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A B S T R A C T   

Electrocardiographic imaging (ECGI) is a noninvasive technique to assess the bioelectric activity of the heart 
which has been applied to aid in clinical diagnosis and management of cardiac dysfunction. ECGI is built on 
mathematical models that take into account several patient specific factors including the position of the heart 
within the torso. Errors in the localization of the heart within the torso, as might arise due to natural changes in 
heart position from respiration or changes in body position, contribute to errors in ECGI reconstructions of the 
cardiac activity, thereby reducing the clinical utility of ECGI. In this study we present a novel method for the 
reconstruction of cardiac geometry utilizing noninvasively acquired body surface potential measurements. Our 
geometric correction method simultaneously estimates the cardiac position over a series of heartbeats by 
leveraging an iterative approach which alternates between estimating the cardiac bioelectric source across all 
heartbeats and then estimating cardiac positions for each heartbeat. We demonstrate that our geometric 
correction method is able to reduce geometric error and improve ECGI accuracy in a wide range of testing 
scenarios. We examine the performance of our geometric correction method using different activation sequences, 
ranges of cardiac motion, and body surface electrode configurations. We find that after geometric correction 
resulting ECGI solution accuracy is improved and variability of the ECGI solutions between heartbeats is sub-
stantially reduced.   

1. Introduction 

Electrocardiographic imaging (ECGI) is a computational methodol-
ogy to noninvasively reconstruct the electrical activity of the heart using 
body surface electrocardiograms (ECGs) and a model of the torso vol-
ume conductor [1]. ECGI has been applied clinically and experimentally 
to a range of pathologies and applications including localizing sites of 
premature activation, localizing arrhythmogenic circuits, preoperative 
planning, and guiding ablation procedures [2–5]. Contemporary 
research and development of ECGI have produced a range of technical 
and experimental advances designed to address novel diseases and to 
improve accuracy, stability, and utility [1,6–8]. However, one source of 
error that reduces ECGI accuracy, and therefore clinical utility, that is 

generally not addressed outside of a limited set of studies, is error in the 
modeling of heart position within the chest [9–13]. 

The technical steps involved in most implementations of ECGI can be 
broken into two distinct processes: calculating a model that captures the 
geometry and physics of the cardiac electrical activity (the forward 
model) and the subsequent solution to a reconstruction or inverse 
problem based on that forward model. The forward model describes the 
distribution of body surface potential (BSP) signals given a particular 
representation of the cardiac bioelectric source. The inputs to the for-
ward model are a mathematical model of cardiac electrical activity (the 
source model) and the geometries, conductivities, and relative positions 
of organs within the torso (the geometric model). The forward model 
then serves as the input for an inverse problem in which parameters of 
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the source model are estimated given a specific set of BSP signals. This 
electrocardiographic inverse problem is an ill-conditioned estimation 
problem, meaning that the solutions are highly sensitive to small fluc-
tuations or noise in the inputs or small errors in the model [14]. 

As noted above, cardiac position in the geometric model is a common 
and poorly controlled source of error in ECGI. Uncertainties in heart 
position arise inevitably due to respiration and shifts in body position 
[15,16]. They also arise as noise in the imaging modalities, typically 
MRI or CT, from which geometric models are derived. Images are usu-
ally captured during a single phase of the respiratory and cardiac cycles 
and often well before or after the ECGs are acquired. Thus the geometric 
models generated from the imaging do not account for cardiac position 
changes. Changes in cardiac position cause changes in the ECG signal 
morphology [17,18]. Our previous studies suggest that ECGI is very 
sensitive to the resulting errors in the geometric model, and incorpo-
ration of a corrected cardiac position can improve the ECGI solution [15, 
19]. Moreover, adjusting imaging protocols with forced “breath holds,” 
respiratory gating, or rigid body restraints can be untenable in the 
clinical workflow. Even with accurate imaging, generating the associ-
ated time-varying heart position remains technically daunting. Hence 
there is a need for a method to automatically correct these forward 
model errors, ideally in a noninvasive manner. 

A few methods for reconstructing cardiac position have been 
described in the literature. Svehlikova et al. proposed representing the 
electrical source activity of the heart as a single current dipole that 
approximates early activation of the cardiac septum [11]. They pre-
computed a range of candidate body-surface potentials from a collection 
of possible dipole positions and, finally, selected the cardiac position 
that produced the potentials that best matched measured values. This 
method was limited to correcting for translations only i.e., not rotations 
of the heart, and relied on a limited number of precomputed solutions to 
define the search space. Rodrigo et al. proposed a less restrictive method 
for correcting errors in atrial geometries specifically by leveraging an 
observed behavior of a Tikhonov-regularized inverse solution. Their 
method was based on evaluating the sharpness of the L curve [13], 
which is a graph used in some regularized1 inverse methods that results 
from plotting the inverse residual vs. the regularization cost on a loga-
rithmic scale. They observed that the second derivative of the corner of 
this L curve, a measure of the ‘sharpness’ of the curve, increased when 
the atrial position was closer to the correct position. Consequently, their 
algorithm used this sharpness as a criterion for optimizing the cardiac 
position. This method is promising, and has seen ongoing development 
[20], but has only been applied to atrial geometries and with limited 
validation. Recently Toloubidokhti et al. applied machine learning 
techniques to correct for variability and errors in the forward model by 
leveraging a type of neural network known as a variational auto-encoder 
(VAE) [21]. They trained the VAE on a range of forward models, which 
included variation in the cardiac position. They then leveraged the 
structure of the VAE, which provides a compact parameterization of 
training data, to optimize for a forward model that minimizes ECGI 
error. This method showed promise in bridging machine learning 
techniques with traditional ECGI approaches, but to date only limited 
initial validation has been reported [21]. Coll-Font et al. proposed a 
method that minimized the residual between forward computed and 
measured body surface potentials by optimizing over a continuous range 
of cardiac positions [12]. This method also showed promising results, 
but in its initial implementation it required invasively measured elec-
trograms, hence limiting its clinical applicability. Therefore, there re-
mains a challenge to find a clinically tractable method that can estimate 
cardiac position accurately in the context of ECGI on a beat-by-beat 
basis. 

Here we propose an extension of the method introduced by Coll-Font 
et al. that allows for correction of the cardiac position within the torso 
without including measured electrograms; only body surface potential 
(BSP) recordings and a nominal static geometric model are required. We 
describe and validate this geometric correction framework using a range 
of synthetic datasets purposely designed to test its performance. The 
resulting method has the potential to improve ECGI solutions in both 
clinical and experimental contexts with minimal additional procedural 
and computational overhead. 

2. Methods 

Our geometric correction method leverages an iterative, alternating- 
minimization optimization framework that alternates between esti-
mating beat-specific parameters of the forward model for multiple 
heartbeats and estimating the cardiac bioelectric source that is 
compatible with these heartbeats. We will first explain our optimization 
framework in a general form. Then we will describe how we have 
applied and tailored that general optimization framework to the task of 
estimating cardiac position in our specific setting. 

2.1. Optimization framework 

The optimization framework in this study assumes that the following 
inputs are available: 

● a parameterization of some aspect of the forward model to be opti-
mized, e.g., cardiac position defined as both translation and rotation 
of the heart. 

● BSP measurements from a number of heartbeats for which to opti-
mize the parameterization of the forward model. The number of 
heartbeats must be more than one.  

● a model of the cardiac sources, e.g., epicardial potentials.  
● a geometric model of the torso which includes the body surface, the 

heart, and any other organs of interest.  
● a computational algorithm that takes in the geometric model to 

produce a forward solution, specifically a forward matrix that can 
approximate body-surface potentials given a corresponding 
description of the source model. 

As noted, our optimization framework operates using a number of 
heartbeats, K > 1. We represent the parameters of the forward model for 
the k’th heartbeat as the L × 1 vector pk where L is number of parameters 
used in the parameterization of the forward model. We collect the pa-
rameters for all K pk vectors in a L × K matrix P. We represent the BSP 
measurements for any specific beat as the m × t matrix Bk where m is the 
number of recording electrodes on the torso surface and t is the number 
of time instances in a beat. (The optimization framework assumes that t 
is the same for all K heartbeats, see 2.3.) We represent the single beat of 
cardiac sources as the n × t matrix H where n is the number of recon-
struction locations in the cardiac geometry. We represent the forward 
matrix for a specific heartbeat k as the m × n matrix Ak. Note that Ak is a 
function of pk. 

