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Abstract
The success of the material point method (MPM) in solving many challenging problems nevertheless raises some open
questions regarding the fundamental properties of the method such as time integration accuracy and energy conservation. The
traditional MPM time integration methods are often based upon the symplectic Euler method or staggered central differences.
This raises the question of how to best ensure energy conservation in explicit time integration for MPM. Two approaches are
used here, one is to extend the symplectic Euler method (Cromer Euler) to provide better energy conservation and the second
is to use a potentially more accurate symplectic methods, namely the widely used Stormer–Verlet method. The Stormer–Verlet
method is shown to have locally third-order time accuracy of energy conservation in time, in contrast to the second order
accuracy in energy conservation of the symplectic Eulermethods that are used inmanyMPMcalculations. It is shown that there
is an extension to the symplectic Euler stress-last method that provides better energy conservation that is comparable with the
Stormer–Verlet method. This extension is referred to as TRGIMP and also has third-order accuracy in energy conservation.
When the interactions between space and time errors are studied it is seen that spatial errors may dominate in computed
quantities such as displacement and velocity. This connection between the local errors in space and time is made explicit
mathematically and explains the observed results that displacement and velocity errors are very similar for both methods. The
observed and theoretically predicted third-order energy conservation accuracy and computational costs are demonstrated on
a standard MPM test example.

Keywords MPM · Time integration · Stormer–Verlet method · Energy conservation accuracy

1 Introduction

The material point method (MPM) is often described as a
solid mechanics method that is derived [17,18] from the fluid
implicit particle, FLIP and PIC methods. MPM has been
very successful when applied to verymany large deformation
problems. However, some of the properties of the method are
still not as well-understood as they might be in areas such
as time integration and conservation of energy. For exam-
ple, energy conservation is considered by Bardenhagen [3]
and it is shown that the standard MPM formulation gives
second-order energy conservation over a timestep or first-
order overall. The analysis of Love and Sulsky [12] extends
these results and shows that energy conservation is possible
if a full mass matrix is used. The same authors also show
that using a lumped mass matrix gives second-order energy
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conservation. Other similar improved time integration meth-
ods based upon a central difference approach are considered
by [19,21]. The relationship between MPM time integration
and symplectic time integration methods is considered by
[5]. Such symplectic methods have good conservation prop-
erties [10]. Furthermore, the Stormer–Verlet [10] method has
third-order accuracy locally. This method is symplectic and
very widely used in many applications [11] such as molecu-
lar dynamics and planetary orbits and dates back to Newton
as discussed by Feynman, see [10]. The intention here is
to apply the Stormer–Verlet method to MPM and to deter-
mine its accuracy and conservation properties and to compare
them with the stress-last MPM integration approach. This
comparison motivates an extension to the stress-last method
that uses an idea of Weiss and Guilkey [22] and improves
the energy conservation properties of the method. This paper
was motivated by a conference paper [6], which used one
of the two possible forms of the Stormer–Verlet method and
which is partly implicit. In this paper, another form of the
Stormer–Verlet method is used which is completely explicit.
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The spatial and temporal sources of error for this Stormer–
Verlet method and the stress-last method and its extension
are compared in detail. It is well known that with MPM the
spatial error often dominates time accuracy for a stable time
step [16]. In order to understand the impact of this, when
more accurate time integration methods are used, an anal-
ysis is presented of the local space and time errors. This
analysis shows that while the energy conservation properties
of the Stormer–Verlet scheme are superior to that of sym-
plectic Euler, the spatial errors present may dominate in the
errors in displacement and velocity, thus negating any possi-
ble improved accuracy in those variables.

Section 2 describes the MPM formulation and the model
problem used, and describes the individual space and time
errors observed. Sections 3 and 4 explain how the Stormer–
Verlet method may be applied to MPM and provides an
analysis of the time stepping errors of the Stormer–Verlet
method. Section 5 uses one of the ideas from the Stormer–
Verlet method that was also used by Guilkey and Weiss
[22] to extend the stress-last method to have better energy
conservation properties. This new method is referred to as
TRGIMP in this paper on account of its trapezoidal-rule-like
correction Sect. 6 introduces the central difference method
used by [19,21] while Sect. 7 compares the spatial errors of
the symplectic Euler and Stormer–Verlet method. In Sect. 8,
the magnitudes of some of the spatial errors are shown and
the spatial errors present in the different time integration
methods compared. Sections 9 and 10 derive the energy con-
servation error of the Stormer–Verlet and TRGIMPmethods.
Although a model one-dimensional problem is considered
here the theoretical results are more broadly applicable to
higher dimensions. The challenge of extending these ideas to
multiple dimensions and more general constitutive models is
considered in Sect. 11. Finally, Sect. 12 describes the compu-
tational experiments undertaken to compare the approaches
on a model problem used by [9] and compares the accuracies
of the different approaches with their computational costs.
These experiments show that although the Stormer–Verlet
method and the TRGIMP method have better conservation
properties than the method considered in [3], the errors in
displacement are almost identical. The computational cost of
achieving higher-order energy conservation is about a 50%
increase in computer time.

