valued regions in

q, we correspondingly eliminate high-valued regions in f �.

More specifically, we define the sublevel complex with respect

to the threshold ft as the complex formed by the union of the

lower stars of vertices having a value below the threshold, i.e.,

Vft
5fa 2Mjdim ðaÞ50 and f �ðaÞ < ftg and Mft

5 [
a2V ft

St2ðaÞ.

To eliminate regions below a threshold value of charge den-

sity, qt , we restrict our mesh to the sublevel complex of 2ft

with respect to f �. As any regular complex can form the space

for discrete Morse functions, we can restrict all subsequent

computation to M2ft
to accelerate computation. For example,

integral lines must be traced only from vertices in M2ft
, and

the discrete gradient computed only in that subset of the grid.

Specifically, we filter such vertices out in a preprocessing step

such that numerical gradients are not computed for them. The

total volume of and total charge within the vacuum region are

reported to the user at the end of the analysis.

A similar optimization has been implemented by Arnaldsson

et al.[4] For isolated systems with few atoms and a relatively

large vacuum region, such an optimization can save substan-

tial (�5 to 83) computational effort.

Step 2: Identification of maxima and certain regions. Given f �52q
on a meshM, maxima of q (minima of f �) are identified as ver-

tices with an empty lower star with respect to f �, i.e., vertex a is

a maximum (in q) if and only if St2ðaÞ51 in f �. For a regular

grid, a maximum vertex has higher values (in q) than any of its

six neighboring vertices.

The maxima identified in this manner are then used as des-

tinations to terminate numerically integrated gradient lines. As

numeric integration is relatively computationally expensive, we

identify for each maximum, all the vertices in the grid where

any strictly ascending path terminates at the maximum. Such

regions are called atomic certain regions. Atomic certain

regions can be computed independently and in parallel,

through a simple priority-queue-based region-growing

approach. A maximum is inserted into a priority queue

ordered by decreasing q value. While the queue is not empty,

the top element is popped, and inserted into the atomic cer-

tain region if and only if all its higher valued edge-connected

neighbors are also in the same certain region. When a vertex

is inserted into the certain region, all its lower valued neigh-

bors are inserted into the priority queue. This process not only

avoids having to compute integral lines from grid points in

atomic certain regions, but also expands the regions where

numerically computed streamlines can terminate, shortening

the integral lines that must be computed from all other grid

points.

A similar idea, “atomic trust spheres,” was used by

Rodr�ıguez et al.,[42] who employed spherical Lebedev grids

centered at atomic nuclei to find the largest radius in which

all gradients point toward the corresponding nuclei, and con-

sidered them to be “certain regions” where no gradient paths

need to be traced. This approach, however, requires creating a

separate grid for each maximum, and a threshold angle is

needed to define when a gradient is considered to be point-

ing “toward” the center. In comparison, TOPOMS directly uses

the input grid without any hard cutoffs.

Step 3: Numerical integration of gradient. For every vertex not

part of a vacuum region or an atomic certain region, an inte-

gral line is traced from the vertex location using the gradient

of f. TOPOMS uses central differences to approximate the gradi-

ent, trilinear interpolation, and an adaptive Euler integrator to

trace integral lines. In particular, we solve eq. (1) using

straightforward advection and two-step error estimation,

pn115pn1trf ðpnÞ;

p0n11=25pn1
t

2
rf ðpnÞ;

p0n115p0n11=21
t

2
rf ðp0n11=2Þ;

e � jjpn112p0n11jj

doubling the stepsize t when the error estimate � is below a

user supplied threshold, and halving it and re-evaluating pn11

when it exceeds the threshold. We limit the stepsize in each

integration step to obtain a maximum displacement of 1/2 the

grid spacing. Gradient values at the vertices of a hexahedron

are cached to accelerate re-evaluation of the trilinear gradient.

Integration terminates when the point being advected enters

an atomic certain region, i.e., when the advected point comes

within half grid spacing of any vertex that is part of an atomic

certain region. The vertex where the integration originated is

labeled as part of the basin of the maximum corresponding to

the certain region.

As numeric integration is expensive, even when performed

in parallel, we use path compression to initially reduce the

number and length of integral lines that must be computed.

