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BACKGROUND Artificial intelligence–machine learning (AI-ML)
has demonstrated the ability to extract clinically useful information
from electrocardiograms (ECGs) not available using traditional
interpretation methods. There exists an extensive body of AI-ML
research in fields outside of cardiology including several open-
source AI-ML architectures that can be translated to new problems
in an “off-the-shelf” manner.

OBJECTIVE We sought to address the limited investigation of
which if any of these off-the-shelf architectures could be useful in
ECG analysis as well as how and when these AI-ML approaches fail.

METHODS We applied 6 off-the-shelf AI-ML architectures to detect
low left ventricular ejection fraction (LVEF) in a cohort of ECGs from
24,868 patients. We assessed LVEF classification and explored pa-
tient characteristics associated with inaccurate (false positive or
false negative) LVEF prediction.

RESULTS We found that all of these network architectures pro-
duced LVEF detection area under the receiver-operating character-
istic curve values above 0.9 (averaged over 5 instances per
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network), with the ResNet 18 network performing the highest
(average area under the receiver-operating characteristic curve of
0.917). We also observed that some patient-specific characteristics
such as race, sex, and presence of several comorbidities were asso-
ciated with lower LVEF prediction performance.

CONCLUSIONS This demonstrates the ability of off-the-shelf AI-ML
architectures to detect clinically useful information from ECGs with
performance matching contemporary custom-build AI-ML architec-
tures. We also highlighted the presence of possible biases in these
AI-ML approaches in the context of patient characteristics. These
findings should be considered in the pursuit of efficient and equi-
table deployment of AI-ML technologies moving forward.
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Introduction
Artificial intelligence–machine learning (AI-ML) is a compu-
tational technique that has been demonstrated to be able to
extract meaningful clinical information from diagnostic
data that are not available using either human interpretation
or more simple analysis methods.1–5 AI-ML has demon-
strated remarkable successes across many clinical domains,
including the 12-lead electrocardiogram (ECG).4,6,7 Recent
developments have shown that AI-ML approaches applied
to ECGs can accurately predict different patient characteris-
tics and pathologies not detectable by expert physician
readers, including age, sex, and low left ventricular ejection
fraction (LVEF).4,6–8 Identification of such indicators of
heart health as low LVEF from the ECG has been a target
of research for years, with traditional methods seeking to
identify specific ECG wave changes associated with LVEF
changes.9–11 As AI-ML tools emerge as promising ECG
analysis methods, many researchers and institutions are
seeking to apply them to a myriad of clinical and research
tasks. Some AI-ML tools pending Food and Drug
n access article
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KEY FINDINGS

- Off-the-shelf machine learning architectures designed
for image analysis can be readily applied to electro-
cardiography analysis with favorable results to
contemporary electrocardiography–machine learning
studies.

- Electrocardiography–machine learning tools exhibited
biases in disease classification related to patient co-
morbidities and patient demographics.

- Grad-CAM analysis showed high variability between
machine learning architectures, revealing no clear
patterns.
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Administration authorization are being implemented in med-
ical systems as diagnostic tests that can run on collected
ECGs and provide additional diagnostic information.4,6,7

AI-ML, while relatively new in the healthcare space, has
been around for several decades. Many robust AI-ML tools
have been designed and applied across various problems,
including image analysis, text prediction, and “chatbots”
such as ChatGPT.12 The progression of these tools has
gone through revolutionary development with a thriving
community creating open-source or freely available, prede-
signed AI-ML architectures that can be easily trained on
similar classification problems, “off the shelf.”13 However,
these architectures have not been robustly applied to ECG
analysis. Many of the AI-ML techniques currently used in
Figure 1 Overall data acquisition and analysis pipeline. Recorded 12-lead elec
converted into digital signals for the 8 unique leads of the 12-lead ECG (C): lead
into an input matrix of size leads by time, depicted as an input image in which am
the machine learning model (E), which then predicted a classification for the prese
ECG analysis use custom implementations, which limits
the trust and portability of these tools applied to other ECG
datasets from different patient populations.4,14–17 Custom
and proprietary AI-ML architectures also inhibit the develop-
ment and collaborative improvement of these approaches
applied to relevant clinical problems. Applying off-the-
shelf AI-ML architectures to ECG-based datasets opens the
door for rapid development and identification of previously
unknown disease biomarkers.

