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Figure 1: Analyzing unsteady flows remains challenging as many techniques designed for steady flows do not yield meaningful
features for such cases. This paper introduces the notion of an internal reference frame which allows utilizing standard instanta-
neous techniques, e.g., topological, for analyzing unsteady flows. The analysis in the internal frame can capture spatio-temporal
dynamics of pathlines (in the center) by analyzing the flow one time-step at a time. Left and right show topological analysis
that successfully captures the start and end of these pathlines, useful for, e.g., identifying vortices. In contrast, the contours of
Q-criteria, shown in black (Q = 0) and red (Q = 0.1), creates false-positives and false-negatives.

Abstract
Extracting features from complex, time-dependent flow fields remains a significant challenge despite substan-
tial research efforts, especially because most flow features of interest are defined with respect to a given refer-
ence frame. Pathline-based techniques, such as the FTLE field, are complex to implement and resource intensive,
whereas scalar transforms, such as λ2, often produce artifacts and require somewhat arbitrary thresholds. Both
approaches aim to analyze the flow in a more suitable frame, yet neither technique explicitly constructs one.

This paper introduces a new data-driven technique to compute internal reference frames for large-scale complex
flows. More general than uniformly moving frames, these frames can transform unsteady fields, which otherwise
require substantial processing of resources, into a sequence of individual snapshots that can be analyzed using
the large body of steady-flow analysis techniques. Our approach is simple, theoretically well-founded, and uses
an embarrassingly parallel algorithm for structured as well as unstructured data. Using several case studies from
fluid flow and turbulent combustion, we demonstrate that internal frames are distinguished, result in temporally
coherent structures, and can extract well-known as well as notoriously elusive features one snapshot at a time.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Computing Methodologies]: Simulation And
Modeling—Simulation Output Analysis;

1. Introduction

Time-dependent or unsteady flows are one of the most
common forms of data in scientific and engineering
simulations describing phenomena such as ocean cur-
rents [MBP10], wind patterns [BMP06], and turbulent com-

bustion [GGK∗12, YRSC11]. However, despite substantial
research efforts in physics and visualization, analyzing such
flows remains challenging. One of the fundamental prob-
lems is that unlike unsteady scalar fields, unsteady flows
cannot be easily analyzed one time-step at a time. It is well
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known that such instantaneous analysis, e.g., using vector
field topology [HH89], does not lead to meaningful fea-
tures [Lug79, PT84, PC94]. Instead, it has been pointed out
that unsteady flows must be analyzed in a reference frame,
where they are steady or near-steady in order for the corre-
sponding features to be temporally coherent and practically
meaningful. Note that, the exact definition of the term ref-
erence frames in this context is subtle and often differs be-
tween communities (see Section 4.1).

The most common approach to address this problem is
to study flows indirectly by computing derived Galilean-
invariant scalar indicators, which are invariant to uniformly
moving frames. However, these techniques, by necessity,
lose a significant amount of information. In particular, in-
tuitive features of flow are replaced by indicators, many
of which have significant flaws and are known to produce
artifacts. For example, common indicators to identify vor-
tices [Hun87, JH95] are not necessarily ideal, as they can
also indicate shear, are influenced by noise, and typically re-
quire a somewhat arbitrary threshold to define a vortex.

More recently, a second class of techniques has been de-
veloped, which uses the particles’ frame of reference, by
analyzing their pathlines, i.e., the paths along which these
massless particles are advected by the flow. Computing the
differences between a dense set of pathlines for a finite time
interval allows one to extract the finite-time Lyapunov expo-
nent (FTLE) [Hal00], which is then used to identify flow bar-
riers [Hal01]. However, these pathlines are typically approx-
imated through numerical integration, and are computation-
ally expensive [GGTH07]. Furthermore, the choice of the
correct time-scale for pathlines is non-trivial, but has a large
impact on the results. Finally, by definition, such techniques
require simultaneous access to a large number of time-steps
at a high temporal resolution for the corresponding path-
lines to accurately represent the underlying flow. Unfortu-
nately, due to I/O bandwidth bottlenecks, it is infeasible to
store the required number of time-steps for the largest and
the most interesting simulations carried out on modern high-
performance computers. This limits the practical usability of
the pathline-based approaches. With the anticipated devel-
opments in future hardware, this problem is only expected
to worsen and it will be exceptionally difficult to adopt such
strategies to the next generation of simulations.