Specifically, when integration of a line terminates, every vertex

adjacent to the path of integration is assigned to the basin of

the maximum. Furthermore, integration is cut short and the

path labeled, not just when entering certain regions, but also

in the neighborhood of any previously labeled vertex. In

TOPOMS, this label map is stored as a flat array in memory and

used by parallel threads, where reads and writes to the array

avoid synchronization between threads, instead using the

atomicity of reading/writing integers to avoid memory corrup-

tion. While greatly accelerating an initial labeling of the verti-

ces, this strategy clearly leads to incorrect labeling near the

boundaries of basins, due both to parallel read-then-write

errors, and also through the path compression itself. A second

pass is performed to correct these labels, where every vertex

on the boundary between basins is reintegrated from its start
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to terminate only in a certain region. This process is repeated

on subsequent boundary vertices, until all basin boundary ver-

tices have been corrected.

Step 4: Matching atoms to maxima and basins. Steps 1–3 cre-

ate a decomposition of the nonvacuum volume with respect

to maxima, i.e., each grid vertex is mapped to a unique maxi-

mum, which is the destination of its ascent trajectory. When

atom positions are known, such as the use-case for TOPOMS,

we match each topological maximum with its closest atom

efficiently using a kd-tree,[56] a multidimensional divide-and-

conquer approach. Since maxima are computed directly from

q, and are independent of the atomic positions (Step 2), any

non-nuclear attractors[42] present in the system are identified

by construction, and separated from nuclear attractors (max-

ima found close to atomic positions in the systems). Finally,

volumes and charges of topological atoms are computed

using the vertices of the grid labeled as belonging to the asso-

ciated topological maximum.

Extraction of molecular graph

The molecular graph described in the QTAIM is composed of

the arcs of the Morse–Smale complex that connect maxima

(NCPs) with 2-saddles (BCPs). While a numerical approach was

useful for creating accurate basins, no numerical approach has

proved successful in recovering a full topological decomposi-

tion that respects invariants such as the Euler characteristic

(eq. (2)), and extracting unstable configurations such as 1-

saddle–2-saddle connections. A full, consistent description is

required for self-consistent analysis, especially when applying

topological simplification to account for noise in the data. In

TOPOMS, we recover a molecular graph by building a discrete

gradient vector field that conforms to the numerically inte-

grated basins from Section “Computation of atomic basins”

i.e., maxima that terminate integral lines in q correspond to

minima in f �, and the associated basins correspond to discrete

ascending 3-manifolds. Given this conforming discrete gradi-

ent, a topological skeleton, basin boundaries, and a volumetric

decomposition can all be extracted in a self-consistent manner

by simple combinatorial traversal using the discrete flow oper-

ator U (eq. (3)).

Step 5: Computation of conforming discrete gradient. The

map L from vertices of M to a set of maxima is extended to

a map @L from all cells of M to {0, 1} by considering whether

a cell a lies on the boundary between basins of L. In

particular,

oLðaÞ5
0; if jfLðvÞ s:t: v is a vertex of agj51

1; otherwise:

(

The boundary map @L is nonzero only for cells having vertices

with different labels in L. We use the algorithm proposed by

Gyulassy et al.[53] In the following discussion, we denote a cell

that has been identified as critical by pairing it with itself, e.g.,

ha; ai. Furthermore, a cell is assigned if and only if it has been

identified as critical or paired in a discrete gradient vector. The

function #UCFðcÞ, (number of unassigned conforming facets)

counts the number of facets b _<c of a cell c such that

b; c 2 St2ðaÞ, b has not been assigned, and @LðbÞ5@LðcÞ.
The algorithm processes each vertex independently, first

creating a vertex-edge vector in the direction of steepest

descent (Lines 3–7), restricted to the set of edges sharing the

same label in @L as the vertex. If no pairing for the vertex is

possible, it is made critical (Line 5). Next, simple homotopy

type expansions are performed in order of increasing dimen-

sion (Lines 8–13), again restricting possible candidates for

pairing to those sharing the same label in @L. For each

dimension i, while there exist unassigned i-cells in the lower

star of a, simple homotopy expansions of an unassigned i-cell

with unassigned i 1 1 cells are attempted (Lines 10–11),

marking the i-cell critical (Line 13) when such an expansion is

not possible. The test to check if there exist unassigned i-cells

in the lower star of a can be implemented by placing the

i-cells in St2ðaÞ in a list, whose size is typically bounded by a

small constant. The output is guaranteed to produce a dis-

crete gradient vector field, since all pairings are restricted to

the lower star of a vertex, and a homotopy expansion is per-

formed only when all faces of the i-cell have previously been

assigned, and the i 1 1-cell has only one unassigned face.

These two conditions along with the fact that every cell of

the domain is either paired or marked critical ensure that all

V-paths produced are monotonically decreasing and V is acy-

clic, and hence a discrete gradient vector field. Algorithm 1

can be applied to every vertex in the domain in an embar-

rassingly parallel manner, as the lower stars form a partition

of M.