Despite the excellent opportunity, the ideal open-source
AI-ML architecture for ECG-related problems is not known.
Furthermore, there has been limited investigation on how and
when these AI-ML approaches fail and possible bias or dis-
parities associated with particular network architectures. In
this study, we aimed to (1) determine if open-source, off-
the-shelf AI-ML architectures could be trained to classify
low LVEF from ECGs; (2) assess the accuracy of different
AI-ML architectures compared with each other; and (3) iden-
tify which, if any, patient characteristics are associated with
poor AI-ML performance.
Methods
The research reported in this study adheres to the Helsinki
Declaration guidelines for human research. Our overall data
acquisition and use pipeline is outlined in Figure 1. Data re-
corded from a standard clinical 12-lead ECG system is saved
as raw ASCII text encoded data. We then convert these en-
coded data back into signal waveforms for the 8 unique leads
of the 12-lead ECG and compile these into ML model inputs.
trocardiograms (ECGs) (A) were extracted in their raw data format (B) and
s I, II, V1, V2, V3, V4, V5, and V6. D: These signals were then arranged
plitude of the lead is encoded with color. The ECGs were then passed into
nce or absence of low left ventricular ejection fraction (LVEF) (F).
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These are then passed into the various ML models, and the
output is used to predict low LEF.
ECG dataset
As part of data associated with routine clinical care, ECGs
with and LVEF measurement data were extracted from the
University of Utah Electronic Data Warehouse from 2012
to 2021, resulting in 24,868 unique patient-ECG pairs. For
this study, patients with an ECG recording within 30 days
(average of 4.4 6 7.3 days) of an LVEF measurement via
echocardiography were selected. LVEF was calculated using
echocardiography measurements verified by board-certified
cardiologists. Low LVEF was defined as below 40%. The
ECG recordings, performed on a GE HealthCare Marquette
ECG Machine, included leads I, II, and V1 to V6. Leads
III, aVF, aVR, and aVL can each be derived from the remain-
ing leads, and thus are not used in such analyses. As is stan-
dard, recordings were 10 seconds long and sampled at 500
Hz, resulting in an 8 ! 5000 point array for each ECG. Pa-
tients were split into a 90% training set (22,382 patients) and
10% testing set (2486 patients). The same training and testing
sets was used for all analyses. A summary of the patient char-
acteristics for the training and testing set is presented in
Table 1.
Table 1 Patient demographics in the training and testing sets

Variable Test (n 5 2486)

Female 1073 (45.31)
Race or Ethnicity
White or Caucasian 1948 (82.65)
Black or African American 54 (2.29)
Asian 44 (1.87)
American Indian and Alaska Native 45 (1.91)
Other Pacific Islander 27 (1.15)
Unknown 37 (1.57)
Other 184 (7.81)
Choose not to disclose 18 (0.76)
Hypertension 583 (24.66)
Diabetes 627 (26.52)
Obstructive sleep apnea 323 (13.66)
Cancer 384 (16.24)
Chronic kidney disease 389 (16.46)
Liver disease 271 (11.46)
Chronic obstructive pulmonary disease 595 (25.17)
Dementia 62 (2.62)
Depression 659 (27.88)
Peripheral artery disease 305 (12.9)
Cardiac valve disease 394 (16.67)
Coronary artery disease 816 (34.52)
Myocardial Infarction 531 (22.46)
Congestive heart failure 512 (21.66)
Cerebrovascular disease 463 (19.59)
Stroke or transient ischemic attack 364 (15.4)
Atrial fibrillation 318 (12.79)
Body mass index, kg/m2 30.00 6 7.64
LVEF, % 57.70 6 13.96

Values are n (%) or mean 6 SD. Statistical significance indicates a difference
LVEF 5 left ventricular ejection fraction.
Patient characteristics
Based on our previously described methodology, clinical
data were derived from the healthcare system’s enterprise
data warehouse and include all administrative billing encoun-
ters with diagnosis codes (inpatient, outpatient, procedural),
medication orders, and laboratory results.18,19 Clinical co-
morbidities were measured using previously validated algo-
rithms in administrative data analyses of cardiovascular
disease and included all healthcare system encounters up to
and including the index visit. Comorbidity rates were calcu-
lated based on International Classification of Diseases codes
as part of clinical billing encounters, as previously
described.18,20 The index visit was defined as the date of
echocardiogram acquisition.
Machine learning architectures
Open-source ML architectures from the PyTorch Python-
based machine learning package were adapted with ECG
inputs. Specifically, we implemented untrained versions of
ResNet 18, ResNet 50, AlexNet, DenseNet 121, Squeeze-
Net 1.0, and VGG 11 (https://pytorch.org/vision/stable/
models.html).13 Each network architecture was developed
for use with images and by default required a 3 ! m !
n input tensor (channels ! height ! width) and produced
Train (n 5 22,382) P value Missing

9694 (45.43) .91 1162

17,569 (82.59) .84 1238
468 (2.2) — —
376 (1.77) — —
356 (1.67) — —
298 (1.4) — —
281 (1.32) — —
1751 (8.23) — —
174 (0.82) — —
5139 (24.14) .57 1216
5709 (26.82) .76 1216
3071 (14.43) .32 1216
3775 (17.73) .07 1216
3331 (15.65) .31 1216
2488 (11.69) .75 1216
5341 (25.09) .93 1216
558 (2.62) 1.00 1216
5863 (27.54) .73 1216
2584 (12.14) .28 1216
3627 (17.04) .65 1216
7250 (34.06) .65 1216
4672 (21.95) .57 1216
4555 (21.4) .77 1216
4183 (19.65) .94 1216
3239 (15.22) .81 1216
3031 (13.54) .30 0

29.85 6 7.75 .41 4379
57.65 6 14.05 .93 18,136

between training and testing patients.