This paper proposes a new approach that allows extraction
of physically meaningful and temporally coherent features
from unsteady flows, one time-step at a time, by computing
appropriate reference frames. Note that both the indicator-
based and the pathline-based approaches implicitly aim to
process the data in a more useful reference frame, yet neither
technique tries to construct such a frame. Instead, we pro-
pose to revisit the earlier argument [Lug79,PT84,PC94] and
explicitly compute a more suitable reference frame. More
specifically, we introduce the notion of an internal reference
frame. The internal frames can be computed in an efficient

and massively parallel manner, and are more general than
uniformly moving frames, as their motion is represented by
a harmonic flow. Using several case studies, we show that
the internal frames are indeed distinguished, and are able to
extract important coherent features in large turbulent flows.
An important consequence of using the proposed frames is
that the large body of latent research on steady flow analysis
becomes relevant for unsteady flows, with the potential for
significant scientific impact. In particular, we:

1. Define the internal frame as the one whose motion is de-
scribed by the natural harmonic flow [BPB14];

2. Propose a new efficient, parallel, and scalable algorithm
to compute the natural harmonic flow using only the
boundary data, which leads to the internal frame for the
given flow defined on a simply-connected subset of Rn;

3. Discuss how a localized analysis can be performed using
internal frames for a more targeted analysis on smaller
regions of interest; and

4. Analyze several large-scale flows, and demonstrate that
the proposed internal frame is a distinguished frame that
enables extraction of meaningful and coherent features.

2. Related Work

The analysis of unsteady flow has been an important topic
of research in the fluids and visualization communities. A
detailed survey on this subject was published by Pobitzer et
al. [PPF∗10]. Perry and Tan [PT84] pointed out a key insight
in this context that meaningful analysis of unsteady flow
requires a reference frame where the flow becomes steady
or near-steady, and proposed to extract features from ocean
flows in a frame that is moving with eddies. They suggested
that there may not exist a single reference frame that al-
lows extraction of all important features. However, assum-
ing linearly moving critical points, Perry and Chong [PC94]
stressed the importance of Galilean invariance, stating that
using a uniformly moving frame is sufficient in most cases.

Based largely on these arguments, a large number of tech-
niques have been developed focusing on obtaining Galilean
invariance. In particular, the scalar indicators to detect vor-
tices, such as the Q- [Hun87], ∆- [CPC90], and λ2- [JH95]
criteria are all Galilean invariant, since they are derived from
the deformation tensor, which, as a gradient, ignores con-
stant motion. Other properties of the deformation tensor
have also been used to classify regions with specific flow
behavior [CPC90, CPL∗11]. Kasten et al. [KRHH11] and
Sahner et al. [SWH05] also extract vortex cores based on
Galilean-invariant quantities – acceleration magnitude and
vortex indicators such as λ2, respectively.

However, Galilean invariance does not suffice for all
cases, especially when a non-uniformly moving object is in-
volved. Haller [Hal05] proposed an “objective” definition of
vortex, which is invariant to more general motions of frames,
namely, time-dependent translations and time-dependent ro-
tations. Acknowledging the need for accelerating frames,
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Fuchs et al. [FKS∗10] proposed to use an “unsteadiness”
metric based on the material derivative of the Jacobian,
whose minima was then used to extract coherent features.
There also exist examples, such as the double gyre [SLM05]
and the petri dish [WCW∗11], where there does not exist a
known simple frame that would reveal the features of inter-
est. However, a large number of use cases in areas such as
industrial design of automobiles, aeroplanes, ships, turbines,
etc., as well as science applications such as climate or com-
bustion could likely benefit from proper reference frames as
demonstrated by our results.

Instead of trying to find new reference frames, the visu-
alization and analysis community has shifted its focus to
Lagrangian or particle-based techniques. These approaches
trace pathlines in the flow to compute the FTLE [Hal00],
which is then used to highlight the Lagrangian coherent
structures (LCS) [Hal01] that represent flow barriers. How-
ever, as discussed in Section 1, such techniques have se-
vere limitations such as high computational cost, depen-
dence upon the “correct" time-scale for analysis, and depen-
dence upon the availability of a large number of time-steps.

3. Vector Field Decomposition

Computing internal reference frames is intimately connected
with vector field decompositions. This section discusses the
mathematical background for some relevant decompositions
before defining the internal frame in Section 4.

3.1. Localized Flow

Wiebel et al. [WGS07] propose to decompose a flow into
two components – potential and localized. As the name sug-
gests, the localized flow captures the local properties of the
flow by representing its divergence and rotation inside the
domain, whereas the potential flow has no divergence and
no rotation, and matches the original flow at the boundary of
the domain. Removing the potential flow from a given flow
is equivalent to creating a new reference frame that allows
extraction of local and formerly-obscured features.

The most important limitation of this approach is that the
localized flow is always confined within the domain, i.e.,
its component normal to the boundary is zero. This is a
strong assumption, especially for compressible flows. For
example, consider a nodal source in a closed domain: One
would expect the localized flow corresponding to the source
to cross the domain boundary yet this violates the prior as-
sumption. Furthermore, the technique needs additional in-
formation (material density) to resolve compressible flows.
Finally, as mentioned by the authors [WGS07], the material
density should be near constant for the technique to apply to
unsteady flows. At large, however, this decomposition can
be seen as an incomplete variant of a more general flow de-
composition called the Helmholtz-Hodge decomposition.

