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PREFACE

PREFACE

This volume contains the full papers presented at the VI International Conference on 
Particle-based Methods (PARTICLES 2015), held in Barcelona on 28 - 30 Ocober, 2019. 
The fifth  previous conferences of the series were held in Barcelona, Spain, in the years 
2009 and 2011, and in Stuttgart, Germany, in September 2013, in Barcelona on 2015, 
and in Hannover 2017.

Particles 2019 addresses fundamentals and applications of particle-based computatio- 2019 addresses fundamentals and applications of particle-based computatio-9 addresses fundamentals and applications of particle-based computatio-
nal methods, including both discrete modeling concepts and discretization methods. A 
total of 246 lectures, including 7 plenary lectures and 12 invited sessions cover discrete 
element methods, smoothed particle hydrodynamics, material point methods, moving 
particle simulations and meshless methods as well as aspects of parallel computing for 
solid und fluid mechanics, multi-scale and multi-phase problems, damage, fracture and 
fragmentation, granular materials, soft matter, geo- and bio-mechanics, micro-macro 
transitions, coupling of discrete and continuous models and discretizations, fluid-struc-
ture interaction and industrial applications.

The conference is held under the auspices of the European Community on Computational 
Methods in Applied Sciences (ECCOMAS) and the International Association for 
Computational Mechanics (IACM). The organizers would like to thank all the partici-
pants and the supporting organizations for their help in making PARTICLES 2019 pos-
sible.

PARTICLES 2019 Organizers

Eugenio Oñate (Chair)
CIMNE / Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

M. Bischoff
Universität Stuttgart, Germany

D.R.J. Owen
Swansea University, United Kingdom

P. Wriggers
Leibniz Universität Hannover, Germany

T. Zohdi
University of California, Berkeley, USA

7





ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS 
 
The conference organizers acknowledge the support towards the 
organization of PARTICLES 2017 to the following organizations: 
 
 
 

  

International Center for Numerical Methods in 
Engineering (CIMNE) 

 

Universitat Politècnica de Catalunya (UPC) 
 

 
Leibniz Universität Hannover 

  

European Community on Computational Methods in 
Applied Sciences (ECCOMAS)  

  

International Association for Computational 
Mechanics (IACM) 

  

 

Computational Particle Mechanics, a Springer 
Journal 

 
 
 
We thank the Plenary Speakers, the Invited Sessions Organizers 
and the Authors for their help in the setting up of a high standard 
Scientific Programme. 

 
 
 
 
 

 
 

9





SUMMARY

SUMARY 

INVITED SESSIONS

IS - Engineering Applications with Smoothed Particle Hydrodynamics ....................... 23
IS - Fracture and Fragmentation with DEM ........................................................... 35
IS - Granular Plasticity .................................................................................... 46
IS - Micro-Macro: From Particles to Continuum ..................................................... 58
IS - New advances on SPH method: Algorithms and Applications ............................. 68
IS - Parallel Algorithms for Particle Systems ........................................................ 80
IS - Particle-Based Methods for the Simulation of Natural Hazards ............................ 93
IS - Vortex Particle Method in Fluid Dynamics ......................................................115

CONTRIBUTED SESSIONS

CS - Bio Medical Engineering ..........................................................................197
CS - Discrete / Distinct Element Method (DEM) I ...................................................218
CS - Geomechanics .......................................................................................377
CS - High Performance Computing ...................................................................423
CS - Industrial Applications .............................................................................434
CS - Lattice-Boltzmann Method (LBM) ...............................................................477
CS - Material Point Method (MPM) .....................................................................522
CS - Meshless methods ..................................................................................567
CS - Mining engineering .................................................................................598
CS - Moving Particle Simulation (MPS ) Methods ..................................................610
CS - Multiphase Flows ...................................................................................656
CS - Smoothed Particles Hydrodynamics (SPH) ...................................................714
CS - Structural Damage ..................................................................................816

11



12



CONTENTS

CONTENTS

INVITED SESSIONS

IS - Engineering Applications with  
Smoothed Particle Hydrodynamics

Headway in Large-Eddy-Simulation within the SPH Models........................ 23
M. Antuono, A. Di Mascio, S. Marrone, D. Meringolo and A. Colagrossi

IS - Fracture and Fragmentation with DEM

Limit Mechanisms for Ice Loads: FEM-DEM and Simplified Load Models ..... 35
J. Ranta, A. Polojärvi and J. Tuhkuri

IS - Granular Plasticity

Role of Sliding Contacts in Shear Banding Affecting Granular Materials ..... 46
J. Liu, F. Nicot, A. Wautier and W. Zhou

IS - Micro-Macro: From Particles to Continuum

Stress Distribution in Trimodal Samples .................................................... 58
D. Liu, C. O’Sullivan and A. Carraro

IS - New advances on SPH method:  
Algorithms and Applications

Mesoscopic Modelling and Simulation of Espresso Coffee Extraction .......... 68
M. Ellero and L. Navarini

IS - Parallel Algorithms for Particle Systems

Multi-Level Load Balancing for Parallel Particle Simulations ...................... 80
G. Sutmann

IS - Particle-Based Methods for the Simulation of Natural Hazards

Evaluation of Dynamic Explicit MPM Formulations for  
Unsaturated Soils ...................................................................................... 93
F. Ceccato, V. Girardi, A. Yerro and P. Simonini

Verification and Validation in Highly Viscous Fluid Simulation  
using a Fully Implicit SPH Method ............................................................103
D. S. Morikawa, M. Asai and M. Isshiki

13



IS - Vortex Particle Method in Fluid Dynamics

Accurate Solution of the Boundary Integral Equation in 2D Lagrangian  
Vortex Method at Flow Simulation Around Curvilinear Airfoils ..................115
I.A. Soldatova, I.K. Marchevsky and K.S. Kuzmina

Comparison of the Finite Volume Method with Lagrangian Vortex  
Method for 2D Flow Simulation around Airfoils at Intermediate  
Reynolds Number .....................................................................................127
K. Kuzmina, I. Marchevsky and E. Ryatina

Lagrangian Vortex Loops Method for Hydrodynamic Loads  
Computation in 3D Incompressible Flows .................................................138
S. A. Dergachev, I.K. Marchevsky and G.A. Shcheglov

Locomotion of the Fish-like Foil under Own Effort ....................................150
Y.A. Dynnikov, G.Y. Dynnikova and T.V. Malakhova

Parallel Implementation of fast Methods for Vortex Influence  
Computation in Vortex Methods for 2D Incompressible  
Flows Simulation ......................................................................................156
E.P. Ryatina, D.D. Leonova and I.K. Marchevsky

Simulation of Butterfly Flapping with the Method of Dipole Domains ........168
G.Y. Dynnikova, S.V. Guvernyuk and D.A. Syrovatskiy

Vortex Particle Intensified Large Eddy Simulation ....................................174
N. Kornev and S. Samarbakhsh

Vorticity Dynamics Past an Inclined Elliptical Cylinder at Different  
Re Numbers: from Periodic to Chaotic Solutions .......................................185
O. Giannopoulou, D. Durante, A. Colagrossi and C. Mascia

CONTRIBUTED SESSIONS

CS - Bio Medical Engineering

Numerical Model of the Mechanical Behavior of Coated Materials in the 
Friction Pair of Hip Resurfacing Endoprosthesis ........................................197
G.M. Eremina, A.Y. Smolin and M.O. Eremin

Numerical Modelling of Bed Sediment Particle Tracking in Open  
Channel with Skewed Box-culvert ............................................................204
I.E. Herrera-Díaz, M. López-Amezcua, N. Saldaña-Robles and J. Zavala Sandoval

CS - Discrete / Distinct Element Method (DEM) I

A Methodology of a Sensitivity Analysis in DEM Experiments ....................218
M. Jahn and M. Meywerk

14



Atomistic Submodel Implementation and Application within  
Microstructure Analysis by Molecular Dynamics ........................................230
I. Trapic, R. Pezer and J. Soric

DEM Modeling of Rockfall Rebound on Protective Embankments ...............238
G. La Porta, S. Lambert and F. Bourrier

DEM Simulation of Triaxial Tests of Railway Ballast Fouled with  
Desert Sand ..............................................................................................250
C. Zamorano, J. Estaire, I. Gonzalez Tejada, P. L. Jimenez Vallejo and C. Valle

Experimental and Numerical Investigations on Parameters  
Influencing Energy Dissipation in Particle Dampers ..................................260
N.J. Meyer and R. Seifried

Laboratory and Numerical Investigation of Direct Shear Box Test ............272
D. Horváth, T. Poós and K. Tamás

Large Deformation Analysis of Ground with Wall Movement or Shallow 
Foundation under Extremely Low Confining Pressure using PIV ...............283
K. Sato, H. Akagi, T. Kiriyama and K. Esaki

Modelling the Soil Heterogeneity in the Discrete Element Model of  
Soil-Sweep Interaction .............................................................................294
K. Tamás and M. Tóth