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
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a 1000-feature vector output. To minimally adapt these ar-
chitectures to ECG signals, which consist of only 1 channel,
8 signals, and 5000 time instances (1! 8! 5000), we pre-
processed the input ECGs by adding a 2-dimensional con-
volutional layer to the beginning of each network with 3
output channels. To process the output of 1000 features,
we then appended a final fully connected layer with a single
feature output followed by a ReLU (rectified linear unit)
layer as the network output. Because of the architectures
of the open-source implementations, in some cases it was
necessary to either zero-pad ECGs or restructure the input
ECG to prevent a collapse in the lead dimension. The over-
all network design for adapting the open-source architec-
tures for use with ECG data is depicted in Figure 2. Table
2 details the specific preprocessing steps used for each
AI-ML architecture. No augmentations or transformations
were performed on the input ECGs other than those listed
in Table 2.
Figure 2 General infrastructure to adapt off-the-shelf machine learning ar-
chitectures to operate on electrocardiogram (ECG) data. Input ECGs are
considered as a 1-channel, 8-lead, 5000-time instant tensor (1 ! 8 !
5000 input). The input ECGs are then preprocessed through a combination
of reshaping (if needed), padding (if needed), and an initial convolutional
layer to produce a 3-channel preprocessed tensor (3!m! n). The prepros-
sessing steps for each premade architecture are detailed in Table 2. The data
are then passed through a rectified linear unit (ReLU) before entering the pre-
made architecture. The output of the premade architecture is a 1 ! 1000
output feature vector. These features are passed through a fully connected
layer and another ReLU to produce a single output value.
Each network was trained using an Adam optimizer and
binary cross-entropy loss between the network output and
target LVEF classification.5 The area under the receiver-
operating characteristic curve (AUROC) for the test dataset
was monitored throughout training, and the network weights
that produced the highest test AUROC were saved to prevent
overfitting to the training set. The training was continued for
50 iterations, and the time to complete all iterations was re-
corded. Weights and biases were initialized randomly for
each network. For each AI-ML architecture, 5 separate in-
stances were trained to account for differences caused by
random initialization of the network weights and biases.
AI-ML performance analysis
Each trained network (5 instances per network architecture
for a total of 30 networks) was evaluated on the testing data-
set according to a range of standard metrics, including
AUROC, F1 score, sensitivity, and specificity. The output
of each architecture is a continuous variable between 0 and
1 that must be thresholded to produce a binary classification
of low LVEF. To identify a robust threshold for each
network, we selected a threshold that produced the highest
F1 score in each network architecture. This threshold was
used for the calculation of specificity and sensitivity for
each network. Next, using the best-performing instance
(highest AUROC) per network architecture, we grouped pa-
tients into incorrect prediction (false negative or false posi-
tive) or correct prediction (true negative or true positive)
groups for each architecture. These groups were then used
in subsequent demographic and comorbidity analysis.
Clinical comorbidity analysis
We computed descriptive statistics and summarized the dis-
tribution of patient demographic characteristics and medical
conditions for numeric and categorical variables. Univariate
comparisons across all patient characteristics between correct
vs incorrect LVEF classifications were performed for each
network architecture. For these comparisons, the best-
performing instance of each AI-ML architecture was used
to group correctly vs incorrectly classified patients.

Data processing was performed using R (version 3.6.3; R
Foundation for Statistical Computing), and RStudio (version
1.2.5033), with appropriate packages. Statistical analysis was
performed using R (version 4.1.0) and RStudio (version
1.0.153).20,21 Analysis of the data collected as part of routine
clinical care, and subsequent reporting of anonymized,
aggregate data, was approved by the University of Utah Insti-
tutional Review Board. The Institutional Review Board
waived consent because the study is a retrospective analysis
with minimal patient risk. The research reported adheres to
the Helsinki Declaration guidelines on human research.
Explainability analysis
To gain additional insight into the features each network was
using in prediction of LVEF, we performed Grad-CAM,22

pooling the activations and gradients for the last



Table 2 Preprocessing of ECG signals for each off-the-shelf network

Architecture Preprocessing method Preprocessing output size

ResNet 18 Conv2d f: 7! 7, p: 3! 3, och: 3; ReLu 3 ! 8 ! 5000
ResNet 50 Conv2d f: 7! 7, p: 3! 3, och: 3; ReLu 3 ! 8 ! 5000
AlexNet Conv2d f: 7! 7, p: 31! 0, och: 3; ReLu 3 ! 64 ! 4994
DenseNet 121 Reshape to 1 ! 64 ! 625; Conv2d f: 3