Step 6: Computation of the Morse–Smale complex (MSC). The

discrete gradient field computed above can be used to com-

pute a Morse–Smale complex: critical points occur at unpaired

cells of the complex, and integral lines are formed by sequen-

ces of paired cells according to the discrete flow operator U.

To extract the topological 1-skeleton of the discrete Morse–

Smale complex, critical cells are recorded as nodes, and

descending V-paths are traced according to U with the V-

paths between critical cells recorded as arcs. This traversal is

implemented as a depth-first search. Furthermore, the discrete

Algorithm 1

ConformingGradient (M; f ; @L)

1: V 5 fg
2: for a 2 V do

3: S 5 b 2 St2ðaÞ j @LðaÞ5@LðbÞ; a _<bf g
4: if S 51 then

5: V 5 V [ha; ai
6: else

7: V 5 V [ha; bi where b 2 S is in direction of steepest descent

8: for i 2 ½1; . . . ; d� do

9: while 9 unassigned bi 2 St2ðaÞ do

10: while Si11 5 ci11 2 St2ðaÞ j #UCFðcÞ51
� �

6¼1 do

11: V 5 V[hbi ; ci11i, bi is the unassigned conforming facet of ci11 2 Si11

12: if 9 unassigned bi 2 St2ðaÞ then

13: V 5 V [hbi ;bii, bi is unassigned

14: return V
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ascending and descending manifolds of critical cells are recov-

ered by gathering the cells reachable through a breadth-first

search using the discrete flow operator.

The data structures and specific algorithm used in TOPOMS for

computing and storing the topological 1-skeleton (nodes and

arcs) of the complex are described by Gyulassy et al.[27,57] This

representation allows for interactive exploration and simplifica-

tion of the structure, as well as interactive reconstruction of the

ascending and descending manifolds of each critical point.

Step 7: Computation of persistence hierarchy. A key result

from Morse theory is that a pair of critical points attached by a

single arc in the Morse–Smale complex can be canceled to

obtain a successively coarser representation of a function.[32] A

critical point pair cancellation corresponds to a local smoothing

of the function, and provides a mechanism to reason about the

impact of local perturbation on the topological structure. For 3D

Morse–Smale complexes, it is well understood[27,58] that cancel-

lations can be used to successively remove low-amplitude noise.

The persistence of a pair of canceled critical points is the abso-

lute difference in function value between them. For functions

sampled onto a grid, sometimes the discretization itself creates

spurious critical points; however, the hierarchy of topological

reconstructions can be used to remove such small-scale arti-

facts. TOPOMS implements the simplification strategy outlined by

Gyulassy et al.[27] to allow interactive exploration of topology at

various topological scales. Critical points are canceled by mark-

ing the persistence at which a critical point pair and correspond-

ing arcs are removed, and adding new arcs connecting the

1-skeleton at a coarser scale. As a result, obtaining the topologi-

cal representation for any scale can be done interactively.

Step 8: Extraction of molecular graph geometry. The discrete

Morse–Smale complex provides the topological connectivity for

consistent and robust extraction of the molecular graphs that

agrees with numerically computed basins. However, the arcs con-

necting critical points follow V-paths along a steepest-ascent tra-

jectory and suffer from grid bias. More specifically, the discrete

integral line from a 2-saddle to a maximum follows edge-

connected vertices of the grid. To obtain a smooth representa-

tion of a 2-saddle-maximum path, an integral line is numerically

traced from the first vertex of the path to within a half grid cell

of the maximum, and then attached to the maximum. In the

rare case where the numeric streamline terminates at a different

maximum, perhaps due to numeric instability, the numeric path

starts from the next vertex of the discrete 2-saddle-maximum

path, and so on, until the numerically computed path agrees

with the combinatorially computed topological one. These

numerically computed paths are used to visualize the atomic

interaction lines and the molecular graph.

TOPOMS: Software Details

TOPOMS v1.0 is released publicly under the BSD License, and can

be downloaded from https://github.com/LLNL/TopoMS. TOPOMS

has been designed with a simple and extensible API in mind.

The software is written in C11 and is designed in a modular

fashion such that it can be used with a command-line interface

(cli) or a Qt-based graphical user interface (gui) alongside a

viewer. Currently, TOPOMS supports two input file formats: VASP

CHGCAR/AECCAR and Cube; we plan to support other common

file formats in the future. TOPOMS can be executed through a

simple configuration file that specifies required details about

the input data, the type of analysis to be performed (QTAIM vol-

umes and charges and/or molecular graph), and some user-

defined parameters needed for the analysis.