The optimization framework is based on an extension of a Tikhonov 
inverse solution formulation, which we have described previous as a 
‘joint inverse’ formulation [19]. This joint inverse formulation estimates 
a single cardiac source by combining BSP measurements and forward 
matrices from multiple heartbeats. We combine the BSP matrices and 
forward matrices for all K heartbeats by concatenating them into the 
block matrices Φ and A as shown below, where the overline denotes 
these as the joint matrices. 

1 Regularization is a numerical technique needed to address the ill-posed 
nature of most inverse problems. This involves adding some weighted con-
straints to the formulation [14]. 
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Our overall objective function is given in Equation (1), below. The 
matrix R is a n × n Tikhonov regularization operator used to combat the 
ill-posedness of the inverse problem. R can take many forms, for 
example an identity matrix (zero-order regularization), a gradient 
operator (first-order regularization), or a Laplacian operator (second- 
order regularization). This regularization term is weighted according to 
the scalar λ. 

We solve the optimization problem in Equation (1) by alternating 
between two steps. We denote each iteration of this alternation between 
steps 1 and 2 with the superscript q. In step 1, we estimate a single 
cardiac source Hq, given Φ and the present estimate of Aq− 1 which is a 
function of the most recent estimate of the forward parameters Pq− 1. In 
step 2 we estimate forward model parameters Pq, given an estimate of 
the cardiac source from step 1, Hq. 

arg min
P,H

‖Φ − AH‖
2
2 + λ‖RH‖

2
2 (1) 

The two steps in this alternating minimization function as follows:  

Step 1 Estimation of the cardiac source. 

When estimating the cardiac source for the current iteration, Hq, we 
fix the values for the forward model parameters Pq− 1. During the first 
iteration (q = 0) the values of P− 1 are initialized at values that corre-
spond to a nominal cardiac position; in subsequent iterations, the values 
of the forward model parameters are determined by the preceding 
parameter-estimation step Pq− 1 (see Step 2). With the values of Pq− 1 

fixed, we estimate Hq using the ‘joint inverse’ formulation by solving the 
Tikhonov inverse problem shown in Equation (1).  

Step 2 Estimation of the forward model parameters 

When estimating the forward model parameters for the current 
repetition Pq, we fix the values of the cardiac source estimate Hq to their 
values from the preceding cardiac-source estimation step. The algorithm 
estimates the forward model parameters pq

k for each of the K recorded 
heartbeats using an interior points optimization algorithm (specifically, 
the non-linear constrained optimization algorithm implemented in the 
MATLAB 2020 fmincon function) for the objective function Equation (1) 
[12]. Since the objective function is separable given a fixed Hq, the 
optimization can be performed in parallel for each heartbeat. This 
optimization in Step 2 is also iterative, and the number of steps selected 
is an additional hyperparameter of our overall optimization framework. 

Once this optimization in Step 2 is complete, we fix the forward 
model parameters Pq and return to step 1 to solve for the next iteration of 
Hq+1 with the new forward model parameters. We continue to alternate 
between Steps 1 and 2 until the estimated forward model parameters 
converge, defined as a change in the Frobenius norm of the difference 
between Pq− 1 and Pq less than a threshold or when a maximum repeti-
tion count is reached. 

2.2. Implementation 

We implemented this optimization scheme under the following 

specific conditions relevant to the task of reconstructing cardiac posi-
tion, including a cardiac bioelectric source model, position parameter-
ization, and appropriate numerical and computational methods. 

Cardiac source model: The source model consisted of the electric po-
tentials on a surface constructed from a cage of electrodes that sur-
rounded the isolated heart in the experimental model described below. 

Parameterization of the Forward Model: The forward model was based 
on a homogeneous volume conductor of the space between the heart and 
body surfaces, with all other organs omitted, both for simplicity and 
because it replicated the experimental setup used to gather validation 
signals (described below). The forward model parameters P in this case 
described changes in the cardiac position for every heartbeat— i.e., 
translations and rotations of the heart. We parameterized the positions 
of the heart with 6◦ of freedom (L = 6), as in our previous studies([12]). 
Translations were along the x-axis, the left-right direction of the torso 
geometry, the y-axis, anterior-posterior, and the z-axis vertical, 
following the well-accepted conventions of the EDGAR database for 
geometric models [22]. Rotations were specified as combinations of 
pitch, yaw, and roll, where pitch was rotation of the septal axis of the 
cardiac geometry about the Y axis, yaw was rotation of the septal axis 
about the X axis, and roll was rotation of the cardiac geometry about the 
septal axis (see Supplemental Video s.2). 

Computational implementation details: In Step 1 of the minimization 
we find a single regularization parameter across all t time samples, using 
the L-curve criterion. We refer to this method of regularization as the 
Frobenius L-curve criterion. 

Step 2 consisted of estimating the heart position with a maximum of 
10 steps of interior-point optimization for each new position parameter, 
with the goal of avoiding overfitting of the position parameters on any 
single estimate of the cardiac source. We also imposed constraints on the 
cardiac position by including box constraints on its parameters to force 
them to be within the following ranges: 0.4 to 0.4 radians for pitch, and 
yaw, − 0.9 to 0.9 for Roll, and − 25 to 25 mm for x, y, and z position. 
These bounds reflected the bounding box in which the cardiac geometry 
(described below) could fit within the torso geometry without contact 
between them. 

Fig. 1 shows a schematic representation of our geometric correction 
framework. The stopping criterion for our implementation of the 
described algorithm was iteration count, which we set to 50 iterations 
for all experiments. We observed convergence of the position parame-
ters within 20–40 iterations across all cases. Other stopping criteria 
based on convergence of the estimated cardiac position parameters 
could also easily be implemented. 

Software and computational resources: The geometric optimization 
and inverse solutions were computed using a combination of custom 
software created in MATLAB (Mathworks Inc, Natick, MA) and the 
SCIRun Forward/Inverse Toolkit (SCI Institute, University of Utah) [23]. 
Visualizations were generated using MATLAB functions and SCIRun 
modules. All optimizations were computed using the computational 
resources at the Scientific Computing and Imaging (SCI) Institute at the 
University of Utah, Salt Lake City, Utah, USA. 

2.3. Datasets 

To evaluate the geometric correction framework required data in 
which the cardiac position, BSP signals, and electrograms (EGMs) were 
known for a series of heartbeats. To achieve these specific requirements, 
we generated a set of partially synthetic electrocardiographic signals 
derived from measured geometry and experiments with a large-animal 
model. 

Electrocardiographic Signal Acquisition and Processing: The source of 
geometry and electrocardiographic signals for this study was an 
isolated-heart preparation described in Bergquist et al. [10,24]. All de-
tails of the study were approved by the University of Utah IACUC 
(Protocol #17-04 016). Briefly, an isolated, perfused canine heart was 
suspended in a torso-shaped fiberglass tank filled with an electrolyte 

J.A. Bergquist et al.                                                                                                                                                                                                                            



Computers in Biology and Medicine 142 (2022) 105174

4

solution approximating the conductivity of the human torso (500 Ω⋅ 
cm). Fig. 2 describes the setup, which included a heart that was 
instrumented with a variety of recording arrays including a 256-elec-
trode Utah Pericardiac Cage (UPC) (n = 256 from the description 
above). The UPC was a 3D-printed plastic, two-part frame into which 
256 Ag/AgCl electrodes were embedded. The electrodes encircled the 
isolated heart roughly 1–2 cm from the epicardial surface. Electrode 
spacing was consistent over the surface and electrode locations formed a 
triangulated surface with an average area of 84 mm2 and an edge length 
of 21 mm. The electrodes provided continuous sampling during sinus 
rhythm and during stimulated ectopic beats paced from the anterior left 
ventricle (VP, ventricularly paced). Signals were captured using a 
custom acquisition and multiplexing system described in Zenger et al. 
[25], which included amplifiers, filters, and analog to digital converters. 
The recorded signals were then baseline corrected, noise filtered, and 
segmented into individual beats using PFEIFER, an open-source soft-
ware tool for processing time series data from electrocardiographic ex-
periments [26]. A representative heartbeat (QRST) was segmented from 

the series of recorded beats for each of the two activation sequences 
(sinus and anterior VP), which we refer to in the sequel as sinus and aVP, 
respectively. These recordings represent our ground truth cardiac 
sources, H. 