! 3, p: 3 ! 3, och: 3; ReLu
3 ! 68 ! 5629

SqueezeNet Conv2d f: 7! 7, p: 31! 0, och: 3; ReLu 3 ! 64 ! 4994
VGG 11 Reshape to 1 ! 64 ! 625; Conv2d f: 3

! 3, p: 3 ! 3, och: 3; ReLu
3 ! 68 ! 5629

Reprocessing consisted of a combination of reshaping (if necessary) of the 1!8!5000 (channels by electrodes by time) ECG input, a 2-dimensional convolu-
tional layer (filter size f: a ! b, padding p: c ! d, and 3 och) followed by a ReLu layer.

ECG 5 electrocardiography; och 5 output channels; ReLu 5 rectified linear unit.
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convolutional layer of the best (highest AUROC) network for
each architecture. For each network, we selected a total of 8
ECGs for Grad-CAM analysis from the test dataset: 2 that the
network identified as false positives, 2 false negatives, 2 true
positives, and 2 true negatives. In each case, we selected 2
random examples. We then plotted the normalized (from
0 to 1) Grad-CAM weight signal interpolated to the same di-
mensions as the input ECG signals.
Computational implementation
AllML architectures were implemented in PyTorch, an open-
source AI-ML library.13 Models were trained and evaluated
on a system consisting of 1 NVIDIA TITAN RTX graphic
card (24 GB video ram, CUDA 11.4), 2 Intel Xeon Silver
4114 CPUs at 2.20 GHz (20 cores total), 256 GB DDR4
memory, and openSUSE Leap version 15.0.
Results
Network performance
All networks were trained using 22,382 combined ECG-
LVEF pairs. Network performance was tested using 2486
ECG-LVEF pairs. Baseline patient characteristics and co-
morbidities can be found in Table 1.

The performance of each AI-ML architecture is shown in
figure 3. ResNet 18 was, on average, the highest-performing
architecture with a mean AUROC of 0.9176 0.001. VGG 11
was the worst-performing architecture with an AUROC of
0.9026 0.004. The F1 score was also used to assess network
accuracy. The maximum F1 score was computed for each
network by testing a range of network output thresholds. Re-
sNet 18 showed the highest performance with an average
maximum F1 score of 0.586 6 0.010, and VGG 11 had the
lowest with 0.520 6 0.010. The threshold corresponding to
the maximum F1 score was used to compute the sensitivity
and specificity. At the threshold corresponding to peak F1
score, ResNet 18 had the highest sensitivity (0.638 6
0.048) and specificity (0.950 6 0.013), while VGG 11 had
the lowest (0.576 6 0.040 sensitivity, 0.941 6 0.012 speci-
ficity). These results are summarized in Table 3 and the
average rates of false negative, false positive, true negative,
and true positive for each architecture are summarized in
Table 4.
Effects of baseline patient characteristics
For each AI-ML architecture (ResNet 18, ResNet 50, Alex-
Net, DenseNet 121, SqueezeNet, and VGG 11), the
highest-performing instance of the 5 trained instances was
selected and thresholded based on the maximum F1 criterion
as described previously. Corresponding demographic and co-
morbidity data were compared for each AI-ML architecture
between the correct and incorrect LVEF classifications.
Table 5 shows the patient characteristics in the correct vs
incorrect for the best performing ResNet 18 architecture.
The comparisons for each of the other networks can be found
in the supplemental material (Supplemental Tables 1–5). Sta-
tistical significance indicates a difference between comorbid-
ity or demographic frequencies in correct vs incorrect groups.