Numerical and Experimental Tests for the Study of Vibration Signals  
in Dry Granular Flows ...............................................................................305
F. Zarattini, A. Pol, L. Schenato, P. R. Tecca, A. M. Deganutti, F. Gabrieli and L. Palmieri

Optimal Packing of Poly-disperse Spheres in 3D: Effect of the Grain  
Size Span and Shape ................................................................................313
W. F. Oquendo-Patiño and N. Estrada-Mejia

Parameter Identification for Discrete Element Simulation of Vertical  
Filling: In-situ Bulk Calibration for Realistic Granular Foods .....................320
S. Kirsch

Parameter Identification for Soil Simulation based on the  
Discrete Element Method and Application to Small Scale Shallow  
Penetration Tests .....................................................................................332
J. Jahnke, S. Steidel, M. Burger, S. Papamichael, A. Becker and Christos Vrettos

Particle-Structure Interaction using CAD-based Boundary  
Descriptions and Isogeometric B-Rep Analysis (IBRA) .............................343
T. Teschemacher, M.A. Celigueta, R. Wüchner and K.-U. Bletzinger

Rebound Characteristics of Complex Particle Geometries .........................351
P. Pircher and E. Fimbinger

15



Slope Failure Analysis of Minami AsoTateno Area in 2016 Kumamoto 
Earthquakes Using DEM ............................................................................359
K. Esaki, H. Akagi, T. Kiriyama and K. Sato

The Effect of Shape in Granular Materials: Discrete Elements  
Modelling of Geotechnical Tests in Dry Sands ...........................................370
R. Rorato, M. Arroyo, A. Gens and E. Andò

CS - Geomechanics

Influence on Uncertainty of Earthquake Response Analysis Results  
by Initial Particle Arrangements and Cohesion Parameters in  
Extended Distinct Element ........................................................................377
T. Yoshida and H. Tochigi

Role of Inter-particle Friction in Three Dimensional Mechanics of  
Granular Materials ....................................................................................388
S. Yang, W. Zhou, J. Liu, T. Qi and G. Ma

Simulations of Geological Faults with Discrete Element Method ................400
V. Lisitsa, V. Tcheverda and D. Kolyukhin

Stochastic Solution of Geotechnical Problems with Truly  
Discrete Media ..........................................................................................412
I. Tejada

CS - High Performance Computing

Assessment of Nighbour Particles Searching Methods for DEM-based 
Simulations Using CPU and GPU Architectures ..........................................423
L. Angeles and C. Celis

CS - Industrial Applications

DEM Powder Spreading and SPH Powder Melting Models for  
Additive Manufacturing Process Simulations ............................................434
C. Bierwisch

Numerical Investigation of Screw Design Influence on Screw  
Feeding in a Roller Compactor ..................................................................444
K. Awasthi, S. Gopireddy, R. Scherließ and N. Urbanetz

OpenFOAM-Interactive (OFI): An Interface to Control Solvers in  
OpenFOAM ................................................................................................456
A. Singhal, R. Schubert and A. Hashibon

Particle-based Method for Investigation of the Physical Processes  
in the Complex Industrial Tasks ...............................................................466
A. Epikhin, M. Kraposhin, V. Melnikova and S. Strijhak

16



CS - Lattice-Boltzmann Method (LBM)

A Lattice Boltzmann Method in Generalized Curvilinear Coordinates .........477
J. A. Reyes Barraza and R. Deiterding

SHSLBM Simulation of Nanofluid Thermal Convection at High  
Rayleigh Numbers ....................................................................................489
Y. Ma and Z. Yang

Verification and Validation of a Lattice Boltzmann Method Coupled  
with Complex Sub-grid Scale Turbulence Models ......................................510
C. Gkoudesnes and R. Deiterding

CS - Material Point Method (MPM)

A Consistent Boundary Method for the Material Point Method -  
Using Image Particles to Reduce Boundary Artefacts ...............................522
S. Schulz and G. Sutmann

Numerical Modelling of Val dArn Landslide with Material Point Method ....534
G. Di Carluccio, N. Pinyol, P. Perdices and M. Hürlimann

Numerical Study on Load-Settlement Relationships of Shallow  
Foundation under Extremely Low Confining Pressure ...............................543
H. Akagi, K. Sato and T. Kiriyama

Time Integration Errors and Energy Conservation Properties of  
The Stormer Verlet Method Applied to MPM  .............................................555
M. Berzins

CS - Meshless methods

Application of Mixed Meshless Solution Procedures for Deformation  
Modeling in Gradient Elasticity .................................................................567
B. Jalušić, T. Jarak and J. Sorić

Difficulties in Implementation of Viscosity Models in the  
Fragmenton-based Vortex Methods ..........................................................579
O.S. Kotsur and G.A. Shcheglov

Numerical Experiment of the Vortex Shedding from an Oscillating  
Circular Cylinder in a Uniform Flow by the Vortex Method ........................590
Y. Yokoi

CS - Mining engineering

Meshfree Simulations for Solution Mining Processes ................................598
I. Michel, T. Seifarth and J. Kuhnert

17



CS - Moving Particle Simulation (MPS ) Methods

Direct Observation and Simulation of Ladle Pouring Behavior in  
Die Casting Sleeve ....................................................................................610
T. Sugihara, M. Fujishiro and Y. Maeda

Granular Flow Analysis Considering Soil Strength Using Moving  
Particle Simulation Method .......................................................................619
K. Kaneda and T. Sawada

Numerical Analysis of the Eutectic Melting and Relocation of the  
B4C Control Rod Materials by the MPFI-MPS Method ................................626
S. Ueda, M. Kondo and K. Okamoto

Spray Heat Transfer Analysis of Steel Making Process by Using  
Particle-Based Numerical Simulation ........................................................637
T. Taya, N. Yamasaki and A. Yumoto

Two-mass Gyro-Particle as the Tool for Supersonic  
Aeroelasticity Analysis .............................................................................644
S. Arinchev

CS - Multiphase Flows

Effect of Particle Diameter on Agglomeration Dynamics in  
Multiphase Turbulent Channel Flows ........................................................656
L.F. Mortimer and M. Fairweather

Fluid-solid Multiphase Flow Simulator Using a SPH-DEM Coupled Method  
in Consideration of Liquid Bridge Force Related to Water Content ............668
K. Tsuji and M. Asai

Solid Particle Interaction Dynamics at Critical Stokes Number in  
Isotropic Turbulence ................................................................................680
K. Rai, M. Fairweather and L.F. Mortimer

Turbulent Heat Transfer in Nanoparticulate Multiphase Channel  
Flows with a High Prandtl Number Molten Salt Fluid .................................691
B.H. Mahmoud, L.F. Mortimer, M. Colombo, M. Fairweather, J. Peakall, H.P. Rice and D. 
Harbottle

WCSPH for Modelling Multiphase Flows and Natural Hazards ....................702
S. Manenti

CS - Smoothed Particles Hydrodynamics (SPH)

Comparison of Interface Models to Account for Surface Tension in  
SPH Method ..............................................................................................714
S. Geara, S. Adami, S. Martin, O. Bonnefoy, J. Allenou, B. Stepnik and W. Petry

18



Damage Response of Hull Structure Subjected to Contact Underwater 
Explosion ..................................................................................................726
Z. Zhang, L. Wang and H. Hu

Evaluation of Puddle Splash in Automotive Applications using  
Smoothed Particle Hydrodynamics ...........................................................733
M. Menon, G. V. Durga Prasad, K. Verma and C. Peng

Modelling a Partially Liquid-Filled Particle Damper using Coupled  
Lagrangian Methods .................................................................................744
P. Eberhard and C. Gnanasambandham

Monodisperse Gas-solid Mixtures with Intense Interphase Interaction  
in Two-Fluid Smoothed Particle Hydrodynamics .......................................754
O.P. Stoyanovskaya, T.A. Glushko, V. N. Snytnikov and N.V. Snytnikov

Numerical Simulation of 2D Hydraulic Jumps using SPH Method ...............763
J. Lin, S. Jin, C. Ai and W. Ding

Physical Reflective Boundary Conditions Applied to Smoothed  
Particle Hydrodynamics (SPH) Method for Solving Fluid Dynamics  
Problems in 3-D Domains .........................................................................768
C.A.D. Fraga Filho, C. Peng, M.R.I. Islam, C. McCabe, S. Baig and G.V. Durga Prasad

Semi-decoupled Kernel Corrections for Smoothed Particle  
Hydrodynamics .........................................................................................780
C.V. Achim, R.E. Rozas and P.G. Toledo

Simulation of Fluid Structure Interactions by using High Order  
FEM and SPH ............................................................................................795
Sebastian Koch, S. Duczek, F. Duvigneau and E. Woschke

Smoothed Particles Hydrodynamics Simulation of U-Tank in  
Forced Motion ...........................................................................................806
A. Papetti, G. Vernengo, D. Villa, S. Gaggero and L. Bonfiglio

