
Computational Particle Mechanics
https://doi.org/10.1007/s40571-022-00530-5

Computational error estimation for the Material Point Method

Martin Berzins1

Received: 8 March 2022 / Revised: 5 October 2022 / Accepted: 21 October 2022
© The Author(s) under exclusive licence to OWZ 2022

Abstract
A common feature of many methods in computational mechanics is that there is often a way of estimating the error in the
computed solution. The situation for computational mechanics codes based upon the Material Point Method is very different
in that there has been comparatively little work on computable error estimates for these methods. This work is concerned
with introducing such an approach for the Material Point Method. Although it has been observed that spatial errors may
dominate temporal ones at stable time steps, recent work has made more precise the sources and forms of different MPM
errors. There is then a need to estimate these errors through computable estimates of different errors in the Material Point
Method. The approach used involves linearity-preserving extensions of existing methods, which allow estimates of different
spatial errors in the Material Point Method to be derived based upon nodal derivatives of different physical variables in MPM.
These derivatives are then estimated using standard difference approximations calculated on the background mesh. The use
of these estimates of the spatial error makes it possible to measure the growth of errors over time. A number of computational
experiments are used to illustrate the performance of the computed error estimates for both the original MPM method and
the GIMP method, when modified to preserve linearity. Finally, the form of the computed estimates also makes it possible to
identify the order of the accuracy of the methods in space and time. For these methods, including the linearity preservation
is clearly beneficial, as regards accuracy while not changing the preference for GIMP over MPM

Keywords Material Point Method · Spatial estimation · Time integration error · Particle in cell method

1 Introduction

A notable feature of many computational mechanics codes,
particularly finite element codes, since the 1980s has been
the availability of computable estimates of the error and the
use of these estimates in accuracy checks, adaptive mesh
refinement and element order selection. The Material Point
Method (MPM) has proved to be invaluable for many very
challenging problems. However, in many ways the method is
not as far advanced as such finite element methods in terms
of accuracy and stability analysis and computable error esti-
mates for errors in both space and their evolution in time.
As it is observed that that the spatial error dominates for
cases in which the calculation is stable [16], this suggests
that emphasis should be on the spatial error.

While there is an extensive literature on Finite Element
Error estimation, for standardmeshes, e.g. [26], in the case of

B Martin Berzins
mb@sci.utah.edu

1 Scientific Computing and Imaging Institute, University of
Utah, Salt Lake City, UT 84112, USA

the methods closest to theMaterial Point Method the Particle
Finite Element Method [9] there is comparatively little work
on error estimates. One exception is [20] who look at the dif-
ferent approaches for mapping from particles to quadrature
node. In general, the Finite Element error estimators provide
estimates in a particular norm, such as the energy norm. The
approach adopted here is to provide estimates at every com-
putational mesh point in both space and time, for a complex
nonlinear system and following early work in this area [7,8].

This work continues the analysis of MPM methods after
previouswork on gas dynamics [21], null spaces and linearity
preservation [11], stability [3], time integration [4], energy
conservation [5] and is an extension of a previous conference
paper [6] which introduced a key idea used here for estimat-
ing the mapping errors from particles to mesh and frommesh
to particles without demonstrating its effectiveness in a full
MPM simulation. The focus here is on a careful prototype
demonstration of error estimation in MPM on a well-studied
model problem, so as to provide an incentive for further study
for more complex problems in higher space dimensions.

Section 2 describes related work on error estimation
related to MPM. Section 3 describes the MPM method in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-022-00530-5&domain=pdf

Computational Particle Mechanics

two forms: the original MPM method of [17,18] and what is
regarded as the improvedGIMPmethod [2] and describes the
application of thesemethods to a simple example problem. A
notable difference from most applications of these methods
is that they aremodified so as to preserve linearity inmapping
from particles to nodes and back again [11]. A full descrip-
tion of the MPM method, its errors and how they evolve in
time is provided in Sect. 4. Simple computational estimates
of different mapping errors in MPM are derived in Sect. 5,
based on the ideas in [6], and are used to define the order of
accuracy of these errors. In Sect. 6, the twomethods are com-
pared on a simple model problem and the error estimating
approach is applied to that problem which is widely used in
the MPM literature and which illustrates the potential of this
approach. In Sect. 7, a discussion of the approach is given,
and in Sect. 8 the observed order of accuracy is shown when
the underlying mesh spacing is varied. Concluding remarks
made together with comments on the extension of these ideas
to multiple space dimensions are provided in Sect. 9

2 Background on existingmpm error work

Many of the key features of MPM methods are covered in
the two recent surveys. The first of Vaucorbeil et al. [23] ref-
erences the work by Wallstedt and Guilkey [25], Tran and
Berzins [21] , Steffen et al. [14,16] and Gritton and Berzins
[11]. In the area of accuracy, Steffen et al. look carefully at
space and time errors and what degree of accuracy is seen
on example problems, thus paving the way for many of the
developments that followed such as the use of higher-order
methods in both space and time. Improved time integration
methods are considered by Wallstedt and Guilkey [25]. The
relationship between MPM time integration and symplectic
time integration methods is considered by Berzins [4]. Such
symplectic methods have good conservation properties, and
the well known Stormer–Verlet method has third-order accu-
racy locally [5].

The second survey of Solowski et al. [13] also describes
the same methods but also points out potentially relevant
analysis of particle in cell methods such as the book by Grig-
oriev et al. [10], and one of the first rigorous attempts to
provide a solid theoretical basis for particle methods was
due to Raviart [12] who provides a mathematical introduc-
tion to the vortex numerical method. All these approaches
provide insight into the errors of particle methods, but none
of them provides computable error estimates. Perhaps the
closest approach is the adaptive meshing work of Tan and
Nairn [19] who use quadratic expansions to calculate second
derivatives as an indicator for mesh refinement parameter as
well as to estimate a mass lumping error.

This is an extended version of a conference paper [6] that
described the approach that is fleshed out here in a very

elementary form. The challenge with error estimation of par-
ticle methods is that such error estimates either explicitly or
implicitly require spatial derivative information. Such parti-
cle information is very challenging to compute using only
arbitrarily spaced particles. One major advantage of MPM
over some other equally effective particle methods, such as
SPH, is its background mesh that allows for the construction
of derivative values on that mesh, based upon the solution
values that are mapped to that mesh. These derivatives may
be used directly in a Taylor series expansion on that mesh or
mapped to particle positions to be used in series expansions
about these points.

The central idea here is to demonstrate the potential of this
approach using a relatively simple andwell-studied problem.
Nevertheless, the basic ideas apply not only to such simple
problems but extend relatively easily to more complex cases
in higher dimensions. Finally, although this error estimation
is done in the context of MPM, many of the same ideas also
apply to particle in cell methods as they share similar map-
pings of particles to grid and grid to particles.

3 MPMmodel problem andmethod

The description of MPM used here follows [5,11] in that the
model problem used here is a pair of equations connecting
velocity v, displacement u and density ρ:

Du

Dt
= v, (1)

ρ
Dv

Dt
= ∂σ

∂x
+ b(x, t), (2)

with a linear stress model σ = E ∂u
∂x for which Young’s mod-

ulus, E , is constant, a body force b, which is initially assumed
to be zero, and with appropriate boundary and initial condi-
tions. For convenience a mesh of equally spaced N +1 fixed
nodes Xi with intervals Ii = [

Xi , Xi+1
]
, on the interval

[a, b] is used where
a = X0 < X1 < ... < XN = b, (3)

h = Xi − Xi−1. (4)

These fixed nodes are referred to as the i points. Nothing in
themethod derivation is restricted to suchmeshes however. It
will also be assumed that periodic boundary conditions exist
in that

σ(a)v(a) = σ(b)v(b) (5)

together with appropriate initial conditions. While such con-
ditions are typical for the model problem used to illustrate
the results, the error estimation approach used here may be
extended to different boundary conditions.While the analysis
of MPM for time integration error and energy conservation

123

Computational Particle Mechanics

uses the model problem above, it does apply more generally
and in multiple space dimensions with a few obvious modifi-
cations, as discussed in Sect. 8. The computed solution at the
pth particles will be written as unp = u(xnp, t

n). Suppose that
there are np particles in total. The calculation of the internal
forces in MPM at the nodes requires the calculation of the
volume integral of the divergence of the stress [25] using

f inti = −
∑

p

Dpi (x
n
p)σpVp (6)