The P values for variable comparisons between correct
and incorrect LVEF classification groups are shown as a heat-
map in Table 6, with superscript symbols indicating a statis-
tically significantly larger value (percentage for binary
variables or mean for scalar variables) in the correct and
incorrect prediction groups.
Grad-CAM analysis
Grad-CAM analysis allowed us to explore the relative impor-
tance of features in the ECG signals used by each ML
network. We found that the distribution of higher normalized
Grad-CAM weights was different for each network, demon-
strating that each network interpreted the ECG signals in
different ways to predict LVEF. Figure 4 shows the Grad-
CAM visualization for the ResNet 18 architecture. We see
in all positive cases (in which the network determined that
LVEF was low) that there is consistently high attention (as
indicated by the high normalized Grad-CAM amplitude)
across most of the signal, whereas the negative cases showed
reduced Grad-CAM amplitude throughout the signals. On the
other hand, the SqueezeNet architecture Grad-CAM in
Figure 5 showed a more varied signal that often showed
higher amplitude in the early QRS complex and lower ampli-
tude in the P-wave and T-Q segments.
Discussion
In summary, we report the first implementation and training
of 6 off-the-shelf open-source AI-ML algorithms for use on



Figure 3 A: Area under the receiver-operating characteristic curve metrics for each network tested. The area under the receiver-operating characteristic curve
was calculated for the 5 training tests performed with different testing and training data. B: A zoomed-in Y scale version of panel A.
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ECG data to predict low or normal LVEF. There are 3 major
findings from these implementations: (1) implementing these
architectures was relatively simple, (2) these architectures
performed favorably compared with custom-built task-spe-
cific algorithms, and (3) despite excellent overall perfor-
mance, we found that some patient characteristics were
more associated with AI-ML LVEF misclassification and
may have implications for downstream bias.

We showed that these open-source AI-ML architectures
could be rapidly adapted and trained on real-world ECG
data to perform a clinically valuable task previously demon-
strated primarily by custom-built networks. We imple-
mented AI-ML architectures using open-source packages
Table 3 AUC, optimal F1 score, sensitivity, and specificity for each net

Architecture AUC F1 score

ResNet 18 0.917 6 0.001 0.586 6 0.
ResNet 50 0.913 6 0.004 0.560 6 0.
AlexNet 0.909 6 0.003 0.569 6 0.
DenseNet 121 0.907 6 0.003 0.535 6 0.
SqueezeNet 0.904 6 0.005 0.546 6 0.
VGG 11 0.902 6 0.004 0.520 6 0.

Values are mean 6 SD. Metrics are reported over the 5 trained networks per a
sponding to the peak F1 score.

AUC 5 area under the curve.
available in the Python computing language, with minimal
overhead and data manipulation. Furthermore, the computa-
tional resources necessary to train and test these networks
were modest (single graphics card with 24 GB video mem-
ory, 20 CPU processor cores, 256 GB RAM). Additionally,
minimal data manipulation and preprocessing were required
to fit the AI-ML architecture prespecified input and output
parameters. The application of AI-ML technology to ECG
data may provide important diagnostic value to low health-
care resource environments—the use of widely available,
open-source architectures that do not require substantial
computing power is an important component for such a
deployment.
work architecture in the testing set

Sensitivity Specificity

010 0.638 6 0.048 0.950 6 0.013
013 0.624 6 0.024 0.944 6 0.006
021 0.614 6 0.060 0.949 6 0.019
016 0.597 6 0.038 0.942 6 0.004
019 0.602 6 0.042 0.944 6 0.010
010 0.576 6 0.040 0.941 6 0.012

rchitecture. Sensitivity and specificity are calculated at the threshold corre-



Table 4 Counts for false positive, false negative, true positive,
and true negative for each network architecture

Class
False
negative

False
positive

True
negative

True
positive

ResNet 18 68 (2.7) 129 (5.1) 2147 (86.4) 142 (5.7)
ResNet 50 81 (3.3) 112 (4.5) 2164 (87.0) 129 (5.2)
AlexNet 90 (3.6) 88 (3.5) 2188 (88.0) 120 (4.8)
DenseNet121 90 (3.6) 131 (5.3) 2145 (86.3) 120 (4.8)
SqueezeNet1
0

93 (3.7) 116 (4.7) 2160 (86.9) 117 (4.7)

vgg11 90 (3.6) 126 (5.1) 2150 (86.5) 120 (4.8)

Values are n (%).
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We also showed that open-source AI-ML approaches are
consistent with the performance of many of the custom-built
approaches on an identical task when comparing routine
AI-ML metrics. ResNet 18 performed the best with a mean
AUROC of 0.917 6 0.001 over 5 instances, with VGG 11
performing least accurately but still highly successful with
an average AUROC of 0.9026 0.004. These values are com-
parable to other published architectures.15,23 Furthermore,
Table 5 Demographic and comorbidity comparison between correct pre
(false positive or false negative) for the best-performing ResNet 18 imple

