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Abstract. The provision of appropriate time integration methods for the Material Point Method (MPM)
involves considering stability, accuracy and energy conservation. A class of methods that addresses
many of these issues are the widely-used symplectic time integration methods. Such methods have good
conservation properties and have the potential to achieve high accuracy. In this work we build on the
work in [5] and consider high order methods for the time integration of the Material Point Method. The
results of practical experiments show that while high order methods in both space and time have good
accuracy initially, unless the problem has relatively little particle movement then the accuracy of the
methods for later time is closer to that of low order methods. A theoretical analysis explains these results
as being similar to the stage error found in Runge Kutta methods, though in this case the stage error arises
from the MPM differentiations and interpolations from particles to grid and back again, particularly in
cases in which there are many grid crossings.

1 INTRODUCTION

The Material Point Method (MPM) is often described as a solid mechanics method that is derived [16]
from the fluid implicit particle, FLIP and PIC methods. MPM has been very successful when applied
to very many large deformation problems. However some of the properties of the method are still not
as well-understood as they might be in areas such as time integration. MPM time integration is usually
undertaken with a Symplectic Euler ( Euler-Cromer) method or some variant of Stormer-Verlet type
methods. The relationship between MPM time integration and symplectic time integration methods is
considered by [6]. Stormer-Verlet type methods are used by [17], [19] and many others. The energy
conservation properties of Stormer-Verlet methods for MPM are considered by [5] and a more general
survey is [10]. Overall the Stormer-Verlet method has third order accuracy locally, has good conservation
properties, is very widely used in many applications such as molecular dynamics and planetary orbits and
dates back to Newton as was demonstrated by Feynman see [10].

While such methods are sufficient for low-order versions of MPM, the use of higher order spline type
methods in MPM is now increasingly popular following [15]. This naturally suggests the use of higher-
order time integration methods such as the symplectic methods based upon Runge-Kutta-Nystrom meth-
ods e.g [8]. Some methods of this type were considered by [19] before being rejected in favor of a lower
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order method with the comment ”A number of different time integration schemes have been investigated
for use with GIMP including Runge-Kutta, Runge Kutta Nystrom, Newmark methods and multistep
methods. In the authors experience few of these methods have been able to achieve their formal level of
accuracy.” Similarly [2] found no real improvements in using higher order spline methods in space.

In order to investigate this further a simple model vibrating bar problem used by [9], is considered with
different time integration schemes and similar behavior to that seen by [19] found. However when a
simple three component ordinary differential equations model is derived that has some of the structure
of MPM, then the level of accuracy expected is seen. Adding sufficiently large errors consistent with the
differentiation and interpolation errors found in MPM degrades the performance of all the methods to
that of the low-order methods for this model problem.

The issue of whether or not it is the low-order accuracy in space that is problematic is considered by
using high-order spline methods based upon the Matlab spline toolbox [12]. Again while the initial
accuracy is good, longer time accuracy is not as good. Finally a simple theoretical analysis explains
this reduced accuracy. While order-reduction in Runge-Kutta methods for partial differential equations
is well understood going back to [18] and also applies to Runge-Kutta Nystrom Methods [1], the phe-
nomenon observed here is not related to the boundary conditions ( as zero Dirichlet conditions are used),
but arises from the differentiation and interpolation errors that occur when moving from particles to the
grid and back again. This also matches the results seen for displacement error by the author [5] where the
Stormer-Verlet Method provides much better energy conservation the Symplectic Euler method but the
displacement errors are very similar. The overall conclusion is that there is scope for using high-order
methods in space and time with MPM but further investigation is needed in how to do so and when.

