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Abstract—The Helmholtz-Hodge decomposition (HHD), which describes a flow as the sum of an incompressible, an irrotational,
and a harmonic flow, is a fundamental tool for simulation and analysis. Unfortunately, for bounded domains, the HHD is not
uniquely defined, traditionally, boundary conditions are imposed to obtain a unique solution. However, in general, the boundary
conditions used during the simulation may not be known known, or the simulation may use open boundary conditions. In these
cases, the flow imposed by traditional boundary conditions may not be compatible with the given data, which leads to sometimes
drastic artifacts and distortions in all three components, hence producing unphysical results. This paper proposes the natural
HHD, which is defined by separating the flow into internal and external components. Using a completely data-driven approach,
the proposed technique obtains uniqueness without assuming boundary conditions a priori. As a result, it enables a reliable and
artifact-free analysis for flows with open boundaries or unknown boundary conditions. Furthermore, our approach computes the
HHD on a point-wise basis in contrast to the existing global techniques, and thus supports computing inexpensive local
approximations for any subset of the domain. Finally, the technique is easy to implement for a variety of spatial discretizations

and interpolated fields in both two and three dimensions.

Index Terms—The Helmholtz-Hodge decomposition, vector fields, boundary conditions, uniqueness, harmonic flows

1 INTRODUCTION

NALYSIS of flows plays an integral role in understand-

ing physical phenomena such as eddies in the ocean
[1], weather [2], combustion [3], [4], [5], or solar convection
in astrophysics [6]. Large-scale scientific simulations and
observations create complex flows which encapsulate
important information about these underlying phenomena.
In order to gain insights from such flows, the Helmholtz-
Hodge decomposition (HHD) [7] is widely used as a valuable
analysis tool.

The HHD describes a flow field as the sum of a diver-
gence-free (incompressible), a rotation-free (irrotational),
and a harmonic (translational) component. Such a descrip-
tion may simplify the analysis of complex flows by
studying the divergence- and rotation-related properties
separately. For example, flow features such as critical
points [8], and indicator functions such as vorticity [9],
[10] or compressibility are studied as parts of simpler
component flows (e.g., in [11], [12], [13]). Furthermore,
the incompressible and irrotational components can also
be defined in terms of potential functions, which are typi-
cally easier to analyze, and provide meaningful informa-
tion, e.g., in the study of Alzheimers disease [14]. In the
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2D case, these potentials are scalar, and are used in a vari-
ety of applications such as streamline seeding [15] or fin-
ger print matching [16].

On unbounded domains, the HHD is unique for flows
vanishing at infinity. However, most practical cases deal
with flows on bounded domains, where the HHD is not
unique. In order to obtain a unique decomposition in such
cases, traditional techniques enforce boundary conditions,
which prescribe the component flows along the boundary,
e.g., that the irrotational flow must be normal, and the
incompressible flow parallel to the boundary.

However, many flows are generated through simula-
tions, and the boundary conditions used during the simu-
lation may not be known during the analysis or too
complex to be incorporated. Furthermore, a large number
of simulations instead use an open boundary, where the
flow at all or part of the boundary is observed as the out-
put of the simulation, e.g., in large-scale combustion simu-
lations [3], [4], [5], [17], [18], free surface fluid animations
[19], or oceanography [20]. In such cases, default boundary
conditions may be incompatible with the data, and lead to
unphysical results.

Instead, we propose a new strategy to obtain unique-
ness in the HHD. Using concepts from potential theory,
we consider a given flow to be the sum of flows created
due to internal and external influences with respect to a
given bounded domain. In this context, the traditional
way of imposing boundary conditions is equivalent to
presuming to know the external influences, thus leading
to a unique identification of flow due to internal influen-
ces. In contrast, our approach reverses the process by
computing the flow due to the internal influences using
the given data, uniquely and without any assumptions.
The residual is then considered to be the flow due to
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external influences. As a result, the proposed HHD is
unique without prescribing boundary conditions. Conse-
quently, no artificial features are introduced in the com-
ponents due to boundary conditions, and the proposed
decomposition naturally determines the component flows
along the boundary in a data-driven manner. Therefore,
we refer to it as the natural HHD.

Contributions. To address the challenges of non-unique-
ness in the HHD of a given flow € on a subset Q of R, for
n=2,3, we

1)  define the natural HHD of £ as its decomposition into
internal flow explained by the divergence and rota-
tion of E, and external flow due to unknown influen-
ces from outside;

2) show that this decomposition is unique without
needing any boundary conditions;

3) introduce efficient local computation and local approxi-
mation of the natural HHD, which restrict computa-
tion to a subset of ();

4) present a simple and embarrassingly parallel algo-
rithm to compute the natural HHD for a variety of
spatial discretizations and interpolated vector fields
in both 2D and 3D, and compare it to the state-of-
the-art using several synthetic and real-world data,
demonstrating that it is stable, well-behaved, and
produces no artifacts; and

5) propose a metric to, for the first time, quantify the
amount of harmonic flow present in €.

2 UNDERSTANDING HARMONIC FLOW

The fundamental reason for non-uniqueness in the HHD is
that harmonic flows are both irrotational and incompress-
ible. Therefore, one can add an arbitrary harmonic flow to
any one of the three HHD components, and its negative to
another, to obtain a different valid decomposition. As a
result, any two valid HHDs differ in only how the harmonic
flow is represented. Therefore, to address non-uniqueness,
we must first understand the nature of harmonic flows,

Fig. 1. An example given by Wiebel [21] to show artifacts of the HHD
boundary conditions. Top: A rotational vector field (left) and the potential
function used to create it (right). Bottom: The incompressible component
and its potential function recovered through the HHD. Note that the
rotation is inverted and an additional critical point is introduced in the
output field.
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how they are related to boundary conditions, and why
imposing boundary conditions may not be a good choice.

