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Abstract

Electrocardiographic imaging (ECGI) is a clinical and
research tool for noninvasive diagnosis of cardiac electri-
cal dysfunction. The position of the heart within the torso
is both an input and common source of error in ECGI.
Many studies have sought to improve cardiac localization
accuracy, however, few have examined quantitatively the
effects of uncertainty in the position of the heart within
the torso. Recently developed uncertainty quantification
(UQ) tools enable the robust application of UQ to ECGI
reconstructions. In this study, we developed an ECGI for-
mulation, which for the first time, directly incorporated
uncertainty in the heart position. The result is an ECGI
solution that is robust to variation in heart position. Us-
ing data from two Langendorff experimental preparations,
each with 120 heartbeats distributed across three activa-
tion sequences, we found that as heart position uncer-
tainty increased above ±10 mm, the solution quality of
the ECGI degraded. However, even at large heart posi-
tion uncertainty (±40 mm) our novel UQ-ECGI formula-
tion produced reasonable solutions (root mean squared er-
ror < 1 mV, spatial correlation >0.6, temporal correlation
>0.75).

1. Introduction

Electrocardiographic imaging (ECGI) is an established
technique for reconstructing cardiac bioelectric activity
from noninvasive measurements of body-surface poten-
tials. It is used in both research and clinic, with several
commercial implementations on the market.[1] ECGI im-
plementations rely on many subject-specific measurements
and the position of the heart within the torso is both one of
these inputs and a common source of error. Many stud-

ies have aimed to minimize this cardiac localization error.
[2,3] However, few studies have investigated quantitatively
how uncertainty in the heart position affects the resulting
ECGI solution[4, 5] and none to our knowledge have at-
tempted to account for this uncertainty in the ECGI formu-
lation. Neglecting to account for heart position uncertainty
could limit the clinical utility of ECGI.

Uncertainty quantification (UQ) provides a mathemati-
cally robust and efficient means to study model response
to inevitable, often only approximately known, variabil-
ity in model inputs. Recent progress in both the theory
and implementations of UQ has supported its application
to ECGI.[4, 6] However, a challenge in applying UQ to
ECGI is that most applications of UQ have been to forward
problems, [5,7] whereas ECGI is an inverse problem.[1] A
forward problem implements a generally well-behaved re-
lationship between input parameters and a response that is
uniquely defined. Inverse problems may use the same un-
derlying model but seek to identify the inputs using mea-
sured outputs, a problem that is often ill-posed and whose
solution may not be unique. Consequently, UQ is not com-
monly applied to inverse problems such as ECGI.[4] How-
ever, developing inverse formulations that account for, and
are robust to, variability in the input parameters is criti-
cal for producing reliable and useful clinical and research
implementations of ECGI.

Here, we developed a new formulation of ECGI that ex-
pands the standard assumption of a single fixed cardiac ge-
ometry to an assumption of a distribution of possible car-
diac position dictated by uncertainty in the position. This
research represents a first attempt to directly include the
uncertainty of heart position in an ECGI formulation. Our
approach is based on our previous ECGI formulation,[2,8]
which we named the “joint-inverse” solution. We lever-
aged this joint-inverse approach and recently developed
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UQ tools to produce a robust application of UQ to the
ECGI inverse problem.

2. Methods
Uncertainty Quantification: Traditional parametric

UQ approaches identify statistical moments such as the
mean, standard deviation, and sensitivity of model out-
put given a probabilistic characterization of variability in
some of its inputs.[6] In this study, rather than calculating
statistical moments, we designed an ECGI inverse formu-
lation that can incorporate variability in an input parame-
ter. The first step in this process was to generate samples
of the variable input parameter, which we achieved by ap-
plying weighted approximate Fekete sampling (WAFS).[6]
WAFS produces weighted samples given a set of parame-
ters and their associated distributions. In this study we de-
scribed heart position as the 3×1 parameter vector p⃗ whose
elements were the X, Y, Z components of a translation ap-
plied to the cardiac geometry from its nominal position.
The WAFS parameter samples (p⃗1 . . . p⃗N ) and associated
weights (w1 . . . wN ) were drawn from a beta distribution
with α = 2, β = 2. The samples were selected to satisfy
a 5th degree polynomial chaos expansion fit. The open-
source UQ software framework UncertainSCI was used to
obtain the samples and weights.[6]

ECGI Formulation: We incorporated the WAFS sam-
pled cardiac positions into a single ECGI solution using
our joint-inverse formulation[8], which combines multiple
instances of the inverse problem into a single equation that
solves for a single cardiac source. In this case the multiple
inverse problem instances come from the cardiac position
samples.