3.2. The Helmholtz-Hodge Decomposition (HHD)

The Helmholtz-Hodge decomposition (HHD) [Hel58] de-
composes a vector field into irrotational, incompressible,
and harmonic vector fields. Consider a smooth vector field
~V : Ω→ Rn, where Ω⊆ Rn (for n = 2,3), then

~V = ~d +~r+~h, (1)

where ~d is irrotational (∇× ~d = ~0), ~r is incompressible
(∇·~r = 0), and ~h is harmonic (∇×~h =~0 and ∇ ·~h = 0).
This leads to the following equalities:

∇· ~d =∇·~V , and ∇×~r =∇×~V . (2)

Since a harmonic flow is both irrotational and incompress-
ible, it can be represented as any of the components ~d, ~r,
or ~h in (1), thus adding a degree of freedom. Therefore, in
cases where a harmonic flow can exist, i.e., for domains with
boundary, or for non-simply connected domains, the decom-
position is not unique. The traditional way to obtain a unique
solution is to specify a set of boundary conditions.

To compute the decomposition, the components ~d and ~r
are represented as the gradient of a scalar potential D, and
the curl of a vector potential ~R, respectively. Substituting
~d =∇D and~r =∇×~R in (2), we get two Poisson equations,

∆D =∇·~V , and ~∆~R =−∇×~V , (3)

where ∆ is the (scalar) Laplacian, i.e., ∆ = ∇2, and ~∆ is
the vector Laplacian, i.e., ~∆~R =∇(∇·~R)−∇× (∇× ~R),
with ∇ ·~r = 0 implies ∇ · ~R = 0 due to the gauge condi-
tion [Gir88]. Assuming some boundary conditions, the Pois-
son equations (3) are solved uniquely, leading to the com-
ponents ~d and~r. Subsequently, the harmonic component is
computed as the remainder:~h =~V − ~d−~r.

In 2D, curl can be represented as a scalar value in the nor-
mal direction to the domain. This leads to a simpler repre-
sentation of~r as the co-gradient of a scalar potential R, i.e.,
~r = J∇R, where J is defined as the π/2-rotation operator.

3.3. Longitudinal and Transverse Components

A particularly important 2-component form of the HHD is

~V = ∇D+∇×~R,

where, the component ∇D is called the longitudinal and
∇×~R the transverse component of the flow [Arf85, Ste11].
The corresponding potentials D and ~R are defined as

D(x0) =
∫

Ω

G∞(x,x0)
(
∇·~V (x)

)
dx

−
∮

∂Ω

G∞(x,x0)
(
~n ·~V (x)

)
dx,

~R(x0) =−
∫

Ω

G∞(x,x0)
(
∇×~V (x)

)
dx

+
∮

∂Ω

G∞(x,x0)
(
~n×~V (x)

)
dx,

(4)
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where ~n is the outward normal to the boundary, and
G∞(x,x0) is the free-space Green’s function, such that

G∞(x,x0) =
1

2π
log(|x−x0|) x,x0 ∈ R2,

G∞(x,x0) =
−1

4π|x−x0|
x,x0 ∈ R3.

(5)

This decomposition is defined only for simply connected
subsets of Rn, and distributes any harmonic component be-
tween∇D and∇×~R.

4. The Internal Reference Frame

A recent survey [BNPB13] discusses a large number of ap-
plications that use the HHD to extract vector field features,
most of which, however, ignore the well-known boundary
artifacts common in the traditional decomposition. Recently,
Bhatia et al. [BPB14] showed that these artifacts are caused
by incompatible boundary conditions, which effectively add
a non-zero harmonic flow to the incompressible and irrota-
tional components. They also point out that a harmonic flow
on a given domain is always independent of the divergence
and rotation present inside the domain, and is, in fact, caused
by factors external to the domain. They propose a new vari-
ant of the HHD, called the natural HHD, which guarantees
that the incompressible and irrotational components are in-
fluenced only by the properties inside the domain. Hence,
no boundary conditions are required for a unique HHD, and
boundary artifacts are avoided.

4.1. Understanding the Internal Reference Frame

An important consequence of the natural HHD is that, by
definition, the natural harmonic flow,~h∗, captures all exter-
nal influences on the flow [BPB14]. This paper proposes that
it is this property that makes ~h∗ an excellent choice to de-
scribe a meaningful reference frame. Essentially, using the
natural HHD, the motion of each particle in the flow can be
expressed as a combination of two components: caused due
to (1) internal and (2) external influences. Thus, creating new
particles, whose motion is described by~h∗, is equivalent to
defining new observers that compensate for all external in-
fluences. In this new “reference frame," the internal proper-
ties of the flow can be observed directly, and we therefore
call it the internal reference frame.