We anticipate that users interested in QTAIM volumes and

charges only, in most cases, will need to work only with cli,

which outputs the decomposition as a list of atoms with their

corresponding volumes and charges, as well as a volume label-

ing in the same format as the input file. In addition, for easy

visualization using standard tools such as “Paraview”[59] and

VisIt,[60] a binary VTK image file (*.vti) is also written. The visu-

alizations in Figures 2, 3 and 5 were generated using Paraview.

Molecular graph analysis through cli is also possible, and

TOPOMS outputs the molecular graph at the chosen levels of sim-

plification and filtering (through the configuration file) as a VTK

polydata file (*.vtp), which can be visualized using Paraview and

VisIt. However, the initial exploration phase may require inter-

acting with the complete topology, e.g., to choose an appropri-

ate simplification, for which TOPOMS can be used in the gui

mode. Figures 10 and 11 were generated using TOPOMS directly.

Dependencies. TOPOMS is cross-platform and uses shared-

memory architecture. It can be installed on any machine with

a standard C11 compiler and support for OpenMP.[61] The gui

mode requires Qt[62] to support the user interface widgets,

and QGLViewer[63] to support the visual interface. The user

may optionally choose to install the Visualization Tool Kit

(VTK)[64] to enable corresponding functionality.

TOPOMS: Experiments and Results

In this section, we demonstrate the scalability, numerical robust-

ness, and topological consistency of TOPOMS. First, we discuss

our experiments and results for QTAIM volumes and charges,

and compare them to the software of Arnaldsson et al.[4] as a

representative of the current state of the art. Since the “ground

truth” results, i.e., exact volumes and charges of topological

atoms, cannot be known, we instead focus on robustness

against lattice bias and convergence to the fine-grid limit to

evaluate the two techniques. For a complete topological analy-

sis and extraction of molecular graph, we compare TOPOMS

against Critic2.[24] In addition to performance scalability, we

highlight the topological consistency in our results as well as

the functionality to interactively remove topological noise. The

experiments presented in this section were performed on a

MacBook Pro with a 2.8 GHz Intel i7 processor with 4 cores and

16 GB memory.

QTAIM analysis

We evaluate the performance of TOPOMS for the QTAIM analysis

for six different datasets, as tabulated in Table 2. In all cases,

TOPOMS provides an approximate 2.5–3.93 speed-up.
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Qualitative[5] and quantitative evaluation on four of these data-

sets are given below.

Water. The first dataset is the total electron charge density

(Cube input file with MP2 Total Density) of a single water

(H2O) molecule defined on a ½20132013201� regular grid.

The water molecule is well understood; therefore, we use it

as the first experiment to demonstrate the validity of the

results of the QTAIM analysis results produced by TOPOMS.

Figure 2 shows the topological basins corresponding to the

atoms in the molecule, highlighting the concavity in the oxy-

gen atom basin. Table 3 provides quantitative results and

confirms that the hydrogen atoms lose charge to the oxygen

atom. We note, in particular, the symmetry in the results,

numerically confirming that the oxygen atom pulls equal

charge from the two hydrogen atoms, deforming them by

the same amount.¶

To generate these results, charge density values below 1023

e/Å3 were considered part of the vacuum to isolate the mole-

cule and remove numerical noise. The same cutoff was used

by the software of Arnaldsson et al.[4] (by default), and pro-

duced numerical results matching the results shown in Table 3

up to three decimal places (numerical comparison not given

for this dataset).

Ethylene. The second dataset is the valence electron charge

density (VASP CHGCAR input file) of a single ethylene (C2H4)

molecule defined on a ½14031403140� regular grid spanning

10 Å on each side. Figure 3 shows the topological basins cor-

responding to the six atoms in the molecule in different colors

computed using TOPOMS and the software of Arnaldsson

et al.;[4] a visual comparison indicates that the two tools pro-

duce almost identical decompositions, with minor discrepan-

cies along the boundaries of the atomic basins. A vacuum

threshold of 1023 e/Å3 was used on the charge density values

to isolate the molecule from the background region. As the

per-atom quantitative comparison in Figure 4a shows, the two

tools produce numerically comparable results. However, since

the “true” charges contained in the atoms are not known, it is

not possible to evaluate the accuracy of the results from either

software. Instead, we focus on the stability of the results with

respect to data discretization.

To test the stability of TOPOMS with respect to discretization

artifacts, we use a second version of the same molecule, rotated

differently with respect to the orientation of the mesh (denoted

as ethylene-b as compared to ethylene-a discussed above).