2 MPM MODEL PROBLEM

The now standard MPM model used here follows [9] in being a pair of equations connecting velocity v,
displacement u, stress σ and density ρ (here assumed constant):

Du
Dt

= v, (1)

ρ
Dv
Dt

=
∂σ

∂x
+b(x, t), (2)

with a linear stress model σ = E ∂u
∂x for which Young’s modulus, E, is constant, a body force b, which

is initially assumed to be zero, and with appropriate boundary and initial conditions. For convenience a
mesh of equally spaced N+1 fixed nodes Xi with intervals Ii = [Xi,Xi+1] , on on the interval [a,b] is used
where

a = X0 < X1 < ... < XN = b, (3)

h = Xi −Xi−1. (4)

It will also be assumed that periodic boundary conditions exist, together with appropriate initial condi-
tions.
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3 THE MPM METHOD

In considering time integration methods for MPM, the model problem above will be used as all the
analysis and derivation does apply more generally and in multiple space dimensions with obvious modi-
fications. It will also be assumed that are np particles initially between each pair of nodes, situated at xn

p
points where at each time step, tn = δt ∗n, where n is the nth time step, and the computed displacement
at the pth particles will be written as un

p = u(xn
p, t

n). The calculation of the internal forces in MPM at the
nodes requires the calculation of the volume integral of the divergence of the stress [19] using

f int
i (t) =−∑

p
Dpi(xn

p(t))σp(t)Vp(t) (5)

In this case the subscript pi represents a mapping from particles p to node i while the subscript ip would
represent a mapping from nodes i to particles p. The negative sign arises as a result of using integration
by parts [9]. The mass at node i is defined by

mi(t) = ∑
p

mpSpi(xn
p(t)) (6)

The initial volume of the particles is uniform for the np particles in an interval. The particle volumes are
defined using the deformation gradient, Fn

p , and the initial particle volume,V 0
p ,

V n
p = Fn

p V 0
p , where V 0

p ,=
h
np

, where F0
p = 1 (7)

The deformation update equation is

Ḟp(t) =
∂v
∂x

(xp(t), t)Fp (8)

where the spatial velocity derivatives at particles are calculated using nodal velocities as

∂v
∂x

(xp(t)) = ∑
i

Dip(xp(t))vi(t) (9)

The equation for the particle position update is
ẋp(t) = vp(t) (10)

While the stress update equation is, using the appropriate constitutive model and Young’s Modulus, E,

σ̇p(t) = E
∂v
∂x

(xp(t)) (11)

From (5,6) the acceleration equation in the MPM method in this simple case is

ai(t) =
−1
mi

∑
p

Dpi(xp(t))σp(t)Fp(t)V 0
p (12)

The equation to update velocity at the nodes, as denoted by vn
i is then given by

v̇i(t) = ai(t) (13)

The equation for the update of the particle velocity is then
v̇p(t) = ap(t) (14)
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where the value of the acceleration at a point xn
p is given by interpolation based upon nodal values of

acceleration
ap(t) = ∑

i
Sip(xp(t))ai(t) (15)

4 THE SYMPLECTIC EULER TIME INTEGRATION METHOD FOR MPM

In solving the system of equations defined above by equations (5) to (15) one approach used is to order
the equations in a certain order (stress first) and then to solve them in turn using explicit methods.
Differences in how the equations are solved corresponds to whether or not the stress is updated first
or last in a timestep, a choice that is discussed at length by [3] and [7]. These two different choices are
related to the use of the semi-implicit Euler A or B method, [6]. The nodal velocity is initially given by

vn
i = ∑

p
Spi(xn

p)
mp

mi
vn

p (16)

At the beginning of each subsequent step it is assumed that particle positions and velocities xn
p and vn

p,
stresses and deformation gradients σn

p and Fn
p and nodal velocities vn

i exist. While perhaps not optimal,
the stress first approach is used as this fits with the form of symplectic higher order time integration
methods such as [8]. The nodal values of velocity are used to calculate a velocity gradient that is used to
update the stress and deformation gradients at particles

∂v
∂x

(xn
p) = ∑

i
Di,p(xn

p)v
n
i (17)

Fn+1
p = Fn

p +dt
∂v
∂x

(xn
p)F

n
p (18)

σ
n+1
p = σ

n
p +dtE

∂v
∂x

(xn
p)F

n
p (19)

These values of the stress and the deformation gradient are then used to define nodal accelerations using
equations (12). The equation to update the velocities at the nodes is then given by

vn+1
i = vn

i +dtan
i (20)

The value of the acceleration at a point xn
p is given by interpolation based upon nodal accelerations as

an
p = ∑

i
Sip(xn

p)a
n
i (21)