Additionally, we sought to evaluate the impact of biological, beat-to- 
beat variation on algorithm performance. To that end, we applied 
PFEIFER’s auto-segmentation algorithm to segment an additional 39 
similar beats from a continuous recording based on the aVP template; 
these beats corresponded to a temporal correlation cutoff of 0.98 be-
tween template and subsequent beats, thus they formed a train of 
similar, but not identical, beats. These beats, including the template 
(totaling 40 beats), will be referred to as aVp1–40. These 40 beats were 
then normalized to all have 360 time samples per QRST (i.e., t = 360) 
using temporal resampling with cubic splines fit to each electrogram. 
The result was a matrix of 256 × 360 values for each of the aVp1–40 
heartbeats. 

Computational Model Generation: The first step to create our compu-
tational models was to generate a geometric model based on the torso- 

Fig. 1. Schematic representation of the geometric optimization algorithm. Initially BSP signals and a starting cardiac position are supplied for each heartbeat. In our 
case, the same cardiac position was supplied initially for all heartbeats. During step 1, the ‘joint inverse’ method is used to estimate cardiac surface potentials using all 
BSP signals and cardiac positions. In step 2 the estimated cardiac surface potentials are used to estimate new cardiac positions individually for each heartbeat. After 
Step 2, the stopping criteria is evaluated. In this study, the stopping criteria was iteration count, set to 50. The output from step 2, a new set of estimated cardiac 
positions, is either fed back into step 1 for the next iteration or passed as the output. 
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tank and the Utah pericardial cage (UPC). The triangulated surfaces 
from both the tank surface and the cage electrodes have been previously 
meshed and with a model based on surface (rather than volumes) all that 
was needed to was to locate the UPC within the torso, which we 
measured using a mechanical digitizer (Microscribe, Immersion Corpo-
ration) during the experiment. Fig. 2 shows the resulting model, which 
contained 771 nodes to represent the torso surface (m) and 256 peri-
cardial nodes to represent the cardiac geometry (n). As the anchor point 
for the cardiac geometry we defined the centroid of the electrode posi-
tions in the top quarter of the UPC, an approximation of the atrial region 
of the heart. The septal axis was defined as the vector between this atrial 
anchor point and the equivalent centroid of the electrodes in the lower 
three quarters of the UPC, equivalent to the ventricular region. 

To simulate respiratory motion of the heart, we numerically moved 
the cardiac geometry within the torso according to two types of motion: 
translations in x, y, and z directions and three rotations: pitch, yaw, and 
roll, as defined above. We treated the resulting cardiac positions as the 
targets that we subsequently attempted to reconstruct. The respiratory 
cycles were parameterized by a phase value between 0 and 1, sampled 
100 times using a sinusoidal function. We then applied these respiratory 
phase values to each of the, x, y, z, pitch, yaw, and roll values linearly 
over the ranges defined in Table 1. This first collection of positions 
(position set 1, K = 100) spanned almost the entire torso, which 

exaggerated normal respiratory motion. The second position set was 
more physiological (position set 2, again K = 100), based on fitting the 
pitch, yaw, roll, x, y, and z ranges to the those of a human heart during 
free breathing recorded via magnetic resonance imaging (MRI) of a 
single subject at multiple positions and phases of the breathing cycle, as 
described previously [15]. Fig. 3 visualizes the changes in cardiac po-
sition for each of these two position sets. Finally, to test the response of 
our algorithm to variation in the set of target positions, we generated 
100 realizations of 100 positions randomly sampled along the respira-
tory phase across the same range as for position set 1. The collection of 
100 instances of 100 positions will be referred to collectively as position 
set 3. During geometric optimization, each realization of 100 positions 
from position set 3 was optimized separately such that K = 100 in each 
case (see Table 2). 

The pericardiac cage is larger than a typical heart. To investigate 
what effect a smaller target cardiac geometry might have we shrunk the 
cage geometry by scaling it down 25% with respect to the center of the 
geometry. We then generated 100 positions of the smaller cardiac ge-
ometry as described above, using the parameter range and sampling for 
Position Set 1. We refer to theses positions as Position Set 4.Table 1 
contains the ranges for the 6 parameters for all position sets. 

To summarize, we considered four sets of cardiac positions as ver-
sions of ground truth and set out to recover these positions based only on 
the torso potentials generated from a cardiac, bioelectric source located 
there (details of the torso potentials follow below). Set 1 consisted of 100 
cardiac positions sampled from a large range of motion. Set 2 consisted 
of 100 cardiac positions sampled from a physiological range based on 
the measured respiratory motion of a single human subject, and Set 3 
consisted of 10,000 positions(in groups of 100) determined by randomly 
sampling the respiratory phase. Set 4 consisted of 100 cardiac positions 
sampled from a large range of motion using a small cardiac geometry. 
When performing the geometric optimization, we initialized the cardiac 
position to the original registered location, corresponding to the zero- 
values of all six parameters. 

Generation of BSPs: For each of the geometric models described 
above, we calculated the associated forward transform matrix that maps 
pericardial to torso potentials using the boundary element method, a 
well characterized approach in ECGI [27,28]. These forward matrices 
were then used to generate synthetic BSPs for each cardiac position. To 
capture some biological and measurement variability, we added white 
Gaussian noise at a signal-to-noise ratio (SNR) of 30, applied indepen-
dently to each BSP signal. No subsequent filtering or signal processing 
was performed on the BSP signals before use in our algorithm. For Po-
sition Sets 1 and 2, three sets of BSPs were generated: one used the sinus 
beat (K = 100), one was based on the ventricularly paced beat (K = 100), 
aVP, and the third was generated by applying the sequence aVP1 
through aVP40 as the source EGMs for the first through fortieth cardiac 
positions in each position set (K = 40). For Position Sets 3,and 4, the 
same aVP beat was used throughout. 

Leadsets: To evaluate the response of our method to limited sampling 
of the torso surface, we designed twelve reduced leadsets, summarized 
in Fig. 4. Combined with the full leadset, this made for thirteen different 
samplings of torso potentials. For Position Sets 1 and 2, we performed 
geometric optimization using all thirteen leadsets and all three sets of 

Fig. 2. Experimental setup used to generate geometric model and electrocar-
diographic signals. The Utah Pericardiac Cage (blue) recorded signals from near 
the heart surface during sinus and anterior left ventricular pacing. The UPC 
geometry was registered post experiment into the 771-node torso-tank geom-
etry. This visualization shows part of the torso tank and UPC cut away to 
illustrate relative positioning. 

Table 1 
Ranges for the parameter values for each position set. Ranges are represented 
with min, max. For each position, a sample was taken of the respiratory phase 
value (0–1) and used to calculate the six parameter values (pitch, yaw, roll, X, Y, 
Z) for that position by scaling that value to each of the parameter ranges.  

Position 
Set 

Pitch 
(Rad) 

Yaw 
(Rad) 

Roll (Rad) 
0 

X (mm) Y 
(mm) 

Z (mm) 

Set 1, 3, 
and 4 

− 0.35, 
0.35 

− 0.35, 
0.35 

− 0.79, 
0.79 

− 20, 
20 

− 20, 
20 

− 20, 20 

Set 2 -.022, 
0.35 

− 0.024, 
0.19 

− 0.002 4, 
0.000 2 

− 0.66, 
0.41 

0.22, 
1.15 

− 22.49, 
1.82  

Table 2 
Simulated datasets along with leadsets evaluated. For each position set, cardiac 
positions were reconstructed using each of the specified activation sequences 
and leadsets. Limited 1:12 leadsets correspond to the 12 leadsets shown in Fig. 4 
whereas the full leadset used the potentials at all of the torso node locations.  

Position Set Activation Sequences Leadsets Number of Cases 

Set 1 Sinus, aVP, aVP1:40 Full, Limited 1:12 39 
Set 2 Sinus, aVP, aVP1:40 Full, Limited 1:12 39 
Set 3 aVP Full 100 
Set 4 aVP Full 1  
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BSPs, resulting in six reconstruction scenarios (two position sets * three 
BSP sets) for each of those thirteen leadsets. For Position Set 3, we uti-
lized only the full leadset, resulting in 100 reconstruction scenarios. For 
Position Set 4 we utilized only the full leadset resulting in 1 recon-
struction scenario. 

2.4. Performance analysis 

We assessed the performance of our geometric correction framework 
both for its ability to reduce geometric error as well as to improve the 
accuracy of individual ECGI inverse solutions. 