The subscript pi represents a mapping from particles p to
node i while the subscript i p represents a mapping from
nodes i to particles p. The negative sign arises as a result of
using integration by parts [11]. The mass at node i is defined
by

mi =
∑

p

m pSpi (x
n
p) (7)

It is important to note that the coefficients Dpi (xnp) and
Spi (xnp) (which here will be abbreviated to Dn

pi and Snpi)
depend explicitly on the background mesh and the particle
positions and that they also are chosen to reproduce deriva-
tives of constant and linear functions exactly [11]. The initial
volume of the particles is uniform for the n p particles in an
interval, but again nothing in the derivation explicitly requires
this. Indeed, after the first time step the particles will be no
longer uniformly distributed and over many time steps their
positions will vary greatly. The particle volumes are defined
using the deformation gradient, Fn

p , and the initial particle
volume,V 0

p ,

V n
p = Fn

p V
0
p , where V 0

p ,= h

n p
, where F0

p = 1 (8)

From (7), the form of acceleration equation in the MPM
method in this case is

ai (t) =−1

mi

∑

p

Dpi (xp(t))σp(t)Fp(t)V
0
p (9)

While for the simple example here uniform masses are
assumed, there is nothing in the derivation that precludes
non-uniform masses. The equation to update velocity at the
nodes, as denoted by vni , is then given by

v̇i = ai (10)

The equation for the update of the particle velocities is then

v̇p = ap (11)

where the value of the acceleration at a point xnp is given by
interpolation based upon nodal values of acceleration

ap =
∑

i

Sip(xp(t))ai (12)

The equation for the particle position updates is

ẋ p = vp (13)

The update of the deformation gradients is given using

∂v

∂x
(xp(t)) =

∑

i

Dip(xp(t))vi (14)

The deformation update equation is

Ḟp = ∂v

∂x
(xp(t), t)Fp (15)

While the stress update equation is, using the appropriate
constitutive model and Young’s Modulus, E ,

σ̇p = E
∂v

∂x
(xp(t)) (16)

In the above general formulation, the coefficients Sip and
Di p are determined by the choice of MPM method and will
now be given for the original MPM method and the GIMP
method, see [27].

3.1 Original MPMmethod coefficients

In the case of the original MPMmethod [17,18], the method
coefficients are given by

Sip =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xp−Xi−1
Xi−Xi−1

, Xi−1 ≤ xp ≤ Xi

Xi+1−xp
Xi+1−Xi

, Xi ≤ xp ≤ Xi+1

0 otherwise

(17)

Dip =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Xi−Xi−1

, Xi−1 ≤ xp ≤ Xi

−1
Xi+1−Xi

, Xi ≤ xp ≤ Xi+1

0 otherwise

(18)

3.2 GIMPMPMmethod coefficients

In the case of the GIMP MPMmethod [2], the method coef-
ficients are given by P.72 of [27]

123

Computational Particle Mechanics

Sip =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0|xp − Xi | ≥ h + l p

(h+l p+(xp−Xi))
2

4hlp
,−h − l p ≤ xp − Xi ≤ −h + l p

1 + (xp−Xi)

h ,−h + l p ≤ xp − Xi ≤ −l p

1 − ((xp−Xi))
2+l2p

2hlp
,−l p ≤ xp − Xi ≤ +l p

1 − (xp−Xi)

h , l p ≤ xp − Xi ≤ −l p

(h+l p−(xp−Xi))
2

4hlp
, L − l p ≤ xp − Xi ≤ h + l p

(19)

In this case, h is the mesh spacing and l p is the initial particle
width which here is V 0

p as defined in equation (8).

Dip =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0|xp − Xi | ≥ h + l p
(h+l p+(xp−Xi))

2hlp
,−h − l p ≤ xp − Xi ≤ −h + l p

1
h ,−h + l p ≤ xp − Xi ≤ −l p

− (xp−Xi)

hlp
,−l p ≤ xp − Xi ≤ +l p

− 1
h , l p ≤ xp − Xi ≤ −l p

(h+l p−(xp−Xi))

2hlp
, h − l p ≤ xp − Xi ≤ h + l p

(20)

3.3 Linearity-preservingMPM and GIMP

In order to estimate the errors of different parts of MPM
methods, it is important to define the accuracy of the map-
pings defined by the S and D matrices and the transposes ST

and DT . The approach used here with both MPM and GIMP
is that of [11] which is used to modify the mapping Sip so
that it is linearity preserving, i.e.,

∑

p

Spi = 1 (21)

and

∑

p

Spi x p = Xi . (22)

and for the D matrix which differentiates, the exact differen-
tiation of a linear function is required, giving the equations

∑

p

Dpi = 0 (23)

and

∑

p

Dpi x p = 1. (24)

The same operations are also applied to the transpose matri-
ces ST and DT . In all the experiments below, the GIMP
method is used as modified for linearity preservation [11].

The original form ofMPMwill be referred to asMPM, while
the linearity-preserving form will be referred to as LPMPM.
While numerous experiments have shown that GIMP is to be
preferred over MPM [2,16,25] (and this will be confirmed
below), the additional of linearity preservation to MPM to
give the LPMPM method improves its performance greatly,
as shown in Sect. 6, though not to the point where it is to be
preferred over GIMP.

4 Stress last MPM and global errors in space
and time

For any choice of the mappings Si p and Di p, it is now pos-
sible to define the equations used to advance the method and
estimate its errors. In solving the system of equations defined
above by Eqs. (6) to (16), one standard approach used is to
order the equations in a certain order and then to solve them in
turn using explicit methods. Differences in how the equations
are solved correspond to whether or not the stress is updated
first or last in a time step, a choice that is discussed at length
by [1]. These two different choices are related to the use of
the semi-implicit Euler A or B method [3]. Following Bar-
denhagen [1], it is preferable to increment stress last. In this
case, it is assumed that at time tn a consistent set of particle
positions xnp, velocities vp, stresses σ n

p and deformation gra-
dients Fn

p are available. The description here of the method
and the sources of error follows that in [4]. It is also assumed
that the GIMP method is used for spatial discretization.

In contrast with the local errors described in [6], the anal-
ysis here is concerned with the evolution of the full global
error.

The nodal velocity vi is calculated using a standard MPM
momentum based mapping.

vni =
∑

p

Snpi
m p

mi
vnp (25)

with an associated nodal velocity error Evni = vni,true − vni
which is defined in terms of the existing particle errors Evnp
and the interpolation error Evnpi by

Evni =
∑

p

Snpi
m p

mi
Evnp + Evnpi (26)

where Evnpi is the interpolation or mapping error associated
with the coefficients Snpi which will be defined as follows:

Evnpi = ṽni −
∑

p

Snpi
m p

mi
vnp (27)

where ṽni is the nodal value consistent with the values vnp.
This error is estimated in Sect. 5, Eqs. (52) to (53).

123

Computational Particle Mechanics

The nodal acceleration is updated by using the stresses
and deformation gradients at the current grid points and the
body forces

ani =−1

mi

∑

p

Dn
piσ

n
p + b(Xi , t

n) (28)

where the nodal mass is defined by Eq. (7). The equation to
update velocity at the nodes is then given by

vn+1
i = vni + dtani (29)

The global error in this forward Euler step at time tn+1 is
given by Evn+1

i whose evolution may be approximated by

Evn+1
i = Evni + dt Eani + dt2

2

d2vni
dt2

(30)

where the rightmost term is the local time error contribution
and where Eani is the spatial error from using the approxi-
mation in Eq. (28), as defined by

Eani = ani,true − ani (31)

and which will be estimated as defined in Sect. 5. The time
derivative term is a simple approximation to the local time
error which may be estimated by

dt2

2

d2vni
dt2

≈ dt

2
(ani − an−1

i) (32)

The equation for the update of the particle velocity is then

vn+1
p = vnp + dt

∑

i

Snipa
n
i (33)

The associated global error is defined by

Evn+1
p = vn+1

p,true − vn+1
p (34)

whose evolution may be approximated by

Evn+1
p = Evnp + dt

∑

i

Snip Ea
n
i + dt Eanip + dt2

2

d2vnp
dt2

(35)

where the rightmost term is the local time error contribution.
In this case, the error Eanip is the approximation error caused
by the mapping coefficients Snip and is estimated as described
in Sect.5 using the same approach as in Eq. (61) and (62) in
that section. Furthermore, the time derivative term is the local
time error which may be estimated by

dt2

2

d2vn+1
p

dt2
≈ dt

2
(anp − an−1

p) (36)

In the computational experiments, the following estimatewas
used after considerable numerical testing as Eq. (35) gave
computed error estimates that appeared to grow too quickly.