The equations for the update of the particle velocities and positions are then

vn+1
p = vn

p +dt ∑
i

Sip(xn
p)a

n
i (22)

xn+1
p = xn

p +dtvn
p (23)

The Stormer Verlet time integration method is an alternative approach to time integration (See Hairer
et al.[10]). Applying the method of p. 407 of [10] requires one extra step over the Symplectic Euler
stress last or stress first methods [6, 3] to define both nodal and particle velocities, and solution values at
particle points at half time step values, but has better energy conservation properties [5].
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5 RUNGE-KUTTA NYSTROM METHODS

The form of these methods at each of s stages is similar to that of that Symplectic Euler A method or
MPM stress-first approach. Let the values of particle velocity, position, stress and deformation gradient
at the sth stage of the step to tn+1 from tn be given by vn+1,s

p ,xn+1,s
p ,σn+1,s

p ,Fn+1,s
p and let the nodal velocity

be V n+1,s
i . Furthermore let the values at stage 0 be the values at the time step tn.

For each of the stages we perform the following steps. Updated particle positions are calculated using

xn+1,s
p = xn+1,s−1

p +(c j − c j−1)dtvn+1,s−1
p (24)

The derivatives of velocity are used to calculate a velocity gradient that is used to update the stress and
deformation gradients at particles

∂v
∂x

(xn+1,s−1
p ) = ∑

i
Di,p(xn+1,s−1

p )vn+1,s−1
i (25)

Fn+1,s
p = Fn+1,s−1

p +(c j − c j−1)dt
∂v
∂x

(xn+1,s−1
p )Fn+1,s−1

p (26)

σ
n+1,s
p = σ

n+1,s−1
p +(c j − c j−1)dtE

∂v
∂x

(xn+1,s−1
p )Fn+1,s−1

p (27)

These values are then used to calculate the nodal accelerations

an+1,s
i =

−1
mi

∑
p

Dpi(xn+1,s
p )σn+1,s

p Fn+1,s
p V 0

p (28)

The equation to update the velocities at the nodes is then given by

vn+1,s
i = vn+1,s−1

i +b j dt an+1,s
i (29)

The value of the acceleration at a point xn
p is given by interpolation based upon nodal accelerations is

an+1,s
p = ∑

i
Sip(xn+1,s

p )an+1,s
i (30)

The equation for the update of the particle velocity is then

vn+1,s
p = vn+1,s−1

p +b j dt ∑
i

Sip(xn+1,s
p )an+1,s

i (31)

A second order Runge-Kutta Nystrom method is given by c1 = 0,c2 = 1.0,b1 = 0.5. The fourth order
but five stage method of Calvo and Sanz Serna [8] is given by the coefficients in Table 1
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Table 1: Coefficients of 4th Order RKN Method [8]

i bi ci

1 0.061758858135626325 0.0
2 0.338978026553643355 0.205177661542286386
3 0.614791307175577566 0.608198943146500973
4 -0.140548014659373380 0.487278066807586965
5 0.125019822794526133 1.0

6 COMPUTATIONAL EXPERIMENTS PROBLEM 1

In order to compare the time integration schemes the standard 1D bar problem used by [9] is employed,
see [14], for further details. This problem is defined by:

σ = E
∂u
∂X

= E(F −1), (32)

where E is the Young’s modulus. The analytic solution for displacement is:
u(X , t) = Asin(2πX)sin(cπt), (33)

where c =
√

E/ρo, A is the maximum displacement While the body force normally used is,
b(X , t) = 3A(cπ)2u(X , t) (34)

here the value of E was multiplied by 0.25 instead of using the body force. The periodic nature of the
analytic solution means that periodic zero Dirichlet boundary conditions are used. The initial conditions
for the updated Lagrangian description of the particles are as in previous experiments [9]. The cell width
is h = 0.05, the material density is ρ0 = 1 and the time interval is from t = 0 to t = 1. The initial spatial
discretization uses two evenly spaced particles per cell with the spatial domain being [0,1]. The Young’s
modulus values are E = 16,256,1000 and 10,000. The maximum displacement is A = 0.05 and the time
step values used are dt = 10−6,10−5,10−4,10−3. For the values given of A and E there are 2K, 8K, 16K
and 57K particles crossing grid nodes. All the errors shown are calculated using the analytical solution
and the calculated solution with an infinity norm being used.