Geometric error: Geometric error was assessed both as the error be-
tween reconstructed and target cardiac position parameters and also the 
resulting average position error between target and optimized cardiac 
geometries. For the latter we calculated the mean distance between the 
corresponding nodes of the reconstructed and target geometries. We 
made a distinction between parameter reconstruction and position 
reconstruction because each captured a different facet of the error. We 
also carried out visual evaluation of the differences between recon-
structed and target geometries. 

During our analysis we also found a need to differentiate between the 
accuracy of geometric reconstruction and the precision of geometric 
reconstruction. Our geometric correction method solves for the cardiac 

position for a group of heartbeats, ideally estimating these positions as 
closely as possible to the target positions. Because this estimation 
operates on a group of heartbeats we may consider their positions 
relative to one another, that is how the position of the cardiac geometry 
for each heartbeat relates to the cardiac position of every other heart-
beat which we refer to as the precision of the reconstruction. On the 
other hand, the accuracy refers to how the optimized cardiac geometry 
for one heartbeats relates to the target cardiac geometry for that same 
heartbeat. Ideally we would like our algorithm to have high accuracy 
and precision, reconstructing both the relative cardiac positions with 
respect to each other, and the absolute cardiac positions with respect to 
their target positions. We evaluated the accuracy and precision both 
visually with respect to the position parameters and through the per- 
electrode localization error metric. 

ECGI accuracy: To assess the improvement in reconstructions of the 
heart potentials, we computed ECGI solutions using the non-optimized, 
optimized, and target geometries across all positions and beat mor-
phologies for each BSP signal. For these computations, we implemented 
a standard Tikhonov inverse solution with second-order regularization 
to solve the inverse problem [28]. For each inverse solution, the Fro-
benius L-curve criterion (described above) was used to select the regu-
larization weight, λ for each beat. The entire QRST duration of the signal 
and the full leadset were utilized for reconstruction. 

Fig. 3. Demonstration of the cardiac position ranges for each position set. The cardiac geometry in the nominal position (green) on the left column is moved to 
positions within each of the ranges defined for Position Sets 1, 2, 3, and 4. The right panels show example cardiac positions in those parameter ranges, with position 
parameters shown in the accompanying plots. Note that Position Sets 1, 3, and 4 use the same range. The two views of the torso show the anterior view and the left 
side view. The color of the cardiac geometry corresponds to the colored dots on the parameter graphic. The cardiac geometry is shown using a wire-frame model to 
allow for simultaneous visualization of the overlapping positions. Position Set 2 covers a substantially smaller range of motion than Position Sets 1, 3 and 4. The 
colored nodes (pink and gray) on the nominal geometry indicate the region of the cardiac geometry that is cut when the geometry is flattened for subsequent vi-
sualizations. This cutting and flattening process can be seen in Supplemental Video s.1. 
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The resulting estimated EGMs were compared to corresponding 
ground truth values using several metrics described previously [24]. 
Specifically, we calculated the root-mean-squared error (RMSE) over the 
QRST between reconstructed and ground truth EGMs, the mean tem-
poral correlation (TC) (i.e., the correlation of reconstructed vs. 
ground-truth EGMs over the QRST on an electrode by electrode basis 
averaged across all electrodes), and the mean spatial correlation (SC) (i. 
e., the correlation between cardiac surface potential distributions aver-
aged over all time instances in the QRST). Finally we visually compared 
the potential maps of the reconstructed and ground-truth values. 

3. Results 

The products of our optimization were twofold, geometric error and 
the quality of the ECGI reconstruction, and each perspective provides 
separate insight into the success and utility of this approach. 

3.1. Geometric reconstruction error 

Position Sets: Fig. 5 shows the position parameter reconstruction and 
per-node localization errors for Position Sets 1 (top) and 2 (bottom) 
using the full leadset and aVP activation sequence. The scatter plots for 
the parameter reconstructions have the target parameter value along the 
X axis and the reconstructed parameter value along the Y axis. The solid 
black lines show the target parameter line and the solid red lines show 
the initialized parameter values. The black diamonds are the recon-
structed parameters for each beat in the position set. Thus, any deviation 
of the black diamonds from the solid black line indicates the error in the 
parameter reconstruction. The panels on the right side display box plots 
of the per-node localization error with respect to the target positions for 
both the optimized and non-optimized cardiac geometries. We plot the 
non-optimized per-node localization error as a comparison to the opti-
mized which shows the degree to which the optimization was able to 

reconstruct heart position. 
Table 3 summarizes numerically the per-node localization error for 

position sets 1 and 2 with the full lead set across all activation sequences. 
Table 4 shows the per-node localization error for Position Set 3, aver-
aged over all beats from all 100 realizations (k = 10,000). In Table 4 we 
summarize the ECGI reconstruction statistics for Position Set 3, dis-
cussed below in Section 3.2. 

The error in cardiac position reconstruction varied across position 
sets, with Set 4 producing the lowest error. As shown in Fig. 5, the 
reconstructed position parameters more closely matched the target line 
for the X, Y, and Z positions than the rotations, especially in Position Set 
1. The parameter reconstruction accuracy and localization error did not 
vary substantially between Position Set 1 and 3, as shown in Table 4. The 
geometric reconstruction error for Position Set 4 was lower than Position 
Set 1, as shown in Table 4. The parameter reconstruction accuracy was 
similar between position sets 1 and 4, as shown in Supplemental Fig. 5. 
Position Set 2 showed higher overall geometric reconstruction error 
than the other position sets. However, for Position Set 2 we noted that 
often the relative parameters, i.e., the trend of position parameters and 
their relative values between beats as discussed in Sec. 2.4, appeared to 
be well reconstructed, but with an offSet. This trend is most apparent in 
the pitch and the X shift for Position Set 2 as seen in Fig. 5. The slope of 
the reconstructed parameters visually matches the target line, but the 
reconstructed values are offset from the ground truth by what appears to 
be a consistent value. Such results suggest that while the precision of the 
reconstruction was high, the accuracy was not. The precision of recon-
struction is also reflected by the preservation of cardiac geometry as 
indicated by the very tight distribution of per electrode localization 
error in Fig. 5. 

Activation Sequences: Fig. 6 shows the mean per-node localization 
error between the target geometries and the optimized geometries for 
each activation sequence along with the starting errors for the non- 
optimized geometries. The optimized positions depicted in Fig. 6 used 

Fig. 4. Sub-sampling of the torso BSP signals. Spheres represent electrode recording locations and the green spheres highlight the electrodes included in each leadset. 
Leadsets were designed to explore a range of sampling scenarios. The ‘no caps’ leadset represents removing the electrodes from the torso that make up the top and 
bottom of the torso mesh, which would be unrealistic to sample from in a clinical implementation. The leadsets called ‘3 Strip’ versions 1 to 7 (V1–V7) represent 
successive downsampling of the same three strips of electrodes around the circumference of the torso. The full leadset (the entire set of spheres shown in each 
diagram plus a grid of electrodes added to the top and bottom) used all nodes on the torso surface. Number of electrodes per leadset: Full: 771, No Caps: 596, 9 Lead: 
9, Orthogonal: 6, 1 Strip: 34, 2 Strip: 72, 3 Strip V1: 106, 3 Strip V2: 53, 3 Strip V3: 37, 3 Strip V4: 28, 3 Strip V5: 22, 3 Strip V6: 19, 3 Strip V7: 16. 
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the full leadset and Position Set 1. As before, the non-optimized per-node 
localization errors provide a reference of the initial placement of the 
cardiac geometry before optimization. Geometric reconstruction errors 
varied across activation sequences, with sinus showing slightly less error 
for both parameter reconstruction and per-electrode localization. The 
aVP1-40 Position Set, which incorporated beat to beat variability among 
EGMs, showed slightly higher errors in per-electrode localization than 
aVP alone as seen in Table 3, and also in parameter reconstruction (see 
Supplemental Fig. 1). 

LeadSets: Fig. 7 reports the per-node localization error between the 
target geometries and the optimized geometries for each leadset along 
with for the starting error for non-optimized geometries. Results are 

Fig. 5. Reconstructed parameters and mean per-electrode localization errors for Position Sets 1 (top) and 2 (bottom). The scatter plots (left) capture parameter 
reconstruction errors, in which the red line indicates the initial parameter values, the solid black line shows the target cardiac position parameters, and the diamonds 
show the reconstructed parameters. Note the change in scaling of some the of plots to facilitate interpretation of the parameter reconstructions, which sometimes had 
very different ranges, such as in Position Set 2. The right plots show box plots across all positions of the per-node localization error (mm) between optimized and non- 
optimized cardiac positions. 