Definition 4.1 (Internal Reference Frame) A flow field is
said to be analyzed in the internal reference frame if it is
invariant to external influences (harmonic flow).

We point out that we use the term “reference frame" in
a physical sense to characterize the state of motion of an
observer, as done by Lugt [Lug79], also referred to as obser-
vational frame in the Newtonian relativity [KB03], where
physical quantities are measured with respect to the state of
motion of an observer. It should not be confused with the
mathematical notion of a frame of reference that denotes a

coordinate system. To understand the significance of the in-
ternal frames, consider a passenger walking inside a mov-
ing train. A person standing outside the train represents a
static reference frame, and cannot find out the speed of the
walking passenger without knowing the train’s speed. How-
ever, another passenger sitting inside the train can accurately
describe the walking passenger’s movements since he repre-
sents a moving frame that already compensates for the train’s
motion. In the context of flow fields, the walking passenger
represents the internal properties of the flow, the outside ob-
server represents the frame in which the flow is simulated,
and the second passenger the internal frame. For a uniformly
moving train, the reference frame is trivial, as each passen-
ger experiences the same influence from the train. However,
for more general motions, e.g., a train on a curved track,
each passenger will experience different influence depend-
ing upon its position within the train, and the radius and the
center of the curve. As a result, each passenger (flow parti-
cle) must define a separate internal frame only for itself.

4.2. Transforming the Flow into the Internal Frame

In order to transform the data into the internal frame,
we make use of the definitions provided by the natural
HHD [BPB14]. The natural irrotational (~d∗ = ∇D∗) and
the natural incompressible (~r∗ =∇×~R∗) components of the
flow ~V are defined using the natural potentials D∗ and ~R∗.

D∗(x0) =
∫

Ω

G∞(x,x0)
(
∇·~V (x)

)
dx,

~R∗(x0) =−
∫

Ω

G∞(x,x0)
(
∇×~V (x)

)
dx.

(6)

Note that the computation of these components require only
the divergence and rotation of ~V inside the domain. Since
no boundary conditions are required to compute D∗ and ~R∗,
these potentials contain no harmonic flow and hence no ex-
ternal influences. Using (6), we can rewrite (4) as

D(x0) = D∗(x0)−
∮

∂Ω

G∞(x,x0)
(
~n ·~V (x)

)
dx,

~R(x0) = ~R∗(x0)+
∮

∂Ω

G∞(x,x0)
(
~n×~V (x)

)
dx.

Equating the natural HHD with the longitudinal and trans-
verse decomp.,∇D∗+∇×~R∗+~h∗ =∇D+∇×~R, we get

~h∗ =∇(D−D∗) + ∇× (~R−~R∗),

=⇒ ~h∗ =∇H∗d +∇× ~H∗r , (7)

where

H∗d (x0) =−
∮

∂Ω

G∞(x,x0)
(
~n ·~V (x)

)
dx,

~H∗r (x0) =
∮

∂Ω

G∞(x,x0)
(
~n×~V (x)

)
dx.

(8)

Thus, the natural harmonic flow, which represents all exter-
nal influences, can be computed using the two boundary in-
tegrals defined in (8).
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To represent the internal frame, we create particles that
move along the natural harmonic flow, ~h∗. By the veloc-
ity addition formula of Newtonian relativity, such particles
observe the original flow as ~Vint = ~V −~h∗. In other words,
the flow field ~V can be directly transformed into the inter-
nal frame by removing the natural harmonic component. For
unsteady flows ~V (x, t), this transformation can be applied to
each time-step, leading to smooth ~Vint(x, t) that can be used
for extraction of meaningful features, as demonstrated later.

Internal Frame and Topology of the Domain. It is impor-
tant to note that (7) is valid only for simply connected sub-
sets of Rn. For non-simply connected domains, there may
exist other forms of harmonic flow induced by the topology
of the domain, as explained by the Hodge-Morrey-Friedrichs
decomposition [Sch95]. As a result, it is not guaranteed
that all harmonic flow can be represented by (7). However,
this is only a conceptual limitation and does not restrict the
practical utility of the proposed technique for three reasons:
(i) Most simulations impose no-slip boundary conditions at
fluid-solid interfaces, i.e., ~V = 0. In such cases, a smooth ~V0
can be defined on a simply connected Ω0(⊃ Ω) by padding
~V with zeros in the holes of Ω. It can be shown that this
padding does not influence the internal frame. Therefore, the
internal frame can be computed easily for ~V0 on Ω0 but used
to analyze ~V on Ω. (ii) Furthermore, many practical flows,
such as the flow behind a cylinder (see Section 5.1) do not
contain any additional forms of harmonic, and therefore (7)
is applicable. (iii) Finally, even when cases (i) and (ii) are
not applicable, the flow in the internal frame can be com-
puted indirectly using the natural HHD, i.e., ~Vint = ~d∗+~r∗.