2 MPMmodel problem andmethod

The description of MPM used here follows [9] in that the
model problem used here is a pair of equations connecting
velocity v, displacement u and density ρ (here assumed con-
stant):

Du

Dt
= v, (1)

ρ
Dv

Dt
= ∂σ

∂x
+ b(x, t), (2)

with a linear stress model σ = E ∂u
∂x for which Young’s mod-

ulus, E , is constant, a body force b, which is initially assumed
to be zero, and with appropriate boundary and initial condi-
tions. While a simple linear stress model is considered here,
the extension to more general models is briefly considered in
Sect. 11.

For convenience, a mesh of equally spaced N + 1 fixed
nodes Xi with intervals Ii = [

Xi , Xi+1
]
, on the interval

[a, b] is used where

a = X0 < X1 < · · · < XN = b, (3)

h = Xi − Xi−1. (4)

These fixed nodes are referred to as the i points. It will also
be assumed that periodic boundary conditions exist in that

σ(a)v(a) = σ(b)v(b) (5)

together with appropriate initial conditions. While the anal-
ysis of MPM for time integration error and energy conser-
vation uses the model problem above it does apply more
generally and in multiple space dimensions with a few obvi-
ous modifications, as discussed in Sect. 11. The computed
solution at the pth particleswill bewritten as unp = u(xnp, t

n).
Suppose that the particles in interval i lie between Xi and
Xi+1 and have positions xim+ j , j = 1, ..,m. The calcula-
tion of the internal forces in MPM at the nodes requires the
calculation of the volume integral of the divergence of the
stress [21] using

f inti = −
∑

p

Dpi (x
n
p)σ

n
p V

n
p (6)

The subscript pi represents a mapping from particles p to
node i , while the subscript i p represents a mapping from
nodes i to particles p. The negative sign arises as a result of
using integration by parts [9]. The mass at node i is defined
by

mi =
∑

p

m pSpi (x
n
p) (7)

It is important to note that the coefficients Dpi (xnp) and
Spi (xnp) (which here will be abbreviated to Dn

pi and Snpi )
depend explicitly on the background mesh and the parti-
cle positions and that they also may be chosen to reproduce
derivatives of constant and linear functions exactly [9]. The
initial volume of the particles is uniform for the n p particles
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in an interval. The particle volumes are defined using the
deformation gradient, Fn

p , and the initial particle volume,V 0
p ,

V n
p = Fn

p V
0
p , where V 0

p ,= h

n p
, and F0

p = 1 (8)

From (6) and (8), the continuous form of the acceleration
equation in the MPM method in this simple case is

ai (t) =−1

mi

∑

p

Dpi (xp(t))σp(t)Fp(t)V
0
p (9)

The equation to update velocity at the nodes, as denoted by
vni , is then given by

v̇i = ai (10)

The equation for the update of the particle velocity is

v̇p = ap (11)

where the value of the acceleration at a point xnp, sp, is given
by interpolation based upon nodal values of acceleration as

ap =
∑

i

Sip(xp(t))ai (12)

The equation for the particle position update is

ẋ p = vp (13)

The update of the deformation gradients is given using,

∂v

∂x
(xp(t)) =

∑

i

Dip(xp(t))vi (14)

The deformation update equation is

Ḟp = ∂v

∂x
(xp(t), t)Fp (15)

Finally, the stress update equation is using the appropriate
constitutive model and Young’s modulus, E ,

σ̇p = E
∂v

∂x
(xp(t)) (16)

3 Stress-last GIMPMPM and local errors in
space and time

In solving the system of equations defined above by Eqs. (6)
to (16), one standard approach used is to order the equations
in a certain order and then to solve them in turn using explicit

methods [4]. Differences in how the equations are solved cor-
responds to whether or not the stress is updated first or last
in a timestep, a choice that is discussed at length by [3] and
[8]. These two different choices are related to the use of the
semi-implicit Euler A or B method [11], [5]. Following Bar-
denhagen [3], it is preferable to increment stress last. In this
case, it is assumed that at time tn a consistent set of particle
positions xnp, velocities vp, stresses σ n

p and deformation gra-
dients Fn

p are available. The nodal velocity vi is calculated
using

vni =
∑

p

Snpi
m p

mi
vnp (17)

The nodal acceleration is updated by using the values of
the stresses and deformation gradients at the current parti-
cle positions

ani =−1

mi

∑

p

DSnpiσ
n
p F

n
p V

0
p , (18)

where the nodal mass is defined by Eq. (7). The equation to
update velocity at the nodes is then given by

vn+1
i = vni + dtani . (19)

The local error in this forward Euler step is given by

levn+1
i =dt2

2

dani
dt

+ dt Eani (20)

where dt2
2

dani
dt is the standard local error defined as the dif-

ference between the true local solution and the computed
solution [11] and Eani is the spatial error from using the
approximation in Eq. (18), see Sect. 8.