CS - Structural Damage

Particle Damping for Vibration Suppression of a Clamped Plate ................816
M. Saeki, Y. Kazama and Y. Mizobuchi

19



20



LECTURES

LECTURES

21



22
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IS - Fracture and Fragmentation with DEMLimit Mechanisms for Ice Loads: FEM-DEM and Simplified Load ModelsJ. Ranta, A. Polojärvi and J. Tuhkuri

VI International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2019

E. Oñate, M. Bischoff, D.R.J. Owen, P. Wriggers & T. Zohdi (Eds)

LIMIT MECHANISMS FOR ICE LOADS: FEM-DEM AND
SIMPLIFIED LOAD MODELS

JANNE RANTA, ARTTU POLOJÄRVI AND JUKKA TUHKURI

Aalto University

Department of Mechanical Engineering

P.O. Box 14300, FI-00076 AALTO, Finland

e-mail: arttu.polojarvi@aalto.fi

Key words: FEM-DEM, Force Chain Buckling, Local Crushing, Ice Mechanics

Abstract. This work summarizes our recent findings on mechanisms and limits for the
ice loads on wide inclined Arctic marine structures, like drilling platforms or harbour
structures. The fresults presented are based on hundreds of two-dimensional combined
finite-discrete element method (FEM-DEM) simulations on ice-structure interaction pro-
cess. In such processes, a floating sea ice cover, driven by winds and currents, fails against
a structure and fragments into a myriad of ice blocks which interact with each other and
the structure. The ice load is the end result of this interaction process. Using the simu-
lation data, we have studied the loading process, analysed the statistic of ice loads, and
recently introduced a buckling model [1] and extended it to a simple probabilistic limit
load model and algorithm [2], which predict the peak ice load values with good accuracy.
These models capture and quantify the effect of two factors that limit the values of peak
ice loads in FEM-DEM simulations: The buckling of force chains and local ice crush-
ing in ice-to-ice contacts. The work here describes the models and demonstrates their
applicability in the analysis of ice-structure interaction.

1 INTRODUCTION

Development of safe Arctic operations, such as marine transportation, offshore wind
energy and offshore drilling, requires reliable prediction of maximum sea ice loads. The
ice loads arise from a complex and stochastic ice-structure interaction process. This
paper uses 2D combined finite-discrete element method (2D FEM-DEM) simulations to
study the mechanisms that limit peak ice loads on wide, inclined, structures. Particle
based methods, such as DEM and FEM-DEM, allow detailed studies on complex ice
loading scenarios and they are often used in ice engineering [3]. Figure 1 illustrates our
simulations, which have a floating and continuous ice sheet pushed against an inclined
rigid structure. The initially intact ice sheet fails into a rubble pile of ice blocks, which
interact with each other and the structure.

An important feature of discrete element simulations is that they can describe force
chains [4]. In the case of ice-structure interaction, the force chains are chainlike groups of

1
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Figure 1: Snapshots of a 2D FEM-DEM-simulated ice-structure interaction process described by the

length L of the ice pushed against an inclined structure. The ice sheet moves with velocity v and breaks

into ice blocks in the vicinity of the structure. Broken ice forms an ice rubble pile in front of the structure.

The first figure shows the initial vertical velocity perturbation v0. Ice sheet thickness h was 1.25 m here.

Figure is from [9]

ice blocks, or ice floes, that transmit the loads from the intact ice sheet to the structure.
Figure 2 shows a maximum peak ice load event, in which the ice load is transmitted to the
structure through a force chain. Paavilainen and Tuhkuri [5] observed that force chains
exists within the ice rubble mass during peak ice load events.

This paper describes how to quantify the effects of force chain buckling and local ice
crushing on maximum ice loads using fairly simple mechanical models. We first describe
our simulations and a simple buckling model that captures the effect of force chain buck-
ling. We demonstrate that the model predicts the peak ice loads in our simulations and
yields plausible ice floe size predictions. Then we briefly discuss how the model can be
extended to account for the local crushing of ice in contacts. The paper summarizes the
work presented in detail in Ranta et al. [1] and Ranta and Polojärvi [2].

2 SIMULATIONS

The model is based on 2D FEM-DEM simulations, performed with an in-house code
of Aalto University ice mechanics group. The code is based on the models described in
Hopkins [6] and Paavilainen et al. [7] and its results were validated by Paavilainen et al.
[7] and Paavilainen and Tuhkuri [8]. Figures 1a-f describe our simulations, in which an ice
sheet of thickness h pushed against an inclined rigid structure with a constant horizontal

2
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Figure 2: Snapshot from a simulation showing a force chain — a sequence of ice blocks in contact due to

high compressive stress — transmitting the load from the intact ice sheet, moving towards the structure

from the left. Colors indicate the normalized particle stress [4]. Figure is from [2].

velocity v = 0.05 m/s. Approximately 100 m from the structure, a viscous damping
boundary condition is used to mimic a semi-infinite ice sheet. The sheet itself consists of
rectangular discrete elements connected by viscous-elastic Timoshenko beams, which fail
at locations where the beams meet a pre-defined failure criterion [10]. The beams went
through a cohesive softening process upon failure [11], with the energy dissipated due
to this process matching that of the fracture energy of ice [12]. Table 1 gives the main
parameters of the simulations.

Contact forces were solved using an elastic-viscous-plastic normal contact force model,
together with an incremental tangential contact force model with Coulomb friction [6, 7].
The model describes local crushing at ice-block-to-ice-block and ice-structure contacts.
The amount of local crushing was governed by the plastic limit parameter, σp, which
relates the maximum contact load to the contact geometry. Plastic limit parameter σp

accounts for the local crushing between the contacting ice blocks. No new ice features
were created, nor did the block geometries change during the local crushing. Water was
accounted for by applying a buoyant force and simplified drag model.

The load model development was based on 350 simulations with Table 1 giving the pa-
rameters of the simulations and Table 2 summarizing the seven simulations sets, S1. . .S7.
Each set contained 50 simulations where all parameters were constant, but the initial con-
ditions slightly differed: An initial vertical velocity of the order of 10−12 m/s was applied
at the free edge of the ice sheet at the start of the simulation (see [13] for details). Sim-
ulations within each set, differing by their initial conditions only, produced different ice
loading processes (Figure 3) and different maximum peak ice load F p values. As shown
in Table 2, the simulation sets S1. . .S6 differed from each other by the values of h and σp.
Simulation set S7 had thick ice, h = 1.25 m, and a high value of 8 MPa for σp.

3
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Figure 3: Two ice load F -records from two simulations with same parameterization but different initial

conditions: (a) F plotted against length of pushed ice, L, and (b) close-ups of the maximum peak ice

load, F p, events. The value of F p differs between the simulations. Here the ice thickness h = 1.25 m and

the plastic limit σp = 1 MPa. Figure is from [2].

BUCKLING MODEL

In Ranta et al. [1] we showed that a simple buckling model can be used to describe how
force chain buckling limits the ice load values on a wide, inclined, structure. The model,
shown in Figure 4, consists of a rigid system of ice floes, having a total length of Lf , lying
on an equilibrium on an elastic foundation. The modulus k of the elastic foundation,

Table 1: Main simulation parameters. The parameter values were mostly chosen following [14].

Description and symbol Unit S1. . .S7

General Gravitational acceleration g m/s2 9.81
Ice sheet velocity v m/s 0.05
Drag coefficient cd 2.0

Ice Thickness h m 0.5, 0.875, 1.25
Effective modulus E GPa 4
Poisson’s ratio ν 0.3
Density ρi kg/m3 900
Tensile strength σf MPa 0.6
Shear strength τf MPa 0.6

Contact Plastic limit σp MPa 1.0, 2.0, 8.0
Ice-ice friction coefficient µii 0.1
Ice-structure friction
coefficient

µiw 0.1

Water Density ρw kg/m3 1010
Structure Slope angle α deg 70

4
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Ice floe(s)

Figure 4: The buckling model we used in its initial (left) and buckled (right) states. The model consisted

of a rigid ice floe of length Lf resting on an elastic foundation with modulus k presenting water. Springs

K1 and K2 modeled the boundary conditions for the buckling modes of Table 3. Compressive force P is

due to the other floes or the structure. Figure is from [2].

chosen after the specific weight of water, was ρwg, where ρw is the mass density of the
water and g the gravitational acceleration.

The buckling model can describe different buckling modes depending on the values of
the spring constants K1 and K2 of the springs at the ends of the floe. Table 3 shows
the different modes together with the corresponding K1 and K2 values. Out of the four
modes of the table, modes 1 and 2 assume that the elastic bending of the intact ice sheet
does not have a role in a peak load event. Modes 3 and 4, on the other hand, assume that
the elastic ice sheet behind the buckling floe generates a lateral support for the left end
of it. The buckling load P for the model is [1]

P =
k2L3

f + 4k(K1 +K2)L
2
f + 12K1K2Lf

12(kLf +K1 +K2)
. (1)

The characteristic length Lc =
4
√

4EI/k of a beam on elastic foundation [15] is intro-
duced into Equation 1 by substitution of Lf = χLc, where χ is a dimensionless buckling

Table 2: Simulation sets S1. . .S7 of this study. The able also shows the number N and the indices (ID)

of the simulations in each set. More detailed list of simulation parameters is given in Table 1.