We modeled the bioelectric sources (ΦH) as extracellu-
lar potentials defined on a pericardiac surface. A boundary
element method was used to generate the transfer matrix
(A), which defined the forward projection to the body-
surface potentials (ΦT).[9] The matrix A captures the ge-
ometry of the torso and so is a function of the heart posi-
tion parameters p⃗. To combine the multiple heart positions
from WAFS as variations in the forward model we created
the block matrices Φ̂T and Â as

Φ̂T =


ΦT ·w1

ΦT ·w2

ΦT ·w3

...
ΦT ·wN

 , Â =


A(p⃗1) · w1

A(p⃗2) · w2

A(p⃗3) · w3

...
A(p⃗N ) · wN

 , (1)

where the BSP matrix in Φ̂T is a copy of ΦT weighted by
w1 through wN . Each forward matrix in Â is a function of
the heart position A(p⃗i) for (p⃗1 . . . p⃗N ) weighted by w1

. . .wN . These matrices are then combined into a modified
Tikhonov inverse equation,

argmin
ΦH

|| ÂΦH − Φ̂T ||2F + λ||RΦH ||2F , (2)

where we selected the regularization matrix R as the
surface Laplacian operator (Tikhonov 2nd order), and set
the regularization weight λ according to the Frobenius L-
curve criterion.[2] The resulting solution to the inverse for-
mulation in Eq 2 represents an expected value of the in-
verse problem over the variation in cardiac position, and
we refer to this as the UQ joint-inverse solution.

Data Sets: We recorded cardiac potentials from a mod-
ified Langendorff preparation described previously.[10]
Briefly, an explanted, perfused canine heart was suspended
in a torso-shaped electrolytic tank embedded with 192
electrodes. We instrumented the heart with a 256-electrode
pericardiac cage. Potentials from both the torso tank
and cage electrodes were recorded simultaneously at 1000
sample/s. We recorded three activation sequences: sinus
rhythm, and pacing at 171 bpm from ventricular needles
placed in the anterior (aVP) and posterior (pVP) left ven-
tricle. We captured 40 heartbeats for each activation se-
quence (sinus, aVP, pVP). Signals were filtered, baseline
corrected, and fiducialized using PFEIFER[11], and ge-
ometries were acquired as described previously.[10] We
replicated this experimental procedure twice, producing
two data sets (Data Set 1 and Data Set 2). All experiments
were approved by the Institutional Animal Care and Use
Committee of the University of Utah, protocol number 17-
04016 approved on 05/17/2017. We used the registered
position of the pericardiac cage as the nominal heart po-
sition, which we numerically translated to match the sam-
pled positions as described above. To examine the effect
of increasing position uncertainty, we selected 8 differ-
ent ranges for the beta distributions of heart translations
(Ranges 1 through 8: ±1 mm, ±5 mm, ±10 mm, ±15 mm,
±20 mm, ±25 mm, ±30 mm, ±40 mm).

Inverse Solution Evaluation: We first computed an
inverse solution for each heartbeat using the nominal heart
position. We then calculated the UQ joint-inverse solution
using the WAFS samples and weights from the 8 ranges.
Thus, we produced 9 sets of inverse solutions for each beat
of each activation sequence in each dataset (1 nominal, 8
UQ). We compared these inverse solutions to the measured
pericardiac potentials in terms of the root mean squared
error (RMSE), temporal correlation (TC), and spatial cor-
relation (SC).[10] Furthermore, we examined the perfor-
mance of the inverse estimates in terms of the regulariza-
tion weight λ chosen by our L-curve procedure for each
inverse solution and the curvature of the L-curve corner
(κ) defined as the maximum second derivative of a cubic
spline interpolation of the L-curve.
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Figure 1. ECGI accuracy and inverse problem metrics. Each row
shows a metric, top to bottom: RMSE (mV), Spatial Correlation, Tempo-
ral Correlation, λ value, κ value. Metrics are shown in each panel as box
plots for each set of inverse solutions, from left to right: nominal position,
then ranges 1 through 8. The panels in the left column correspond to Data
Set 1 and in the right column to Data Set 2. Each box plot represents the
metric for all 40 heartbeats for a given activation sequence and data set
(Black: aVP, red: pVP, cyan: sinus). Outliers (plus signs) are defined as
values that are 1.5 times the interquartile range away from the bottom or
top of the box. Note that the λ and κ plots are in log scale.