Evn+1
p =

∑

i

Snip Evn+1
i + dt Eanip (37)

From Eqs. (26), (30), this may be written as

Evn+1
p =

∑

i

Snip
∑

p

Snpi Evnp + dt Eanip

+
∑

i

Snip

(

dt Eani + Evnpi + dt2

2

d2vni
dt2

)

(38)

where the rightmost term is the local time error contribution.
The velocity gradients at particles are calculated using the
formula

∂vn+1

∂x
(xp) =

∑

i

Dn
ipv

n+1
i (39)

with an associated derivative approximation error as denoted
by Evi+1

xp , defined by

Evi+1
xp = ∂vn+1

true

∂x
(xp) −

∑

i

Dn
ipv

n+1
i (40)

These velocity gradients are used to update the stress and
deformation gradients at particles

Fn+1
p = Fn

p + dt
∂vn+1

∂x
(xnp, tn)F

n
pdt (41)

The associated global error is defined by

EFn+1
p = Fn+1

p,true − Fn+1
p (42)

For the deformation gradient Fn
p , the error evolution may be

approximated by

EFn+1
p = EFn

p + dt Fn
p

(

Evnxp +
∑

i

Dn
ipEvn+1

i

)

− dt2

2

d2Fp

dt2
(43)

where the rightmost term is the local time error contribu-
tion and this second time derivative term corresponds to the
local error from a semi-implicit Euler step with updated par-
ticle velocity derivatives at tn+1. The semi-implicit method
local time error has the opposite sign to the explicit. Stress

123

Computational Particle Mechanics

is updated using the appropriate constitutive model and
Young’s modulus, E ,

σ n+1
p = σ n

p + dt E
∂vn+1

∂x
(xnp) (44)

The associated global error is defined by

Eσ n+1
p = σ n+1

p,true − σ n+1
p (45)

In this case, the stress global time and space error approxi-

mately evolves according to

Eσ n+1
p = Eσ n+1

p + dt E

(

Evnxp +
∑

i

Dn
ipEvn+1

i

)

− dt2

2

d2σ n+1
p

dt2
(46)

in a similar way as for the deformation gradient, where again
the rightmost term is the local time error contribution. In the
computational experiments, the term

∑
i D

n
ipEvn+1

i was not
used as it caused the stress error to grow too quickly, in part
due to the presence of the constant E . The time derivative
term is the local time error which may be estimated by .

dt2

2

d2σ n+1
p

dt2

≈ dt E

2

(
∂vn+1

∂x
(xnp) − ∂vn

∂x
(xnp)

)
(47)

However, this term is not significant when the spatial error
dominates and so was not included in the experiments. The
equation for the particle position update is

xn+1
p = xnp + dtvn+1

p (48)

The associated global error is defined by

Exn+1
p = xn+1

p,true − xn+1
p (49)

For the particle update, the error is given by

Exn+1
p = Exnp + dt(Evnp + Evpi) − dt2

2

d2xn+1
p

dt2
(50)

where again the rightmost term is the local time error con-
tribution. When implementing this, it was found that the key
error source term was Evnpi which is estimated as in Eq. (61)
and (62), and the term Evnp was dropped, as its inclusion
resulted in this error being over estimated. The time deriva-
tive term is the local time error which may be calculated by

dt2

2

d2x p
p

dt2
≈ dt2

2
anp (51)

Of course, it should be noted that in this analysis the error in
evolving the error equations is neglected. As an example if
the second time derivatives of the errors in a particle quantity
are greater than the second time derivatives of the quantity
itself, then these errors must also somehow be estimated.

5 Estimating the spatial error terms

The above derivations illustrate how the spatial and temporal
errors associatedwithMPMcombine to give the overall error.
Steffen et al. [16] observed these errors experimentally and
arrived at the conclusion that for a stable time step with the
methods they considered that temporal errors are dominated
by spatial errors. This suggests that the starting point is to
focus on the spatial errors terms in the derivation of the error
in the MPM method in the previous section.

The error framework presented in the previous section
makes it possible to derive estimates for the individual parts
of MPM associated with the mapping matrix Sip and the
differentiation matrix Dip (and their transposes) and to thus
provide computable estimates for the error. The estimates
derived in this section were first shown in a conference paper
[6]. There are two parts to this process. The first part is to
estimate the error inmapping fromparticles to the grid nodes.
The second part is to estimate the error in mapping from the
grid nodes back to particles. These are now considered in
turn.

5.1 Particles to nodes

In the case of the mapping defined by Eq. (25),(ignoring the
contributions of the masses for the moment)

vnp = vni + (xp − Xi)
∂v

∂x
(Xi , t

n) + (xp − Xi)
2

2

∂2v

∂x2
(Xi , t

n)

+ (xp − Xi)
3

6

∂3v

∂x3
(Xi , t

n) + ... (52)

Using the approach of [11], it is assumed that themapping Sip
is linearity preserving, i.e.,

∑
p Spi = 1 and

∑
p Spi x p =

Xi . Approximating the true value of the error at the nodal
velocity as in Eq. (27) by a local solution based upon com-
puted solution values and multiplying (52) by Sip and using
linearity preservation give

Evnpi ≈ −∂2v

∂x2
(Xi , t

n)
∑

p

Snpi
(xp − Xi)

2

2

−∂3v

∂x3
(Xi , t

n)
∑

p

Snpi
(xp − Xi)

3

6
(53)

123

Computational Particle Mechanics

which requires the estimation of second and third derivatives
at the nodes. Those derivatives are estimated with the present
solution, rather than the true solution.

In the case of acceleration, matters are more complicated.
Consider the mapping defined by Eq. (28). The first step is
to expand the stress at a particle about the node by using a
simple Taylor expansion.

σ n
p = σ n

i + (xp − Xi)
∂σ

∂x
(Xi , t

n)

+ (xp − Xi)
2

2

∂2σ

∂x2
(Xi , t

n)

+ (xp − Xi)
3

6

∂3σ

∂x3
(Xi , t

n) + ... (54)

Substituting this in Eq. (28) gives after assuming that
the coefficients Dpi exactly differentiate linear functions (∑

p Dpi = 0 and
∑

p Dpi x p = 1), see [11] who also pro-
vide a procedure for this. Define the stress derivative error
as

Eσ n
xi = ∂σ

∂x
(Xi , t

n) +
∑

p

Dn
piσ

n
p ; (55)

then using a Taylor series gives

Eσ n
xi =

∑

p

Dn
pi

[
(xp − Xi)

2

2

∂2σ

∂x2
(Xi , t

n)

+ (xp − Xi)
3

6

∂3σ

∂x3
(Xi , t

n) + ...

]
(56)

The stress derivatives at nodes are difficult to estimate and
so nodal acceleration derivatives are used instead. This is
complicated by the body forces contribution to acceleration
so that if

λni = b(xi , tn)

ani
, (57)

then

∂σ

∂x
(Xi , t

n) = (1 − λni)a
n
i (58)

Assuming that the same approximation may be used for
higher derivatives so that as Eai = Eσxi/(1 − λni), then

Eani = −1

m̃i

∑

p

Dn
pi

[
(xp − Xi)

2

2

∂a

∂x
(Xi , t

n)

+ (xp − Xi)
3

6

∂2a

∂x2
(Xi , t

n) + ...

]
(59)

As the Dpi coefficients differentiate, it is possible to do this
directly to get

Eani ≈ −1

m̃i

∑

p

[
(xp − Xi)

∂a

∂x
(Xi , t

n)

+ (xp − Xi)
2

3

∂2a

∂x2
(Xi , t

n) + ...

]
(60)

which is the estimate used in the experiments. The estima-
tion of these spatial acceleration derivatives at the nodes is
described in Sect. 5.3.