Variable Incorrect prediction (n 5 19

Ejection fraction, % 47.45 6 13.59
Ejection fraction category
Low 68 (34.52)
Normal 129 (65.48)
Age, y 64.91 6 15.43
Female 56 (30.94)
Race
White or Caucasian 153 (84.53)
Black or African American 7 (3.87)
American Indian and Alaska Native 4 (2.21)
Asian 0 (0)
Other Pacific Islander 0 (0)
Other 6 (3.31)
Unknown 10 (5.52)
Choose not to disclose 1 (0.55)
Hypertension 83 (45.86)
Diabetes 66 (36.46)
Obstructive sleep apnea 34 (18.78)
Cancer 30 (16.57)
Chronic kidney disease 37 (20.44)
Liver disease 34 (18.78)
Chronic obstructive pulmonary disease 58 (32.04)
Dementia 5 (2.76)
Depression 39 (21.55)
Peripheral artery disease 33 (18.23)
Cardiac valve disease 49 (27.07)
Coronary artery disease 117 (64.64)
Myocardial infarction 76 (41.99)
Congestive heart failure 107 (59.12)
Cerebrovascular disease 34 (18.78)
Stroke or transient ischemic attack 25 (13.81)
Atrial fibrillation 44 (22.34)
Body mass index, kg/m2 29.90 6 9.37

Values are mean 6 SD or n (%). Statistical significance indicates a difference
the maximum F1 score was also relatively high across net-
works, with the mean F1 score ranging from 0.586 to 0.520
for the ResNet 18 and VGG 11 networks, respectively.
Interestingly, the sensitivity ranged from 58% to 63% and
specificity from 94% to 95% at the maximum F1 score
threshold per network. The clinical implications of the rela-
tively low sensitivity and high specificity indicate that our
current implementation is not an ideal screening test but
could be used to rule in low LVEF. Adjustments to the
selected threshold would allow for tuning of the network to-
ward higher sensitivity or specificity.

The results of this study demonstrate prediction of low
LVEF with AUROC comparable to that seen in other
studies.15,23 However, these other studies leveraged
much larger datasets (ranging from 44,000 to 97,000
ECG-LVEF pairs) than the one presented in our study
(24,868 ECG-LVEF pairs). Our results demonstrate that
state of the art LVEF classification by AI-ML can be
achieved using substantially smaller training datasets
than has been previously published. Furthermore, our re-
sults reveal that existing AI-ML network architectures
can be successfully adapted to ECG data, with results
dictions (true positive or true negative) vs incorrect predictions
mentation

7) Correct prediction (n 5 2289) P value Missing

60.09 6 11.55 ,.001 0

142 (6.2) ,.001 0
2147 (93.8) — —
58.54 6 17.60 ,.001 118
1018 (46.55) ,.001 118

1794 (82.44) ,.001 129
47 (2.16) — —
41 (1.88) — —
44 (2.02) — —
27 (1.24) — —
180 (8.27) — —
26 (1.19) — —
17 (0.78) — —
505 (23.13) ,.001 122
565 (25.88) .002 122
291 (13.33) .041 122
353 (16.17) .89 122
355 (16.26) .15 122
239 (10.95) .002 122
536 (24.55) .026 122
57 (2.61) .81 122
620 (28.4) .048 122
272 (12.46) .026 122
346 (15.85) ,.001 122
701 (32.11) ,.001 122
456 (20.89) ,.001 122
406 (18.6) ,.001 122
429 (19.65) .78 122
338 (15.48) .55 122
274 (11.97) ,.001 0
30.02 6 7.47 .87 429

between correct and incorrect.



Table 6 P values for each variable across each architecture comparing correct predictions (true positive or true negative) vs incorrect
predictions (false positive or false negative)

Variable ResNet 18 ResNet 50 AlexNet DenseNet121 SqueezeNet1 0 vgg11

Ejection fraction ,.001† ,.001† ,.001† ,.001† ,.001† ,.001†

Ejection fraction category: low ,.001* ,.001* ,.001* ,.001* ,.001* ,.001*
Age ,.001* ,.001* ,.001* ,.001* ,.001* ,.001*
Female ,.001† .002† ,.001† ,.001† ,.001† ,.001†

Race
White or Caucasian ,.001* ,.001* .009* .003* .024* ,.001*
Hypertension ,.001* ,.001* ,.001* ,.001* ,.001* ,.001*
Diabetes .002* .13 .014* .023* .06 .043*
Obstructive sleep apnea .041* .63 .06 .45 .49 .015*
Cancer .89 .50 .81 .36 .09 .93
Chronic kidney disease .15 .003* .06 ,.001* ,.001* .019*
Liver disease .002* .15 .054 .012* .047* .13
Chronic obstructive pulmonary disease .026* .026* .042* .030* .006* ,.001*
Dementia .81 .80 1.00 .73 .68 .18
Depression .048† .06 .053 .43 .08 .47
Peripheral artery disease .026* .003* .07 .025* .13 .19
Cardiac valve disease ,.001* ,.001* ,.001* ,.001* ,.001* ,.001*
Coronary artery disease ,.001* ,.001* ,.001* ,.001* ,.001* ,.001*
Myocardial infarction ,.001* ,.001* ,.001* ,.001* ,.001* ,.001*
Congestive heart failure ,.001* ,.001* ,.001* ,.001* ,.001* ,.001*
Cerebrovascular disease .78 .56 .73 .73 .60 .10
Stroke or transient ischemic attack .55 .62 .58 .95 .40 .14
Atrial fibrillation ,.001* .001* ,.001* ,.001* ,.001* ,.001*
Body mass index .87 .53 .54 .67 .55 .96