Comparing Figures 4a and 4b, one can notice a slight depen-

dence of charge assignment on the orientation and position of

the molecule with respect to the mesh. The importance of

removing (or reducing) the lattice bias has been noted by sev-

eral researchers.[40,41] Figure 4c shows that TOPOMS produces

smaller variability than that by the software of Arnaldsson

et al.[4] between the results for the two orientations.

Lithium salt in ethylene carbonate. Next, we consider the total

electron charge density (VASP AECCAR0 1 AECCAR2 input file)

in a system containing a single molecule of a lithium salt,

LiPF6, in 63 molecules of ethylene carbonate, (CH2O)2CO. These

638 atoms are present in a periodic box approximately 19.283

Å on each side, and the charge density is sampled on a ½2803

2803280� regular grid. This condensed system is significantly

Table 3. Charges and volumes of topological atoms in a water molecule.

Charge density lower than 1023 e/Å3 was considered to be vacuum to

isolate the molecule and remove numerical noise. The net nonzero

charge in the system shows the numerical artifacts of grid-based data.

Atom QTAIM charge (e) QTAIM volume (Å3)

H-1 0.6325736 20.6241691

O 21.1746194 154.1277976

H-2 0.6325736 20.6241691

Vacuum 20.0946613 3311.8516406

Total 20.0041335 3507.2277764

Figure 2. Topological atoms in a water molecule. The volumes correspond-

ing to the two hydrogen atoms are shifted to highlight the concavity in the

oxygen atom’s basin. [Color figure can be viewed at wileyonlinelibrary.com]

Table 2. Performance comparison between TOPOMS and the software of Arnaldsson et al.[4] for QTAIM analysis shows that TOPOMS takes about 2.5–3.93

less time. In general, the total time for such analysis depends upon the size of the grid, the number of atoms in the system, and the proportion of the

vacuum region.

Name

Data Time (s)

# Atoms Grid size # pts. Arnaldsson et al.[4] TOPOMS Gain

Water 3 ½20132013201� � 8120 K 1.51 0.597 2.5293

Ethylene-a 6 ½14031403140� 2744 K 0.95 0.263 3.6122

Ethylene-b 6 ½14031403140� 2744 K 0.97 0.390 2.4872

Benzene 12 ½20032003200� 8000 K 5.66 1.842 3.0728

NaCl crystal 8 ½16031603160� 4096 K 29.37 7.581 3.8742

Lithium in EC 638 ½28032803280� 21952 K 62.53 18.155 3.4442

¶For visualization purposes, the bounding surfaces of the atomic basins in

Figures 2, 3, and 5 were smoothed, and otherwise are discrete in nature

depending on the sampling mesh.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2018, 39, 936–952 945

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


more complex compared to the two isolated systems pre-

sented above. Figure 5 shows the topological atoms produced

by TOPOMS and the software of Arnaldsson et al.[4] for a few

atoms, which are visually indistinguishable.

Figure 6 presents the QTAIM charges computed for each

atom of this system. Figure 6a shows the charge computed

through TOPOMS for different types of atoms. The result shows

that the charge distribution remains quite consistent for

Figure 4. Numerical comparison of QTAIM charges for two differently aligned ethylene molecules is shown in (a) and (b). (c) Shows the difference in charge

computed for each atom between the two orientations, with TOPOMS showing the smaller variability. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. Topological atoms in the lithium salt in ethylene carbonate dataset computed using the software of Arnaldsson et al.[4] (left) and TOPOMS (right).

To avoid clutter, only a single atom of each type is shown. (a) QTAIM charges computed by TOPOMS. (b) Differences in the QTAIM charges computed by the

two tools (TOPOMS—Arnaldsson et al.[4]). [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Topological atoms in ethylene molecule computed using the software of Arnaldsson et al.[4] (left) and TOPOMS (right). Different atoms are shown

in different colors, overlayed on a closed isosurface highlighting the shape of the molecule. [Color figure can be viewed at wileyonlinelibrary.com]
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different atoms of each type, confirming that the atoms in the

EC molecules display similar behavior throughout the domain.

Also note that the average QTAIM charge of carbonyl carbon

atoms (first one-third of the brown bars) is about 22.08 elec-

trons each, whereas that of the ether carbon atoms (remaining

two-thirds) is about 20.36 electrons each, a result consistent

with chemical intuition about the electropositivity of carbon

in C@O polar bonds. Figure 6b plots the differences between

the QTAIM charges computed using TOPOMS and the software

of Arnaldsson et al.[4] For most atoms, the differences are

small, roughly bounded within 0.02 electrons, except for the

hydrogen atoms, which show the largest difference of up to

5% relative to the number of its valence electrons, and ether

carbon atoms bounded by about 2% relative difference. In

general, it appears that the results of the two tools mostly

differ in assigning charges for the CAH bonds, where com-

paratively, TOPOMS assigns more charge to H (and less to

ether C).