5.2 Nodes to particles

In this case, we have to consider the mapping from nodal
values of accelerations to accelerations at particles, given by
Eq. (33) and the mapping from nodal velocities to velocity
derivatives at particles. It is assumed that the transposes of
the mapping matrices S and D (as denoted by switching the
subscript pi to i p) satisfy the same equations as above for
preserving linearity in the mapping and for differentiating
linear functions exactly, e.g., using the procedure of Gritton
[11]. In both these cases, we expand the nodal values about
particles. Consider themapping equation as used for velocity

Evnp = vnp,true −
∑

i

Snipv
n
i (61)

where the true particle velocity vnp,true is again approximated
using a Taylor series as in Eq. (52). Using the fact that that
the sum

∑
i S

n
ip = 1, then

Evnp ≈

−
∑

i

Snip

(
(xp − XI)

2

2

∂2v

∂x
(Xi , t

n) + (xp − XI)
3

6

∂3v

∂x3
(Xi , t

n)

)

(62)

Where higher order than three derivatives are neglected in
the Taylor expansion. A similar approach may be used for
the approximation error to do with mapping the acceleration
from nodes to particles Eanip

In the case of estimating the error in derivatives at parti-
cles, the approach is similar to estimate the mapping error

Evn+1
xp = ∂vn+1

true

∂x
(xp) −

∑

i

Dn
ipv

n+1
i , (63)

Expanding about Xi gives

Evn+1
xp ≈ −

∑

i

Dn
ip

(
(Xi − xp)2

2

∂2v

∂x2
(xp, t

n+1)

+ (Xi − xp)3

6

∂3v

∂x3
(xp, t

n+1)

)
(64)

123

Computational Particle Mechanics

This expression requires velocity derivatives at the particles.
These values may be approximated by interpolating from the
nodal derivatives so that, for instance,

∂2v

∂x2
(xp, t

n+1) ≈
∑

j

Snip
∂2v

∂x2
(X j , t

n+1) (65)

to get

Evn+1
xp ≈ −

∑

i

Dn
ip

⎛

⎝ (Xi − xp)2

2

∑

j

S jp
∂2v

∂x2
(X j , t

n+1)

+ (Xi − xp)3

6

∑

j

S jp
∂3v

∂x3
(X j , t

n+1)

⎞

⎠ (66)

Alternatively the expansions

∂2v

∂x2
(xp, t

n+1) = ∂2v

∂x2
(Xi , t

n+1)

+(xp − Xi)
∂3v

∂x3
(Xi , t

n+1) (67)

and

∂3v

∂x3
(xp, t

n+1) = ∂3v

∂x2
(Xi , t

n+1)

+(xp − Xi)
∂4v

∂x4
(Xi , t

n+1) (68)

may be truncated and used in Eq. (64) to get

Evnxp ≈ −
∑

i

Dn
ip

(
(Xi − xp)2

2

∂2v

∂x2
(Xi , t

n+1)

+ 2(Xi − xp)3

3

∂3v

∂x3
(Xi , t

n)

+ (Xi − xp)4

6

∂4v

∂x4
(Xi , t

n+1)

)
(69)

This involves less computation, and in the experiments the
third- and fourth-order terms were not included as in the
computational experiments it was sufficient to just use the
approximation

Evn+1
xp ≈ −

∑

i

Dn
ip

(
(Xi − xp)2

2

∂2v

∂x2
(Xi , t

n+1)

)
(70)

5.3 Estimating the spatial derivatives

The first spatial derivative of the stress σ(Xi , t) or any other
quantity at the nodes, such as acceleration or velocity, is

straightforwardly estimated using finite differences of nodal
stress values.

∂σ

∂x
(Xi , t) ≈ σi+1 − σi−1

2h
(71)

and the second derivative of the stress is straightforwardly
estimated using finite differences of nodal stress values.

∂2σ

∂x2
(Xi , t) ≈ σi+1 − 2σi + σi−1

h2
(72)

and the third derivative similarly as

∂3σ

∂x3
(Xi , t) ≈ σi+2 − 2σi+1 + 2σi−1 + σi−2

h3
(73)

With appropriate modifications at the boundaries, that need
to include the boundary conditions.

5.4 Order of accuracy of MPM

The error estimates derived in Sects. 5.1 and 5.2 make it pos-
sible to define the order of accuracy of the above estimated
error. There are two forms of error to consider. The first is the
error due to the use of the mapping coefficients Spi , and the
second is the error due to the use of the differentiation map-
ping coefficients Dpi . These are considered in turn. Consider
the first term of the error defined by Eq. (62)

Evnp = −∂2v

∂x2
(Xi , t

n)
∑

i

Snip

(xp − Xi)
2

2
− ∂3v

∂x3
(Xi , t

n)
∑

i

Snip
(xp − Xi)

3

6
+ h.o.t .

(74)

and let

cip = (xp − Xi)/h (75)

Then, Eq. (74) may be written as

Evnp = −h2

2

∂2v

∂x
(Xi , t

n)
∑

i

Snipc
2
i p

−h3

6

∂3v

∂x3
(Xi , t

n)
∑

i

Snipc
3
i p + h.o.t . (76)

Or as

Evnp = −h2

2
CEvp1(t) − h3

6
CEvp2(t) + h.o.t . (77)

123

Computational Particle Mechanics

where

CEvp1(t) = ∂2v

∂x2
(Xi , t

n)
∑

i

Snipc
2
i p (78)

CEvp2(t) = ∂3v

∂x3
(Xi , t

n)
∑

i

Snipc
3
i p (79)

and as −1 ≤ cip ≤ 1 using equation (21)

∑

i

Snipc
2
i p ≤ 1. (80)

and

− 1 ≤
∑

i

Snipc
3
i p ≤ 1. (81)

For evenly spaced meshes and evenly spaced particles about
nodes,CEvp2(t))may even be zero. For the second case, con-
sider the first term of the error defined by Eq. (56) written
as

Eani = −1

m̃i

∑

p

[
(xp − Xi)

∂a

∂x
(Xi , t

n)

+ (xp − Xi)
2

3

∂2a

∂x2
(Xi , t

n) + ...

]
(82)

and use Eq. (75 to write it as

Eani = −1

m̃i

∑

p

[
hcip

∂a

∂x
(Xi , t

n)

+h2
c2i p
3

∂2a

∂x2
(Xi , t

n) + ...

]

(83)

This equation may be written as

Eani = −1

m̃i

[
hCEai1(t) + h2

2
CEai2(t)

]
(84)

where

CEai1(t) = ∂a

∂x
(Xi , t

n)
∑

p

cip (85)

and where
∑

i cip may be “small” due to cancellations of
positive and negative values about a node, and

CEai2(t) = ∂2a

∂x2
(Xi , t

n)
∑

p

c2i p (86)

Fig. 1 1d Bar example particle distribution

In this case, in contrast

∑

p

c2i p ≥ 0 (87)

It is observed that this term is substantially larger than
∑

i cip
and that all the sums involving Cip grow with the number of
particles per call.

The expressions for the other spatial errors may be writ-
ten in the same way. Part of the difficulty in assigning a clear
order to these results is that some terms may be close to zero
for some particle distributions. This means that the order will
vary depending on the particle distributions to some extent.
This error dependence on particle positionwas noted by Stef-
fen et al. [14] who observed larger errors with randomized
particle distributions.

6 Computational experiments

While it is straightforward to write down the equations for
evolution of the errors, there are many subtleties and chal-
lenges in implementing such an approach. The first major
challenge comes from the coupled nature of all the errors in
the system of error equations defined by MPM. In particu-
lar, this means that over or under estimation of a particular
error propagates through the whole system. Thus, with over
estimation the error equations increase at an unrealistic rate.
After considerable experimentation, the stated algorithm
given above appears to a good compromise with regard to
estimating the errors in all the components.