P values were significant at ,.05.
*Either higher percent or higher mean in the incorrect predictions.
†Higher percent or higher mean in the correct predictions.
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that rival custom made architectures, even when trained
using smaller datasets. We anticipate that future studies
will leverage the designs of the off-the-shelf network ar-
chitectures explored in this study as well as the growing
availability of larger and larger training datasets to further
improve and refine ECG AI-ML tools.

The metrics of AUROC, F1 score, sensitivity, and speci-
ficity are commonly used to evaluate AI-ML algorithms,
particularly in nonclinical settings. However, in our results
there is little absolute variability in these measures among
the tested architectures: ,0.03 in AUROC, ,0.07 in F1
score,,5% in sensitivity, and,1% in specificity. Therefore,
selecting an ideal clinical AI-ML approach based on conven-
tional metrics alone may not be helpful—at least when they
are each so close. Other criteria, such as resource utilization
and portability may become important. Furthermore, these
metrics convey minimal clinically relevant information. To
address this, we also sought to understand what features of
the ECGs were being leveraged by each network architecture
to make their classifications. By performing a Grad-CAM
analysis, in which we visualize the gradient and activation
weights in the trained networks given a particular sample,
we were able not only to observe where in the ECG signals
each network focused when making their decisions, but
also to compare these distributions across network architec-
tures. As shown in Figures 4 and 5, as well as
Supplemental Figures 1 to 4, the attention maps for each
network architecture vary. A common theme we observed
in several architectures was that there was increased attention
at or preceding the QRS complex, and lower attention in the
P-wave segments or the T-R interval of the ECG signals;
however, these results varied substantially. This Grad-
CAM analysis represents a first step in attempting to under-
stand both what features the ECG-ML tools use for diagnosis
as well as a possible avenue to explore when and why these
networks fail on particular signals.

Despite the high level of detail of such Grad-CAM ana-
lyses, such measures do not provide information about how
the AI-ML approaches perform with different cohorts of pa-
tients and if particular patient characteristics are associated
with worse AI-ML performance—potential contributors to
bias and worsening disparities of care. To provide a frame-
work to understand these possibilities, we investigated
whether baseline characteristics differed in patients with cor-
rect vs incorrect AI-ML LVEF classification.

We found several baseline comorbidities that were associ-
ated with were statistically different in patients with correct
vs incorrect AI-ML LVEF classification. These include hy-
pertension, chronic obstructive pulmonary disease (COPD),
coronary artery disease (CAD), myocardial infarction (MI),
valve disease, congestive heart failure (CHF), and atrial
fibrillation (AF). Physiologic reasons for this poor perfor-
mance can be postulated for patients with an intrinsic cardiac
pathology such as hypertension, CHF, MI, CAD, valvular



Figure 4 Grad-CAM analysis for the best performing ResNet 18 network. Each plot shows the first 4 seconds of electrocardiogram (ECG) signal for all 8 leads
of the ECG overlaid in black. ECG signals use the left-side y-axis scale of voltage in mV. Each plot also shows the Grad-CAM amplitudes in red interpolated to the
same dimensions as the input ECG. The Grad-CAM amplitudes use the right-side y-axis ranging from 0 to 1. A higher-amplitude Grad-CAM indicates higher
importance of this region of the input signal in the final classification decision. Plots 1 and 2 show 2 false positive cases in which the network identified these ECGs
as belonging to a patient with low left ventricular ejection fraction (EF), despite their high EF. Plots 3 and 4 show 2 examples for false negative cases in which this
network failed to identify the presence of low left ventricular EF. Plots 5 and 6 show 2 examples in which this network correctly identified low left ventricular EF.
Plots 7 and 8 show 2 examples in which this network correctly identified a lack of low left ventricular EF.
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disease, or AF because each can significantly affect the car-
diac electrical conduction system and alter the 12-lead
ECG. However, COPD is not an intrinsic cardiac pathology
but could be related to changes in cardiac electrical signals.
Patients with COPD often have higher lung volumes, which
can be an excellent electrical insulator. These hypotheses are
preliminary and not explicitly confirmed by the data pre-
sented, but rather simply demonstrate the possible links be-
tween changes in ECG signals and baseline patient
comorbidities.