Set IDs N h [m] σp [MPa]
S1 1-50 50 0.5 1
S2 51-100 50 0.5 2
S3 101-150 50 0.875 1
S4 151-200 50 0.875 2
S5 201-250 50 1.25 1
S6 251-300 50 1.25 2
S7 301-350 50 1.25 8

5
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length factor. Lc and χ allow expressing P for all buckling modes of Table 3 in form

P = a(χ)
√
kEI, (2)

where a is a buckling-mode-dependent dimensionless multiplier given in Table 3. This
equation can be used to study the relation between buckling and peak loads as follows.
The F p values from all simulations (Figure 3), together with the simulation parameters (k,
E and I), are collected and substituted to the previous equation, which is then solved for
a(χ) = F p/

√
kEI. If the simple buckling model describes well how force chain buckling

limits the values of F p, the a values for all simulations should be approximately equal;
the F p values should become normalized by factor

√
kEI.

3 RESULTS AND DISCUSSION

Figure 5a shows the maximum peak ice load F p values (Figure 3a and b) from our
FEM-DEM simulations. Additionally, it shows the mean F p values with their standard
deviations for the simulations of each set, S1. . . S7 (Table 2). While the F p values from
the simulations in a given set show scatter, the mean F p values of the sets S1. . . S7 differed
considerably, by up to about 500 %, mainly due to a difference in ice thickness h between
the sets.

The simulations of set S7 with high σp yielded larger values than sets S5 and S6 with
the same ice thickness h = 1.25 m. The values of a, solved by normalizing the F p data
of Figure 5a by factor

√
kEI, are shown in Figure 5b. These indicate that the peak load

events were related to buckling: All mean values of a are in the same range and there is
no dependency between a and h. Nonetheless, the data shows scatter not explained by
the buckling model as, for example, the mean a value is clearly larger for set S7 having
high σp.

As a appears somewhat constant, we can solve χ to estimate the lengths Lf = χLc

Table 3: Four buckling modes considered in our study with the corresponding spring constants K1 and

K2 (Figure 4). The buckling load P = a(χ)
√
kEI, where a is a mode-dependent multiplier. Factor χ

gives the buckling length as described in the text. Table is from [1]

mode K1 K2 a

1 0 0
χ2

6

2 ∞ 0
2χ2

3

3
1

2
kLc −

3

4

P

Lc
∞ 12χ+ 8χ2

9χ+ 12

4 kLc −
P

2Lc
∞

12χ+ 4χ2

3χ+ 6

6
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Figure 5: The values of (a) maximum peak ice load F p values from all simulations (sets S1 . . . S7,
Table 2) and (b) dimensionless a factors derived using F p data. In addition to the data points, the

graphs show the mean values (Avg, solid lines) and standard deviations (SD, dashed lines) for the data.

of buckling floes. Figure 6 illustrates how the ice floes, having been compressed between
the ice sheet and the structure, have gone through a buckling-like failure between the two
time instances. The data points of Figure 7 are the χ values from all simulations in sets
S1. . . S6 for modes 2-4 of Table 3. (For each a value, we get four values for χ, one for
each mode, as described by Table 3.) The mean χ value for mode 1 was 1.32 ± 0.2, but
χ factors for mode 1 are not shown in the figure, as this mode is physically unfeasible. It
is justified to assume Lf < Lc, as the floes breaking off of the intact ice sheet in bending
(occurring prior the peak load event) would have the length of about Lc at maximum.

The two horizontal lines of Figure 7a correspond to the χ values, which we calculated
for the reported minimum and maximum values for average breaking lengths of an ice
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Figure 6: An example of a peak ice load event, which this simulation reached at L = 229.5 m. The

figure also shows the model at L = 229.7 m (four seconds later). Buckling occurred at x ≈ 61 m. The

line in the figure illustrates the approximate buckling length. Here h and the plastic limit σp were 1.25
m and 2 MPa, respectively. Figure is from [1].

Figure 7: The dimensionless χ factor values for buckling modes 2 and 4 of Table 3 using the a values

of Figure 5b. The two horizontal dash-dot lines correspond to full-scale observations on maximum and

minimum breaking lengths [18]. Figure is from [1].

sheet in a full-scale ice-structure interaction process [16, 17, 18] . The figure shows that
almost all of the χ values resulting from the simulated ice-structure interaction processes
fall between these limits. This gives confidence on both, our simulation results and on
our simplified buckling load model.

The above-described buckling model does not account for the effect of compressive
strength of ice, σp, on the results, which would allow the buckling model to yield peak
load values exceeding the compressive capacity of the ice. The lack of the effect of σp leads
to the mean of a showing a systematic change with a change in σp (Figure 5b): Increase
in σp leads to increase in a when h is kept constant. The so-called probabilistic limit load
model, described in detail in Ranta and Polojärvi [2], extends the buckling model by (1)
supplementing the buckling model with a local crushing model and (2) by accounting for
the stochasticity in the contact geometries of the blocks belonging to the force chains.

An elementary unit of the model is one contact interface between a pair of ice blocks

8
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Figure 8: Force chain transmitting a load P and one contact interface between a pair of ice blocks, an

elementary unit of the probabilistic limit load model. Blocks are of thickness h and the contact has a

length of h̄. Figure is from [2].

belonging to a force chain (Figure 8). The blocks are in a partial face-to-face contact due
to a compressive load P . Local crushing is assumed to occur in a contact interface when
P ≥ h̄σp, where h̄ is the length of the contact interface and σp is the limit for compressive
stress. In Ranta and Polojärvi [2] we show that this model for crushing, even with a
simple triangular distribution for the contact lengths h̄, leads to the model being able to
capture the combined effect of h and σp on peak ice loads.

4 CONCLUSIONS

This paper summarized our work on limiting mechanisms on ice loads on inclined
structure [1, 2]. The peak ice load data from ice-inclined structure processes was normal-
ized with good accuracy by multiplying the load values with 1/

√
h3. This suggests that

the peak ice loads in ice-inclined structure interaction process are governed by buckling.
The buckling model quantifies the force chain buckling-related peak ice load values in an
ice-inclined structure interaction process with fair accuracy.

The extension of the model to cover the effect of local ice crushing was also shortly
discussed. The extended model accounts for a mixed-mode ice failure process where the
root cause of ice failure can be due to either ice buckling or local crushing. Here we only
briefly described the use of the extended model, but more details can be found from [2],
where the model is even further extended into an algorithm, capable of producing large
amounts of virtual ice load data that compares fairly well with full-scale observations.
We believe the simple load limit load models have potential of yielding insight for the
analysis of complex ice-structure interaction processes.
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Abstract. Shear banding is a widely concerned issue caused by shearing in the field of 
granular geomechanics. At the macroscopic scale, the constitutive models meet difficulties to 
describe how and why the shear band forms within the discrete granular assembly. The 
contact network inside the overall granular assembly helps us to understand the origin of 
some macroscopic features. Between contacting particles, sliding can occur, which is 
associated with the plastic dissipation. This local contact sliding may induce the 
rearrangement of local structures, and then contribute to the macroscopic failure characterized 
by larger patterns, such as shear banding. In this paper, we conduct DEM simulations using a 
dense specimen, and during the loading process an evident shear band appears. Then the 
contact sliding ratio, sliding index, and the relationship between the contact sliding and the 
mesostructural changes are investigated. Main conclusions are: sliding contacts firstly 
distribute randomly within the granular assembly, and will concentrate within the shear band 
after the stress peak; the sliding ratio and the sliding index show different evolution trend and 
distribution properties; sliding contacts are not within the strong contact network when the 
threshold to distinguish the strong and weak network is proper, but will be strongly influenced 
by the force chain buckling; considering the relation between the sliding and the meso loop 
exchanges, the topological dilations are related to the higher probability of contact sliding and 
plastic dissipation.  

 
 
1 INTRODUCTION 

Granular materials are quite common and simple in nature and they have been widely 
utilized as construction materials in the field of civil engineering. Then the mechanical 
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behaviours of granular materials have attracted much attention among engineers and 
researchers. For decades, the shear banding problem in frictional granular materials has been 
concerned, which contains a number of challenges in mathematical description and 
constitutive modelling [1,2]. Many publications incorporate micromechanical features, such 
as contact fabric, particle rolling and contact sliding, to reveal the original mechanism of 
shear banding [3-6]. 

Microscopic features could be related to some macroscopic evolutions in granular 
materials. For example, the stress-force-fabric (SFF) relationship has built the direct links 
between micro contact forces and macro stress quantity [7-11]. Considering the contacts and 
particles at the microscale, the sliding between particles may occur when the Mohr-Coulomb 
criterion is fulfilled. The microscopic failure, or microscopic shear behaviours, should 
contribute to the macroscopic shear failures such as shear banding.  