Traditionally, uniqueness is obtained by imposing
boundary conditions, which add certain harmonic flows to
the incompressible and irrotational components to match
the imposed boundary flow, and their negative to the har-
monic component, which is then computed as the residual.
For example, the most common boundary conditions
require the irrotational and incompressible components to
be normal and parallel to the boundary, respectively.

However, these conditions are somewhat arbitrary, and
may not be compatible with the given flow. For example,
consider the rotational flow shown in Fig. 1. Through the
HHD of this field, one would expect to recover the same
flow as the incompressible component, while the other two
components being zero. However, as the figure illustrates,
the obtained incompressible component contains serious
artifacts. Especially notice the change in topology of the out-
put field. These artifacts are caused due to the fact that the
HHD imposes a parallel flow on the boundary—a configu-
ration incompatible with the original flow.

In general, the boundary conditions create a strong cou-
pling between the component flows and the shape and ori-
entation of the boundary. As shown in Fig. 6, when the
same analytical flow is sampled on differently shaped
domains, one obtains markedly different decompositions.
Using these decompositions for analysis may produce sig-
nificantly different results for the same flow depending on
the shape of the domain. Given that the shape of the domain
is usually determined by the region of interest and/or prac-
tical considerations such as mesh type or compute power,
this dependency calls such analysis into question.

Intuitively, these examples suggest the need to identify
the harmonic flow independent of the shape and orienta-
tion of the boundary. However, the harmonic flow is
always defined with respect to the viewpoint of the
observer. As seen in the Fig. 2, the translational flow in Q
is harmonic, and one would presume its HHD should con-
tain only a harmonic component. However, considering
the domain () instead, some of this translational flow is
clearly created and destroyed by the local divergence (in
red and green), and is therefore not harmonic. As a result,
the irrotational component of the HHD on ' should be
non-zero in Q).

It is well known that harmonic functions are associated
with boundary conditions, which equivalently means that
they depend upon the phenomena occurring outside the
given domain. However, since external information is

Q/

Fig. 2. Definition of harmonic flow depends on the domain considered.
The translational flow in ) is harmonic with respect to (), but may not be
harmonic with respect to (), depending upon the flow in /.
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usually unknown, identifying harmonic flows by imposing
boundary conditions on () is equivalent to presuming to
know the flow on ' or rather its influence on Q. In con-
trast, we argue that any non-harmonic flow can be
completely explained by the information available inside
the domain. Therefore, a harmonic flow can be indirectly
identified as the flow that cannot be explained by the avail-
able data inside the given domain. Such an interpretation is
completely data-driven, and makes no assumptions about
unknown external information.

This indirect interpretation of harmonic flow has an
important advantage. So far, there exists no technique that
can use the divergence and curl of a given flow to determine
whether it “contains” a non-zero harmonic flow or not.
However, considering the presented interpretation, it
becomes possible to implicitly identify any harmonic flow
with respect to a given domain. Using this interpretation of
harmonic flows, the natural HHD obtains uniqueness with-
out assuming any boundary conditions a priori, and we
argue that it is more suited for the purpose of data analysis,
since it does not assume potentially inaccurate information.

The practical utility of the natural HHD is that it allows
an open-boundary flow analysis, which is essential for a
variety of applications, some of which are briefly discussed
in Section 3. Furthermore, in a large number of flow simula-
tions, the goal is to study the phenomena intrinsic to the
domain, e.g., to understand the turbulence caused by com-
bustion inside the domain (cf. Figs. 8 and 11). In such cases,
there is a need for analysis that can successfully separate
the influences of internal and external phenomena in a natu-
ral way without imposing boundary conditions.

3 RELATED WORK

Open boundaries are an important concept in situations
where the flow is expected to move across the simulation
domain. For example, in oceanography, when the simulation
domain is not bound by a shoreline. In this context, Lekien
etal. [20] perform an open-boundary modal analysis and dis-
cuss corresponding boundary conditions. The recent work of
Soderstrom et al. [19] propose a perfectly matched layer
(PML)-based approach to obtain non-reflective boundary in
simulation of waves. They create artificial sources/sinks to
absorb the mass and energy of the waves travelling outwards
in order to avoid reflections. The quality of the results,
however, depend upon the width of the dampening region.

Besides, there exist a large number of flow simulations
such as the flow behind the cylinder, lifted jet flame [4], [5],
jet in cross-flow [17], [18], where flow is injected in the
domain from one side, and the response of the system is stud-
ied along with the outflux of the flow from the other side.

The particular issue of boundary conditions has been a
topic of interest in the context of the HHD as well. Several
boundary conditions have been studied in order to find the
most “natural” ones to address the boundary artifacts. In
most approaches in fluids simulation, however, the bound-
ary conditions are guided by the underlying fluid model.
E and Liu [22] compared the numerical convergence of
the Dirichlet and Neumann boundary conditions for the
projection method (HHD), and concluded that the Neu-
mann boundary conditions provide better accuracy and
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convergence than the Dirichlet ones. Denaro [23] summa-
rizes Neumann boundary conditions in detail, and also
mentions periodic boundary.

Various techniques have also been discussed for the com-
putation of the discrete HHD. Polthier and Preuf8 pioneered
the modern approach for its computation on surfaces. They
propose a global variational approach to compute the scalar
potentials [24], and present an algorithm based on a least
squares-finite elements method (LS-FEM) to compute the
HHD for piecewise constant (PC) vector fields on triangular
meshes [25]. Tong et al. [26] extend their work to 3D by
computing the decomposition for PC vector fields on tetra-
hedral meshes. On the other hand, Guo et al. [27] specialize
Polthier’s framework for regular grids, by decomposing the
regular grid into a regular triangulation and making appro-
priate optimizations. Petronetto et al. [28] compute the
HHD for 2D point-clouds using a smoothed particle hydro-
dynamics (SPH) approach. Rather than specializing for a
particular domain, our framework trivially applies to bilin-
ear/trilinear, and PC vector fields in 2D and 3D.