Localized Internal Frame. Since, the internal frame is de-
fined on a point-wise basis and depends only on the bound-
ary data, it can be computed with respect to an arbitrary
shaped boundary, as long as it bounds a simply connected
subset of Rn. This allows computing a localized internal
frame for a more focused analysis in a smaller region of in-
terest and to highlight local features. Furthermore, this tech-
nique also allows for a local computation, meaning that one
can define the frame for a large domain, but compute it only
in a smaller subset. This further helps reducing the compu-
tational costs by focusing only on the regions of interest.
Recall that ~Vint depends only upon the divergence and ro-
tation of ~V inside the domain considered. Therefore, from
the smoothness of ~V , it follows that ~Vint will vary smoothly
with respect to smooth changes in the domain considered.

4.3. Implementation

Computation of the flow in the internal frame requires two
modules: (i) computation of divergence, curl, and gradient;
and (ii) computation of boundary integrals of normal and
tangential components of the flow. With the availability of
these modules, its computation using (8) is straightforward

and trivially parallelizable for a variety of spatial discretiza-
tions and/or interpolants. For brevity, we only discuss bi-
linear/trilinear flows defined on regular grids, and piecewise
constant (PC) flows defined on triangulated meshes.

For a regular grid G with vector samples defined on ver-
tices, the normal and tangential components of the boundary
flow can be defined trivially with respect to the exterior nor-
mal, once an orientation is assumed with respect to Cartesian
coordinates. Since each “side" of G is also a regular grid,
integration along the boundary can be approximated using
trapezoidal method applied successively in each dimension.
Finally, central finite differences can be used to define the
required differential operators.

For a triangulated domain T with a PC vector field defined
on its faces, the normal and tangential components are com-
puted with respect to the edges on the boundary, and bound-
ary integrals are approximated by summing these compo-
nents. The divergence (and curl) of the vector field is de-
fined at the vertices of T , and is computed as the sum of dot
products of the vector field with the normal (and tangent)
along the boundary of the one-ring neighborhood of the ver-
tex [PP03]. The gradient of a scalar field defined at vertices
of T is a vector field defined at its faces. For each face, it
is computed as the sum of the gradients of its barycentric
coordinates weighted by the corresponding function values.

5. Results

We show the results of our analysis on simulated flows rep-
resenting physical phenomena of interest. First, we use the
flow behind a cylinder to compare different frames. Since
the resulting features of this flow are well known, we use this
data to demonstrate that the internal frame extracts a vortex
street whose behavior is consistent with theory, and is indeed
a distinguished frame. Next, we use the internal frame to ex-
plore complex flows resulting from combustion simulations,
and show that we extract features otherwise non-trivial to
observe.

To show that instantaneous techniques are applicable
in the internal frame, we compute the critical points and
the saddle separatrices of the flow. These features de-
fine the topological skeleton of the flow, which is used
to decompose the domain into non-overlapping regions.
Most of the following figures show this topological de-
composition by highlighting these regions in different
colors overlayed on the image-based flow visualization
(IBFV) [vW02]. In the remaining figures, the IBFV is over-
layed with the color-map shown here to represent vec-
tor magnitudes, with blue-to-red representing low-to-high
values. Blue spheres denote saddles in the flow,
while red and green spheres denote clockwise
and counter-clockwise rotating vortices. All perfor-
mance numbers were noted for double precision data
and serial algorithm running on a MacBook Pro with
2.8 GHz Intel Core 2 Duo processor and 8 GB RAM.
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5.1. Flow behind a cylinder

We first study the 2D flow behind a cylinder, which is ex-
pected to exhibit the well known von Kármán vortex street,
as illustrated in Figure 2.

Using the data for Reynolds number, Re = 165 and inlet
velocity, u = 1.1, it is observed in Figure 3 that the topolog-
ical decomposition of the flow in the simulation’s reference
frame is trivial, since the entire flow originates from the left
boundary and exits from the right. However, the same analy-
sis performed in the internal frame reveals the expected vor-
tex street. This is a well studied data, typically used for il-
lustrating vortex detection techniques, most of which rely on
scalar indicators associated with thresholds [KRHH11]. The
internal frame allows the computation of such regions by an-
alyzing the flow directly from a single time-step, while main-
taining all information about it. For example, the internal
frame also reveals the region of backward flow (highlighted
by arrows) between the counter-rotating vortices, which in-
duces drag on the cylinder, whereas the original frame ob-
scures this behavior. Furthermore, neither the techniques
based on scalar indicators nor the FTLE-based approaches
are able to represent backward flow due to information loss
during the corresponding transformations.