3. Results
As heart position range increased (from ±1 mm, Range

1 to ±40 mm, Range 8), the quality of the inverse solu-
tion degraded. We observed this degradation as increasing
RMSE and decreasing SC and TC in Figure 1. Increasing
range corresponded to an increase in λ and a decrease in κ
value for the largest ranges. However, notably, the κ value
increased at smaller ranges, around ±20 mm (range 5) in
Data Set 1, and around ±5 mm to ±20 mm (range 2 to 5)

in Data Set 2, followed by a falloff at larger ranges.
Figure 2 shows examples of inverse reconstructions

from each position range as well as the nominal position
of the heart. The increase in uncertainty ranges resulted
most notably in changes in the shape and location of the
potential depressions across the cage.

4. Discussion and Conclusions
In this study, we report for the first time to our knowl-

edge ECGI solutions that incorperate uncertainty in the po-
sition of the heart by applying our joint-inverse formula-
tion. For small position uncertainty ranges (<±10 mm),
the UQ ECGI solutions were close to those found using
the nominal heart position according to RMSE, SC, and
TC. The major benefit of this UQ approach is that it pro-
vides confidence that uncertainty in the heart position has
been accounted for in the ECGI solution. Thus, the UQ so-
lution may be preferable even if it is similar to the nominal
solution.

Another benefit of the UQ ECGI formulation is that it
allows us to explore the effect of heart position variability
on the ECGI inverse solution directly, rather than through
inferences made about the forward problem as in previous
studies.[5] With ranges above ±10 mm, the resulting UQ
ECGI solutions displayed a decrease in quality as shown
by low SC, and TC. The RMSE, however, was consis-
tently within 0.2 mV for each activation sequence across
all position ranges. The larger ranges of position variabil-
ity matched increasing levels of regularization, i.e., an in-
crease in λ value and a decrease in κ values, suggesting
smoother L curves. Our study was limited to using the
L-curve criterion, and other λ selection methods might be
preferable. Despite this limitation, even the largest range
of position uncertainty (±40 mm) produced ECGI solu-
tions that appeared qualitatively reasonable (Figure 2).

The increase in L-corner sharpness (as indicated by in-
creased κ values) at the middle ranges (centered around
±20 mm for Data Set 1 and ±15 mm for Data Set 2) sup-
ports a previous finding that the shape of the L curve may
serve as an indicator of how well localized the cardiac ge-
ometry is within the torso.[3] Our findings support the hy-
pothesis that this increase in κ may be related to levels of
geometric uncertainty.

We and others have developed methods for correcting
the heart position using augmented parameterizations of
heart position;[2, 3, 12, 13] however, all have significant
limitations under realistic scenarios. It is also not clear
what effects lingering geometric errors have and what level
of heart position accuracy is necessary. This study pro-
vides quantifiable levels of robustness for inverse solutions
under assigned heart position variability. These results are
a step towards understanding how lingering geometric er-
rors affect the inverse solutions and what level of geomet-
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Figure 2. Inverse solutions as compared to the measured epicardial potentials for an example beat of the pVP activation sequence from Data Set 1.
The measured pericardiac potentials (top left) and the inverse solution found using the nominal heart position (bottom left) are on the left side of the color
bar. On the right of the color bar are the 8 inverse solutions calculated using each of the 8 position ranges. All potential maps (mV) are shown at the peak
of the RMS of the measured pericardiac signal. Potentials are displayed on a flattened unwrapped projection of the cage geometry.

ric accuracy is necessary to produce robust solutions. Al-
though this study was limited to translations of heart po-
sition, extensions would be straightforward for additional
positional parameters e.g., rotations. Future studies will
examine the effects of uncertainties in conductivity values,
positions of other organs, and heart shape.
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