The value of the acceleration at a point xnp is given by
interpolation based upon nodal values of acceleration:

anp =
∑

i

Snipa
n
i (21)

While there is no new temporal error here the error in acceler-
ation Eani is interpolated too and an additional interpolation
error associated with the coefficients Snip used in Eq. (21)is
introduced, as denoted by E I nip, see Sect. 8. The equation for
the update of the particle velocity is then:

vn+1
p = vnp + dtanp. (22)

The associated local error is then given by

levn+1
p = dt2

2

d2vp

dt2
+ dt E I nip + dt

∑

i

Snip Ea
n
i (23)
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The velocity gradients at particles are calculated using the
formula

∂vn+1

∂x
(xp) =

∑

i

Dn
ipv

n+1
i (24)

with an associated differentiation error denoted by Evi+1
xp ,

see Sect. 8. These velocity gradients are used to update the
stress and deformation gradients at particles

Fn+1
p = Fn

p + dt
∂vn+1

∂x
(xnp, tn)F

n
pdt (25)

For the deformation gradient, leFn+1
p is the local time and

space error given by

leFn+1
p = dt2

2

d2F

dt2
+ dt Fn

p

(

Evnxp +
∑

i

Dn
iplev

n+1
i

)

(26)

While stress is updated using the appropriate constitutive
model and Young’s modulus, E ,

σ n+1
p = σ n

p + dt E
∂vn+1

∂x
(xnp, tn) (27)

In this case leσ n+1
p is the stress local time and space error

given by

leσ n+1
p = Edt2

2

d2σ

dt2
+ dt E

(

Evnxp +
∑

i

Dn
iplev

n+1
i

)

(28)

The equation for the particle position update is

xn+1
p = xnp + dtvn+1

p . (29)

For this particle update, the local error, as denoted by lexn+1
p ,

is given by

lexn+1
p = dt2

2

d2xp
dt2

+ dtlevn+1
p (30)

This analysis while deliberately not yet making explicit the
magnitude of the spatial errors (see Sect. 8) shows how the
spatial and temporal errors interact over the course of a time
step.

4 The Stormer–Verlet time integration
method

The Stormer–Verlet method is an alternative time integra-
tion approach to the symplectic Euler method used above,
see Hairer et al. [10]. There are two possible Stormer–Verlet
methods to use. The focus here is on the method of p. 407,
equations (1.24) of [10] that requires one extra step over the
Symplectic Euler stress last or stress first methods. For the
system of equations defined by the o.d.e.s

dv

dt
= f (v, q) (31)

dq

dt
= g(v, q) (32)

this method is given by

vn+1/2 = vn + dt

2
f (vn+1/2, qn) (33)

qn+1 = qn + dt

2
(g(vn+1/2, qn) + g(vn+1/2, qn+1)) (34)

vn+1 = vn+1/2 + dt

2
f (vn+1/2, qn+1) (35)

The challenge then is how to assign the MPM variables to
the Stormer–Verlet variables v and q. There are at least two
obvious possible mappings. In [6] v in [10] corresponds to
vi , vp, xp and ∂vp/∂x while the quantity q in [10] corre-
sponds to σp, Fp. This gives an implicit formulation that
is linearized in [6]. The alternative is to define v in [10]
corresponding to vi , vp and ∂vp/∂x while the quantity q
corresponds to xp, σp, Fp. This gives a fully explicit method
and is the approach used here. It is also worth noting that
the same method is called a generalized leapfrog method on
page 156 of [11].

5 Applying the Stormer–Verlet time
integrationmethod toMPM

The Stormer–Verlet approach described in the previous sec-
tion will now be applied to MPM. On the very first step, the
nodal accelerations and velocities have to be calculated using

vni =
∑

p

Snpi
m p

mi
vnp (36)

ani = −1

mi

∑

p

Dn
piσ

n
p F

n
p V

0
p (37)

where the nodal mass values are calculated as in Eq. (7). The
equation to update velocity at the nodes is then given by
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v
n+1/2
i = vni + dt

2
ani (38)

In this case, if this error is denoted as LEv
n+1/2
i then its value

is given by the standard Euler’s method local error with time
step dt/2

LEv
n+1/2
i =dt2

8

d2Vp

dt2
+ dt

2
Eani (39)

where Eani is the approximation error in the acceleration
formula defined below in Sect. 8. The value of the accelera-
tion at a point xnp is given by interpolation based upon nodal
accelerations as

anp =
∑

i

Snipa
n
i (40)

The equation for the update of the particle velocity to halfway
across the step is then

v
n+1/2
p = vnp + dt

2
anp (41)

The local error in this velocity approximation at the particles
is

LEv
n+1/2
p = dt2

8

d2ap
dt2

+ dt

2
E I nip + dt

2

∑

i

Snip Ea
n
i (42)

The particle position values at the end of step are given by

xn+1
p = xnp + dtvn+1/2

p (43)

For this particle update, the local error as denoted by LExn+1
p

is given by

LExn+1
p = dt3

24

d3xp
dt3

+ dt LEv
n+1/2
p (44)

where the first term corresponds to the local error of the
midpoint method. The velocity gradients at particles using
the differentiation matrix at the start and end of the step used
below are calculated using

∂v

∂x
(xnp) =

∑

i

Dn
ipv

n+1/2
i (45)

∂v

∂x
(xn+1

p ) =
∑

i

Dn+1
i p v

n+1/2
i (46)

again with approximation errors Evnxp and Evn+1
xp as defined

in Sect. 8. These velocity gradients are used to update the

stress and deformation gradients at particles

Fn+1
p = Fn

p + dt

2
(
∂v

∂x
(xnp)F

n
p + ∂v

∂x
(xn+1

p )Fn+1
p ) (47)