The earlier methods to compute the HHD are mainly
focused on fluid simulation and/or graphics and animation
[29], [30], [31], [32]. However, the choice of time and space
discretization is guided by the prime objective—simula-
tion/animation, and HHD computation forms a smaller
part of the bigger pipeline. There exist other methods to
compute the HHD, e.g., in Fourier [11], [33] and wavelets
domain [34], using statistical learning [35], etc. A detailed
discussion on the methods for the computation of discrete
HHD can be found in a recent survey [36].

A flow decomposition based on a similar idea to ours
was proposed by Wiebel et al. [37], which represents a flow
as the sum of a potential and a localized flow. The latter cap-
tures the local properties of the flow by representing its
divergence and rotation inside the domain, while the former
has no divergence and rotation, and matches the original
flow at the boundary of the domain. In general, their tech-
nique can be seen as an incomplete variant of the HHD,
which, however, has certain drawbacks. First of all, the com-
putation of the potential flow imposes boundary conditions,
which, as discussed above, assumes unknown information
about the external influence. Furthermore, the localized
flow is always confined within the domain, i.e., its compo-
nent normal to the boundary is zero. This is a strong
assumption, especially for compressible flows. For example,
consider a nodal source in a closed domain, where one
must expect the flow created due to the source to go across
the boundary, something not possible in a localized flow.
The technique also needs additional information (material
density) to resolve compressible flows. And finally, as dis-
cussed by the authors [37], the material density should be
near constant for the technique to apply to unsteady flows.
In contrast, our technique decomposes the flow into internal
and external components in a natural way, without needing
any additional information, and produces components
uniquely without boundary conditions.

4 MATHEMATICAL BACKGROUND

The HHD is computed by finding a pair of potential func-
tions whose gradient and curl represent the rotation-free
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Fig. 3. An illustration of the Poisson equation on € C R. Inside (), the
potential due to an internal source §;, (red) is uniquely defined. However,
the potential due to any external source (e.g., d,.¢) (green) is harmonic
(constant slope) inside (), and can be determined uniquely using bound-
ary values. Therefore, the solution to the Poisson equation (cyan), i.e.,
the potential due to interior and exterior sources, is uniquely defined
using the boundary conditions.

and divergence-free components. These potentials are
computed by solving two Poisson equations. Therefore, it
is important to first understand the theory and physical
meaning of the Poisson equation and potential functions.
In the context of this discussion, the term source repre-
sents an energy source giving rise to a potential function,
and should not be confused with a critical point of the
vector field.

4.1 Potential Theory
One of the most fundamental elliptic partial differential
equations is the Poisson equation,

Vip=f

where, f is called the source function, and ¢ the potential func-
tion. The general solution to (1) is given by ¢ = F + H,
where V?F = f, and H is a solution of the Laplace equation,

in Q, (1)

VPH =0 in €, (2)
and is called a harmonic function. Note that, one can add any
harmonic function H to ¢ while still satisfying (1). To obtain
a particular solution to the Poisson equation (1), one needs to
choose a specific H, typically done by imposing boundary
conditions.

In physical terms (cf. Fig. 3), the Poisson equation (1) sol-
ves for the potential ¢ generated by the (energy) sources
inside the domain (defined by f), as well as those outside the
domain. However, since for the Laplace equation (2), the
(energy) sources are zero inside the domain, its solution (a
harmonic function) represents the external influence [38],
[39], i.e., the potential generated by the (energy) sources
lying outside ().

The external influence can be inferred if its boundary
values are known. Therefore, the harmonic function rep-
resenting the external influence is completely and
uniquely defined by boundary conditions. Since the inter-
nal influence is already uniquely defined by f, when
appropriate boundary conditions are given, ¢ (the solu-
tion to (1)) is uniquely defined.

4.1.1 Green’s Function

One approach to solve the Poisson and Laplace equations
uses an integral kernel called the Green’s function, G(x, xo).
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The Green’s function is defined as the potential created at
Xy due to an impulse (energy) source represented by the
Dirac delta function located at x, (as shown in Fig. 3), i.e., it is
the solution to the equation

V2G(x,%0) = 8(x — Xg).

In the case of a single source located at x in an infinite
domain, it is also called the free-space Green’s function,
Goo = G (x,X), and is given as
1 2
Goo(x,%0) :glog(|x—x0|) X, X € R,
1
47|x — x¢|

Go(x,%9) = X, % € R

According to the sifting property of the Dirac delta function,
any continuous source function can be represented as a col-
lection of infinitely many impulse sources, as

fxo) = [ f(x)8(x —x¢) dx.

R"™

Then, the Poisson equation V¢ = f on R", with f(x) — 0
for x — oo can be solved [39] as

. Goo(x,%0) f(x) dx. (4)

R

d(x0) =

The above integral solution computes the potential ¢ at a
point xy € R" due to the sources defined by f at all x € R".
However, given a bounded domain () C R", the computa-
tion of ¢ using (4) can be split into two parts — inside €} and
outside ().

o(x0) = / G f(x) dx + G f(x) dx. (5)

Q R"/Q)
From the discussion presented above, it is known that
the second integral (g, s ") creates a harmonic poten-
tial in (), whereas the first integral (J,---) leads to a
non-harmonic potential in (). Section 5.1 will elaborate
on how to make use of this insight for computing the
HHD without assuming boundary conditions. However,
next, the traditional way to compute the potential func-
tions on bounded domains using boundary conditions is
discussed.

4.1.2 Boundary Conditions

As already discussed, for bounded domains, a unique solu-
tion of the Poisson equation (1) is obtained by imposing
boundary conditions. Two common types of boundary con-
ditions are (a) Dirichlet, which specifies the value of ¢ at the
boundary 9€), i.e., ¢ =g on 9Q; and (b) Neumann, which
specifies the value of the derivative of ¢ with respect to the
boundary, i.e., g—g = h on 0(), where, 77 is the exterior normal
to the boundary.