Experiments were undertaken with the MPM GIMP method [4] The experiments used a fixed time step
of 1e− 4 as shown in Table 1 a value of * indicates that particles leave the domain and integration is
halted. The time integration methods used were as follows

• GIMP Method with an equal number of steps to that of the sub-steps in RKN4 below

• RKN 4th order by Calvo and Sanz-Serna [8]

Experiments were also conducted with a number of other methods such as RKN 3rd order methods.
From these results there does appear to be a slight advantage in using a higher order time integration
method, until the last case where the integration blows up. Nevertheless the improvement is slight. In
what follows this observation will be explained.
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Table 2: Representative Results dt = 1.0e-4

A E EulerA Euler A RKN4 RKN4
U Error σ Error U error σ Error

5e-2 16 8.0e-4 4.5e-1 1.7e-3 6.4-1
5e-2 256 1.0e-2 2.5e+1 1.5e-3 1.6e+2
5e-2 1000 6.2e-3 1.0e+2 5.3e-3 1.0e+2
5e-2 10000 1.5e-2 1.7e+3 * *

7 MODEL PROBLEM 2

In order to understand and model the results in Table 2 a system of three odes that mimics the form of
the MPM equations was constructed. The three equations are defined by:

dx
dt

= v(t) (35)

dσ

dt
= 3Eπv(t) (36)

dv
dt

=−σ(t)π+2π
2Ex(t) (37)

where C = 8,16 or 32 and E =C2. The analytic solution to these equations is given by

x(t) = sin(Cπt), (38)

v(t) =Cπcos(Cπt) (39)

σ(t) = 3Eπsin(Cπt) (40)

The application of symplectic methods preserves the Hamiltonian given by

H(x,v,σ) = v2 +
σ2

3E
−2Eπ

2x2 = Eπ
2 (41)

For example, applying a symplectic Euler method gives the equation:

vn+1 = vn −dt(σn −2Eπ
2xn) (42)

xn+1 = xn +dt(vn+1 + IE) (43)

σ
n+1 = σ

n +dt3Eπ(vn+1 + IE) (44)

In this case the extra term IE is used as a model for the error in velocity both from interpolation and
differentiation in the full MPM Method and when IE = 0 the analytic solution is the exact solution to the
ODE system. This method approximately preserves H(x,y). The Stormer-Verlet method and the RKN
method can be similarly perturbed for this model problem by adding IE to the velocity once created.

The results in Table 3 with IE = 0 show that the RKN4 method does indeed give superior results to the
Stormer Verlet method in terms of both Velocity and Hamiltonian error. Table 4 however shows that as
the model term, IE, for the velocity error is increased then when the error is O(dt2) only, the methods
perform as expected. When the IE term is larger then the methods all perform identically. The conclusion
perhaps is that when the velocity error is large, then it is not clear that higher order time integration is
useful.
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Table 3: Global Maximum Errors in MPM model IE = 0

Method Stormer-Verlet RKN4 Stormer-Verlet RKN4
dt/Errors Velocity Velocity Hamiltonian Hamiltonian
1.0e-2 1.57 1.7e-4 1.0 1.7e-3
1.0e-3 1.5e-2 1.7e-8 1.0e-1 1.87e-7
1.0e-4 1.6e-4 5.6e-11 1.0e-3 6.3e-11
1.0e-5 1.6e-6 1.0e-9 1.0e-5 1.8e-10
1.0e-6 1.2e-8 3.4e-9 1.0e-7 4.1e-10

Table 4: Global Maximum Errors in MPM model dt = 1.0e-4 with varying IE

Method Euler A StorVer RKN4 Euler A StorVer RKN4
Error Velocity Velocity Velocity Hamiltonian Hamiltonian Hamiltonian
IE=1.0e-8 3.2e-2 1.6e-4 2.0e-8 7.9e-1 4.0e-3 2.0e-8
IE=1.0e-4 3.2e-2 2.7e-4 2.0e-4 8.0e-1 1.0e-2 1.0e-1
IE=1.0e-2 4.3e-2 2.0e-2 2.0e-2 1.7 1.0 1.0