The discrete numerical simulation has been widely applied in simulating the multiscale 
behaviours of granular media, owing to its simplicity of obtaining the microscopic 
information and the reasonable accordance of macroscopic responses to laboratory tests. 
Classical Discrete Element Method (DEM) has been adopted in investigating the strain 
localization for granular materials [12-14]. Besides, the modified or combined methods for 
DEM are capable to investigate the influences of the irregular shape and particle breakage on 
the shear banding [15,16]. For DEM simulations, the contact sliding is the unique mechanism 
in plastic energy dissipation. How the sliding contacts distribute and evolve should affect the 
mesostructural rearrangements in granular assemblies. Since the strong contact network 
(usually selected using the average normal contact ratio [17,18]) and the mesostructural 
topology (in 2D, loop structures are important [19-21]) are important characterizations in 
granular materials, the relationship between the contact sliding and them should also been 
further considered.  

In this paper, we focus on the micro- and mesoscopic evolutions in granular materials 
during the shear band forming. Investigations are based on the quasi-2D biaxial DEM 
simulations (with a single layer of 3D particles), under the same loading conditions as our 
previous work [22]. The evolution and distribution of the contact sliding ratio and the sliding 
index are considered, and the sliding behaviours within the strong contact network as well as 
the topological changes are explored to identify the specific roles of sliding in shear banding.  

2 DEM SIMULATION AND SHEAR BANDING 

2.1 Parameters and models of DEM  
We use the Discrete Element Method (DEM) proposed by Cundall and Strack [23] for the 

numerical simulations, based on the open-source software YADE [24]. The simple linear 
contact model is adopted, in which the normal and tangential contact forces (𝐹𝐹𝑛𝑛 and 𝐹𝐹𝑡𝑡) are 
computed as follows: 

{𝐹𝐹𝑛𝑛 = 𝑘𝑘𝑛𝑛𝛿𝛿𝑛𝑛,
𝑑𝑑𝐹𝐹𝑡𝑡 = 𝑘𝑘𝑡𝑡𝑑𝑑𝛿𝛿𝑡𝑡, 𝐹𝐹𝑡𝑡 ≤ 𝐹𝐹𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(1)

where 𝑘𝑘𝑛𝑛, 𝑘𝑘𝑡𝑡 are the normal and tangential stiffness respectively, 𝛿𝛿𝑛𝑛, 𝛿𝛿𝑡𝑡 are the corresponding 
relative displacements in normal and tangential direction, and 𝑡𝑡 is the friction angle which is 
a threshold limiting the relative sliding between particles. Relative sliding behaviour between 
spheres in a contact will take place when the tangential contact force reaches the maximum 
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value, as described by Eq. (1). 
The quasi-2D biaxial test using DEM is carried out to model the mechanical behaviours 

and the shear band formation. The numerical simulation is conducted by using a model 
containing a single layer of 20,000 spheres within a rectangle domain, as shown in Fig. 1. The 
particle sizes obey a uniform distribution with average radii 𝐷𝐷50 = 0.008m  and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚/
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2. To create the sample, particles are randomly generated within the domain and their 
sizes are growing to reach the final isotropic state under a confining pressure of 100 kPa. The 
gravity is not considered, and the boundaries are set as rigid frictionless walls. The key 
parameters for the contact model: 𝑘𝑘𝑚𝑚/𝐷𝐷𝑠𝑠  is set to 300 MPa, where 𝐷𝐷𝑠𝑠 = 𝑅𝑅1𝑅𝑅2/(𝑅𝑅1 + 𝑅𝑅2); 
𝑘𝑘𝑡𝑡/𝑘𝑘𝑚𝑚 is set to 0.5; the friction angle 𝜙𝜙 is 35∘. 

After confining, the numerical specimen reaches a relative dense state (initial porosity is 
0.161). Then we apply the biaxial loading is applied, as shown in Fig. 1: the compression is 
imposed in the vertical direction (𝜎𝜎22 and 𝜀𝜀22) with a strain rate of the upper and lower walls 
equals to 0.01 /s. In the lateral direction (𝜎𝜎11 and 𝜀𝜀11), the pressure is maintained constant to 
100 kPa. The stress and strain characterization are then described as follows: deviatoric stress 
𝑞𝑞 = 𝜎𝜎22 − 𝜎𝜎11 and volumetric strain 𝜀𝜀𝑣𝑣 = 𝜀𝜀11 + 𝜀𝜀22. 

 
Figure 1: DEM model for biaxial tests 

2.2 Macroscopic responses  
Figure 2 gives the macroscopic evolutions of the deviatoric stress q and the volumetric 

strain εv. Similar to other publications [4,12,13], the deviatoric stress q experiences the 
hardening and the softening phases, while εv manifests a clear tendency of dilation. We select 
States from A to G, to track the evolution of the strain localization pattern and the 
macroscopic stress and strain features. The corresponding incremental deviatoric strain fields 
of the 7 states are shown in Fig. 3, demonstrating the evolution of local strain distribution 
pattern from homogeneity to heterogeneity in space. The Moran’s Index can quantitatively 
capture the heterogeneity evolution, which was detailed explained in our previous work [22].  
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Figure 2: Strain softening process of dense specimen under biaxial test 

(a)                                (b)                                  (c)                     (d) 

 
(e)                                 (f)                                  (g) 

Figure 3: Spatial distributions of the incremental deviatoric strain for different loading states. (a) State A: ε22 = 
0.0; (b) State B: ε22 = 0.0040; (c) State C: ε22 = 0.0095; (d) State D: ε22 = 0.0141; (e) State E: ε22 = 0.0169; (f) 

State F: ε22 = 0.0217; (g) State G: ε22 = 0.0541. 

3 SLIDING CONTACTS AND RELATIVE MESO-STRUCTURES 

3.1 Distribution of sliding contacts 
Based on the framework of DEM, relative sliding behavior between connected spheres will 

take place when the tangential contact force reaches the maximum value, which is limited by 
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both the normal force and the friction angle, as described by Eq. (1). The sliding at one 
contact means the failure or dissipative mechanism at the microscopic scale. The ratio of 
sliding contacts, defined as Sr = Ns/Nc, can describe the proportion of microscopic failure for 
the granular assembly, in which Ns denotes the number of sliding contacts and Nc is the 
number of the total. The evolution of the ratio of sliding contacts is shown in Fig. 4, and Sr is 
divided into two parts (inside and outside the shear band, in these conditions Ns and Nc are 
considered for the corresponding domains) after the State E. At the beginning, the proportion 
of the sliding contacts rises gradually until the State C, which denotes that rearrangements of 
the bulk attains the maximum. After the peak value of the sliding ratio, the probability of 
sliding reduces gradually.  When the single shear band ultimately appears, the sliding ratio 
stabilize, at the level about 0.007. During this period, the magnitudes of sliding ratios inside 
the shear band and outside the shear band manifest differently. The sliding contacts are mostly 
centralized within the shear band area, while only a small proportion of sliding contacts 
appear outside this area, which can be intuitively seen in Fig. 5 for States D and F.  

 
Figure 4: Evolution of the sliding ratio versus axial strain 

        
(a)                                                             (b)  

Figure 5: Distribution of sliding contacts: (a) State D and (b) State F 
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To better describe the degree of frictional mobilization for all the contacts, not only the 
sliding ones, a sliding index Ip is defined as: 

𝐼𝐼p =    𝐹𝐹𝑡𝑡
𝐹𝐹𝑛𝑛 tan 𝜙𝜙                                                          (2) 

When Ip is near to 1.0, the contact is prone to slide; on the contrary, when Ip is near to 0, the 
contact is regarded as quite stable. Figure 6 shows the evolution of the average sliding index 
during the biaxial loading process, with the separate curves for areas inside and outside the 
shear band after State E. Similar to the evolution of the sliding ratio in Fig. 5, the average Ip 
experiences an increase at the beginning, and then decreases to a steady value during the 
development of the final shear band. The peak value of the sliding index appears at State D, 
which is associated with the stress peak. The Sr peak comes earlier than the Ip peak. Indeed, it 
can be assumed that sliding contacts belong to discrete local failures, without propagating to 
the total area; however, the average Ip is considered for all the contacts within the assembly.  
Therefore, the overall responses of Ip can reflect the evolving tendency of the stress. After the 
peak, Ip declines a little with small discrepancies of the two domains when shear band forms. 