To prove that the internal reference frame is indeed a dis-
tinguished frame for analysis, we show in Figure 4 that anal-
ysis in slightly slower or faster frames produces results in-
consistent with theory. In particular, the vortex street is ex-
pected to be vertically symmetric (with horizontal offsets)
about the center of the cylinder at all times because both
the cylinder and the inlet velocity are vertically symmet-
rical. However, for slower and faster frames, the instanta-
neous flows are observed to be moving, more or less, down-
ward and upward respectively. Notice also that the amount
of background flow exhibited in the slower frame is signifi-
cantly reduced, while the faster frame exhibits inverse flow
at the top of the domain.

Next, we analyze the flows for increasing Reynolds num-
bers, Re = 100, 125, 140, and 165, corresponding to a fixed
kinematic viscosity and u = 0.92, 0.98, 1.01, and 1.1. To
verify the temporal coherence of the results, we compute the
vortices for the simulation time-range [10,22.5] consisting
of 26 snapshots, one at a time. Figure 5 shows the trace of
some of the vortices extracted from these snapshots using
one spatial domain to encode time. As expected, the loca-
tions of the critical points track the inherent motion of the
vortices allowing accurate measurement of the “speed" of
the vortex cores. Our results confirm that the vortices move
slightly slower than (≈ 91% of) the inlet velocity. In the
shown example, the speed of vortices are ≈ 0.85, ≈ 0.89,
≈ 0.92, and ≈ 1. Note that flows in the internal frame ex-
hibit temporal stability, and so no actual tracking of the vor-
tices was necessary to produce this results; instead the fig-
ures simply show the position of the vortex core at the given
time steps. We also note that an approximation to shedding

253EXPERIMENTAL HYDRODYNAMICS OF SWIMMING

FIG. 10. Comparison of theoretically expected patterns of wake flow behind a stationary cylinder (A) and a heaving and pitching foil (B).
Incident fluid flow in both panels is from left to right. The bluff body in A generates a drag wake composed of staggered counterrotating
vortices with interspersed jet flow (gray arrows) oriented upstream (i.e., a von Kármán street). As the streamlined foil in B oscillates it also
leaves a staggered wake of vortices, but because the sense of vortex rotation is opposite to that shown in A this wake is termed a reverse von
Kármán street. This actively generated wake produces jet flow between alternating vortex pairs that is oriented downstream. In reaction to
these momentum jets, forward thrust is exerted on the foil.

each stride is partitioned among the three fin systems
as shown in Figure 11A; note that the soft dorsal fin
contributes 12% of total thrust on average. During
slow turning maneuvers in sunfish (described above),
the soft dorsal fin is also active, shedding a laterally
oriented momentum jet at the end of the body-rotation
phase (Drucker and Lauder, 2001a). Both the pectoral
and dorsal fins, therefore, exert laterally oriented wake
forces during this unsteady swimming behavior, with
the dorsal fin generating an average of 35% of the total
(Fig. 11B). The fact that the soft dorsal fin produces
approximately 10% of the total thrust generated by all
fins during steady swimming, and more than one-third
of the total lateral force during turning, underlines its
active role in propulsion. The partitioning of swim-
ming force among multiple fins is likely a widespread
characteristic of the teleost locomotor system, but as
yet has received very little experimental study.

9. DPIV shows that wake interaction among fins may
enhance thrust production
The observation that more than one fin can shed a

vortex wake at the same time suggests the possibility
of hydrodynamic interaction among nearby propulsors.
Theoretical studies of fish locomotion have empha-
sized the potential for wake interaction among fish fins

to increase propulsive efficiency (Lighthill, 1970; Wu,
1971; Yates, 1983; Weihs, 1989). Experimental work
in non-biological systems has demonstrated that vortex
trails shed by upstream bodies can intercept and affect
the strength of developing vortices generated by bod-
ies downstream. Specifically, it has been shown that
the drag wake of an upstream bluff body can interact
in either a constructive or destructive way with the
near-field thrust wake produced by a downstream os-
cillating foil (Gopalkrishnan et al., 1994; Anderson,
1996; Triantafyllou et al., 2000). The type of interac-
tion observed depends on the sign of vortex rotation
and the encounter phase of the foil with respect to the
upstream vortices. For two adjacent foils shedding a
thrust wake, as in a swimming fish, annihilation or
reinforcement of vorticity will also depend on encoun-
ter kinematics.
Using DPIV, Drucker and Lauder (2001a) examined

the dynamics of wake interaction between the soft dor-
sal fin and tail of bluegill sunfish. Given the proximity
of these fins (see Fig. 11A), both constructive and de-
structive interactions among wake vortices are theo-
retically possible. During steady swimming slightly
above the gait transition speed (1.1 L sec21), both fins
exhibit a sinusoidal pattern of motion with a mean
phase lag of 120 msec. A horizontal laser light sheet
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Figure 2: Illustration of the expected von Kármán vortex
street [DL02]. Notice the backward flow between counter-
rotating vortices that induces drag on the cylinder.