In order to test the estimates derived above, the vibrat-
ing bar example that is often a standard MPM benchmark
problem is used, e.g., [11]. The problem considered is a 1D
bar problem of unit length that is used in many MPM papers
as a starting point for testing algorithms, see, for example,
[3,11,15] and numerous others. The stress equation is

σ = P = E
∂u

∂X
= E(F − 1), (88)

where E is the Young’s modulus. The rate of change of stress
is then computed as

σ̇ = E(Ḟ), (89)

= E(l F), (90)

123

Computational Particle Mechanics

Table 1 Case 1Maximum of error norms calculated at the end of every
time step for particles displacement, velocity, acceleration and stress, h
= 0.05

E Method dt Err X p Err Vp Err AN Err σp

1000 MPM 1.0e−3 3.2e−2 9.8 5.4e+3 3.7e+2

LPMPM 1.0e−3 2.2e−2 1.5 9.4e+1 4.3e+2

GIMP 1.0e−3 8.9e−3 7.8e−1 5.8e+1 1.7e+2

1000 MPM 1.0e−4 4.3e−2 7.2 8.5e+1 4.1e+2

LPMPM 1.0e−4 2.4e−2 3.7 1.7e+1 3.0e+2

GIMP 1.0e−4 2.1e−3 4.9e−1 7.6e+1 2.1e+1

1000 MPM 1.0e−5 7.2e−1 1.6e+2 8.9e+5 8.9e+2

LPMPM 1.0e−5 5.4e−2 1.1e+1 2.9e+3 6.4e+2

GIMP 1.0e−5 2.5e−3 6.3e−1 2.1e+2 4.1e+1

64 MPM 1.0e−3 2.7e−2 1.3 2.1e+2 1.3e+1

LPMPM 1.0e−3 4.4e−3 1.7e−1 1.8e+1 4.4

GIMP 1.0e−3 1.9e−3 8.9e−2 4.2 2.4

64 MPM 1.0e−4 2.6e−2 2.0e−2 4.2e+2 2.8e+1

LPMPM 1.0e−4 7.3e−3 2.9e−1 4.2e+1 5.2

GIMP 1.0e−4 2.3e−3 1.1 5.8 2.6

64 MPM 1.0e−5 3.8e−2 2.0 6.3e+4 3.0e+1

LPMPM 1.0e−5 7.9e−3 3.8e−1 6.3 5.1

GIMP 1.0e−5 2.4e−3 1.1e−1 7.2 2.7

4 MPM 1.0e−3 8.9e−3 2.3e−1 1.1e+1 6.1e−1

LPMPM 1.0e−3 2.5e−3 3.1e−2 8.9e−2 2.6

GIMP 1.0e−3 2.0e−3 2.1e−2 2.6e−2 1.5e−1

MPM 1.0e−4 8.9e−3 3.1e−1 1.5e+1 8.5e−1

4 LPMPM 1.0e−4 2.7e−3 3.6e−2 1.7 2.0e−1

GIMP 1.0e−4 2.0e−3 2.1e−2 2.8e−1 1.5e−1

4 MPM 1.0e−5 8.9e−3 3.1e−1 1.5e+1 8.4e−1

LPMPM 1.0e−5 2.7e−3 3.7e−2 1.4 1.9e−1

GIMP 1.0e−5 2.0e−3 2.1e−2 2.8e−1 1.5e−1

where l is the velocity gradient in the spatial description.
The analytic solutions for displacement and velocity defined
in the material description are:

u(X , t) = Asin(
2πX

l
)sin(

cπ t

l
), (91)

v(X , t) = = Acπ

l
sin(

2πX

l
)cos(

cπ t

l
), (92)

where c = √
E/ρ for a density ρ,the length of the bar l = 1

and A is the maximum displacement. The constitutive model
is defined in Eq. 88 and the body force is

b(X , t) = 3A(cπ)2u(X , t). (93)

The initial spatial discretization is on the spatial domain of
[0, 1] as the length of the bar, l = 1. The periodic nature
of the analytic solution means that both periodic boundary
conditions and zero Dirichlet boundary conditions are both

Table 2 Case 2Maximum of error norms calculated at the end of every
time step for particles displacement, velocity, acceleration and stress,
*=failure when particles attempt to leave the grid, h = 0.05

E Method dt Err X p Err Vp Err AN Err σp

1000 MPM 1.0e−3 * * * *

LPMPM 1.0e−3 * * * *

GIMP 1.0e−3 * * * *

1000 MPM 1.0e−4 4.3e−3 1.3e−1 3.3e+2 1.7e+1

LPMPM 1.0e−4 1.4e−4 3.9e−2 1.9e+1 2.5

GIMP 1.0e−4 6.6e−5 2.4e−2 4.6 1.4

1000 MPM 1.0e−5 7.8e−4 2.3e−1 4.9e+2 1.8e+1

LPMPM 1.0e−5 8.7e−5 7.5e−2 3.2e+1 2.1

GIMP 1.0e−5 7.3e−5 2.3e−2 6.2 1.4

64 MPM 1.0e−3 5.1e−4 3.0e−2 1.9e+1 8.9e−1

LPMPM 1.0e−3 6.7e−5 4.2e−3 1.2 1.1e−1

GIMP 1.0e−3 6.5e−5 3.8e−3 2.3e−1 8.9e−2

64 MPM 1.0e−4 4.3e−4 4.8e−2 2.7e+1 8.9e−1

LPMPM 1.0e−4 7.9e−5 5.5e−3 1.7 1.3e−1

GIMP 1.0e−4 6.6e−5 3.3e−5 3.8e−1 8.9e−2

64 MPM 1.0e−5 4.8e−4 8.0e−2 3.4e+1 1.1

LPMPM 1.0e−5 8.9e−5 7.2e−3 2.3 1.3e−1

GIMP 1.0e−5 6.6e−5 3.3e−3 4.2e−1 8.9e−2

4 MPM 1.0e−3 4.5e−4 1.4e−2 1.4 3.6e−2

LPMPM 1.0e−3 6.7e−5 8.9e−4 8.5e−2 6.3e−3

GIMP 1.0e−3 6.6e−5 6.7e−4 1.3e−2 5.7e−3

4 MPM 1.0e−4 4.1e−4 1.6e−2 2.0 4.7e−2

LPMPM 1.0e−4 7.0e−5 1.2e−3 1.3e−1 6.6e−3

GIMP 1.0e−4 6.6e−5 6.6e−4 1.3e−2 5.7e−3

4 MPM 1.0e−5 4.1e−4 1.8e−2 2.3 4.7e−2

LPMPM 1.0e−5 7.0e−5 1.3e−3 1.5e−1 6.8e−3

GIMP 1.0e−5 6.6e−5 6.6e−4 8.9e−3 5.7e−3

appropriate. Figure 1 shows one example mpm particle dis-
tributions and a uniform backgroundmeshwhen the particles
have moved from their uniform initial distributions, [16]

The initial conditions for the updated Lagrangian descrip-
tion of the particles are:

F = 1, (94)

xp = X0
p, (95)

Vp = V 0
p . (96)

Suppose that the error in the stress at a spatial point x is given
by eσ(x), with similar definitions for the other errors, then
the following error vector definitions are needed.

Exnp =
[
Exn1 , ..., Expnnp

]T
(97)

EvnN = [
Evn1 , ..., EvnN

]T (98)

123

Computational Particle Mechanics

Fig. 2 1d Bar, Case 1:Plots of GIMP Error Norms in Displacement, Particle Velocities, Nodal Velocities, Particle Stresses, Nodal Accelerations
and Numbers of Particle Grid Crossings for E=4 dt=1e−4

Evnp =
[
Evpn1 , ..., Evpnnp

]T
(99)

E An
N = [

E An
1, ..., E An

N

]T (100)

Eσp =
[
Eσ n

1 , ..., Eσ n
np

]T
(101)

These errors are those whose evolution is described by equa-
tions (50), (30), (38), (60) and (46), respectively.

In this section, for this problem twomain cases are consid-
ered to illustrate the evolution of the errors and their estimates
in time. Case 1 uses a cell width is h = 10−2 and two
evenly spaced particles per cell. Case 2 uses a cell width

123

Computational Particle Mechanics

Fig. 3 1d Bar, Case 1:Plots of GIMP Error Norms in Displacement, Particle Velocities, Nodal Velocities, Particle Stresses, Nodal Accelerations
and Numbers of Particle Grid Crossings for E=64 dt=1e−4

is h = 0.510−2 and four evenly spaced particles per cell.
The material density is ρ0 = 1, and Young’s modulus is var-
ied from E = 4 to E = 1000, maximum displacement is
A = 0.1, and the time step is varied. It should be noted that
with the use of the above parameters there are many parti-

cle crossings, ranging from about 1000 with E=4 to about
8000 with E= 1000. Examples of the physical parameters in
SI units for such test problems are given by Tran et al. [22].
In Sect. 7, in order to illustrate the order of accuracy of the

123

Computational Particle Mechanics

Fig. 4 1d Bar, Case 1:Plots of GIMP Error Norms in Displacement, Particle Velocities, Nodal Velocities, Particle Stresses, Nodal Accelerations
and Numbers of Particle Grid Crossings for E=1000 dt=1e−4

different methods the cell width is varied from h = 0.1 to
h = 0.0015625.