The local error in this update of the deformation gradient is

LEFn+1
p = dt3

12

d3F

dt3

+ dt

2

⎛

⎝Fn
p Evnxp+Fn+1

p Evn+1
xp +

∑

i

(Fn
p D

n
ip+Fn+1

p Dn+1
i p )LEv

n+1/2
i

⎞

⎠

(48)

where the first term is the time local error of the trapezoidal
rule. The stress is updated using the appropriate constitutive
model and Young’s modulus, E

σ n+1
p = σ n

p + dt

2
E(

∂v

∂x
(xn+1

p ) + ∂v

∂x
(xnp)) (49)

Similarly LEσ n+1
p is the stress local time and space error

given by

LEσ n+1
p = Edt3

12

d3σ

dt3

+ Edt

2

(

Evnxp+Evn+1
xp +

∑

i

(Dn
ip+Dn+1

i p )LEv
n+1/2
i

)

(50)

The acceleration is updated with these two values which are
the updated stresses and deformation gradients at the current
grid points, but at the next time level tn+1

an+1
i =−1

mi

∑

p

Dn+1
i p σ n+1

p Fn+1
p V 0

p (51)

The value of the acceleration at a point xnp is given by inter-
polation based upon nodal accelerations

an+1
p =

∑

i

Sip(x
n+1
p )an+1

i (52)

The equation for the final update of the particle velocity is
then

vn+1
p = vnp + dt

2

(
an+1
p + anp

)
(53)

with an associated local space and time error of

LEvn+1
p = dt3

12

d3vp

dt3

+dt

2

(
∑

i

Snip(lea
n+1
i +Eani +Ean+1

i )+E I nip+E I n+1
i p

)

(54)
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where the propagated error from the stress and deformation
gradients in the acceleration is (ignoring products of these
errors) given by

lean+1
i = −1

mi

[ ∑

p
Dip(x

n+1
p + LExn+1

p )(σ n+1
p + LEσ n+1

p )

×(Fn+1
p + LEFn+1

p )V 0
p

−
∑

p
Dn+1
i p σ n+1

p Fn+1
p V 0

p

]
(55)

lean+1
i ≈ −1

mi
[
∑

p
Dn+1
i p (LEσ n+1

p Fn+1
p + LEFn+1

p σ n+1
p )

+
∑

p

∂Dn+1
i p

∂xp
LExn+1

p Fn+1
p σ n+1

p )]V 0
p (56)

The equation for the final update of the particle position is
then

xn+1
p = xnp + dt

2

(
vn+1
p + vnp

)
(57)

with an associated local error of

LExn+1
p = dt3

12

d3xp
dt3

+ dt

2
LEvn+1

p (58)

In summary, even after taking into account the propagated
time integration errors from the different MPM stages, the
local time error appears to be third order, providing that the
coefficients of the MPM Sip(x(t)) and Dip(x(t)) are suf-
ficiently differentiable, which is the case for most MPM
formulations except the original one.

6 TRGIMPmethod

The additional acceleration update and subsequent updates
defined by Eqs. (51) to (57) may be used the update the
velocities and displacements of the standard stress-lastMPM
method. In this case, the particle displacements and velocity
at particles update given byEqs. (53) and (57) are also consis-
tent with the trapezoidal update given by Weiss and Guilkey
[22]. For this reason, the method will be called TRGIMP
in the remainder of this paper. The only difference between
this and the Stormer–Verlet method lies in how the defor-
mation gradients and stresses are updated. It will be seen
that while the Stormer–Verlet method has theoretically bet-
ter time accuracy in these variables, this may not translate
into better accuracy overall because of spatial errors associ-
ated with interpolation and differentiation in MPM.

7 Comparison of Stormer–Verlet against
staggered central difference time stepping

Themain difference between the Stormer–Verlet scheme and
the staggered central difference scheme used by and Sul-
sky [19] and Wallstedt and Guilkey [21] is that the latter
schemes both use a staggered time step for velocity. Instead
of Eqs. (41) and (38), we have the equations

v
n+1/2
p = v

n−1/2
p + dtanp (59)

and

v
n+1/2
i = v

n−1/2
i + dtani (60)

as well as some small changes to the stress and deforma-
tion updates in which velocity particle derivatives at the time
step start and end points are replaced by the particle velocity
derivative at the midpoint e.g.

Fn+1
p = Fn

p + dt
∂vn+1/2

∂x
(xnp)F

n
p (61)

The use of Eqs. (59) and (60) gives a more accurate third-
order value of v

n+1/2
p , as opposed to the second-order value.

However, as both of these errors are multiplied by dt , this is
not such a difference and does not appear to have an imme-
diate impact on the computed accuracy. Furthermore, if the
impact of the spatial error is considered, as in the next sec-
tion, then itwill be shown that the error seenwith the different
time integration approachesmay be dominated by this spatial
error and so will not differ from scheme to scheme for a time
step size that is sufficiently small.