Importantly, we also found constitutional patient charac-
teristics, such as sex and race, in which performance
differed. Specifically, patients who are older and White
are more likely to have a false positive or false negative
AI-ML classified low LVEF. However, this result must be
interpreted in context of the small number of non-White pa-
tients in the dataset (17.41%). We feel that the representa-
tion of non-White patients in this dataset is insufficient to
draw definitive conclusions about the ML performance in
these groups. We hypothesize that additional confounding
variables not available in the present study (such as socio-
economic status, access to medical care, and other systemic
oppression and prejudice) may play a role. Further studies
are needed to carefully interrogate these results accounting
for other social determinants of health, which address the
challenges of such imbalances in the data. While we realize
that the results presented in this study are not definitive
performance metrics, we believe they demonstrate the sig-
nificant potential for AI-ML approaches to impact dispar-
ities of care both positively and/or negatively. AI-ML
approaches used in other fields have begun to grapple
with realities of bias. We find it prudent to highlight that
AI-ML applied to ECG-related problems could also experi-
ence similar inherent biases. Further work is needed to
recognize, describe, and correct for the disparities that
develop from these approaches.

Additionally, our results will contribute to explanatory
AI-ML. Traditional, human-based ECG interpretation has
been refined over decades, to describe patterns associated
with disease commonly via pathophysiologic links. In
contrast, modern ML-ECG algorithms remain more black-
box technologies that generate predictive output with little
explanation as to why the algorithm has linked a specific
ECG to a target. And while some algorithms intuitively
link the ECG to a related cardiovascular outcome (eg, future
arrhythmia),16,24 others have linked the ECG waveform to
seemingly unrelated conditions such as liver disease—a
less clear pathophysiologic link.25 In the present study, we



Figure 5 Grad-CAM analysis for the best performing SqueezeNet network. Each plot shows the first 4 seconds of electrocardiogram (ECG) signal for all 8
leads of the ECG overlaid in black. ECG signals use the left-side y-axis scale of voltage in mV. Each plot also shows the Grad-CAM amplitudes in red interpolated
to the same dimensions as the input ECG. The Grad-CAM amplitudes use the right-side y-axis ranging from 0 to 1. A higher amplitude Grad-CAM indicates
higher importance of this region of the input signal in the final classification decision. Plots 1 and 2 show 2 false positive cases in which the network identified
these ECGs as belonging to a patient with low left ventricular ejection fraction (EF), despite their high EF. Plots 3 and 4 show 2 examples for false negative cases in
which this network failed to identify the presence of low left ventricular EF. Plots 5 and 6 show 2 examples in which this network correctly identified low left
ventricular EF. Plots 7 and 8 show 2 examples in which this network correctly identified a lack of low left ventricular EF.
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also begin the important work of assessing how each archi-
tecture interprets the ECGs to make decisions using
Grad-CAM. However, interpretation of such Grad-CAM re-
sults is difficult, especially when seeking clinically mean-
ingful features. Grad-CAM analysis alone does not
elucidate how the AI-ML algorithms use the features of in-
terest. Future studies could expand on these explanatory ma-
chine learning techniques to further explore what areas of
the ECG are identified by each architecture and if changes
in those regions of the ECG are related to an underlying
diagnosis.23,26,27

One crucial factor that could be driving these results is the
frequency of patients with specific underlying characteristics
or comorbidities in the training data. However, our patient
population has average or higher rates of comorbidities
than the general U.S. population.28–30 Our data also have
higher rates of cardiac diagnoses, including CAD, MI, AF,
and others. Furthermore, our training vs testing dataset had
minimal differences in patient baseline characteristics and
comorbidities.
Limitations
There were several limitations to this study. First, these ML
architectures we implemented were designed for use with im-
ages, and thus in some cases we were required to reshape our
input ECGs to allow for application of these architectures
(DenseNet 121 and VGG 11). Such reshaping may be delete-
rious for the spatially coherent information present in an ECG
signal, and thus may negatively impact network perfor-
mance. Furthermore, such open-source AI-ML architectures
are not designed to leverage the unique features of ECG data
such as its temporal coherence, as is seen in other ECG-
specific approaches.1,2 Our dataset was also limited to a sin-
gle center with a relatively socially homogenous population.
Finally, our dataset was biased to have more individuals with
a normal LVEF.
Conclusion
We found that several off-the-shelf, open-source AI-ML ar-
chitectures could be used to predict low LVEF from ECGs.
Specifically, we found that these approaches were easy to
implement and performed comparably to previously reported
custom-built networks. Furthermore, we found baseline pa-
tient characteristics differed substantially between patients
with correct vs incorrect AI-ML LVEF classification. These
findings should be considered in the pursuit of efficient and
equitable deployment of AI-ML technologies moving for-
ward.
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