6.1 Original MPM vs GIMP

The first computational experiments re-iterate the relatively
poor performance of the original MPM method vs GIMP, as
described and referenced in Sect. 3.1. Included here is the
linearity-preserving MPM method, denoted as LPMPM. In

Tables 1 and 2, the Maximum Error norms shown are the
L2 vector norms of the errors of particles averaged over the
square root of the number of particles

||EX p|| =
√√√√ 1

np

np∑

i=1

Ex2i (102)

In the case of quantities at the nodes such as acceleration, the
averaging is over the number of nodal points

123

Computational Particle Mechanics

Fig. 5 1d Bar, Case 2:Plots of GIMP Error Norms in Displacement, Particle Velocities, Nodal Velocities, Particle Stresses, Nodal Accelerations
and Numbers of Particle Grid Crossings for E=4 dt=1e−4

||E AN || =
√√√√ 1

N

N∑

i=0

E A2
i (103)

These results show that the original MPM has errors that
are often close to an order of magnitude large than the
GIMPmethod.What is more unexpected is that the linearity-
preserving version of the original MPM method (LPMPM)
often does surprisingly well by comparison. This suggests

that linearity preservation is an important property for MPM
methods to have.

In comparing Tables 1 and 2, the extra particles in Case 2
almost always lead to more accurate results. One exception
is with MPM and LPMPM and the case E = 1000 which
has many more grid crossings and for which the extra grid
crossing errors appear to give worse results with Case 2 than
Case 1.

123

Computational Particle Mechanics

Table 3 Case 1 GIMP Average
Error Indices for Particles
Displacement, Velocity,
Acceleration and Stress

E dt Err X IAv Err V IAv Err A IAv Err σ IAv

1.0e+3 1.0e−3 0.621 0.886 0.882 0.75

1.0e−4 0.604 1.380 1.151 1.89

1.0e−5 0.403 1.280 1.302 1.63

64 1.0e−3 0.844 1.53 1.01 1.45

1.0e−4 0.411 2.01 1.27 1.22

1.0e−5 0.392 2.05 1.38 1.19

4 1.0e−3 0.470 2.09 1.139 1.20

1.0e−4 0.418 2.32 1.266 1.18

1.0e−5 0.416 2.42 1.283 1.18

Table 4 Case 1 LPMPM
Average Error Indices for
Particles Displacement,
Velocity, Acceleration and
Stress (*=failure)

E dt Err X IAv Err V IAv Err A IAv Err σ IAv

1.0e+3 1.0e−3 * * * *

1.0e−4 0.44 1.380 1.151 1.89

1.0e−5 0.38 1.1 1.5 2.8

64 1.0e−3 0.50 1.2 1.4 1.2

1.0e−4 0.22 0.89 1.6 1.2

1.0e−5 0.20 0.85 1.6 1.2

4 1.0e−3 0.40 1.7 1.6 1.0

1.0e−4 0.34 1.7 1.6 0.99

1.0e−5 0.33 1.9 1.6 0.99

Table 5 Case 2 GIMP Average
Error Indices for Particles
Displacement, Velocity,
Acceleration and Stress
(*=failure)

E dt Err X IAv Err V IAv Err A IAv Err σ IAv

1.0e+3 * * * * *

1.0e−4 1.16 1.17 1.363 2.89

1.0e−5 0.52 1.85 1.404 2.55

64 1.0e−3 2.52 1.78 1.43 2.83

1.0e−4 0.59 2.83 1.73 2.52

1.0e−5 0.50 3.32 1.55 2.49

4 1.0e−3 0.80 1.78 1.44 2.83

1.0e−4 0.52 2.83 1.37 2.52

1.0e−5 0.51 3.32 1.55 2.49

Table 6 Case 2 LPMPM
Average Error Indices for
Particles Displacement,
Velocity, Acceleration and
Stress (*=failure)

E dt Err X IAv Err V IAv Err A IAv Err σ IAv

1.0e+3 * * * * *

1.0e−4 0.60 0.88 2.7 1.7

1.0e−5 0.40 1.2 3.2 1.8

64 1.0e−3 2.0 1.8 3.0 2.1

1.0e−4 0.46 1.6 3.2 1.9

1.0e−5 0.39 1.6 3.7 1.8

4 1.0e−3 0.75 1.7 3.6 2.3

1.0e−4 0.46 2.5 4.1 2.2

1.0e−5 0.45 2.5 4.1 2.1

123

Computational Particle Mechanics

Fig. 6 1d Bar, Case 2:Plots of GIMP Error Norms in Displacement, Particle Velocities, Nodal Velocities, Particle Stresses, Nodal Accelerations
and Numbers of Particle Grid Crossings for E=64 dt=1e−4

6.2 Error estimation experiments

In evaluating error estimators, it is common to use an error
index that is the ratio of the estimated error norm divided ’
by the actual error. As above the L2 vector norm divided by
the square root of the number of sample points is used. The
error index of the estimated error norm is given by

Err X I Av =
∑nsteps

k=1 ||Exkp||2
∑nsteps

k=1 ||EtruexkP ||2
(104)

ErrV I Av =
∑nsteps

k=1 ||Evkp||2
∑nsteps

k=1 ||Etruev
k
P ||2

(105)

Err AI Av =
∑nsteps

k=1 ||E Ak
N ||2

∑nsteps
k=1 ||Etrue Ak

N ||2
(106)

Errσ I Av =
∑nsteps

k=1 ||Eσ k
p ||2

∑nsteps
k=1 ||Etrueσ

k
P ||2

(107)

where the index k refers to the time at which particular error
quantity that is being estimated and the subscript “true” refers

123

Computational Particle Mechanics

Table 7 Convergence
Properties of GIMP LPMPM
and MPM, E = 64 dt =1.0e−4, 2
particles per cell initially, Ratios
are those of an error divided by
the entry below it

Method h Err X p Err Vp Err AN Ratio Exp Ratio Evp Ratio EaN

GIMP 1/10 2.8e−2 2.22 1.3e+2 46 111 32

1/20 6.4e−4 2.6e−2 4.8 13 5 3.7

1/40 4.7e−5 5.0e−3 1.34 12 10.8 44

1/80 3.7e−6 4.6e−4 2.8e−2 5.2 9.6 8.2

1/160 7.0e−7 4.8e−5 3.4e−3 4.11 9.6 5.5

1/320 1.7e−7 5.3e−6 6.2e−4 3.9 8.4 6.8

1/640 4.8e−8 6.7e−7 9.1e−5

LPMPM 1/10 3.3e−2 1.93 1.3e+2 15 10 8.6

1/20 2.2e−3 1.96e−1 2.5e+1 11.6 14 9.8

1/40 1.9e−4 1.3e−2 2.55 3.6 2.4 2.8

1/80 5.3e−5 5.4e−3 9.3e−1 4 7.7 4.5

1/160 1.3e−5 6.9e−4 2.0e−1 3.1 3 2.4

1/360 4.1e−6 2.3e−4 8.3e−2 2.6 2.4 1.7

1/640 1.4e−6 9.5e−5 4.9e−2

MPM 1/10 1.3e−2 1.55 7.0e+1 1.4 1.2 0.3

1/20 9.5e−3 1.30 2.3e+2 1.4 2.6 1.8

1/40 6.8e−3 5.0e−1 1.3e+2 4 6.4 3.6

1/80 1.7e−3 7.8e−2 3.6e+1 2.4 2.9 2.8

1/160 7.1e−4 2.7e−2 1.3e+1 1.6 2.7 2.5

1/320 4.5e−4 1.0e−2 5.1 2.4 1.9 1.1

1/640 1.9e−4 5.2e−3 4.7

to the actual error. These results show that the error estima-
tors we have developed initially appear to do a good job of
estimating the errors as is shown by the error indices. While
the error indices described above show the average behavior
of the error estimates, it is good to also have more detailed
information on the time evolution of the errors. Three cases
are considered, E=4 E = 64 and E =1000. Figures 1, 2, 3
show the evolution of actual and estimated errors in particle
displacement and velocity and nodal acceleration for Case
1. Figures 4, 5, 6 show the evolution of actual and estimated
errors in particle displacement and velocity and nodal accel-
eration for Case 2.