8 MPMGIMP and Stormer-Verlet spatial
errors

The above equations illustrate how the spatial and temporal
errors associatedwithMPMcombine to give the overall local
error in a step. Steffen et al. [16] studied these errors and
arrived at the conclusion that for a stable time step temporal
errors are dominated by spatial errors and that there was no
point in decreasing the time step further. The error framework
presented in the previous two sections makes it possible to
be precise about how this also occurs when higher accuracy
time integration methods are used and to be precise about
this, once the magnitudes of the spatial errors are known.

In the cases of interest, here it is possible to measure the
different spatial truncation errors for the analytic solutions
in the experiments described below. Let the exact velocities
( accelerations) at the nodes be denoted by ṽi , (ãi ) or at the
particles by ṽp, (ãp). There are three main errors that are
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undefined in the above analysis. These errors are estimated
in recent work [7] for the GIMP basis functions [4] used with
a simple model problem such as that used in the numerical
experiments here. The maximum norms of these errors over
the particle positions are given by

||Eai ||∞ = ||ãi − −1

m̃i

∑

p

D̃S
n
pi σ̃

n
p F̃

n
p V

0
p ||∞ = O(h)

(62)

||E I nipi ||∞ = ||ṽp −
∑

p

Sip ṽi ||∞ = O(h2) (63)

||Evixp||∞ = || ˜vpx −
∑

p

Dipṽi ||∞ = O(h) (64)

In rare cases, such as when particles are symmetric about
nodes, this last errormay be O(h2) due to cancellation effects
[7]. These resultswill also hold for the local solutions in every
time step.

The importance of these results is that if these spatial errors
dominate the temporal ones then the precise time accuracy
of the method may not be of such importance as long as
it is dominated by the spatial errors. In order to investigate
this, the spatial error contributions to the local errors given
above are defined by subtracting the temporal errors to get
the following equation for theMPMstress-lastGIMPmethod
local spatial errors, as denoted by les ;
For Eq. (20)

lesv
n
i = dt Eani (65)

while for Eq. (23)

lesv
n+1
p = dt E I nip + dt

∑

i

Snip Ea
n
i (66)

for Eq. (26)

les F
n+1
p = dt Fn

p

(

Evnxp +
∑

i

Fn
p D

n
ipLEvn+1

i

)

(67)

for Eq. (28)

lesσ
n+1
p = dt E

(

Evnxp +
∑

i

Dn
ipLEvn+1

i

)

(68)

and finally for Eq. (30)

les x
n+1
p = dtlesv

n+1
p (69)

Similarly for the Stormer–Verlet method, the local spatial
errors are denoted by LEs . For Eq. (39)

LEsv
n+1/2
i = dt

2
Eani (70)

while for Eq. (42)

LEsv
n+1/2
p = dt

2
E I nip + dt

2

∑

i

Snip Ea
n
i (71)

and for Eq. (44)

LEsx
n+1
p = dt LEsv

n+1/2
p (72)

Similarly for Eq. (48)

LEs F
n+1
p = dt

2

(
Fn
p Evnxp + Fn+1

p Evi+1
xp

+
∑

i

(Fn
p D

n
ip + Fn+1

p Dn+1
i p )LEv

n+1/2
i

)

(73)

while for Eq. (50)

LEsσ
n+1
p = dt

2
E

(
Evn+1

xp + Evnxp

+
∑

i

(Dn
ip + Dn+1

i p )LEv
n+1/2
i

)

(74)

and for Eq. (54)

LEsv
n+1
p = dt

2

(∑
i S

n
ip(lea

n+1
i + Eani

+Ean+1
i ) + E I nip + E I n+1

i p

)
(75)

On comparing these errors, we see that the spatial parts
of the errors les Fp, lesσp, lesvp for MPM GIMP corre-
spond to the errors LEs Fp, LEsσp, LEsvp with the MPM
Stormer–Verlet method. While the local errors in displace-
ment les xn+1

p and LEsxn+1
p differ by a factor of 2, the

propagated errors in particle velocity lesvn+1
p and LEsv

n+1
p

are similar for the two methods. Hence, the error propagated
from one step to the next will be similar and will ensure that
the displacement errors are also similar. Overall, the con-
clusion to be drawn is that the individual errors for the two
methods can be expected to be very similar if the spatial error
dominates. The next issue to consider is the accuracy of the
energy conservation properties of the two methods.
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9 Energy conservation of Stormer–Verlet
and TRGIMPMPMmethods

The focus here is on the energy of the particles as this cor-
responds to the points moved in computation and solution
values that used and displayed. The starting point is, for
the moment, to ignore the body forces and then to use the
approach of [3].