To compute ¢ for a bounded domain () using the integral
solution, one typically uses the finite-space Green’s function
Gq, which is influenced by both the domain ) and its
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boundary 9€). In this case, the Poisson equation (1) can be
solved [39] as 8GQ
X() GQ f dX + a7

- GQ =
fgﬂ Bn

In the case of Dirichlet boundary conditions, one typically
finds a G that vanishes at the boundary, such that the third
integral becomes zero. On the other hand, for Neumann
boundary conditions, one imposes M =1/(4, dx), in
which case the second integral becomes a constant. In gen-
eral, however, computing the Green’s function for an arbi-
trary domain is non-trivial, and typically, it is not available
in closed-form.

With an understanding of the Poisson equation and
potential functions, we now discuss the fundamental equa-
tions governing the HHD.

¢()

4.2 The Helmholtz-Hodge Decomposition

The Helmholtz-Hodge decomposition [7] decomposes a
vector field into rotation-free, divergence-free, and har-
monic vector fields. Consider a smooth vector field
5: Q) — R", where () C R” (for n = 2, 3), then

E=d+7+h (6)

where, d is rotation-free (V x d=0), _' is divergence-free
(V-7=0), and h is harmonic (V x k=0 and V -/ = 0).
This leads to the following equalities:

V.-d=V-§,
A )
Vxr=Vx¢
Notice that this system of equations is under-specified, since
for any harmonic flows hd and hr, the followmg ﬁelds also
represent a Vahd HHD: d =d+ hd, 7 =7r+ h,, and
W' = i — hy — h,. For infinite space (Q = R") where £ goes to
zero at infinity, no harmonic flow can exist (hy =
hy=h=h =0), and thus the decomposition is unique.
However, for domains with boundary, or for non-simply
connected domains, a harmonic flow may exist leading to a
non-trivial solution space. The traditional way to obtain a
unique solution is to specify a set of boundary conditions,
which effectively determine hd and h,, and thus choose a
particular solution from the space of valid decompositions
satisfying (7).

While there exist several boundary conditions motivated
by a variety of applications and spatial discretizations, the
most common boundary conditions found in literature [25],
[26], [40] are the normal-parallel (NP) boundary conditions,
which impose the rotation-free and the divergence-free flows
to be normal and parallel to the boundary, respectively. Using
the NP boundary conditions, the HHD(xp) is defined as

£= d p) + T(xP) +hNP)7

such that J(Np x =0 and 7(yp) -7 =0. In addition to
uniqueness, these boundary conditions maintain L? orthogo-
nality between d and 7, by ensuring that |, a d-7#dV = 0. The
particular issue of orthogonality will be discussed in more
detail in Section 5.
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4.2.1 The HHD as Poisson Equations

To compute the decomposition, the components d and 7 are
represented as the gradient of a scalar potential D, and the
curl of a vector potential R, respectively. Substituting
d=VDand 7=V x Rin (7), we get two Poisson equations,

AD=V ¢
- . (®)
AR =-V x ¢,
where, A is the (scalar) Laplacian, ie., A= V2, and A is
the vector Laplacian, i.e.,, A = (VV:) — (V x Vx). Further-
more, due to the gauge condition [22], [41], V-7=0
implies V- R = 0. Thus, AR = -V x V x R. The Poisson
equatlons (8) are solved, leading to the components d and
7, and then, the harmonic component is computed as the
remainder: h = £ —d — 7.

In two-dimensions, the curl can be represented as a sca-
lar value in the normal direction to the domain. This leads
to a simpler representation of " as the co-gradient of a scalar
potential R, i.e., ¥ = JVR, where .J is the 7/2-rotation opera-
tor. Consequently, the second Poisson equation in (8) can be
simplified as

AR=-V.-JE& (9)

4.2.2 The Artifacts of the NP Boundary Conditions

To uniquely define the potentials Dp) and ﬁ(Np using
the NP boundary conditions, the P01sson equations (8)
are solved by setting Dnp) =0 and RNp =0 on the
boundary. We only discuss the computation of Dp),
since the computation of RNp) follows similar argu-
ments. Using the superposition principle, one can repre-

sent Dnp) = D* + Hgy, such that
2 )k d 2 _ :
V*D* =V ¢ and V°H;=0 in 0(),
D=y Hy=— on 0Q),

where, D" is the divergent potential that captures all the
divergence of ¢ and g is the distribution of D* on the bound-
ary. As already discussed, g is usually not known, and
therefore, by solving for Dp), one adds a harmonic func-
tion H, which has the values —g on the boundary. Thus, a
harmonic flow hd = VH,is added to d, (NP)-

To illustrate the artifacts due to imposing zero potential
on the boundary, we refer to Fig. 1 which shows an extreme
but not an uncommon scenario. Moreover, observe the third
row in Fig. 6 which shows that due to the imposed normal
flow in J(Np), the flow disagrees substantially from the
known analytical flow, Jknown.

5 THE NATURAL HHD

To understand the internal influence for a given domain, we
recall from the theory of potential functions and energy
sources, that every point (inside and outside the domain)
with a non-zero energy source creates a potential. In this
context, the divergence and rotation fields can be seen as a
collection of impulse sources for divergent and rotational
potentials, such that every point (inside and outside the
domain) with a non-zero divergence and rotation influences
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the divergent and rotational flows respectively. Further,
recall that harmonic potentials represent the external influ-
ence. We use these intuitions of internal and external influ-
ences to formally define the natural HHD.

Definition 5.1 (The Natural HHD). The natural Helmholtz-
Hodge decomposition, HHD*: £ = d* + 7 + h*, is obtained by
separating the flows due to internal and external influences,
such that the natural divergent (d*) and natural rotational
() components represent the flows influenced by the diver-
gence and rotation of ¢ inside the domain. Consequently, the
natural harmonic component (h*) is the flow influenced only
by the exterior (boundary) of the domain.