Besides, the distribution of Ip is quite different from the distribution of Sr in space, as 
shown in Fig. 7(a). At State F, there exists a clear single shear band, however, the sliding ratio 
distribution in space does not show any strain localization patterns. Then, we choose another 
parameter, the incremental sliding index dIp between steps. It can be calculated using the 
difference of the sliding index between the current step i and the previous step i-1, i.e. d𝐼𝐼𝑝𝑝 =
𝐼𝐼𝑝𝑝

𝑖𝑖 − 𝐼𝐼𝑝𝑝
𝑖𝑖−1. According to the definition, dIp should fall in the range [-1, 1]. Positive values 

denote that the contact is nearer to the sliding, while negative values means that the contact is 
less possible to slide compared to the previous step. It can be seen that in Fig. 7(b), both large 
and small values of dIp concentrate within the shear band area. That is to say, inside the shear 
band, large changes in contact state are involved, which can induce the quick and temporal 
rearrangements. 

 
Figure 6: Evolution of average sliding index Ip 

51



First A. Author, Second B. Author and Third C. Author 
 

 
 

7 

     
(a)                                                      (b) 

Figure 7: Distributions of sliding index Ip (a) and incremental sliding index dIp (b) within the granular sample at 
State F 

3.2  Sliding contacts and strong contact network 
The contact network within the granular assembly can be divided into the strong and weak 

phase using the contact force threshold [17,18]. In most cases, the average contact force is 
used as the threshold, and the strong contact subnetwork is regarded as the important force 
transmission path. By introducing assumptions such as the linear path and the particle number, 
force chain structures can be selected from the strong contact network [21,25].  

In this paper, we consider the accurate and comprehensive effects of strong contact 
network, and the sets of contacts with forces larger than several given values are considered. 
The cutoff ζ, denoting the ratio to the average normal contact force, is used to identify the set 
Sζ. Then Sζ contains the contacts which undertake forces larger than ζf0, where f0 denotes the 
average contact force within the granular assembly. 

Within the different strong contact networks distinguished by ζ, the sliding ratio diverges. 
Figure 8 show the evolution of sliding ratio Sr versus ζ for the 7 selected states. Almost all the 
curves in Fig. 8 reflect the fact that sliding contacts do not exist in the strong contact network 
when ζ >1.5. That is to say, the contact sliding as the microscopic failure, is excluded from 
the really strong contacts. As for the range ζ <1.0, the sliding ratio of State C owns the highest 
magnitude, which is corresponding to Fig. 4. Considering the unique features of sliding ratio 
of strong contact network of all states, possibly the better threshold for the strong and weak 
phase of the contact network should fall in [1.0f0,1.5f0].  

Liu et al. [22]  have defined the average sliding ratio 𝑆𝑆𝑟𝑟𝑟𝑟 around the particles, and based on 
this concept, they found that contact sliding is not directly relating to the force chain buckling, 
but will be influenced around the force chain buckling area. Since force chains are selected 
within the strong contact network when ζ =1.0, it can be assumed that the contact sliding has 
no intersection with the strong contact network, but the failure within the strong contact 
network may induce the sliding occurring and accumulating.  
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Figure 8: Sliding ratio within the strong contact network distinguished by ζ 

3.3 Sliding contacts and loop transformation 
The overall contact network of the granular assembly can be tessellated into meso loops, 

which are quite convenient to analyze the local deformation features in 2D granular materials 
[26,27]. From step to step, loops may keep constant or transform to other structures. The 
transformations or exchanges between local structures are temporal and complex, which will 
lead to the systematic change of the overall structure.  

Loops within the granular assembly can be categorized by the number of particles of the 
circle. L6, denoting the cell connected by 6 spheres in 2D simulations, has been deeply 
investigated in many publications [12,19,21] for its capability of deformation. In this paper 
we take L6 as an example to explore the topological exchanges, and possible changes for L6 
can be shown in Fig. 10. The change in next step, we call it “Future”, and we name 3 types of 
changes: 

• Future_6C, for unchanged L6 
• Future_6S, for L6 which will decompose to smaller ones 
• Future_6L, for L6 which will change to a larger loop  

The transformations and exchanges of loops are corresponding to the contact loss and gain 
within the contact network. Whether these changing contacts are sliding will indicate the 
plastic energy dissipation. Figure 9 give the average sliding ratio information for L6 with 
different futures respectively. Loops associated with changes, i.e. Future_6L and Future_6S, 
obtain higher sliding ratios than the constant ones during the biaxial loading. Furthermore, 
dilative loops (Future_6L) are more likely to involve a higher probability of sliding contacts 
and dissipating behaviors than the contractive ones (Future_6S) do. 
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Figure 9: Possible changes for L6 loops between steps 

Considering the average sliding ratios of L6 with different futures inside and outside the 
shear band, the dissipative behaviors could diverse, especially for the dilative changes. We 
can see that in Figure 11, loop exchanges within the shear band are associated with larger 
sliding ratios, especially for the dilative changes which reach the magnitude nearly 0.1. Even 
though there exist a few enlargements outside the shear band, the involving dissipation is not 
very obvious in comparison with the constant cells and the shrinkage ones inside the shear 
band. 

Dilative loops at the mesoscopic scale should be related to the macroscopic dilatancy, 
which has been regarded as an irreversible plastic characteristic in soil mechanics [28][29]. 
The sliding ratio evolutions within the meso structures has revealed that the correlation 
between plastic energy dissipation and the dilatancy at the mesoscale. The contact sliding may 
not lead to the contact loss or gain, also the contact loss and gain may not involve plastic 
sliding behaviors. However, the sliding behaviors are easier to break the contacts and form 
larger local structures which lead to the dilatancy. The process should be irreversible, and 
once these kinds of behaviors accumulate and reach a high percentage, the plastic phase of the 
bulk appears. Shear banding is one kind of shear failures that local rearrangements 
concentrate within the localized area, and the dilative exchanges of loops should mainly occur 
within the banding zones. 
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Figure 11: Sliding ratios within L6 for different futures 

 

Figure 12: Sliding ratios of L6 with different futures in different domains 

4 CONCLUSIONS 
By conducting numerical DEM biaxial tests for a dense granular assembly, this paper 

investigates the contact sliding evolution and distribution within the specimen during shear 
banding, and identifies the relationships between the mesostructural changes and the contact 
sliding. Main conclusions are as follows: 

- According to the spatial distribution of incremental shear strains of the dense granular 
assembly, it can be concluded that the heterogeneity develops gradually along the 
biaxial loading, until the final shear band forms. Inside the shear band, the sliding 
contacts, high values of incremental sliding index magnitude and loop exchanges are 
concentrated.  

- Both the sliding ratio and sliding index demonstrate a peak in the evolution curves, 
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which is earlier or close to the macro stress peak. Furthermore the peak of sliding index 
could reflect the macro stress peak. By using different threshold to distinguish the 
strong and weak contact network, it is concluded that sliding contacts are located 
outside strong contact network and the threshold for the strong contact network may be 
1 to 1.5 times average contact force.  

- During the biaxial loading process, the loop type L6 could be constant, dilative or 
contractive in topology. The higher contact sliding ratio is associated with the dilative 
exchanges, which indicates that the plastic dissipation is quite essential to the dilatancy 
at the meso-scale. 

- Thanks to this characterization of the microstructure features inside shear band domain, 
the present study paves the way for a deeper understanding of the micromechanical 
mechanisms responsible for the existence of shear bands in dense granular materials. 
The understanding of the link between contact sliding, mesostructure deformations and 
macroscopic shear banding and softening are now within reach. 
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Abstract. The distribution of stress between coarser and finer particles in gap-graded soils 
is considered a key factor contributing to the risk of internal instability or suffusion, amongst 
other soil properties. In reality soils can have more complex size distributions than being purely 
bimodal. In this study, the discrete element method was used to investigate the stress 
distribution of trimodal gap-graded materials with different grading curves. The quantification 
of stresses and contacts forces at particle scale data indicates that the stress distribution in 
trimodal materials are influenced by the percentage of fines, the proportion of the medium 
fraction, and the initial density. Specifically, when the stress transfer within trimodal material 
was partitioned into six contacts classes, the results indicate that the stress carried out by each 
contact type is strongly associated with their percentage fractions and the size ratio between the 
different particle types. 
 
1 INTRODUCTION 

The particle size distribution (PSD), i.e. the cumulative distribution by particle mass (volume) 
of particle sizes (diameters), is one of the most basic ways to characterize a soil in both 
geotechnical research and practice.  Soils are described as uniformly graded, broadly graded or 
gap-graded depending on the shape of the particle size distribution.  While the PSD shape is 
understood to influence the engineering behaviour of soil, the fundamental mechanics of the 
influence of PSD shape on behaviour are poorly understood.   