9.1 Grid point kinetic energy of Stormer–VerletMPM

The change in kinetic energy as denoted by ΔKEgrid on the
points is given by [3]

ΔKEpts = 1

2

∑

p

m p(v
n+1
p )2 − 1

2

∑

p

m p(v
n
p)

2 (76)

where mp is the mass at particle point xp. Hence, the grid
kinetic energy is also given by

ΔKEpts = 1

2

∑

p

m p(v
n+1
p − vnp)(v

n+1
p + vnp) (77)

This may be written in terms of the acceleration as

ΔKEgrid = dt

4

∑

p

m p(a
n+1
p + anp)(v

n+1
p + vnp) (78)

Substituting for the acceleration at a point using (12) gives

ΔKEgrid = dt

4

[
∑

p

m p(v
n+1
p + vnp)

(
∑

i

Sn+1
i p an+1

i +
∑

i

Snipa
n
i

)]

(79)

and again for the nodal acceleration using (9) gives

ΔKEgrid = −dt

4

∑

p

(vn+1
p + vnp)

[ ∑

i

Sn+1
i p

m p

mi

∑

q

Dn+1
qi σ n+1

q Fn+1
q V 0

q

+
∑

i

Snip
m p

mi

∑

q

Dn
qiσ

n
q F

n
q V

0
q

]
(80)

9.2 Strain energy of Stormer–Verlet and TRGIMP
MPMmethods

The rate of change of strain energy is given by (50) in [3].
Hence, integrating this equation from tn to tn+1 and using

the trapezoidal rule gives

ΔSE = dt

2

∑

p

(

σ n+1
p Fn+1

p

∂vn+1
p

∂x
+ σ n

p F
n
p

∂vnp

∂x

)

V0
p + O(dt3) (81)

This expression is different from that derived by Barden-
hagen [3] using piecewise linear approximations for σ and
for F . The error in Eq. (81) is dt3

12
∂t2

∂t2
(σ F

∂Vp
∂x ), while the

error in Bardenhagen’s expression is about a factor of three
larger. It is worth noting that the accuracy of this equation is
for the exact stress and if the computed stresses are used then
their errors must be included too. Substituting for the spatial
derivatives in Eq. (81) gives

ΔSE = dt

2

∑

p

(

σ n+1
p Fn+1

p

∑

i

Dn+1
i p

∑

q

Sn+1
qi vn+1

q
mq

mi

+σ n
p F

n
p

∑

i

Dn
ip

∑

q

Snqiv
n
q
mq

mi

)

V0
p (82)

Changing the order of summation gives

ΔSE = dt

2

(∑

q

vn+1
q

∑

i

Sn+1
qi

mq

mZ i

×
∑

p

Dn+1
i p σ n+1

p Fn+1
p V0

p

+
∑

q

vnq

∑

i

Snqi
mq

mi

∑

p

Dn
ipσ

n
p F

n
pV

0
p

)
(83)

The two symmetry relations

Snqi = Sniq (84)

and

Dn
qi = Dn

iq (85)

are needed to be able to write Eq. (83) as

ΔSE = dt

2(
∑

q

vn+1
q

∑

i

Sn+1
iq

mq

mi

∑

p

Dn+1
pi σ n+1

p Fn+1
p V0

p

+
∑

q

vnq

∑

i

Sniq
mq

mi

∑

p

Dn
piσ

n
p F

n
pV

0
p

)
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10 Energy conservation errors of the
Stormer-Verlet and TRGIMP scheme

Combining the kinetic and strain energy expressions gives
the energy conservation error

ΔE Eerr = −dt

2

( ∑

p

(vn+1
p + vnp

2
)

[ ∑

i

Sn+1
i p )

mp

mi

∑

q

Dn+1
q σ n+1

q Fn+1
q V0

q

+
∑

i

Snip
m p

mi

∑

q

Dn
qiσ

n
q F

n
q V

0
q

]
−

( ∑

q

vn+1
q

∑

i

Sn+1
iq

mq

mi

∑

p

Dn+1
pi σ n+1

p Fn+1
p V0

p

+
∑

q

vnq

∑

i

Sniq
mq

mi

∑

p

Dn
piσ

n
p F

n
pV

0
p

)

This equation may now be simplified to be

ΔE Eerr = dt

2

(( ∑

q

(vn+1
q

− (vn+1
q + vnq )

2
)
∑

i

Sn+1
iq

mq

mi

∑

p
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pi σ n+1
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p V0
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+
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2
)
∑
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∑

p
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n
p F
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0
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(86)

and again to

ΔE Eerr = dt

2

∑

q

(
(vn+1

q − vnq )

2
)

(
∑

i

Sn+1
iq

mq

mi

∑

p
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−
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Sniq
mq

mi

∑

p

Dn
piσ
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p F

n
pV

0
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)

(87)

Using (37, 40, 49) and (52), this may now be written as

ΔE Eerr = dt

2

∑

q

(
(vn+1

q − vnq )

2
)mq

(
an+1
q − anq

)
(88)

It follows that if all the components of the above equation are
differentiable then there is third-order energy conservation

ΔE Eerr = O(dt3) (89)

10.1 Contribution from the body forces

The body forces may be divided by nodal mass to get body
accelerations at the nodes, denoted here by b̂i . The body
accelerations at the particles are denoted by b̂p. It is then
routine to show that the energy error due to the body forces,
ΔE E B

err is given by

ΔE E B
err = −dt

2

(∑

p

(vn+1
p + vnp

2
)
[ ∑

i

Sn+1
i p b̂n+1

i

+
∑

i

Sipnb̂i
]

−
∑

q

vn+1
q b̂n+1

q −
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q

vnq b̂
n
q

)

Using the expression

b̂np =
∑

i

Snipb̂
n
i + (b̂np −

∑

i

Snip)b̂
n
i )) (90)

allows the above equation to be written as

ΔE E B
err = dt

2

( ∑

q

(vn+1
q − (vn+1

q + vnq )

2
)b̂n+1

q

+
∑

q

(vnq − (vn+1
q + vnq )

2
)b̂nq + ERRb

)
(91)

and as

ΔE E B
err = dt

2

( ∑

q

(
(vn+1

q − vnq )

2
)(b̂n+1

q − b̂nq) + ERRb

)

(92)

where the term ERRB is given by

ERRB = dt

2

(∑

p

(vn+1
q − vnq )

2
(bnp − bn+1

p

+
∑

i

Sn+1
i p bn+1

i −
∑

i

Snipb
n
i )

)
(93)

Again all these terms are O(dt3) if there is sufficient smooth-
ness in time.