Despite the existence of these noticeable differences, in the

absence of ground truth, the accuracy of either of the tools is

not possible to evaluate. Nevertheless, it can be verified (see

Figure 7a) that the differences between the results of the two tools

reduce substantially as the mesh resolution is improved, sugges-

ting that both tools converge to a common (although unknown)

limit. To evaluate the convergence of the two tools, we use the

analysis results of a highly refined mesh (½11203112031120�

compared to a practically suggested resolution ½28032803

280� for this data), and study the convergence of the two tools

with respect to their respective fine-grid solutions. As shown in

Figure 7b, the mean, the maximum, and the standard deviation

of the relative errors (with respect to the fine-grid solution)

produced by the two tools show rapid convergence to zero.

For resolutions lower than ½21032103210�, both tools create

comparable errors, suggesting that such coarse sampling is

lossy, but as the resolution improves, TOPOMS converges at a

slightly faster rate.

Figure 8 shows plots of per-atom errors for different resolu-

tions. From top (resolution 120) to bottom (resolution 560),

the scale of error reduces by about 100 times from 3 electrons

to about 0.03 electrons. As the analysis is moved to higher res-

olutions, one starts to notice that due to the overall reduction

in the scale of errors, the errors in hydrogen charges appear

more pronounced.

Furthermore, notice the positive and negative trends in the

errors for ether carbon atoms (last two-thirds of the brown bars)

and hydrogen atoms, respectively, as computed by the software

of Arnaldsson et al. (left column). This behavior indicates that

their approach systematically over- and underestimates these

charges, respectively, with respect to their fine-grid solutions.

This observation is consistent with the remark made earlier in

the context of Figure 6b, and indicates that the results of TOPOMS

produced for the ½28032803280� grid could be considered

Figure 6. Quantitative evaluation of TOPOMS shows physically anticipated values of QTAIM charge for each type of atom (a). The first third of the carbon

atoms are carbonyl carbons, which are expected to contain less charge than the remaining ether carbons. The figure also shows (b) the differences

between the results produced by TOPOMS and the software of Arnaldsson et al.;[4] except for the ether carbons and hydrogen atoms, i.e., CAH bonds, the

differences between the two tools are relatively small. (a) Differences in QTAIM charges (TOPOMS—Arnaldsson et al.) at various grid resolutions. (b) Errors in

QTAIM charges with respect to corresponding fine-grid results. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. With increasing grid resolution, both tools are expected to produce increasingly accurate results, and ultimately converge to the “correct” solution.

(a) Shows the differences between the results produced by the two tools, and confirms that the differences reduce for finer meshes. (b) Shows that both tools

converge to their respective fine-grid resolution solutions with TOPOMS showing faster convergence. [Color figure can be viewed at wileyonlinelibrary.com]
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more accurate. We also notice that both tools consistently over-

estimate the charge in carbonyl carbons (first one-third)

whereas underestimation is observed in most of the oxygen

atoms.

Finally, Table 4 shows the performance for the experiments

performed for different resolutions, and that the performance

gain of TOPOMS scales with the grid size and remains consistent

at about 2.5–3.53.

Figure 8. With increasing grid resolution, both tools are expected to produce increasingly accurate results, and ultimately converge to the “correct” solu-

tion. Different rows in the figure show the differences between the results for each atom (laid out on the horizontal axes) produced by the two tools with

respect to their respective fine-grid solutions (½11203112031120�). The plots confirm that the differences reduce for finer meshes; about 1003 reduction

is obtained from top to bottom. The errors in hydrogen atoms become more pronounced as the overall scale of the errors becomes smaller. It is also

noted that the results in the left column typically overestimate ether carbons (last two-thirds of the brown bars) and underestimate hydrogen atoms, sug-

gesting that the software of Arnaldsson et al. assigns more charge to carbons in CAH bonds and less to hydrogen atoms. Other trends, such as overesti-

mations in carbonyl carbon atoms and underestimations in oxygen atoms, are also observed; however, comparatively, TOPOMS performs slightly better than

the competing software for almost all resolutions. [Color figure can be viewed at wileyonlinelibrary.com]
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Extraction of molecular graph

We demonstrate the extraction of molecular graph on two

datasets and compare our findings to the results of Critic2.[24]

In both cases, we focus not only on the performance gain, but

more importantly, also on the topological consistency and

ability to simplify numerical and topological noise.