Table 3 
Average per-node localization error (in mm) across each Position Set and acti-
vation sequence for the full leadset. Values are shown as means ± one standard 
deviation.   

Position Set 1 Position Set 2 

aVp 7.18 ± 0.09 15.00 ± 0.05 
sinus 6.41 ± 0.08 14.72 ± 0.05 
aVp1:40 8.97 ± 2.05 17.02 ± 2.96  

Table 4 
Cardiac localization error and ECGI accuracy for 
Position Set 3. Averages and standard deviations 
were taken over all 10,000 positions (100 positions 
from 100 realizations). Mean per-electrode localiza-
tion error (Loc. Err.) is in millimeters and root-mean- 
squared error (RMSE) is in millivolts. Spatial corre-
lation (SC) and temporal correlation (TC) are scaled 
between − 1 and 1. Values are shown as means ± one 
standard deviation.  

Stat Value 

Loc. Err 8.51 ± 0.97 mm 
RMSE 0.34 ± 0.02 mV 
SC 0.94 ± 0.01 
TC 0.95 ± 0.01  
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based on the aVP activation sequence and Position Set 1. Parameter 
reconstruction error increased as leadset sampling density decreased 
(see Supplemental Fig. 3). However, increased parameter reconstruction 
error did not always result in increased per-electrode localization error, 
as shown in Fig. 7. Generally, as sampling density decreased, the 
reconstruction of the position parameters X, Y, and Z showed higher 
errors than those of the rotation parameters (Supplemental Fig. 3). We 
observed that the smallest leadsets (9 lead, orthogonal, 1 strip, 2 strip) 
resulted in large reconstruction errors of X, Y, and Z translations, and 
less severe errors in pitch, yaw, and roll, which varied based on the 
specific leadset (Supplemental Fig. 3). Notably, several of the reduced 
leadsets (3-strips v3 through v7) showed per-electrode localization error 
comparable to the full leadset despite increases in parameter recon-
struction error. 

3.2. ECGI accuracy 

Position Sets: The box plots in Fig. 8 show the ECGI accuracy between 
Position Set 1 and 2 using the optimized, target, and non-optimized 
cardiac positions. The optimized geometries used to generate the in-
verse solutions for Fig. 8 were found using the full leadset and the aVP 
activation sequence. Each row depicts a different statistic computed 
between the ECGI solutions for each cardiac position and the ground 
truth aVP EGM. 

Table 7 shows the average values for each of the three ECGI accuracy 
metrics (RMSE, SC, TC) ± one standard deviation for Position Sets 1 and 
2. 

Fig. 9 shows spatial comparisons of best and worse case ECGI solu-
tions in terms of potential maps for non-optimized position (on the left), 
optimized position (middle), and target position (right) for the param-
eter Sets 1 and 2 and the aVp activation sequence. The potential maps 
are shown on a flattened version of the pericardiac cage. This flattened 
version was created by cutting down a vertical strip on the cage 

geometry along the left midaxillary line, as indicated in Fig. 3 by the 
colored spheres. The resulting flattened geometry is centered on the 
right midaxillary line. Supplemental video s.1 shows this flattening. All 
potential maps are shown at a time point corresponding to the maximum 
of the root mean squared signal of the measured EGM, depicted in the 
bottom right section of the figure. The best case beat is defined as the 
beat with the maximum spatial correlation of the reconstruction po-
tentials compared to ground truth potentials using the optimized ge-
ometries while the worst case beat is defined as the beat with the 
minimum spatial correlation of the reconstruction potentials compared 
to ground truth potentials using the optimized geometries. We show the 
measured EGM in the bottom left section of the figure. Rows one and two 
show the best and worst case reconstructions for Position Set 1 respec-
tively, rows three and four show the same for Position Set 2. The RMSE 
(in mV), SC, and TC for each ECGI solution are shown above the cor-
responding potential map. Supplemental Fig. 4 shows the potential maps 
in the same arrangement for the sinus activation sequence. 

Table 6 shows the percent of heartbeats for each testing scenario in 
which geometric optimization resulted in improvement according to 
each of the metrics. 

Across all metrics the ECGI reconstructions were improved for the 
majority of heartbeats by geometric optimization for all position sets 
except for position set 2 using the Sinus activation sequence (see 
Table 6). Often the accuracy seen after geometric optimization 
approached the accuracy seen using the target positions. ECGI im-
provements were more modest for Position Set 2, as shown in Fig. 8 and 
Supplemental Fig. 21. For Position Set 3, ECGI accuracy showed a 
slightly higher variability than in Position Set 1, reflected in a higher 
standard deviation of the ECGI accuracy metrics shown in Table 4. 
Despite this increased variability in ECGI accuracy, Position Set 3 still 
demonstrated notable improvement in ECGI accuracy over the non- 
optimized solutions. Position set 4 showed higher RMSE and slightly 
lower correlation values than Position Set 1, as shown in Table 5 and 

Fig. 6. Mean per-node localization error across the three activation sequences for Position Set 1. These results used the full leadset. The non-optimized errors are 
shown on the right for comparison. Plus signs denote outliers, defined as a value that is more than 1.5 times the interquartile range away from the bottom or top of 
the box. 

Fig. 7. Box plots of mean per-node localization error across the different leadsets for Position Set 1 and the aVp activation sequence. The leadset names correspond to 
those shown in Fig. 4 (full: Full lead set, no caps: no caps leadset, 9 lead, 9 lead leadset, Orth: Orthogonal, 1 str: 1 strip, 2 str: 2 strip, 3 str v1:7, 3 strip version 1 to 7. 
No opt: non-optimized position). The full leadset uses all nodes of the torso mesh. 
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Supplemental Fig. 2, however the variability remained low for Position 
Set 4. 

The potential map reconstructions in Fig. 9 illustrate that optimiza-
tion resulted in consistent ECGI solutions, with only minor differences 
between best and worst case scenarios, and were more similar to the 

solutions found using the target positions than those using non- 
optimized positions. The same was true across all position sets. 

Activation Sequences: We observed improvement in the ECGI re-
constructions using optimized cardiac geometries over non-optimized 
geometries across all activation sequences, as shown in Table 7 and 
Supplemental Fig. 2. The aVp and the aVp1-40 activation sequences 
showed the highest ECGI accuracy as measured by SC and TC, while the 
sinus beat showed the lowest RMSE. However, the maximum root mean 
squared voltages from each of the activation sequences were 3.2 mV 
(aVP), 1.5 mV (sinus), and 3.6 mV (aVP1:40). Therefore the lower RMSE 
of the sinus beat does not necessarily indicate superior performance 
since the overall amplitude of the sinus case was lower as well. 

LeadSets: We present the three metrics of ECGI reconstruction in 
Fig. 10 which includes (RMSE (top), SC (middle), and TC (bottom)) for 
solutions found with geometries that were optimized using each of the 
leadsets. Results using both the target and non-optimized cardiac ge-
ometries are also presented for comparison. We observed improvements 
in ECGI solutions using cardiac positions optimized with all leadsets, 
even in cases of severely reduced sampling coverage. As shown in the 
figure, optimization of the cardiac geometry using even the orthogonal 
leadset, which has the fewest (six) leads, improved ECGI accuracy. These 
improvements were more pronounced in the leadsets with increased 

Fig. 8. ECGI accuracy as measured by RMSE, spatial 
correlation, and temporal correlation for Position Set 
1 and 2 using the aVp activation sequence. Results are 
shown for the optimized cardiac positions (opt), true 
cardiac positions (target), and non-optimized posi-
tions (no opt). From top to bottom these statistics 
report the RMSE, spatial correlation (SC), and tem-
poral correlation (TC). Within each row there are two 
panels. The ones on the left depicts the results for 
Position Set 1, and the ones on the right depicts the 
results for Position Set 2.   

Table 5 
Cardiac localization error and ECGI accuracy for 
Position Set 4, aVP activation sequence, using the 
small cardiac geometry. Averages and standard de-
viations were taken over all 100 positions. Mean per- 
electrode localization error (Loc. Err.) is in millime-
ters and root-mean-squared error (RMSE) is in mil-
livolts. Spatial correlation (SC) and temporal 
correlation (TC) are scaled between − 1 and 1. Values 
are shown as means ± one standard deviation.  

Stat Value 

Loc. Err 6.50 ± 0.03 mm 
RMSE 0.36 ± 0.00 mV 
SC 0.93 ± 0.00 
TC 0.94 ± 0.00  
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sampling, for example all of the 3-strip leadsets, although we noted a 
decrease in accuracy for the 3-strip v2 leadset as compared to all the 
other 3-strip variations. 