Figure 3: Topological decomposition of the flow behind a
cylinder is trivial in the original frame (top), while the same
analysis in the internal frame (bottom) reveals the vortices,
with backward flow between them. The internal frame for
this [1450×400] data took ≈ 43 sec. to compute.

Figure 4: Slowing down (top) or speeding up (bottom) the
internal frame yields inconsistent results. The shown results
for 10% changes to the internal frame clearly demonstrate
that the flow is no longer vertically symmetrical.

frequency computed using our technique increases with in-
creasing Reynolds number – a trend consistent with theory.

Finally, we compare our topological analysis in the inter-
nal frame, with the particle-based and indicator-based tech-
niques, both in the simulation’s frame. Figure 1 shows a few
pathlines computed in the simulation’s frame, along with
IBFV of the flow in the internal frame. On the left and the
right, we zoom-in to show the position of these particles at
t = 10 and t = 22.5, overlayed on the topological decom-
position computed in the internal frame, and the contours
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Figure 5: Vortex traces in the flow behind the cylinder. From top-left to bottom-right, with increasing Re, the speed of vortices
increases as expected. To reduce clutter, only those vortex traces are shown that exist for the entire time range.

of Q-criteria [Hun87] computed in the simulation’s frame.
The result asserts that the vortex identification using Q can
create false-positives and false-negatives, e.g., the olive and
the green colored particles, respectively. Notice that the olive
pathline does not swirl around the vortex core, while the
green pathline does. In contrast, the topologically identified
vortex in the internal frame captures the true swirling be-
havior of the particles, from a single time-step and at much
lower computational expense.

5.2. Lifted Ethylene Jet Flame

Next, we study the direct numerical simulation of a turbu-
lent lifted ethylene jet flame [YRSC11], which represents
a compressible and highly turbulent flow. In this case, fuel
is injected from the bottom of the domain creating a strong
background flow towards the top. The natural harmonic flow,
which represents the motion of the internal frame, reveals an
elliptical shape (see Figure 6(b)) consistent with the non-
uniform velocity profile (faster flow in the middle) imposed
by the simulation. This is an example of non-uniformly mov-
ing frames that cannot be compensated for using Galilean-
invariant techniques. In contrast, our technique successfully
decouples this frame.

As shown in Figure 6(c), analyzing a single snapshot
of the flow in internal reference frame reveals two global
counter-rotating vortices rather than a streak of smaller vor-
tices one may have expected. Instead, the smaller vortices
are nested in these global rotating structures. The figure also
highlights the flow that runs through the domain from bot-
tom to top, along with all the smaller structures that exist on
either side of this through-flow. As is clear from the figure,
none of these intrinsic features are visible in the simulation’s
reference frame (see Figure 6(a)).

Figure 7 shows traces of vortices for time
[0.00174,0.00175], confirming that the vortices are
temporally coherent. While many vortices are small and

(a) (b) (c)

Figure 6: Comparison of the topological decomposition of
the lifted ethylene jet flame in the simulation’s (left) and the
internal (right) reference frames. The natural harmonic flow
(middle) describes the motion of the internal frame. Only 8
critical points are identified in the original frame, while 62
critical points describe the complex dynamics of this simu-
lated flow in the internal frame. The internal frame for this
[800×2025] data took ≈ 186 sec. to compute.

Figure 7: The traces of vortices show the presence of stable
rotational structures in the ilfted ethylene flame.

cancel out with saddles in the simulation, some that are
stable and persist for the entire time-range are shown.
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Figure 8: Illustration [FR94] of the four types of vortical
structures associated with this flow: jet shear-layer vortices
at the perimeter of the bending jet, the developing counter-
rotating vortex pair, horseshoe vortices on the wall, and
wake vortices extending from the wall to the jet. The orthog-
onal axes assumed for analysis are shown, and the dimen-
sions of the dataset are [1408×1080×1100].