8 HIGH ORDER SPLINES MPM AND RESULTS ON PROBLEM 3

As the previous section shows that it is possible to achieve higher order accuracy by reducing velocity
errors, one approach might be to use higher order methods spatially. While quadratic or cubic spline
methods have been used with MPM, they do not always appear to deliver better accuracy, [2]. It is now
easy to use the Matlab spline toolbox to introduce higher order splines still, albeit with a slightly different
formulation when calculating the acceleration. The following steps are used in a prototype algorithm that
here is described in a stress-last form.

1. The Matlab spline route spapi is used to create a high order spline through the stress values at the
current particle points. This interpolant is differentiated using fnder and evaluated at nodes using
fnval to calculate nodal accelerations in what amounts to a strong form of the differential equation
as opposed to the usual weak form that uses integration by parts.

2. The nodal accelerations are used to increment nodal velocities and interpolated back to particles
to create particle accelerations. These in turn are used to create updated particle velocities.

3. A spline based on the nodal velocities is differentiated using fnder to calculate velocity derivatives
at particles. The velocity derivatives are used to increment the particle stresses and deformation
gradients.

A stress-last algorithm is similarly and easily derived. While the use of the Matlab toolbox is clearly not
particularly efficient it does allow ideas to be quickly evaluated.

The use of the higher order spline approach on the model MPM problem described in Section 6 but
now with A = .00725 and E = 64 with dt = 1.0e− 3 or dt = 1,0e− 4 has almost no grid crossing and
Stormer-Verlet time stepping yields the results in Table 5. With a spline approach, the improved Verlet
scheme of [13] (eqn. 15) is used as it gives slight accuracy improvements. In this smooth case there is a
clear accuracy advantage in using a fifth order spline method.
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Table 5: Displacement Errors in MPM Problem , np = 4

Method GIMP GIMP Cubic Spline Quintic Spline Quintic
dt = 1e-3 dt=1e-4 dt = 1e-3 dt = 1.0e-3 dt = 1e-4

Time U Error U Errors U Error U Error U Error
1e-3 4.5e-8 2.7e-8 2.6e-11 1.5e-13 9.6e-14
1e-2 1.7e-6 1.3e-7 8.6e-9 7.5e-10 8.8e-10
2e-2 5.7e-6 2.6e-7 2.1e-8 1.2e-8 1.8e-8
1e-1 4.3e-5 3.2e-6 3.7e-7 1.1e-6 1.0e-6
2e-1 1.2e-5 1.6e-6 3.8e-7 1.6e-6 1.6e-6
5e-1 5.4e-6 9.3e-7 1.3e-6 1.5e-7 2.0e-8
1.0 9.3e-6 1.8e-7 2.7e-6 3.2e-7 4.3e-8

9 PROTOTYPE HIGH ORDER SPLINES without MPM AND RESULTS ON PROBLEM 3

In order to investigate the effect of that part of the error error due to interpolation, a version of the spline
approach without the MPM mapping to the nodes was used. As in the previous experiment, the following
steps are used in a prototype algorithm that here is described in a stress-last form.

1. The Matlab spline route spapi is used to create a high order spline through the stress values at
the current particle points. This interpolant is differentiated using fnder and evaluated at particles
using fnval to calculate nodal accelerations in what amounts to a strong form of the differential
equation as opposed to the usual weak form with integration by parts.

2. The particle accelerations are used to increment particle velocities.

3. A spline based on the particle velocities and zero velocities at the boundaries is differentiated using
fnder to calculate velocity derivatives at particles. The velocity derivatives are used to increment
the particle stresses and deformation gradients.

4. In this case the standard classic Runge Kutta fourth order method is used with cubic and quintic
splines.

The results in Table 6 show that interpolation makes some difference but is not in this case significant
when the results of Tables 5 and 6 are compared. A more challenging problem would seem to be the
lack of smoothness on the solution whether or not an MPM formulation is used. This explored below by
reconsidering the problem in Section 6 with a higher resolution grid and more particles per element.