10.2 Energy conservation errors of the stress
first/last schemes

The above analysis may easily be extended to the stress-
first and stress-last schemes discussed by [3]. In the case
of stress-last this gives, in terms of the particular stress-first
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Table 1 Maximum energy and maximum displacement errors over timesteps (*=failure)

A = 1.5e−2 E = 10,000 A = 5e−2 E = 10,000

dt Method Max energy error Max Displ. error dt Method Max energy error Max Displ. error

1e−4 GIMP 3.3e−1 1.3e−4 1e−4 GIMP * *

TRGP 7.5e−5 1.8e−4 TRGP 1.3e−2 3.2e−2

SVGP 1.3e−4 3.0e−4 SVGP 1.3e−2 6.0e−3

1e−5 GIMP 3.8e−3 1.8e−4 1e−5 GIMP * *

TRGP 9.7e−8 1.6e−4 TRGP 1.9e−5 2.1e−3

SVGP 1.0e−8 1.8e−4 SVGP * *

1e−6 GIMP 3.9e−5 1.8e−4 1e−6 GIMP * *

TRGP 1.3e−10 1.8e−4 TRGP 4.1e−8* 1.8e−3

SVGP 1.1e−10 1.8e−4 SVGP * *

A = 1.5e−2 E = 1000 A = 5e−2 E = 1000

dt Method Max energy error Max Displ. error dt Method Max energy error Max Displ. error

1e−3 GIMP 4.2e−1 2.0e−4 1e−4 GIMP * *

TRGP 2.8e−4 2.4e−4 TRGP 1.3e−2 2.7e−3

SVGP 3.8e−4 2.8e−4 SVGP 8.7e−3 2.4e−3

1e−4 GIMP 3.6e−3 1.6e−4 1e−5 GIMP 1.4e−1 2.3e−3

TRGP 2.7e−7 1.3e−4 TRGP 2.5e−5 1.2e−3

SVGP 3.2e−7 1.7e−4 SVGP 5.0e−5 2.8e−3

1e−5 GIMP 3.8e−5 1.8e−4 1e−6 GIMP 1.5e−3 4.2e−3

TRGP 3.6e−10 1.8e−4 TRGP 1.2e−7 1.5e−3

SVGP 3.4e−10 1.8e−4 SVGP 1.9e−7 1.6e−3

1e−6 GIMP 3.9e−5 1.8e−4 1e−7 GIMP 9.2e−5 3.5e−3

SVGP 4.6e−13 1.9e−4 SVGP 1.3e−10 1.6e−3

SVGP 3.4e−13 1.8e−4 SVGP 4.5e−10 4.8e−3

A = 1.5e−2 E = 256 A = 5e−2 E = 256

dt Method Max energy error Max Displ. error dt Method Max energy error Max Displ. error

1e−3 GIMP 2.2e−2 1.3e−4 1e−3 GIMP 3.7e−1 8.7e−4

TRGP 7.3e−6 1.4e−4 TRGP 1.6e−4 8.1e−4

SVGP 7.5e−6 1.2e−4 SVGP 3.8e−4 1.3e−3

1e−4 GIMP 1.1e−4 2.3e−4 1e−4 GIMP 6.6e−3 8.7e−4

TRGP 7.6e−9 1.1e−4 TRGP 7.6e−6 1.3e−3

SVGP 7.7e−9 1.1e−4 SVGP 9.8e−7 1.0e−3

1e−5 GIMP 2.4e−6 1.2e−4 1e−5 GIMP 8.8e−5 1.0e−3

TRGP 8.3e−12 1.2e−4 TRGP 1.3e−9 1.3e−3

SVGP 7.7e−12 1.2e−4 SVGP 2.0e−9 1.0e−3

1e−6 GIMP 2.4e−8 1.2e−4 1e−6 GIMP 9.8e−7 1.0e−3

TRGP 8.9e−15 1.2e−5 TRGP 1.6e−12 1.3e−3

SVGP 8.0e−15 1.2e−4 SVGP 2.1e−12 1.0e−3

A = 1.5e−2 E = 64 A = 5e−2 E = 64
dt Method Max energy error Max Displ. error dt Method Max energy error Max Displ. error

1e−3 GIMP 1.2e−3 9.4e−5 1.e−3 GIMP 1.9e−2 5.7e−4

TRGP 2.0e−7 9.3e−5 TRGP 5.7e−6 6.2e−4
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Table 1 continued

A = 1.5e−2 E = 64 A = 5e−2 E = 64
dt Method Max energy error Max Displ. error dt Method Max energy error Max Displ. error