Restricting consideration to non-plastic, cohesionless soils, it is clear that there have been a 
large number of experimental studies looking at gap-graded soils.  In most cases a finer grained 
sand was mixed with a coarser grained sand or fines were added to a host sand so that the 
resulting mixtures in both cases were almost bimodal.  The proportion of the overall mass taken 
up by the finer grains (typically representing silts and clays) is then termed the fines content 
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(FC). Zuo and Baudet (2015) give a review of the relevant literature, focusing on the idea of a 
transitional FC, where the material behaviour transitions from being dominated by the coarse 
grains to become dominated by the finer grains.  Developing on ideas put forward by Skempton 
and Brogan (1994), Shire et al. (2014) carried out a series of DEM simulations on gap-graded 
samples of spheres.  They calculated the average stress in the finer grains normalized by the 
overall applied stress, this approximates to the proportion of stress transmitted by the finer 
grains.   Shire’s data showed that the extent to which the fines participate in stress transmission 
depends on the fines content and on the ratio between the coarse and finer grain sizes.  The data 
do not support the concept of a single transitional FC, rather a more gradual transition between 
coarse- and fines-dominated behaviour. 

Natural geological deposits of purely bimodal material are rare and so a comprehensive and 
relevant understanding of stress distribution in materials needs to consider more complex 
particle size distributions. More robust analyses of the effect of PSD shape on the mechanical 
behaviour of soil mixtures may therefore require varying PSDs in a more systematic way, from 
uniformly graded to well graded PSDs.  In a first step to develop this broader perspective, this 
study considers trimodal materials, with fine, coarse and medium-sized grains.  Rather than 
considering the stresses in the particles, the sample is partitioned into six classes: stress 
transmitted via (i) coarse-coarse particle contacts, (ii) coarse-medium contacts, (iii) medium-
medium contacts, (iv) medium-fine contacts, (v) coarse-fine contacts and (vi) fine-fine contacts. 
DEM samples are compressed from an initial non-contacting cloud of grains to an isotropic 
stress of 500 kPa.  Initially a purely bimodal material containing 25% fines is considered and 
the proportion of the medium-sized grains is then systematically increased. 
 

2 PARTICLE SIZE DISTRIBUTION CONSIDERED 
A total of 9 trimodal specimens were created; their grading curves are shown in Fig. 1.  The 

minimum and maximum particle diameters used in each simulation specimen were 0.076 mm 
and 0.425 mm, respectively. Three size ratios (i.e. the size ratio between coarse and fines-sized 
grains, SRcf; the size ratio between Coarse and medium-sized grains, SRcm; the size ratio 
between medium and fines-sized grains, SRmf) and three particles fraction (i.e. fines fraction; 
medium fraction; coarse fraction) are considered in this study. As shown in Fig.1, for all 9 
grading curves, the size ratio SRcf is constant, which is 5.6 in this study. For clarity, each of 
those specimens is named as A Tri B%_C%, where A represents a size ratio SRmf, B% is a 
number representing a fines fraction percent by mass/volume, and C% represents a medium 
fraction. For instance, ‘1.54 Tri 25.0%_50.0%’ indicates a trimodal specimen with the fines 
fraction of 25% and the medium fraction of 50%, and the size ratio SRmf of this specimen is 
1.54. 
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Figure 1: Particle size distribution of simulation specimens 

3 DEM SIMULATIONS AND SETUP 
All DEM simulations were conducted on cubic samples by means of a modified version of 

the open-source DEM code Granular LAMMPS (Plimpton, 1995). Periodic boundary 
conditions were employed to generate all specimens due to its efficiency in reducing boundary 
effects (e.g. Shire et al., 2014). A simplified Hertz-Mindlin contact model was used, the basic 
input simulation parameters were shear modulus (G = 29.17 GPa), particle density (2670 kg/m3), 
Poisson’s ratio (ν = 0.2).  These input parameters were used in previous DEM works (e.g. Huang 
et al., 2014) and were similar to experimentally derived values (e.g. Barreto, 2008). All DEM 
specimens were initially created in random positions by means of an in-house placement code 
(Fig. 2), followed by periodic isotropic compression through the method proposed by Cundall 
(1988). A stress-controlled algorithm was used to achieve the target isotropic mean effective 
stress of 500 kPa. To investigate the density effect, three inter-particle friction coefficient μ 
were used for isotropic compression: (1) μ = 0.001, referring to a dense condition; (2) μ = 0.1, 
referring to a moderate condition; (3) μ = 0.3. referring to a loose condition. 

All simulations were carried out by means of the high-performance computing (HPC) 
service CX1 at Imperial College London. Although particle shape is known to be a significant 
factor in influencing soil behaviour, the high computational cost of simulations necessitated the 
selection of spherical particles. All simulations were terminated when the mean effective stress 
reached the desired values of 500 kPa, with coordination number, void ratio remaining constant.  
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Figure 2: Typical generated simulation specimens: (a) 1.54 Tri 25.0%_50.0%; (b) 2.36 Tri 25.0%_50%; (c)3.64 

Tri 25.0%_50% 

4 RESULTS AND DISCUSSION 

4.1 Detailed data for 3.64 Tri 25.0%_50.0% 
A simulation test of 3.64 Tri 25.0%_50.0% (particle size distribution illustrated on Fig. 3a) 

with μ = 0.1 (i.e. a moderately dense condition) is considered in detail to better understand the 
stress transfer within trimodal materials. Fig. 3b shows the cumulative distribution of particle 
connectivity by number for simulation, where the connectivity is the number of contacts 
involving an individual particle.  The distributions for the coarse, medium and fines-sized grains 
are presented separately. As shown in Fig. 3b, the connectivity values for both the coarse and 
medium-sized grains are always greater than 0, which suggests that all of the particles in these 
size fractions are active in stress transmission when subjected to isotropic compression. 
However, for approximately 50% of the fines-size grains, the connectivity number is 0, which 
suggests those particles sit loosely in the void space and do not transfer stress. Fig. 3c shows 
the cumulative distribution of particle mean stresses by number for the simulation. Fig. 3c 
confirms that the coarse and medium-sized grains transmit stress, while approximately 50% of 
the fines-sized grains are not active in transferring stress.  

Fig. 3d presents the cumulative distribution of contact forces by number for this simulation. 
As illustrated in Fig 4a, for trimodal materials, a total of six contacts classes support the whole 
structure: (i) coarse-coarse contacts (C-C contacts), (ii) coarse-medium contacts (C-M contacts), 
(iii) medium-medium contacts (M-M contacts), (iv) medium-fines contacts (M-F contacts), (v) 
coarse-fine contacts (C-F contacts) and (vi) fines-fines contacts (F-F contacts). As shown in 
Fig. 3d, for approximately 99% of the F-F contacts, M-F contacts and C-F contacts, the contact 
forces are lower than 0.04 N, on the contrary, the contact force values of C-C contacts, C-M 
contacts and M-M contacts have a much broader distribution. Those results show that those 
contact forces that do exist involving the fine-sized grains are very small compared to other 
grains, i.e. even where the fine grains have contacts, their contribution to the overall stress 
transmission is very small. 

(a) (b) (c)
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Figure 3: Detailed data for 3.64 Tri 25%_50% test: (a) particle size distribution; (b) connectivity number 

distribution; (c) stress level distribution; (d) contact force distribution 

 
Figure 4: Analysis of contacts for 3.64 Tri 25%_50% test: (a) six contacts types; (b) stress distribution 

determined by contact forces 
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4.2 Analysis of contacts and stress distribution 
In DEM, the contacts force data can be used to calculate the stresses within the material. As 

illustrated in O’Sullivan (2011) (for example) the 3D stress tensor is calculated by equation (1): 
 
 

Where Nc,V is the total number of contacs in the volume V, 𝑓𝑓𝑖𝑖
𝑐𝑐 =(𝑓𝑓𝑥𝑥

𝑐𝑐 𝑓𝑓𝑦𝑦
𝑐𝑐 𝑓𝑓𝑧𝑧

𝑐𝑐 ) is the force vector 
for contact c and 𝑙𝑙𝑗𝑗𝑐𝑐 =(𝑙𝑙𝑥𝑥

𝑐𝑐  𝑙𝑙𝑦𝑦
𝑐𝑐  𝑙𝑙𝑧𝑧

𝑐𝑐) is the branch vector for contact c. The contribution of each set of 
contacts to the overall stress tensor can be determined by restricting the summation to contacts 
within that set (i.e. for the C-C contacts the summation considers only C-C contact forces).  Fig. 
4b illustrates the proportion of the mean stress (1

3 𝜎𝜎𝑖𝑖𝑖𝑖) carried by each set of contacts for the 
simulation test above (i.e. 3.64 Tri 25.0%_50.0%, μ = 0.1). The medium fraction accounts for 
largest proportion of the specimen by mass and so it can be seen that C-M contacts, M-M 
contacts and M-F contacts contribute to the most proportion of the stress transmission of the 
structure. Specifically, the M-M contacts transmit the largest proportion (i.e. 0.286) of the 
stresses, which is 0.286 × 500 kPa = 143 kPa.  

On the contrary, the stresses carried out by C-C contacts are relatively small compared to 
those of other contacts, which may be attributed to that both medium and fines-sized grains 
separate the coarse-sized grains during isotropic compression. Furthermore, F-F contacts 
account for a small proportion (i.e. 0.0693) of the stress transmission of the structure, which 
agrees with results identified in Fig. 3b and Fig. 3c.  