3.3. Improvements in variability of ECGI reconstructions 

One of the most consistent observations from all testing scenarios 
was that geometric optimization reduced variability of the solutions 
compared to the non-optimized cases in all scenarios. This reduction in 
variability came in a few forms. With respect to geometric error, opti-
mization reduced the variability in per-node localization error 
compared to unoptimized geometries, which appear as thinner box plots 
in Figs. 5 and 6 and Supplemental Fig. 2, as well as small standard de-
viations in Tables 3 and 4 With respect to ECGI accuracy, the ECGI so-
lutions found using optimized geometries had reduced variability in 
RMSE, SC, TC, and the reconstructed potential maps compared to so-
lutions found using non-optimized geometries, seen in thinner box plots 
in Figs. 8–10, and Supplemental Fig. 2, as well as smaller standard de-
viations in Tables 7 and 4 

4. Discussion 

In this study we established and validated a framework to estimate 
the position of the heart within the torso on a beat-by-beat basis using 
only noninvasively measured body-surface potentials. We validated the 
framework using a combination of three different sets of initial heart 
positions, three different sets of activation sequences, and thirteen 
different sets of body-surface recording electrodes. We examined both 
the accuracy of the position estimates and the effect of these geometric 
optimizations on ECGI reconstructions when compared to both the 
target and nonoptimized heart positions. We observed both a decrease in 
geometric error and an increase in ECGI accuracy using our geometric 
correction framework. 

4.1. Reduction of variability 

One of the most notable results from our study was the reduction of 
variability in both cardiac localization error and ECGI accuracy across 

all scenarios. Lower variability in ECGI solution accuracy could translate 
to enhanced clinical utility, as clinicians can have more confidence in 
any specific inverse solution if the variability associated with it is 
smaller. 

For Position Sets 1, 3 and 4, which utilized an exaggerated range of 
motion, optimization resulted in reduced cardiac position error and 
improved ECGI accuracy for the vast majority of heart beats compared to 
the nonoptimized solutions, as seen in Table 6. There were, however, 
some cases in which the non-optimized position happened to coincide 
closely or exactly with the ground truth position and thus produced 
superior estimates compared to the optimized positions. This occurred 
because the optimization acts jointly on an entire collection of heart-
beats and cardiac positions. Therefore errors incorporated into the 
optimization framework can be reflected in inaccurate absolute position 
estimates. However, these inaccuracies can been seen as a trade-off for 
the improved consistency in both cardiac geometry position and ECGI 
solution accuracy. 

Position Set 2 showed reduced variability in geometric error and 
ECGI accuracy after optimization, while the mean error and mean ac-
curacy were close to the mean error and accuracy of the non-optimized 
positions, in terms of both geometric reconstruction and ECGI solutions. 
Thus there were cases in Position Set 2 where the heart position was 
incorrectly moved farther from its true position, and the absolute ECGI 
accuracy suffered as a result (Table 6). However, the average heart 
position error and ECGI inaccuracy were roughly the same, if not a little 
lower, after optimization when compared to non optimized cases. 
Additionally, the variability in all metrics was reduced after optimiza-
tion (Supplemental Fig. 2). Thus, even in Position Set 2, the optimization 
provided more reliable position estimates and ECGI solutions. We 
address the limitation of inaccurately moving the cardiac geometry from 
its target location further in Section 4.5. 

4.2. Effects of different position sets 

We explored the differences in geometric reconstruction and ECGI 
accuracy using three different Sets of cardiac positions. Position Set 1 
encompassed a large range of possible uncertainty in heart position in 
order to examine the effects of a wide range of sources, e.g., respiration, 
body position, image quality, or geometric model construction. Position 
Set 2 encompassed uncertainty over a much smaller range and was 
based on observed cardiac motion during an cine MRI acquisition. Po-
sition Set 3 consisted of 100 realizations of 100 random samples from 
the position range defined for Position Set 1. Since the optimization 
operates on a particular collection of heartbeats which have a particular 
set of target positions, we were concerned that the results would be 
affected by particular target positions. Position Set 3 was meant to 
address this concern by randomly sampling target positions of the car-
diac geometry. 

Overall, we found that cardiac position was reconstructed best in 
Position Sets 1, 3 and 4, with Set 4 having the lowest average localiza-
tion error. We speculate that the improved results of Sets 1, 3, and 4 over 
Set 2 are caused by Set 2’s decreased ranges of motion. We observed 
with Position Set 2 that the reconstructed geometries showed a high 
precision, but an accuracy that was off by what appeared to be a 

Table 6 
Percentage of improvement of optimized geometries over non-optimized geometries according to all evaluation metrics. Each column shows a different testing scenario 
(position set and activation sequence). Each row shows the improvement (percent of heartbeats or geometries which show an improvement over the non optimized 
case) according to each metric: spatial correlation (SC), temporal correlation (TC), root mean squared error (RMSE), and per-electrode localization error (Loc. Err.).   

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 3 Set 4 

aVP aVP Sinus Sinus aVP1:40 aVP1:40 aVP aVP 

SC 90% 68% 90% 44% 90% 65% 86% 90% 
TC 93% 60% 100% 68% 90% 57% 89% 93% 
RMSE 90% 64% 90% 64% 90% 60% 86% 90% 
Loc. Err. 90% 64% 90% 68% 90% 65% 86% 90%  

Table 7 
ECGI accuracy across each Position Set and activation sequence for the full 
leadset. Root Mean Squared Error (RMSE) is in millivolts. Spatial correlation 
(SC) and temporal correlation (TC) are both standard correlation coefficients, 
scaled between − 1 and 1. Values are shown as mean ± one standard deviation.    

Position Set 1 Position Set 2 

RMSE (mV) aVp 0.32 ± 0.00 0.44 ± 0.00 
sinus 0.18 ± 0.01 0.21 ± 0.01 
aVP1:40 0.35 ± 0.02 0.46 ± 0.03 

SC aVp 0.94 ± 0.00 0.90 ± 0.00 
sinus 0.83 ± 0.02 0.80 ± 0.02 
aVP1:40 0.93 ± 0.03 0.87 ± 0.07 

TC aVp 0.95 ± 0.00 0.90 ± 0.00 
sinus 0.93 ± 0.01 0.85 ± 0.01 
aVP1:40 0.91 ± 0.03 0.88 ± 0.04  
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constant offset. We speculate that this is due to the existence of a null 
space in the optimization problem, in other words that there may be 
multiple sets of relative positions of the cardiac geometry that fit within 
the torso and satisfy our optimization equation. With Position Sets 1, 3 
and 4, the algorithm may be less sensitive to the presence of this null 
space because the larger range of target positions of the heart, which 
may reduce the number of sets of positions that fall within the null 
space. We can see that even with Position Set 2, the z axis position, 
which has the largest range of all the parameters, was well reconstructed 
in both absolute and relative terms. The absolute reconstruction of Z in 
Position Set 2 is consistent with the idea that larger parameter ranges in 
the optimization can allow for better absolute position reconstruction. 
We discuss further consequences of this behavior in section 4.5 below. 
We also observed a more robust precision in Position Set 1 than Position 
Set 2 (Fig. 5). We suspect this result is due to larger differences in the 
BSP maps from heart positions from Position Sets 1, 3 and 4, a direct 
result of the larger range of motion. The optimization leverages the 
relative differences in BSP maps to identify relative differences in car-
diac positions. Thus the larger differences in Position Sets 1, 3 and 4 may 
allow for more precise parameter reconstruction. 

Across all Position Sets we observed that rotation parameters, and in 
particular yaw and roll, were more difficult to reconstruct accurately, 
especially when the angles were close to zero (See Fig. 5, and Supple-
mental Fig. 1). However, we did not observe a similar pattern in the 
reconstruction of translation parameters, nor did we note an increase in 
geometric error for the heartbeats for which these angles were small. We 

speculate that this loss in reconstruction accuracy for yaw and roll is due 
to another null space, or lack of uniqueness, due to an ambiguity be-
tween those two rotations. In particular we observed this poor recon-
struction of yaw and roll when the third angle, pitch, was close to zero. 
In that case, geometrically, small changes in either yaw or roll result in 
similar, often very similar, changes in the position of the heart. Thus 
overall we believe that our parameterization may not be full identifi-
able; there are multiple combinations of the six parameters that can 
achieve the same or similar cardiac positions. This suggestion is 
consistent with our observation that despite these errors in parameter 
values, we observed very little variability in the error between recon-
structed and target cardiac geometries across all Position Sets (see Sup-
plemental Fig. 2 and Section 4.1). 