Benzene. We explore the total charge density (VASP AEC-

CAR0 1 AECCAR2 input file) for an isolated benzene (C6H6)

molecule, sampled on a ½20032003200� grid. Benzene is a

symmetrical molecule, expected to demonstrate isotropic

behavior about its center. As a result, it provides a predictable

test case to evaluate the stability of the molecular graph

extraction with respect to the underlying grid.

Figure 9 shows the molecular graph computed using Critic2.

The atomic locations are highlighted by red and blue spheres,

whereas orange dots represent the points along the gradient

paths in the graph, as are output by Critic2. Although the gen-

eral shape of the molecule can be observed even in the left

image, the visualization suffers from clutter due to the presence

of numerical and topological noise. Notice that there exist many

paths that connect the molecules across the periodic domain,

all of which are artifacts of discretization and numerical noise;

indeed, these are physically incorrect due to the nature of the

molecule, and much of the observed noise could be discarded

as vacuum to isolate the molecule. In their current form, these

results offer significant challenges for analysis due to a lack of

the notion of physical significance of these features. Due to the

noninteractive nature of the tool, cleaning up this noise by

using appropriate thresholds requires not only prior knowledge

about the molecule, but also manual effort through trial and

error. Figure 9 (right) was generated by discarding critical points

with charge density value less than 1026. Note that whereas the

resulting graph still appears to retain spurious paths across the

periodic boundary, the bond paths between all pairs of adjacent

carbon atoms have been lost. In fact, these physically important

features are missing even from the original noisy result, without

any simplification.

These results lead to the final concern about topological

consistency, which is highly dependent upon noise. In the

original case (left image: without noise simplification), Critic2

detects a total of 865 critical points (95 NCPs, 325 BCPs, 323

RCPs, and 122 CCPs); the resulting Morse sum is 229, which

not only produces incomplete topology,[24] but also is funda-

mentally inconsistent as it violates the Poincar�e–Hopf invariant.

Upon simplification (right image), however, Critic2 produces

topologically consistent result: 35 critical points (12 NCPs, 15

BCPs, 6 RCPs, and 2 CCPs), with a valid Morse sum of 1 1.

In comparison, irrespective of the data and any inherent

noise, TOPOMS always produces a topologically consistent

graph, and it is guaranteed to compute a super-set of physi-

cally relevant critical points. In addition to the “true” critical

points, a number of less persistent critical points may be iden-

tified, present in the data mostly as numerical and topological

noise. Figure 10 shows the original, noisy molecular graph

computed by TOPOMS. Most of the noise is concentrated away

Figure 9. Molecular graph of the total electron charge density of the benzene molecule extracted using Critic2[23] and visualized using Paraview.[59] Upon

simplification from the original noisy graph (left) to a simplified graph (right), many noisy features are removed. Nevertheless, three CAC bonds are not

captured by Critic2, even in the noisy case. Carbon and hydrogen atoms are shown as blue and pink spheres, respectively; bond paths in the graph are

rendered as sequences of orange spheres. [Color figure can be viewed at wileyonlinelibrary.com]

Table 4. Scaling performance comparison between TOPOMS and the soft-

ware of Arnaldsson et al.[4] for QTAIM analysis with increasing grid size

shows TOPOMS improving with grid sizes.

Data Time (s)

GainGrid # pts. Arnaldsson et al.[4] TOPOMS

½12031203120� 1728 K 4.13 1.535 2.6906

½14031403140� 2744 K 6.59 2.292 2.8752

½21032103210� 9261 K 23.47 7.398 3.1725

½28032803280�[a] 21952 K 62.53 18.155 3.4442

½42034203420� 74088 K 209.46 60.402 3.4678

½56035603560� 175616 K 506.06 141.163 3.5849

[a] The results for the ½28032803280� mesh are repeated from Table 2.
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from the molecule where the function values are low, thus

reducing the signal-to-noise ratio substantially. A total of

13418 (discrete) critical points (1255 NCPs, 5060 BCPs, 5454

RCPs, and 1649 CCPs) were identified in this case; despite the

high number of noisy critical points, the results stay topologi-

cally consistent, with a valid Morse sum of 0. (Since no thresh-

old is applied, this data is considered as a nonisolated system,

whose Euler characteristic is 0.) The simplified molecular

graph in Figure 10 clearly shows the hexagonal shape of the

benzene molecule with oxygen atoms (not shown) present at

the six corners, and outward arcs extended toward hydrogen

atoms (not shown), and captures the correct bonding behav-

ior of the benzene molecule. All numerical noise was removed

by interactively choosing appropriate levels of simplification

and filtering through the gui version of TOPOMS. Since each

simplification step is performed in a topologically consistent

manner (by canceling pairs of critical points of adjacent indi-

ces), by induction, every simplified molecular graph is topo-

logically consistent.