These plots illustrate the challenges of estimating the
errors in the complex system of MPM equations and also
show that the error estimation approach provides order of
magnitude estimates of the error.

7 Discussion of results

The complexity of estimating the errors in all the coupled
components of MPM presents a more challenging problem
than might be expected even for a relatively simple problem
such as the one considered here. It is perhaps worth noting
that there are relatively few attempts to follow error growth
in time for complex systems such as those that arise in MPM
and none that the author is aware of for particle methods.

Perhaps the most striking aspect of this is that while the
actual errors are bounded in time for the smaller values of
the parameter E , it is easy to produce error estimates that
in the course of an integration that has thousands of time
steps over or underestimate the error. As the error estimators
involves approximations at every level and coupled this is
very easy to do and so required the selection of terms that are
of appropriate magnitude. This aspect of the error estimates
is perhaps the one that requires further research.

Part of the explanation is that the errors are bounded in
this case in the same way as the energy is bounded [5]. This
means that the discrete exact solution and the computed solu-
tion both satisfy an approximate energy conservation law as
shown in [5]. In equation (88) in [5], it is shown that the
change in energy per step is O(dt3) as given by

�E E err = dt

2

∑

q

(
(vn+1

q − vnq)

2
)mq

(
an+1
q − anq

)
(108)

This equationdoes not take into account errors in the solution.
Assuming that the true solution mapped onto a grid satisfies
a similar equation (which only requires differentiability of
that solution), we get the equation

123

Computational Particle Mechanics

Fig. 7 1d Bar, Case 2:Plots of GIMP Error Norms in Displacement, Particle Velocities, Nodal Velocities, Particle Stresses, Nodal Accelerations
and Numbers of Particle Grid Crossings for E=1000 dt=1e−4

�E E true
err = dt

2

∑

q

(
(vn+1

q,true − vnq,true)

2
)mq

(
an+1
q,true − ana,true

)
(109)

As the errors at particles and nodal values are the differences
between the true and computed values are the errors, then by

subtraction the errors in velocity evnq and acceleration eanq
satisfy an approximate conservation like equation given by

�E E true
err − �E E err = dt

2

∑

q

(
(evn+1

q − evnq)

2

)

mq

(
an+1
q − anq

)

(110)

+ (
(vn+1

q − vnq)

2
)mq

(
ean+1

q − eanq
)

123

Computational Particle Mechanics

Fig. 8 1d Bar, Plots of GIMP Error Norms in Displacement, Particle Velocities, Nodal Velocities, Particle Stresses, Nodal Accelerations and
Numbers of Particle Grid Crossings for E=64, h = 1/320, dt=1e−4

+
(

(evn+1
q − evnq)

2

)

mq

(
ean+1

q − eanq
)

(111)

What may happen is that any approach that independently
follows the evolution of the error (as in this paper) may not
satisfy this condition and this may result in the error estimate
blowing up when the true error does not. This issue of error
estimation in the presence of energy conservation is one that
needs further investigation (Tables 3, 4, 5, 6).

One unexpected aspect of the results obtained is that the
introduction of linearity preservation, so as to make error
estimation possible to the original MPM to give LPMPM
improves the performance of the method greatly, but not so
much as to be an improvement over GIMP. The error estimat-

ing approach used here also appears to perform equally well
for LPMPM and the GIMP method with linearity preser-
vation. One surprising result in Table 7 is that on the very
coarsest mesh the original MPM method performs best,
although in every other case the GIMP method is superior.

8 Observed order of accuracy

The form of the error derived in Sect. 5.3 now makes it
possible to derive theoretical error estimates for the linearity-
preserving MPM methods considered here.

It is clear from Sect. 5 that the relationship between the
error and the width of interval h is a complex one. In order
to show the observed error, a series of runs were done with

123

Computational Particle Mechanics

Table 8 Properties of Error
Estimator for GIMP and
LPMPM, E = 4,64,1000 dt
=1.0e−4, 2 particles per cell
initially, Error Indices quoted
are the averages defined in
equations (104) to (107)

Method h ErrX pIAvg Err Vp I Avg Err AN IAvg ErrσpIAvg

GIMP 1/10 0.27 0.01 2.2 0.5

E=4 1/20 0.42 0.04 1.3 1.2

1/40 0.37 0.09 0.9 1.7

1/80 0.28 0.22 1.0 2.4

1/160 0.27 0.30 1.2 3.4

1/320 0.38 0.5 1.3 4.9

1/640 0.7 1.23 1.4 6.9

LPMPM 1/10 0.2 0.01 2.0 0.5

E=4 1/20 0.4 0.04 1.7 0.9

1/40 0.3 0.1 1.7 1.5

1/80 0.25 0.29 1.9 2 1

1/160 0.24 0.48 1.8 3.0

1/360 0.34 0.67 1.6 4.2

1/640 0.64 1.3 1.5 6.0

GIMP 1/10 0.4 0.03 1.8 1.1

E=64 1/20 0.4 0.14 1.3 1.2

1/40 0.4 0.28 0.86 1.7

1/80 0.46 0.46 0.97 2.5

1/160 0.73 0.62 1.2 3.5

1/320 1.4 1.4 1.3 5.0

1/640 2.8 2.9 1.4 7.1

LPMPM 1/10 0.3 0.03 1.75 1.1

E=64 1/20 0.2 0.1 1.6 1.2

1/40 0.2 0.3 1.7 1.2

1/80 0.3 0.5 1.6 4 5

1/160 0.6 0.6 1.5 2.1

1/360 1.1 0.9 1.2 2.7

1/640 2.2 1.6 1.0 3.4

GIMP 1/20 0.6 0.30 1.1 1.9

E= 1/40 0.85 0.40 0.7 2.7

1000 1/80 1.6 0.70 1.0 3.2

1/160 3.0 1.3 1.2 4.4

LPMPM 1/20 0.4 0.20 1.5 3.8

E= 1/40 0.2 0.4 1.5 1.0

1000 1/80 0.4 0.5 1.4 0.8

1/160 0.7 0.4 0.7 0.8

all three methods considered here and with h being succes-
sively halved. The errors in particle displacement, velocity
and nodal acceleration are shown in Table 7. The ratios in
the table show how much the error is reduced by when the
mesh is halved. Thus, ratios of 2,4, and 8 correspond to first-,
second- and third-order errors.

The results in Table 7 show the poor first performance of
the original MPM algorithm in that moving to a mesh that
is twice as fine only reduces the error by two. The linearity-
preserving version of it is closer to second order as on the
finer mesh the error goes down by four or more sometimes.

The linearity-preserving version of GIMP appears to give
certainly second and almost third-order accuracy.

It is natural to ask if the error estimators still hold on the
finer meshes. Figures 7, 8 show the evolution of the error
and of the error estimates with h = 1/320 and two particles
per interval. The error estimates derived here estimate all the
errors very closely, apart from an overestimate of the stress
error.

These results in Table 8 show the error indices for the
GIMP method and the LPMPM method over the range of
integration as defined in equations (104) to (107). Where

123

Computational Particle Mechanics

results are not shown for a grid size, the run failed because
of particles leaving the domain. Overall the computed error
estimation indices indicate that the error estimate is the right
order of magnitude. Based on previous, we can really only
expect error indices between 0.25 and 5 for a complex cou-
pled problem with a large number of time steps. The error
estimates presented here meet these expectations. Overall,
the acceleration errors are estimated well for all grid sizes.
The stress error is overestimated, and the velocity and dis-
placement errors are underestimated for coarser meshes. The
results suggest that perhaps more work is needed to estimate
the errors in velocities and displacements. Table 7 for E =64
shows that the error drops very fast for the coarser meshes.
It is perhaps not surprising then the errors from h = 1/40
downwards appear to be closer to what is expected in terms
of asymptotic behavior, the estimates are more reasonable
there too, and this is particularly true from h = 1/80 down-
wards where we see second- and third-order accuracy from
GIMP and first- and second-order accuracy from LPMPM
with mostly good error indices. The error estimators do not
apply for the original MPM method as it is not linearity
preserving. In some cases, when the mesh size is reduced
by a factor of two the relative error index in velocity and
displacement errors grows by 2 also, thus suggesting that
further investigation of the estimation of these errors is per-
haps needed.