ECGI accuracy was on average improved by geometric optimization, 
and the variability of the accuracy was reduced in all cases. In Position 
Set 1 there was a notable increase in ECGI accuracy after geometric 
optimization; indeed our results approached the accuracy seen using 
ground truth cardiac positions. Position Set 2 showed more modest ECGI 
improvement, but the variability in ECGI solution accuracy was reduced 
(Supplemental Fig. 2). The ECGI accuracy for optimized positions from 
Position Set 2 was often close to the mean ECGI accuracy seen with the 
non-optimized positions, which we attribute to the difficulty in resolving 
absolute position and the smaller differences in BSP maps in Position Set 
2. In Position Set 2 our geometric correction framework did improve 
relative changes in position, and thus was able to produce ECGI solu-
tions that had a low variability, but not necessarily substantially 

Fig. 9. Example ECGI reconstructions for the non-optimized, optimized, and ground-truth cardiac positions using Position Sets 1 and 2 with the aVp activation 
sequence. Best and worst case beats were determined based on the maximum and minimum spatial correlation of the optimized reconstruction compared to the true 
EGMs (shown on lower left) and were chosen separately per position set. All maps show potentials at a time corresponding to the peak of the RMS signal for the true 
EGMs, as indicated on the waveform plot on the lower right. The potential maps are displayed on a flattened and unwrapped geometry of the pericardiac cage. The 
colored nodes on the map of the measured potentials correspond to the vertical lines along which the cage was cut to produced the flattened projection. Video s.1 
shows the cage geometry being unwrapped into this flattened version. 
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improved accuracy. The relative position reconstruction is corroborated 
by the parameter reconstructions obtained for Position Set 2 (Fig. 5) 
which show a bias in the estimated parameters, generally following the 
trends of the relative true positions but not the absolute positions. We 
suggest that incorporation of constraints on the cardiac motion could 
help to reduce this ambiguity and result in further improvement in the 
geometric reconstruction and ECGI solutions. Furthermore, given the 
apparently stable nature of this offset, we suspect that if a single true 
cardiac position were known, it could be used to identify and remove the 
offset from all positions. 

Beyond the inverse solution accuracy metrics, we also observed 
differences in the reconstructed potential maps using target, optimized, 
and non-optimized cardiac positions. Interpretation of potential maps in 
both research and clinical settings is primarily driven by observation of 
features on the maps such as the visually prominent patterns in Fig. 9. 
These features are often poorly captured by statistical metrics [29]. For 
example in Fig. 9 there are erroneous potential minima in the inverse 
reconstructions for the non-optimized positions that are either reduced 
or absent in solutions with the optimized positions. Furthermore, the 
shapes of the isocontours in the potential maps generated using the 
optimized positions appear to more closely match those of the measured 
potential maps than the potential maps generated from the 
non-optimized positions. We also observe these feature based difference 
using the sinus activation sequence (see Supplemental Fig. 4). 

Position Set 3 showed comparable geometric and ECGI accuracy to 
Position Set 1 with a slightly higher degree of variability (Tables 3 and 
7). This similarity between the performance of Position Sets 1 and 3 
indicates that our geometric correction framework is relatively robust to 
the distribution of ground truth positions, although the slightly higher 
variability in both ECGI accuracy and geometric reconstruction does 
suggest minor sensitivity to the specific set of heartbeats and underlying 
target geometries to which the algorithm is applied. 

In Position Set 4 we expected geometric optimization would be more 

difficult than in Position Set 1, as a smaller cardiac geometry might 
result in increased ill-conditioning in the ECGI inverse solutions, hence 
introducing errors to the geometric reconstruction. As expected, the 
experiments resulted in a slight degradation of the inverse solutions for 
results using both the ground truth cardiac positions and those after 
geometric correction with he smaller geometry (Supplemental Fig. 2). 
However, this increase in error did not translate into the geometric 
reconstruction, which improved for most heart beats in Position Set 4 
(Table 6).The resulting localization error, measured by mean euclidean 
distance between target and reconstructed electrode positions, was 
smaller for Position Set 4 (6.50 ± 0.003 mm) than Position Set 1 (7.8 ±
0.09 mm, aVP activation sequence, full leadset). Moreover, when 
comparing the parameter reconstruction for Position Set 1, shown in 
Fig. 5, and parameter reconstruction for Position Set 4, shown in Sup-
plemental Fig. 5, the reconstruction accuracy was strikingly similar. The 
correlation of individual parameter reconstructions (rows of the P ma-
trix) between Position Sets 1 and 4 were high (0.99, 0.99, 0.99, 1.0, 1.0, 
1.0, for pitch, yaw, roll, X, Y, Z parameters respectively). Only the 
rotation parameters showed some difference between the small heart 
geometry and the larger one. 

4.3. Activation sequences 

Geometric reconstruction and ECGI accuracy varied across activa-
tion sequences. We found that geometric reconstruction was slightly 
more accurate for the sinus beat for both Position Sets 1 and 2. On the 
other hand, results for the aVp1-40 activation sequence were the least 
accurate. This result might be expected given the natural beat-to-beat 
variability of the EGMs present in the aVp1:40 recordings, which is 
ignored in the algorithm. The smaller number of beats in aVp1:40, 
compared to the 100 heart beats for the sinus beat data sets, also may 
have contributed to this result. However, the increase in per node 
localization error for the aVP1:40 activation sequence compared to the 

Fig. 10. ECGI reconstruction accuracy across the different leadsets using Position Set 1 and the aVp activation sequence. LeadSet names correspond to the those 
shown in Fig. 4. 
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aVP activation sequence was small, within 1–2 mm of the aVp activation 
sequence. 

ECGI accuracy was generally higher in the aVp and aVp1:40 acti-
vation sequences than the sinus activation sequence (Table 7). ECGI 
reconstructions of sinus rhythms are generally less accurate due to the 
increased complexity of such beats compared to ventricular paced 
rhythms and the lower signal amplitudes (RMS voltages of 1.5 mV for 
the sinus beat compared to 3.6 mV for the aVP1-40) [24]. This trend was 
observed across all position sets (Supplemental Fig. 2). Notably, how-
ever, geometric optimization in all cases resulted in reduced ECGI so-
lution variability in each of the activation sequences. 

4.4. Limited lead sets 

We also examined the effect of limited torso surface sampling on 
cardiac position reconstruction error and resulting ECGI accuracy. We 
found that substantial improvements in geometric error could be ach-
ieved with even limited torso surface recordings, even as few as a single 
strip of electrodes (Fig. 4, Supplemental Fig. 3). While the leadsets that 
sampled more densely than the others (full, no caps, 3-strips v1) usually 
resulted in superior geometric reconstructions, there were some unan-
ticipated results. The 3-strips v7 set, which is the most under-sampled 
version of the 3-strips leadset, produced cardiac positions that were on 
average more accurate than the 3-strips v2, which had more leads. In 
fact, the 3-strips v2 leadset produced inferior results as compared to all 
of the other 3-strip variations. We suspect that the difference in number 
of electrodes between 3-strips v2 and the other lead Sets (v2: 53 elec-
trodes, v7: 16 electrodes for example) plays a less important role than 
the information content specific to the electrodes of the v7 Set. In other 
words, lead placement seemed to be more important in many cases than 
number of leads, as seen for example by comparing the 9-lead leadset 
with the 1-strip leadset (34 leads). In this case, the 9-lead leadset out-
performed the geometric reconstruction with the 1-strip leadset, which 
we attribute to the better spatial coverage of the 9-lead leadset. We 
observed that cases with higher geometric reconstruction error than 
with the full leadset, such as the orthogonal and 1-strip sets, inaccurately 
reconstructed the X and Z parameters in particular (Supplemental 
Fig. 3). 

ECGI accuracy was also improved by optimization in all leadsets, 
with similar trends in performance as for the geometric error (Fig. 10). 
In all cases, the geometric optimization also minimized ECGI variability 
substantially, even when very few leads were used for geometric opti-
mization. We observed improvements in ECGI solution accuracy and 
variability that were comparable to using the full 771 leadset with as few 
as 16 leads (3-strips v7). These reduced leadsets allow for reduced 
computational complexity during geometric optimization while still 
providing robust cardiac position estimation. 