5.1 Construction and Uniqueness

Given a smooth n-dimensional vector field £: Q — R" for
n = 2,3, where () is a bounded subset of R”, the _goal is to
interpret and compute the natural components of €. Using ¢,
we define another smooth vector field on infinite space,
V : R" — R" such that

o V(x)=¢&(x)forallx € Q,and

o |V(x)| = 0for|x| — oc.

By definition, 1% captures the properties of ¢in Q, ie.,
vV.-V=vV- fand VxV= fomQ and also provides a
smooth flow on R"” that vanishes at infinity.

In order to compute the natural HHD of £, we first study
the HHD of V. This indirect approach of using V has two
main advantages: 1) the HHD of V is unique by definition,
since it does not contain a harmonic component, and 2) it
allows the use of the free-space Green’s function G'x, which
is trivially defined in closed form. The HHD of V' is

V=VD+V xR,

where, the potentials D and R are computed by solving the
following Poisson equations.

AD=V-V in R,
AR=-VxV in R".
Using G, D and R can be computed as
D(xg) = Gy V- V(x) dx X,Xg € R",
Rn
R(xo)=— | Gy V xV(x) dx X, %X € R".
R’!l

Similar to (5), these expressions can be split into two parts—
inside ) and outside ). Furthermore, since V - V( )=V-
£(x)and V x V(x) = V x £(x) for x € O, we have

G V- V(x) dx,
R"/Q

/G V x £(x) dx —

Dexi) = [ 6o V- Ex) dx +

R(xo) Goo V x V(x) dx,

R"/Q
where, [, and [, /o Tepresent the influence of the interior
and the exterior with respect to () respectively.

Note that D and F are defined over R", however, since
the final goal is to compute the natural HHD of € in Q, we
restrict these expressions to x, € (). Since, by definition,
the natural potentials represent only the internal influence,
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the following expressions provide formal definitions to the
natural potentials.

D*(xp) = /QGOOV - €(x) dx

R (x) = — /“ GV X €(x) dx X, Xp € (.

X,Xg € Q?
(10)

From Section 4.1, we know that the integral [,(...)
defines a non-harmonic potential inside (). On the other
hand, the integral [, q(...) defines a harmonic potential in
Q). Therefore, ignoring the latter does not change the diver-
gence and rotation captured by the non-harmonic poten-
t1als As a result, the natural components d = VD" and

— V x R* match the divergence and rotation of £. Conse-
quently, the natural harmonic component, computed as the
remainder h* = £ — d* — 7, is both divergence- and rota-
tion-free. Finally, note that the natural potentials D* and R
are uniquely determined by (10), and therefore, so are &, ™,
and /*. Hence, the natural HHD is unique.

Theorem 5.2. Given a vector field 5 on a bounded domain (),
its natural Helmholtz-Hodge decomposition as defined by
Definition 5.1 is unique.

The significance of the natural HHD is that the unique-
ness can be obtained without assuming any boundary con-
ditions on D* and R*.

Interpretation of the Natural Harmonic Flow. From the dis-
cussion so far, we know that the HHD of V is unique, and is
given by

V(x0) = VD*(x) + V Gy V- V(x) dx
R"/Q)

-V x G V x V(x) dx,

R”/Q)

+V x R*(xq)
where, x; € R™. On the other hand, the natural HHD of 5 is
given by

£(x0) = VD*(xq) + V x R*(xq) + h",

where, x € (). By definition, V(xo) = ¢(x
As a result, for all xy € (), we have

o) for all xq € Q.

R (x¢) =V G V- V(x) dx
R"/Q

-V x Goo V x V(x) dx x € R".

R” /)

This means that the natural harmonic component of € can be
constructed using the divergence and curl of a hypothetical
flow on R". There can exist many such flows leading to the
same /*. This degree of freedom matches our understand-
ing of harmonic flow that its unique definition requires
knowledge about the exterior. However, using the proposed
internal-external split, one does not need to find a particular
V, but instead, can determine the influence of the unknown
in a data-driven manner. As expected, for computation of d*
and 7, no information about the exterior (or the boundary)
is needed, and therefore, the indirect approach to consider
an infinite vector field is only a thought experiment.
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5.2 Advantages and Limitations

Computing the natural components by distinguishing
between the internal and external influences has several
advantages. First, computation of the natural HHD depends
only upon the flow inside the domain, and not on the rela-
tive alignment of the flow with its boundary. Notice that
this approach also works for non-simply connected subsets
of R" (cf. Fig. 6).

Second, due to the conceptual domain extension to R"
one can utilize the free-space Green’s function G, which
is simple and known in closed-form. Therefore, the compu-
tation on bounded domains can bypass the step of comput-
ing the finite-space Green’s function Go which is much
more involved, since it may not be known in closed-form
for the given domain. Third, one could think of using a
similar idea of extending the domain for existing techni-
ques in order to reduce boundary artifacts. However, being
global in nature, such techniques would depend upon the
flow in the extended domain. On the other hand, the pro-
posed approach is oblivious to how the field is completed
in the extended domain, and does not depend upon the
size and shape of the extended domain.

Finally, unlike the other techniques which use boundary
conditions to obtain uniqueness, the computation of the
natural HHD does not assume a decomposition of the
boundary flow. Therefore, the fidelity of the flow is not com-
promised, and the components obtain the most “natural”
values on the boundary.

The only limitation of the natural HHD is that it is not
guaranteed to be L,-orthogonal. However, orthogonality
between the incompressible and irrotational components is
important only for certain applications in fluid simulation,
as it helps decouple the errors in the two components. For
applications in visualization and analysis, orthogonality is
not required. Instead, we seek more desirable properties
like flow topology, which can be attributed to the interior
and exterior of the domain. Therefore, we believe that the
natural HHD is suited to most applications in such areas.

5.3 Local Computation and Local Approximation
Besides the conceptual advantages of the natural HHD
described above, it has some important practical benefits.
The natural HHD is computed point-wise, and does not
assume any boundary conditions. Consequently, consider-
ing a smaller area of interest {); C (), it is possible to obtain
a local decomposition in (), by restricting the computation to
. Physically, this means that we can compute the compo-
nents in a smaller ); influenced by the divergence and rota-
tion in the larger (). In contrast, using the state-of-the-art
techniques [25], [26], [27], [28], which are global solutions, it
is not possible to compute a local decomposition using
global information.