To generate the complete and noisy graph, Critic2 took about

15 seconds compared to the 19.3 seconds taken by TOPOMS to

compute the topology of this dataset (for a large range of noise

Figure 11. Molecular graph of the total electron charge density for the lithium salt in ethylene carbonate dataset. Appropriate simplification and filtering

through the UI allows removing the numerical and topological noise and enables capturing important bonding structures, for example, the PF2
6 ion and

the EC molecules, also shown as insets. NCP (maxima) and BCP (2-saddles) are shown as green and red spheres, respectively; the lines connecting them

(bond paths), are shown in orange. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 10. Molecular graph of the total electron charge density of the benzene molecule extracted and visualized using TOPOMS. The original graph

(left) contains many noisy critical points, especially toward the corners of the domain where the gradient is very small. However, interactive simpli-

fication and filtering of noisy features using TOPOMS allows focusing only on the most important features (right) to capture its hexagonal shape

and describe its bonding structure. NCPs (maxima) and BCPs (2-saddles) are shown as green and red spheres, respectively, and the connections

between them are shown as orange lines. The topology is overlayed on the volume rendering of the density. [Color figure can be viewed at

wileyonlinelibrary.com]
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simplification), after which the user can interactively simplify the

noise to a desired level. We note that to highlight the artifacts

due to noise, this data was treated artificially as a nonisolated

system (without a vacuum threshold). Therefore, the discrete

representation in TOPOMS identified a larger number of critical

points in a degenerate region of near-zero gradient as com-

pared to many fewer numerical critical points in Critic2. Such

behavior leads to a more dense discrete representation, which

takes longer to construct and even longer to simplify. Therefore,

Critic2, which is entirely numerical in nature, performs better.

When correctly run as an isolated system, TOPOMS took 12.4 sec-

onds only, compared to Critic2’s 14 seconds.

Lithium salt in ethylene carbonate. We revisit this dataset for a

detailed topological exploration, which produces the molecular

graph shown in Figure 11. As is shown in the figure, the result-

ing molecular graph clearly captures the bonded atoms, e.g., in

the EC molecule and PF2
6 ion. This detailed topological analysis

provides a parameter-free approach to identify bonding struc-

tures without the need to impose hard thresholds for distance-

based bond detection using pair-correlation functions. As a

result, TOPOMS provides a robust and scalable tool to determine

atomic bonds using a well-founded and widely accepted mathe-

matical framework. The computation of the complete topologi-

cal graph through TOPOMS, and its simplification and filtering to

an appropriate level take about 55.4 seconds, including the time

for QTAIM analysis. In comparison, Critic2[24] requires about

223 seconds to process the data for a similar analysis.

Conclusion

QTAIM analysis is an important tool for exploring complex

molecular and condensed-matter systems, particularly through

understanding bonding and charge transfer. Although there

exist publicly available tools for this task, the scope of such

tools is limited. For example, the software of Arnaldsson

et al.,[4] which combines several sophisticated numerical algo-

rithms to compute volumes and charges of topological atoms,

has proved very successful in the task it is designed for. How-

ever, it does not provide the molecular graph. An open-source

alternate to extract the molecular graph is Critic2,[24] which

offers attractive features for more general analytic purposes.

Nevertheless, computation of detailed topological structures is

a difficult task, presenting challenges in both performance and

numerical stability. Such approaches, in general, are particu-

larly affected by noise and degeneracies in the data.

Leveraging recent advances in computational topology, and in

the computation of Morse–Smale complexes in particular,

TOPOMS provides a means to perform a comprehensive QTAIM

analysis, including the extraction of the complete molecular

graph. TOPOMS combines the best of numerical integration algo-

rithms with robust discrete representations to provide a scalable,

numerically robust, and topologically consistent analysis. This

paper demonstrates that TOPOMS provides up to 43 performance

gain relative to current state-of-the-art codes, and the ability to

interactively explore the noise created by sampling artifacts and

extract only the important and physically relevant features.

In the future, we plan to extend the functionality of TOPOMS in

several ways, including support for different file formats. We

would also like to demonstrate interfacing TOPOMS with VASP, to

allow in situ analysis of large molecular and condensed-matter

systems. An important direction will be to extend TOPOMS’s API

to include other relevant fields, such as electron localization

function and molecular electrostatic potential, and address the

more general field of Quantum Chemical Topology.[22]
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