4.5. Limitations 

The main limitation of the geometric optimization framework 
described here is its inability to resolve consistently the absolute cardiac 
position. As can be seen in the results for Position Set 2, relative posi-
tions are accurately reconstructed, but absolute position can be more 
difficult to discern. This features is thought to be a result of a null space 
that exists in the associated optimization problem due to the fact that the 
method relies on relative differences in the BSP maps to resolve cardiac 
position. Position Set 1 avoids this problem by having a larger range of 
motion, thereby restricting the space of possible sets of relative positions 
available to the optimization. A future improvement to this method 
would be to implement regularization operations to enforce assumptions 
such as known cardiac positions or other information. Such known po-
sitions could be derived from either static imaging (such as a CT or MRI) 
or more coarse but more easily applied imaging modalities such as ul-
trasound, which could provide approximate known cardiac positions 
associated with specific BSP map recordings. The optimization space 

could also be reduced when a low range of motion is suspected. Even 
without addressing this limitation, our geometric optimization frame-
work was still able to reduce the variability in ECGI solution accuracy 
that is linked to ambiguity in heart position. 

A further limitation of the study was the use of simulated datasets for 
validation. While simulations rarely capture the true variability that 
arises in the biological application, they do offer highly controlled 
conditions in a setting where absolute ground-truth heart position is 
known and to which known variations could be applied. This framework 
allowed us to robustly examine the performance of the geometric 
correction framework under a wide variety of conditions. Naturally, 
future studies will be needed to validate this approach on experimental 
and eventually clinical data. Our simulations were also based on a single 
torso geometry that did not contain internal organs, both of which 
provide additional types of modeling uncertainty. Our goal, however, 
was to focus on a challenging and known source of error—the position of 
the heart within the torso. The type of motion we modeled was also 
along a small set of positions within the torso geometry. The heart moves 
with respiration, with contraction, and with body position, which may 
encompass more positions than we tested here. However we have 
demonstrated that the optimization method we propose can compensate 
for errors associated with cardiac motion. Moreover, the approach we 
describe has substantial flexibility and could be adapted to other sources 
and types of geometric error. We also limited the evaluation to a single 
set of electrograms as the cardiac source to be reconstructed for most of 
the study. We assume that the cardiac source is the same between 
heartbeats, however beat to beat variability is a relevant physiological 
concern. To address this limitation, we created the aVp1:40 activation 
sequence set, with promising results. However, a more robust exami-
nation of the effects of beat to beat variability on our method is a natural 
future step. Furthermore, inclusion of multiple activation sequences 
types simultaneously is a clinically useful target for improvement of our 
algorithm. 

The use of simulated datasets also introduces another limitation, in 
that the same forward solver was used in both the generation of the BSP 
signals and the inverse formulation. This is regarded as an ‘inverse 
crime’ as synthetic data generated in this way is free of many of the 
common sources of error and can lead to overconfidence in the resulting 
inverse solutions. To mitigate this overconfidence, we have added white 
noise to the generated BSP signals, a practice that conforms to standards 
in the field [30–33]. In this study it was necessary to have the full control 
of synthetic BSP data in order to thoroughly validate the performance of 
our algorithm in a scenario in which true cardiac position and EGM were 
known. Other options, e.g., generating the synthetic BSPM with alter-
native numerical solutions or adding small errors in the torso/heart 
geometries to introduce further error, are each fraught with their own 
weaknesses as it is unclear how much of such errors to add in order to 
replicate real world conditions.Future studies will be needed to address 
this limitation, e.g., using experiments in which the heart position is 
moved in a controlled manner concurrently with BSP and EGM re-
cordings. Despite the limitation introduced using synthetic BSP data, the 
datasets presented in this study allowed for control over aspects (e.g., 
ranges of motion, number of positions, accuracy of true cardiac position, 
and control of cardiac source potentials) that would be impractical in an 
experimental setup. 

A further limitation of all studies that make use of BSP mapping is the 
inconsistent application of leadsets. The range of numbers of electrodes 
described in the literature is broad, e.g., 32–300, as is the placement 
relative to anatomical landmarks [34]. In consequence, the success of 
any approach based on BSP mapping could be expected to depend on the 
specific leadset. To address this source of variability, we included a 
range of limited-lead sampling in the present study and achieved 
acceptable results even with greatly reduced numbers of leads. 
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4.6. Prospective view 

The motivation for optimizing to account for variable (or incom-
pletely known) heart position was the observation that this is a common 
source of error in the forward model that is the basis for ECGI. However, 
generalizations to include the other organs such as the lungs would be 
straightforward as long as the appropriate position constraints were 
applied to avoid surface crossings. Furthermore, addressing other 
modeling errors would only require including parametrerizations of the 
modeling errors in the input set and applying them during the forward 
model generation. Such modeling errors and areas of uncertainty 
include organ conductivity, electrode placement, torso shape, among 
others [35–38]. Examination of the effects of these errors and un-
certainties has been explored in a number of other studies. Application 
of our optimization framework could allow for resolution of some of 
these areas of uncertainty and aid in the creation of patient specific 
digital-twin models. Increases in complexity may require additional 
constraints, but the flexibility of our optimization framework to allow 
for reconstruction of other variables of interest presents a powerful tool 
for improving ECGI. 

We note that our geometric reconstruction method provides a way to 
improve contemporary ECGI implementations with minimal changes or 
additional costs to the clinical workflow, as BSP recordings lasting for 
multiple consecutive beats can be readily obtained. These multiple re-
cordings can then be used to optimize the geometric model and improve 
solution accuracy and reliability as we have shown in this study. Such 
continuous recordings in combination with our geometric correction 
methods could then be fed into further advanced methods for improving 
the ECGI solution, such as applying the joint inverse method to achieve a 
single inverse solution which takes into account all of the positional 
variation [19]. 

A possible application of this geometric optimization framework 
would be in the creation of an ‘imageless’ ECGI system, that would not 
rely on MRI or CT scans for the cardiac geometric model. Instead, such a 
method would utilize either a generic geometric model or one based on 
some previous imaging study. Our geometric correction framework 
could then optimize the placement of the heart inside the torso without 
the need for costly imaging modalities such as MRI. Without the need for 
advanced medical imaging and subject-specific segmentation to 
construct the torso and cardiac geometries, the barrier to use ECGI 
would be greatly reduced. Such a method would still require addressing 
the limitation of the null space present in the method proposed in this 
study. As a compromise, less complicated and costly imaging modalities 
such as ultrasound could provide enough information to constrain the 
geometric reconstruction and reduce ambiguity in the heart position. 
We also note in our study that we achieved geometric reconstruction and 
improved ECGI accuracy on par with using the maximum sampling 
leadset (the full leadset) with many of the reduced sampling leadsets, 
including the 9 lead leadset. Such limited leadsets allow for a lighter 
computational burden in addition to being more feasible in many clin-
ical scenarios. 

Our implementation of this geometric optimization framework 
leveraged the matlab parallel processing toolbox and was executed using 
high end computational resources. However, the optimization was far 
from real time, with most cases taking upwards of an hour to complete. 
We anticipate that the computational efficiency of the current imple-
mentation could certainly be improved. An implementation in lan-
guages such as C++ or python could allow for leveraging of GPU based 
computations, which we anticipate could result in substantial speedup. 
Further development of this optimization framework to reduce 
computation time could further improve its eventual clinical utility. 

5. Conclusions 

In this study we have presented and validated a framework to correct 
geometric error in the torso model for use in ECGI. Specifically we have 

targeted a common source of error in ECGI, errors in localization of the 
heart within the torso. We have shown that our geometric correction 
framework is able to reconstruct the cardiac position using only body 
surface potential recordings in a set of in-silico experiments based on 
actual canine experimental recordings. We also examined the effect of 
geometric correction on ECGI solutions, and showed that our geometric 
correction framework resulted in reconstructions with increased accu-
racy and reduced variability. 

We explored the use of our optimization framework to correct for 
geometric errors, specifically cardiac mislocalization. Generalizations to 
other sources of error in ECGI would be straight forward. For example, 
other parameters of the forward model such as conductivity and position 
of other organs of interest could be optimized in a similar manner. We 
even speculate that this framework could open the door for imageless 
ECGI methodologies and even estimate the shape of the heart to some 
degree using a shape model parameterization of the heart such as the 
one described in Tate et al. [39]. The optimization framework presented 
here provides a unique opportunity to address a variety of sources of 
error common in ECGI implementations, by leveraging fully noninvasive 
measurement techniques. 
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