Furthermore, it is also possible to obtain a local approxima-
tion to the global natural HHD by ignoring the flow outside
Q. This computes the component flows inside ; due to
the influence of (), instead of ). The error of this approxi-
mation is then given by the ignored term: fQ o Gool(-+-).

However, in practice, this error is often neg11g1ble for
tworeasons. First, for turbulent flows, the external influences,
e.g., positive/negative divergences and clockwise/
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counterclockwise rotations often cancel each other. Second,
since the Green’s function is a distance-based weighting func-
tion whose value goes to zero as the distance increases, for
suitably chosen finite {); C (), it can be ignored for points in
Q/0.

Both the local computation as well as the local approxi-
mation play crucial roles in terms of reducing computa-
tional costs, especially when (), is much smaller than (), as
illustrated in Section 7.

5.4 Quantifying the Harmonic Flow

Although harmonic flows are well studied, currently there
exist no techniques to determine whether a given flow on a
given domain “contains” a harmonic piece or not. Since har-
monic is most commonly defined as the flow that is both
divergence- and rotation-free, at best, one can only evaluate
if the given flow is rotation-free, divergence-free, or both
(harmonic).

However, an earlier ignored, but an important property
of harmonic flows is that they are caused by influences that
are external to the given domain. Utilizing this property,
the internal-external split proposed in this paper computes
the harmonic flow indirectly. This allows us to, for the first
time, answer an important question “Given a vector field £
defined on ), how much harmonic flow does it contain ?”.

For a given flow 5 on (), its non-harmonic component,
denoted as ¢*, can be computed using its divergence and
rotation: o = (V [, G V-gdx) + (V X [0 Gs V X de),
and quantified using a vector norm p that maps the space
of vector fields to positive real numbers. By definition, u
must satisfy three properties: (1) u(@) > 0; (2) u(a@) =0 if
and only if @ = 0; and (3) (@ + b) < (@) + ().

Owing to the fact that the non-harmonic component ¢* is
guaranteed to not contain any external influences (har-
monic), we can quantify the amount of harmonic flow pres-
entin £ _indirectly. In particular, since £ =0 + h*, it follows
that u(€) < (@) + pu(h*). Using this expression, the lower
bound on the norm of harmonic flow present in ¢ with
respect to Q is (h*) > w(€) — (), where, both the terms
in the RHS of this inequality can be uniquely determined.

In summary, the harmonic flow (external influences)
present in a given flow can be quantified using a user-
defined norm, such as the L, norm. The metric will be zero
if and only if there are no external influences, and E’ can be
uniquely decomposed into two natural non-harmonic com-
ponents. On the other hand, a non-zero metric indicates that
€ is not directly useful to study internal features, and the
natural HHD must be used to first dissociate the harmonic
component. This quantification can also serve as a bench-
mark for different HHDs to assess the quality of the result-
ing components and their usability in applications
requiring open boundary.

6 IMPLEMENTATION DETAILS

The computation of the natural HHD as the integral solu-
tion of the Poisson equation using the free space Green's
function requires (a) computation of the divergence, curl,
and gradients; and (b) integration of the results over the
given domain. For both these steps any appropriate
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discretization can be used. For clarity of the presentation,
we limit our discussion to 2D, with bilinear vector fields
on regular grids, and PC vector fields on triangulated
domains. However, all concepts trivially extend to 3D and
other interpolants.

In the following, let 7 represent a triangulated domain
where the PC vector field is defined on the faces, and all
scalar quantities are defined on the vertices, and G be a
regular grid of size [X x Y], and grid spacings dz and dy,
where all quantities (including the vector field) are
defined on the vertices.

Computation of divergence, curl, and gradient. To define the
differential operators on G, we compute the partial deriva-
tives in each dimension using central finite differences for
the interior nodes, and forward /backward finite differences
for boundary nodes. Using these partial derivatives we can
obtain the discrete approximations to the divergence, curl,
and gradient operators.

For PC vector fields on 7, we use the finite element
framework proposed by Polthier and Preufs [25]. The
divergence (and curl) at a vertex is computed as the sum
of dot products of the vector field with the normal (and
tangent) along the boundary of the one-ring neighbor-
hood of the vertex. The gradient of a scalar field defined
at vertices of 7 is a vector field defined at its faces. For
each face, it is the sum of the gradient of its barycentric
coordinates weighted by the function value at the corre-
sponding vertices.

Integration over the domain. Let C, E, and I be the set of
vertices at the four corners, at the boundary (not including
the corners), and the interior of G. Then, the integral of a
function f over G can be computed by applying the 1D trap-
ezoidal method over the z-dimension, and subsequently
over the y-dimension. This gives the following expression
Jg 1(@.9) = 8 (Lo fo+ 2 ep fo+ 42 ,c; 1), where, f,
is the Value of f at the vertex v.

On the other hand, for every vertex v € 7, let Area (v)
denote the area of the corresponding cell in the Voronoi
dual mesh (obtained by connecting the centroids of the tri-
angles in 7). Then, the integral of a function over the
domain is computed as [ f(z,y) = o7 fo Area (v).

Using the modules defined above, the integral solutions
is computed as weighted sum over all the vertices, making
it an O(n?) algorithm, where n is the number of vertices in
T or G. However, the technique is trivially parallelizable
since once the divergence and rotation are available, com-
putation at every vertex can be performed independently
and in parallel.