10 RESULTS FOR THE PROBLEM IN SECTION 6

In order investigate if the errors in Table 2 are due to poor spatial resolution, four particles per interval
np = 4 and a smaller spatial interval h = 0.0125 were used. The results in 8K, 32K, 64K and 220K grid
crossings as E is increased. The results are shown in Table 7 and show that while the spline methods
perform well for small values of E this does not happen with large values of E and a large number of
”grid crossings” indicating considerable particle movement.
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Table 6: Displacement Errors in Problem 3, No MPM nodes, np = 4

Method Cubic Spline Quartic Spline
dt=1.0e-3 dt=1e-4

Time U Error U Error
1e-3 9.3e-14 9.2e-14
1e-2 9.6e-10 9.0e-10
2e-2 1.4e-8 1.4e-8
1e-1 1.1e-6 1.0e-6
2e-1 1.6e-6 1.6e-6
5e-1 1.7e-7 1.6e-8
1.0 3.5e-7 3.2e-8

11 INTERNAL STAGE ERRORS IN TIME INTEGRATION

In order to understand how the displacement errors grow it is sufficient to examine what happens inside
a single time step and to consider the three equations (20),(22)and (23). The error in the nodal velocity
evn+1

i then depends on the error in the nodal acceleration ean
i as follows:

evn+1
i = dtean

i (45)

There is then an error in the particle acceleration, ean+1
p , when the value of the acceleration at a particle

point xn
p is given by interpolation based upon nodal accelerations given by

ean+1
p = ∑

i
Sip(xn

p)ean
i + IeAip (46)

where the underlying interpolation error of the method using the coefficients Sipis denoted by IeAip. The
error in the update of the particle velocity and positions is then

evn+1
p = dt(∑

i
Sip(xn

p)a
n
i + IeAip) (47)

and so the local displacement error over one time step exn+1
p is given by

exn+1
p = dtevn+1

p (48)

or as

exn+1
p = dt2ean+1

p (49)

Which is O(dt2) regardless of the spatial accuracy in the terms ean
i and IeAip. Standard theory from the

numerical integration of initial value problems tells us that the global displacement error must be O(dt).
This situation is similar to the order reduction seen when Runge-Kutta or Runge-Kutta Nystrom methods
are applied to the solution of partial differential equations, see [1, 11, 18]. There is a fundamental
difference in that in those cases the reduction in order depends on the boundary conditions and does not
happen for zero Dirichlet boundary conditions such as those used here. In the case considered here the
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Table 7: Representative Results dt = 1.0e-4

EulerA EulerA RKN4 RKN4 RKnoMPM RKnoMPM
GIMP GIMP GIMP GIMP Cubic Cubic

A E U Error σ Error U error σ Error U error σ error
6.25e-3 16 3.1e-6 2.6e-3 1.7e-4 2.3e-2 3.5e-6 3.5e-4
6.25e-3 256 9.6e-6 5.8e-2 4.6e-5 1.4e-1 1.4e-5 3.8e-2
6.25e-3 1000 4.4e-5 7.2e+1 2.4e-4 2.0 1.4e-3 2.3e+1
6.25e-3 10000 8.6e-5 9.7 1.0e-5 8.2 * *

overall error arises from interpolation and differentiation errors and the way that they are propagated
through each time step or each stage of a time step. From [1, 18] the same analysis as shown above
may be applied to the Stormer-Verlet method and to each stage of the Runge-Kutta Nystrom methods
considered above. The obvious conclusion is that if the interpolation and differentiation errors are too
large they will remove the need for accurate time integration methods, exactly as is shown in the simple
example of Section 7. There is no real advantage in using the spline method particularly with E = 10000
when particles exit the mesh and integration is halted.

12 CONCLUSIONS

The results here show that it is more challenging to make use of high order methods with MPM than
might be thought. For problems with comparatively little particle movement higher order methods work
well and provide increased accuracy in space and time. In the case of problems with more grid movement
performance is not so good however and needs to be investigated further. It is clear if there is a large
spatial error then there is little point is using high-order time integration. While this observation is not
new for partial differential equations, the additional complexity in MPM arising from moving particles,
differentiation and interpolation from particles to nodes considerably complicates matters.
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