SVGP 1.8e−7 6.5e−5 SVGP 1.1e−5 5.2e−4

1e−4 GIMP 1.2e−5 6.8e−5 1e−4 GIMP 2.6e−4 5.4e−4

TRGP 1.9e−10 6.7e−5 TRGP 1.5e−8 6.7e−4

SVGP 2.0e−10 7.1e−5 SVGP 2.7e−8 5.4e−4

1e−5 GIMP 1.3e−7 7.2e−5 1e−5 GIMP 2.8e−6 5.4e−4

TRGP 2.0e−13 6.8e−5 TRGP 1.7e−11 6.7e−4

SVGP 2.0e−13 7.2e−5 SVGP 3.2e−11 5.4e−4

1e−6 GIMP 1.3e−9 7.2e−5 1e−6 GIMP 2.9e−8 5.5e−4

TRGP 2.0e−16 6.8e−5 TRGP 1.7e−14 6.7e−4

SVGP 2.0e−16 7.2e−5 SVGP 3.3e−14 5.4e−4

accelerations and velocities the energy conservation error

ΔE E
f irst
err = dt

2

∑

q

vnqmq

(
an+1
q − anq

)
(94)

While in the case of stress first, the sign is reversed. It follows
that both these errors are O(dt2).

11 Dimensional andmaterial model
extensions

The motivation behind this work was to address energy con-
servation in these schemes in as simple a way as possible
through the use of a model problem. The main proof ideas
may be extended by using the approaches in [3] to derive
multi-space dimensional results. In the case of much more
complex constitutive models such as elasto-plastic cases and
damage, the challenge lies in the sheer complexity of these
models. For example, early work by Banerjee shows energy
conservation for collisions [2] and then describes more com-
plex elasto-plastic cases in detail [1].Many other papers such
as [13] consider such cases as do two recent detailed surveys
of MPM research [14] and [20]. The proofs presented ear-
lier, following those in [3], rely on eventually representing
all the energy terms using a single variable so as to make can-
cellation possible. Providing that this can be done for more
complex cases then it will be possible to extend the ideas
presented here to more challenging cases. It is not at all clear
that this is straightforward however.

12 Computational experiments

The two main aspects of the above methods to considered
here are the computational accuracy and the cost.

12.1 Computational accuracy

In order to illustrate the above results, the model 1D bar
problem used by [9] and [5] is used.

The cell width is h = 10−2, thematerial density is ρ0 = 1,
and the time interval is [0,1]. The initial spatial discretization
uses two evenly spaced particles per cell with the spatial
domain being [0, 1]. The Young’s modulus values are E =
10, 000, E = 1000, E = 256 and E = 64. The maximum
displacement is A = 0.015, and A = 0.05 and the time step
values used are dt = 10−6, 10−5, 10−4, 10−3. In both these
cases for the values given of A, it should be noted that with
the use of the above parameters particles will cross from one
cell to another.

Experiments were undertaken with the MPM GIMP
method [15], the TRGIMP method of Sect. 6 and the
Stormer–Verlet method of Sect. 5 SVGMP. These experi-
ments were run with fixed time steps as shown in Table 1 in
which the time step, dt is varied appropriately. The number
of grid crossings varies greatly, see [5]. Roughly speaking the
case with A = 1.5e−2 has about half the grid crossings of
the case when A = 5.0e−2. The results in Table 1 show for
the maximum over the time steps of the vector L2 norms of
energy and displacement errors averaged over the number of
particles that the Stormer–Verlet and the TRGIMP methods
are much better at conserving energy that a standard MPM
approach, as indeed the theoretical results suggest.

12.2 Computational cost

The performance of the above methods was measured on an
Apple imac with an Intel core i5-4570 using MATLAB code
in its native form without, say, the MATLAB optimizations
used by [23]. A comparison between the steps taken by the
methods shows that the Stormer–Verlet method has a number
of extra steps given by Eqs. (51), (52), (53), (57). Roughly
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Table 2 Comparison of computational costs

A = 1.5e−2 E = 64
dt Method N=Measured CPU time in seconds

1e−3 GIMP 0.07

TRGP 0.1

SVGP 0.17

1e−4 GIMP 0.29

TRGP 0.48

SVGP 0.44

1e−5 GIMP 1.93

TRGP 3.32

SVGP 2.98

1e−6 GIMP 17.7

TRGP 31.4

SVGP 28.7

speaking, this corresponds to an extra 50% increase in com-
putational steps over the standard symplectic MPM Euler
method. Table 2 shows the cpu times for one of the exam-
ple cases in Table 1 and confirms this observation. Results
are presented for only one case from the 8 shown as the
actual arithmetic operations count is independent of the case,
though of course the results are different in each case.

13 Conclusions

In comparing the standard MPM stress-last method against
the Stormer–Verlet and TRGIMP methods, it is seen that
the Stormer–Verlet and TRGIMP methods have much better
energy conservation properties. However, it is also proved
and shown computationally that when the spatial errors dom-
inate the errors in velocity and displacement are very similar
for the three methods. It is also shown that the cost of better
energy conservation is an increase of 50% in the computa-
tional cost.
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