5.3. Jet in Cross-Flow

The next data represents a jet in cross-flow [GGK∗12],
which is a fundamental flow phenomenon relevant to many
engineering applications, e.g., film cooling of turbines, fuel
injections, and dilution jets in gas-turbine combustors. The
experimental set-up contains injection of flow through a jet
at the bottom in the presence of a strong background flow
in transverse direction, the cross-flow, as illustrated in Fig-
ure 8. The goal of the experiment is to study different types
of vortical structures created by the interaction of the burn-
ing jet with the cross-flow. The most prominent structures in
this flow are a pair of counter-rotating vortices, which occur
as a result of the impulse of the jet on the cross-flow, and be-
come dominant in the far field. At the periphery of the jet’s
inflow, jet shear-layer vortices are created due to the annu-
lar shear layer that separates from the edge of the jet orifice.
These vortices dominate the initial portion of the jet. The
horseshoe vortices wrap around the base of the jet issuing
from a wall into a cross-flow, and the wake vortices are the
structures existing between the bottom wall and the jet itself.

We show results obtained in the internal frame for se-
lected xz and yx slices. Since the cross flow is transversal
to yz planes, the simulation’s frame is already very similar to
the internal frame. First, we analyze a xz-plane for y = 550,
which cuts through the center of the jet. Figure 9 shows the
topological decomposition of the flow in the original and the
internal frames. Notice the vortical structures revealed in the
internal frame. To emphasize the differences, we show the
zoomed-in region surrounding the jet, and notice the pres-
ence of shear-layer vortices around the jet. Other vortices are
also observed, which are not revealed in the original frame.

Next, we study the topological decomposition of the flow
in the internal frame for slices representing yx-planes. As
shown in Figure 10, interesting features are observed for
slices z = 50 and z = 350, both of which cut through the jet
transversally. The first slice is near the orifice, and shows the

formation of two counter-rotating vortices in a nascent stage
(highlighted as rotation). This helps in observing how the
size of these vortices grows with increasing z. Other smaller
vortices are observed above these structures, which appear to
be the wake vortices (highlighted using arrows). As expected
at a greater height (z = 350), one observes these vortices to
become stretched in the x-direction (vertical in the figure) as
the plane cuts through a greater part of the vortices, while
the wake vortices now appear below them.

Localized 3D computation. Finally, we present results on
the 3D flow in the internal frame. Chosen by scientists, we
analyze a [400× 200× 250] subset covering the most in-
teresting region of the flow. Figure 11(a) shows the natu-
ral harmonic flow computed for this region. Figures 11(b)
and 11(c) show two views of the flow in the internal frame,
highlighting different structures. The first view focuses at the
jet, and shows the vortices created around it, while the sec-
ond shows the formation of the counter-rotating vortex pair,
a structure notoriously difficult to extract. The challenge is
that the vortical motion is significantly weaker than that of
the smaller structures in the interior, which therefore, dom-
inate traditional detection techniques. In fact, several of our
scientific collaborators have remarked that this is the first
time they have seen this structure visualized directly.

6. Discussion and Outlook

This paper promotes the idea of computing new reference
frames that allow extraction of coherent features from in-
dividual time-steps. We believe that the success of the pro-
posed internal frames will revive the abandoned idea of an-
alyzing unsteady flows one time-step at a time. Our results
demonstrate that the analysis in the internal frame captures
the dynamics of material particles, and extracts temporally
coherent features. While there are examples where the ex-
istence of a distinguished frame is not yet known, e.g., the
double gyre [SLM05] and the petri dish [WCW∗11], the pro-
posed frames address a large class of flows that represent
physical phenomena in the presence of a background flow or
around a moving object. In particular, the motion of the in-
ternal frames is represented by a (possibly time-varying) har-
monic flow, thus capturing more general background flows
than uniformly moving ones.

We hope that the proposed work will foster new research
towards computing more general frames, e.g., rotational, that
can help analyze other types of flows as well. The proposed
ideas make a large number of existing techniques for steady
flow analysis directly applicable to unsteady flows. Conse-
quently, the proposed work can open new horizons in in-situ
analysis of large-scale complex flows, where simulations are
temporarily halted to analyze the current state and only the
results are dumped. Especially with anticipated advances in
compute power and lingering I/O bottlenecks, such analy-
sis can enhance our ability to analyze data of ever-growing
scale and complexity at much higher temporal resolutions
than otherwise.
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(a) (b) (c)

Figure 9: Topological decomposition of the jet in a cross-flow (b bottom, a) shows little structure as the interesting intrinsic
phenomena are overshadowed by the background flow. The same topological analysis to the flow in the internal frame (b top,
c) reveals the expected shear-layer vortices on the front of the flame as well as a wealth of other features.

Figure 10: Topological decomposition of the flow in the internal frame for the yx slices shows the interior of the jet near its
orifice, and the evolution of jet with height. Observed wake vortices are marked with arrows.

(a) (b) (c)

Figure 11: Localized analysis on a 3D subset of the flow. (a) The natural harmonic flow. (b) and (c) Flow in the internal frame
highlighting features near the jet orifice (b) and the formation of counter-rotating vortex pairs (c).
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