7 EVALUATION AND RESULTS

This section provides results of our technique applied to
some synthetic and simulated data sets. The aim is to first
evaluate the accuracy and stability of the technique by com-
paring it with the known component fields, and then to
demonstrate its versatility and robustness by applying it to
different physical flows. For comparisons, we use the LS-
FEM technique of Polthier and Preuf [25] as the representa-
tive of HHD xp), i.e., the HHD with NP boundary conditions
(d op) X =0 and 7p) -7 = 0). Note that the majority of
the differences among the two approaches are due to the
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Il Natural HHD
N Analytic
S0} EEE Polthier's Method

Ly(V xh) Ly (Rl Ly([7H) Ly (rh))

Ly(V-R)

Fig. 4. Quantitative comparison shows that the natural components
approximate the analytic fields better.

choice of boundary conditions, and not how the solution is
computed. The visualizations in this sections are created
using line integral convolution (LIC) [42], color-mapped to
represent vector magnitudes, where purple-white represent
low-high values.

7.1 Comparisons with Analytical Fields

We analytically create a divergent, Jknown, a rotational,
Taown, and a translational (harmonic), ﬁknom, flow, and add
them to construct a synthetic test case, 5 dkm,wnJr Tknown +
hknom, as described and illustrated in Fig. 5b. Similar to the
example given by Wiebel (cf. Fig. 1), this field is contrived
to represent a scenario of open boundary, and as a result,
the standard boundary conditions would be incompatible.

The “ideal” HHD of ¢ should recover the three input
ingredients accurately. However, as expected, the compo-
nents of HHDyp) (see Fig. 5a) show artifacts near the
boundary. In particular, notice that the flow magnitudes are
near-zero for both J(Np) and 7(xp) near the corners of the
domain, and the critical points in the rotational and diver-
gent flows are shifted inwards. Furthermore, the corre-
sponding harmonic flow hy (vp) does not reflect the added
translation hknown In comparison, the components of the
natural HHD (cf. Fig. 5c) are virtually indistinguishable
from the analytic components.

Since d and 7 are computed as gradient and curl of the cor-
responding potentials, their numerical divergence and rota-
tion are always zero. Therefore, the divergence and rotation
present in his a good indicator of the numerical quality of
the decomposition. As shown by the first two sets of columns
in Fig. 4, our results closely match the expected results, while
the results of HHDxp) show large deviations. To further
compare the two decompositions, we quantify the amount of
external influences in the corresponding components. The
third set of columns shows the L, norm for |h |, |hkmm al, and
|h np) |, and indicates that our solution extracts almost all of
the harmomc flow into h*. The last two sets of columns show
the amounts of non-harmonic and harmonic flows present
in the obtained dlvergence—free fields, denoted as 7% and rh.
The three columns for 70 almost match, meaning that the net
amount of rotational flow is conserved in all the rotational
components. However, there exists a large amount of har-
monic flow in #p). In contrast, the harmonic flow contained
in 7 is unnoticable. The results on the obtained rotation-free
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(a) The HHD using NP boundary conditions (HHD(np)): E = J;NP) + 7np) + H(Np).

(b) Analytically created fields on domain (—1,1) x (—1 1) dinown has a source at (0.5,0.5) and a sink at (

—0.5, —0.5); known has two

counter-rotating orbits at (—0.5,0.5) and (0.5, —0.5); and Finown = {0.5,0.1}. All critical points were created such that their strengths

decay exponentially distance. The test field is obtained by adding these fields: £

dknown + Tknown + hknown

.J

(c) The proposed natural HHD (HHD*) without boundary conditions: 5 =d* + 7 + h*.

Fig. 5. Comparison of the natural HHD (bottom) and Polthier's LS-FEM [25] with NP boundary conditions (top) with the analytic flows (middle). The

results of natural HHD are much closer to the ground truth.

fields (not shown in the figure) follow a similar trend. These
quantitative comparisons corroborate the visual impression
that HHD* recovers the known solution significantly better
than HHDxp), whose results are not useful for applications
requiring open boundary.

Fig. 6 shows the results of an experiment where we sam-
pled an analytical flow (5 dxnown + Minown) ON @ regular
grid, a rotated regular grid, and an unstructured annulus
mesh. Comparing the flows, one can observe that our
results match more closely to the analytical flow. In particu-
lar, the fields d* and A" reflect the best estimates of dknown
and hknown, glven the data inside the domain. On the other
hand, d (vpy and h (vp) computed using NP boundary condi-
tions impose boundary flow, and therefore show major
deviations, especially near boundaries.

Stability. We further compare the stability of both techni-
ques to sampling conditions and directions of the harmonic
flow. First, we sample a rotating field on a fixed structured
domain. As observed, the proposed approach is virtually
invariant to the sampling while HHDp) continuously
forces alignment with the boundary causing significant

artifacts. In the second experiment, we continuously vary
the direction of the added harmonic flow. As expected from
Fig. 5, our solution remains unaffected while HHDyp) is
only able to recover hknown when it aligns with the boundary
and produces significant global artifacts otherwise. The
accompanying video, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2014.2312012 shows animations for
both experiments.

7.2 Results on Physical Simulated Flows

Next, we apply our technique to different simulated flows
reflecting a variety of physical phenomena. Notice that the
results of Figs. 8, 11, and 12 show how physical flows do not
conform with traditional boundary conditions, and thus
existing techniques are not applicable.

Flow behind the cylinder and cuboid. The data shown in Fig. 7
is a single time-slice of a time-varying simulated flow. The
flow is injected from the left boundary, and its behavior is
observed behind the cylinder (on the left boundary of the
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Fig. 6. The natural HHD (07* and E*) contains significantly fewer artifacts than the HHD with boundary conditions (J(Np) and E(Np)) as compared to the
true components—djown @nd hiown (@ translational flow (1, —1), not shown).

Fig. 7. The natural HHD of the flow behind the cylinder (left). 7 reveals all vortices and is not aligned with the boundary (middle), while s represents

the background flow (right).

domain). As seen in the figure, our method extracts the har-
monic components completely, and 7 reveals the vortices.
d* is zero since the original flow is incompressible. Note how
7 is not aligned with either boundary — a result not feasible
with traditional techniques. The computation of the natural
HHD for this [400 x 50] data took about 1.06 seconds.