9 Conclusions and future work

The result of the approach presented here is that a decom-
position of different errors in MPM has been used to derive
estimates for the mappings inherent in MPM between parti-
cles and nodes and vice versa. These simple estimates have
been shown to work well in the simple demonstration case
used here. There are differences in that reliability of the error
estimates for different solution components and one topic
for future study is why the error estimate may grow much
more quickly than the actual error. A possible explanation
for this in terms of energy conservation is provided. Further
work could also be done to revise the estimates of individual
parts of some of the errors, particularly in velocity and dis-
placement. The use of linearity preservation to derive error
estimates also appears to improve the accuracy of MPM and
GIMP, but GIMP is still more accurate.

An obvious extension of this work work involves apply-
ing this approach in a full MPM simulation and for two
and three space dimensions. As the estimates derived here
involve approximating derivatives of solution values on a
regular mesh, this would seem to be entirely possible and is
ongoing work using the method of manufactured solutions
problems in [25]. In order to implement linearity preserva-
tion in multiple dimensions, the approach of Vidal et al. [24]

may be used, or any of the approaches mentioned in [11].
While the error framework and also linearity preservation
can be used in multiple dimensions, significant challenges in
practical engineering problems such as complex constitutive
laws and addressing fracture will likely prove challenging
for some time to come.

Acknowledgements The original GIMP code written by Chris Gritton
for [11] was used as the starting point for the code developed here.
This research was partially sponsored by the Army Research Labora-
tory under Cooperative Agreement Number W911NF-12-2-0023. The
views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the US Gov-
ernment. Finally, the author would like to thank the reviewers for their
helpful and insightful comments that have helped to improve this paper

Declarations

Conflict of Interest The author states that there is no conflict of interest.

References

1. Bardenhagen S (2002) Energy conservation error in the material
point method for solid mechanics. J Comput Phys 180:383–403

2. Bardenhagen S, Kober E (2004) The generalized interpolation
material point method. Comput Model Eng Sci 5:477–495

3. Berzins M (2018) Nonlinear stability and time step selection in the
material point method. Comput Particle Mech 5:455–466

4. Berzins M (2021) Symplectic time integration methods for the
material point method, experiments, analysis and order reduction.
In: WCCM-ECCOMAS2020 virtual conference proceedings

5. BerzinsM (2022) Energy conservation and accuracy of someMPM
methods. Comput Particle Mech

6. BerzinsM (2022) Time steppingwith space and time errors and sta-
bility of thematerial pointmethod. In:Wriggers P,BischoffM,Nate
EO, Bischoff M, Duster A, Zohdi T (eds) VII international con-
ference on particle-based methods PARTICLES 2021 proceedings
(to appear) 2022. http://www.sci.utah.edu/publications/Ber2021c/
Berzins_particles2021.pdf

7. Berzins M (1988) Global error estimation in the method of lines
for parabolic equations. SIAM J Sci Comput 9:687–703

8. BerzinsM (1995)Temporal error control for convection-dominated
equations in two space dimensions. SIAMJSciComput 16(3):558–
580

9. Cremonesi M, Franci A, Idelsohn S et al (2020) A state of the art
review of the particle finite element method (PFEM). Arch Comput
MethodsEng27:1709–1735. https://doi.org/10.1007/s11831-020-
09468-4

10. Grigoryev YN, Vshivkov VA, Fedoruk MP (2012) Numerical
particle-in-cell methods: theory and applications. De Gruyter
https://doi.org/10.1515/9783110916706

11. Gritton C, Berzins M (2017) Improving accuracy in the MPM
method using a null space filter. Comput Particle Mech 4:131–142

12. Raviart PA (1985)Ananalysis of particlemethods. InBrezzi F (ed) i
numericalmethods in fluid dynamics. lecture notes inmathematics,
vol 1127. 1985 243-324. Springer, Berlin. https://doi.org/10.1007/
BFb0074532

13. Solowski WT, Berzins M, Coombs WM, Guilkey JE, Moller M,
Tran QA, Soga K (2021) Material point method: overview and
challenges ahead. Adv Appl Mech 54:113–204

123

http://www.sci.utah.edu/publications/Ber2021c/Berzins_particles2021.pdf
http://www.sci.utah.edu/publications/Ber2021c/Berzins_particles2021.pdf
https://doi.org/10.1007/s11831-020-09468-4
https://doi.org/10.1007/s11831-020-09468-4
https://doi.org/10.1515/9783110916706
https://doi.org/10.1007/BFb0074532
https://doi.org/10.1007/BFb0074532

Computational Particle Mechanics

14. SteffenM, Kirby RM, Berzins M (2008) Analysis and reduction of
quadrature errors in the material point method (MPM). Int J Numer
Methods Eng 76(6):922–948

15. SteffenM,Wallstedt PC, Guilkey JE, Kirby RM, BerzinsM (2008)
Examination and analysis of implementation choices within the
material point method (MPM). Comput Model Eng Sci 31(2):107–
127

16. SteffenM,Kirby RM,BerzinsM (2010) Decoupling and balancing
of space and time errors in the material point method (MPM). Int
J Numer Methods Eng 82(10):1207–1243

17. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for
history-dependent materials. Comput Methods Appl Mech Eng
118:179–196

18. Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-
in-cell method to solidmechanics. Comput Phys Commun 87:236–
252

19. Tan H, Nairn JA (2002) Hierarchical, adaptive, material point
method for dynamic energy release rate calculations. Comput
Methods Appl Mech Eng 191:2123–2137

20. Thielmann M, May DA, Kaus BJP (2014) Discretization errors in
the hybrid finite element particle-in-cell method. Pure Appl Geo-
phys 171:2165–2184

21. Tran LT, Kim J, Berzins M (2010) Solving time-dependent PDEs
using the material point method, a case study from gas dynamics.
Int J Numer Methods Fluids. https://doi.org/10.1002/fld.2031

22. Tran QA, Solowski W, Berzins M, Guilkey J (2019) A convected
particle least square interpolation material point method. Int J
Numer Methods Eng

23. de Vaucorbeil A, Nguyen VP, Sinaie S, Wu JY (2020) Chapter two
- material point method after 25 years: theory, implementation, and
applications. In: Stéphane PA, Bordas DS (eds) Balint, advances
in applied mechanics, Elsevier 53, 185–398

24. Vidsal Y, Bonet J, Huerta A (2007) Stabilized updtaed Lagrangian
corrected SPG+H for explicit dynamicsmethods. Int JNumerMeth
Eng 69(13):2687–2710

25. Wallstedt PC,Guilkey JE (2008)Anevaluationof explicit time inte-
gration schemes for use with the generalized interpolation material
point method. J Comput Phys 227(22):9628–9642

26. Tong Z, ShiShun L (2017) A posteriori error estimates of finite
element method for the time-dependent Navier-Stokes equations.
Appl Math Comput 315:13–26

27. Xiong Z, Zhen C, Yan L (2017) The material point method. Aca-
demic Press, Cambridge

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1002/fld.2031

	Computational error estimation for the Material Point Method
	Abstract
	1 Introduction
	2 Background on existing mpm error work
	3 MPM model problem and method
	3.1 Original MPM method coefficients
	3.2 GIMP MPM method coefficients
	3.3 Linearity-preserving MPM and GIMP

	4 Stress last MPM and global errors in space and time
	5 Estimating the spatial error terms
	5.1 Particles to nodes
	5.2 Nodes to particles
	5.3 Estimating the spatial derivatives
	5.4 Order of accuracy of MPM

	6 Computational experiments
	6.1 Original MPM vs GIMP
	6.2 Error estimation experiments

	7 Discussion of results
	8 Observed order of accuracy
	9 Conclusions and future work
	Acknowledgements
	References