Fig. 10 shows the results of the natural HHD on a similar
3D flow. The data represents the flow behind a cuboid,
where the flow is injected from one direction, and its behav-
ior is observed behind the obstacle. Notice that 7 reveals
the vortical structures, while 4* captures the background
flow. The decomposition of this [101 x 101 x 101] flow took
about 120 seconds with 144 processes in parallel.

Lifted Ethylene Jet Flame. The second example is a direct
numerical simulation of a turbulent lifted ethylene jet flame
[5]. Unlike the previous data set, this is a compressible and
highly turbulent flow. In this case, fuel is injected on the bot-
tom of the domain creating a strong harmonic flow towards
the top. Fig. 11 shows one snapshot for a 2D slice from the

Fig. 8. Comparison of the topological decompositions of 7yp) (left) and
7 (right). Unphysical rotational structures are observed at the bottom-
left and top-left corners in 7*xp) caused due to imposing parallel flow.

center of the 3D flow. Both 7 (Fig. 11b) and d* (Fig. 11c) are
highly complex not aligned with the boundary and show
some surprising structures. In particular, ¥ shows two
global counter-rotating vortices rather than a streak of
smaller vortices one may have expected. Finally, I
(Fig. 11d) reveals an elliptical shape reflecting the non-con-
stant velocity profile imposed by the simulation. The decom-
position of this [800 x 2,025] data took about 290 seconds
with 144 processes in parallel.

Jet in cross-flow. The next data represents a simulation of a
jet in cross-flow, which is a fundamental flow phenomenon
in many engineering applications [17], [18], e.g., film cooling

10t 300
- = L»(‘_’Xﬂ R 1250
— L() ==
4200
b 11 Ll I L L L L L T AR, -
g
W
E 150 =
2 £
10! =
100
10°
50
101 0

200 250 300 350 400 450 500 550 600
Size
Fig. 9. Local computation for ); = Gy using the data from ) = Gy with
increasing N requires a quadratically increasing time (scaled to the right
axis). On the other hand, the L., and the normalized L, norms (log-
scaled to the left axis) of || and V x 7 seem converged.
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(a) (b) ©

Fig. 10. The natural HHD of the flow behind cuboid (a). The figures show streamlines in the interesting regions. (b) 7 reveals the vortical structures,
and (c) h* shows the translation present in the flow (right).

(@) (b) © (d)

Fig. 11. (a) Flow in the center of a lifted ethylene jet flame [43]; (b) 7 showing two global counter rotating vortices encapsulating smaller structures;
(c) d* showing a large number of sources and sinks related to volume changes; and (d) ~* computed as the residual showing an elliptical flow struc-

ture around the flame center.
(b) (0) (d)

Fig. 12. Local approximation of 7 in an ocean flow data set. The rotational fields are computed for the innermost tile, Gy, shown in (a) by separately
integrating over three concentric tiles (b) Gago, (C) Gaoo, @and (d) Geoo-

@
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of turbines, fuel injections, and dilution jets in gas-turbine
combustors. The experimental set-up contains injection of
flow through a jet at the bottom in the presence of a strong
background transverse flow, the cross-flow.

To simplify the illustration, we take a 2D slice through
the center of the 3D flow, such that the cross-flow is directed
from left to right, and the jet can be seen at the bottom. Fig. 8
compares the rotational fields obtained through the
HHD(ypy and the natural HHD. We compute the critical
points and the saddle separatrices of the flow to define its
topological skeleton, which is then used to decompose the
domain into non-overlapping regions. Since the topological
decompositions of the two rotational fields are significantly
different, the important question is which of these flows cor-
responds to the expected combustion phenomena. Through
scientific insights of domain experts, we know that the small
vortices near the top-left and bottom-left corners of 7yp) are
unphysical, since the underlying physical model expects
vortices to be generated behind the jet only. In summary,
imposing parallel flow on the boundary produces false fea-
tures (vortices) in the analysis.

Oceanic Currents. The final example is the surface flow
taken from a 3D simulation of global ocean currents [1], as
shown in Fig. 12, and we focus on a ); = [200 x 200] region
in the south Pacific ocean. To demonstrate the practical util-
ity of the local computation and the local approximation of
the natural HHD, we compute the decomposition for (),
using the data from concentric grids ) = Gy. Fig. 9 shows a
quantitative comparison of the results when N is increased
from 200 to 600. Note that while the time needed for the
computation grows quadratically, the L, and L. norms,
and hence the decomposition already seems to have con-
verged. As a result, in order to analyze the flow in ), the
natural HHD provides a local and faster technique, instead
of using the existing global solutions, which would require
the computation for the entire domain with over 5.3 million
vertices. Fig. 12 shows the rotational flows obtained for
Q = Gapo, = Gyoo, and Q = Geo-

8 DISCUSSION AND OUTLOOK

This paper presents the natural HHD as a new framework
to compute a unique and non-orthogonal decomposition of
a vector field based on internal and external influences,
allowing for an open-boundary analysis. Our technique
uses the integral solution of the Poisson equation, and
decouples the decomposition from boundary conditions to
avoid the typical boundary artifacts, and therefore produces
significantly better results than state-of-the-art techniques.
Furthermore, the decomposition can be computed locally,
as well as in an approximate manner for faster, more tar-
geted analysis of specific regions of interest. The proposed
ideas allow, for the first time, to quantify the amount of har-
monic flow in a given field. The computation of natural
HHD opens new directions in support of various analysis
techniques requiring independent study of internal and
external influences.

Nevertheless, there remain some issues. The full decom-
position is computationally expensive and new approaches
are necessary to make it applicable to large-scale 3D data.
Furthermore, although the proposed approach works for a
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variety of spatial discretizations, it is limited to subsets of
R", and a similar approach for surfaces would be useful.
Going forward, we hope that an easy to implement and reli-
able technique to compute the natural HHD will create new
research interest in using it for various analysis tasks.
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