4.3 Density effect 
Shire et al. (2014) carried out a series of DEM simulations on bimodal gap-graded soils and 

highlighted the significant influence of initial density on the stress transmission, therefore, it is 
worthwhile to investigate the density effect for trimodal materials. As shown in Fig. 5, the initial 
density strongly affects stress transmission in the trimodal material considered, for instance, 
Fig. 5a shows that the connectivity number of approximately 14% particles is 0 when the 
specimen is in the dense condition. On the contrary, in the loose condition, approximately 83% 
particles do not connect with other particles, which suggests those particles are not active in 
support the structure. The similar tendency is also identified in Fig. 5b and Fig. 5c.  Prior 
analyses of bi-modal materials suggest that the susceptibility of the stress distribution to 
changes in density will depend on the proportion of each particle type and the ratios of particle 
sizes. 

Fig. 5d illustrates the variation in the stress distribution by contact type with density. AS the 
density increases from the loose state, it can be seen that the stresses carried out by M-F and F-
F contacts significantly increase, while the stresses transferred by C-C and C-M contacts 
decrease at the same time. Those results highlight the significant influence of initial density on 
the stress distribution for within the trimodal material considered here.  

 

                                                                𝜎𝜎𝑖𝑖𝑗𝑗 = 1
𝑉𝑉 ∑ 𝑓𝑓𝑖𝑖

𝑐𝑐𝑙𝑙𝑗𝑗𝑐𝑐
𝑁𝑁𝑐𝑐,𝑉𝑉

𝐶𝐶=1
                                                                (1) 
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Figure 5: 3.64 Tri 25%_50% tests with three density conditions: (a) connectivity number distribution; (b) stress 

level distribution; (c) contact force distribution; (d) stress distribution determined by contact forces 

4.4 Fines and medium content effects 
Various combinations of fine and medium fractions considered to better understand how the 

proportion of the different fractions influences the overall stress transmission. Typical 
simulation tests with μ = 0.3 were selected as illustrated in Fig. 6a, the size ratio SRmf of three 
specimens is fixed of 3.64 with the fines and medium fractions changing in a wide range. Fig. 
6b shows the stress distributions for three specimens, the results indicate that the stresses carried 
out by C-F and F-F contacts significantly increases with an increase in the fines fraction, while 
the amount of the overall stresses carried out by the C-M and M-M contacts declines as the 
proportion of the medium fraction decreases. Furthermore, the stresses transferred by M-F 
contacts vary significantly.  
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Figure 6: Fines and medium content effects: (a) particle size distributions; (b) stress distribution 

4.5 Size ratio effect 
The size ratio effect was studied by keeping the fine and medium fractions fixed, as 

illustrated in Fig. 7a. Restricting consideration to a loose condition, Fig. 7b considers the stress 
distributions three specimens with size ratios SRmf changing from 1.54 to 3.64. The results show 
that the stress transmission is strongly associated with the size ratio SRmf. For instance, the 
stresses carried out by M-F contacts significantly decrease with the rise of the size ratio SRmf, 
which suggests that the interaction between medium and fines-sized grains decreases with the 
size ratio SRmf increase.  

On the contrary, the stresses transferred by C-M contacts increase with increasing size ratio 
SRcm. Furthermore, it can be seen that the stresses transmitted by the C-F contacts fluctuated in 
a narrow range for those three tests, which may be attributed to the constant size ratio SRcf for 
these specimens.   
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Figure 7: Size ratio effect: (a) particle size distributions; (b) stress distribution 

5 CONCLUSIONS 
This paper presents a total of 27 DEM simulation at three initial densities to study the stress 

distribution on trimodal materials of isotropic compression. The results highlighted the 
significance influence of initial density on the stress distribution of trimodal materials. In 
addition, the results show that the stress distributions in trimodal materials are strongly 
associated with fines fraction, medium fraction and the size ratios among those grains. 
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Abstract. A mesoscopic model for the simulation of espresso extraction based on the
Smoothed Particle Hydrodynamics method is presented. The model incorporates some
essential features such as bimodal granulometry (fines-coarses) of the coffee bed, double
(liquid/intra-granular) molecular diffusion and solid-liquid release mechanism. The porous
structures (’coarses’) are modelled as stationary solid regions whereas the migration of
cellular fragments (’fines’) is described by single-particles advected by the flow. The
boundary filter is modelled as a buffer region where fines are immobilized while entering
it, therefore providing a transient flow impedance. The model captures well the transient
permeability of the coffee bed under direct-inverse discharge observed in experiments,
showing the importance of fines migration on the hydrodynamics of the extraction. The
concentration kinetics for different molecular compounds are also studied. The present
work lays down the basis for the virtual analysis of coffee flavors by monitoring the
hydrodynamic and microstructural effects on the balance of extracted key-odorant or
taste-actives compounds in the beverage.

1 INTRODUCTION

Coffee is one of the most widely consumed beverages in the world. Several brewing
methods can be used to prepare the beverage depending on consumer’s taste as well as
cultural and geographical habits. In many countries, drip brew, or filter coffee, is the
traditionally consumed beverage. This method for brewing coffee involves pouring water
over roasted and ground coffee contained on a filter. Water seeps through the coffee, ab-
sorbing its extractable fraction solely under gravity, and then passes through the bottom
of the filter. The used coffee grounds are retained in the filter with the liquid falling (drip-
ping) into a collecting vessel such as a carafe or pot. In addition to this popular coffee
beverage, espresso coffee is gaining a big world-wide success not only as a phenomenon of
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fashion. This is also due to the greater sensory satisfaction it gives to the consumer when
compared with coffees prepared with other brewing methods [1]. Traditional espresso
brewing requires specialized equipments that have to heat water to a temperature be-
tween 92C and 94C and pressurize it to 9 ± 2 bar. The process is applied (percolation
time) until the beverage volume in the cup meets consumer’s personal preference or the
regional traditions. For example, in Italy, the volume ranges from 20 mL or less (ristretto)
to 50 mL or more (lungo), with a typical volume of 20 to 30 mL for regular espresso shot
[2]. The application of pressure, makes espresso brewing more complex than drip brewing
from a physico-chemical process point of view [3]. In particular, during the passage of
hot water through the layer of roasted and ground coffee (coffee bed), the following chem-
ical and physical phenomena can be described [4]: (A) Initial imbibition of the porous
coffee matrix with consequent irreversible progressive swelling of the coffee particles, this
causes a progressive decrease in the porosity of the matrix and therefore an increase in
hydraulic resistance. During this process, reversible migration of small coffee particles in
the direction of water flow also occurs. (B) Solubilization of the hydrophilic substances
contained in the coffee bed resulting in a progressive increase of density and viscosity of
the percolating fluid flow and the concomitant partial erosion of the coffee particles. (C)
Stripping of coffee lipids thanks to the pressurized hot water and progressive emulsifica-
tion of lipophilic substances due to the action of surfactants naturally occurring in roasted
coffee, with a further progressive increase in viscosity of the percolating fluid.
From a coffee cup quality point of view, in addition to model the physics of the espresso
extraction, it is necessary to take into the account the modelling of the mass transfer dur-
ing the process and preferably, the taste-wise chemical compounds mass transfer in order
to follow the extraction of solubles (and if possible also of not-solubles) from roasted coffee.

The goal of this work is to provide a novel simulation framework based on the Smoothed
Particle Hydrodynamic (SPH) method to describe coffee espresso extraction taking into
account the complex mesoscopic structure of the coffee bed. SPH is a popular Lagrangian
method to resolve the flow of simple and complex liquids by relying on an kernel-based dis-
cretization of prescribed set of partial differential equations (e.g. Navier-Stokes equations
for the momentum, advection-diffusion equation for suspended solute etc.) describing
the flow locally. This generally leads to a discrete set of ordinary differential equations
for fluid particles interacting pair-wisely [5]. Due to its Lagrangian meshless character
the technique is able to tackle complex geometries, such as those arising in a deformable
porous media, as well as to model Lagrangian particulate transport [6], memory effects
in complex fluids [7] and multiphase flow [8] in a natural way . The technique has been
also generalized to incorporate Brownian fluctuations (when needed) on hydrodynamic
variables by using the so-called GENERIC framework (an acronym for General Equa-
tion for Non-equilibrium Reversible-Irreversible Coupling) [9]. This has allowed it to be
extended to the regime of fluctuating hydrodynamics both for simple [10] and complex
non-Newtonian fluids [11].
In this work we present a new SPH model of coffee filtration able to describe the entire
complex mesoscopic structure of the coffee bed and its potential influence on the flow of the
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liquid through the filter as well as the transport/release of solute. Complex granulometry
of the coffee bed is described on different scales, from the fixed porous medium represented
by the large solid grains, to the small free cellular fragments - i.e. the ’fines’ - down to
the molecular solute (e.g. caffeine) modelled via a concentration field. Moreover, for the
dynamics of the molecular solute within liquid phase is taken into account together with
a mass transfer model due to stripping from the solid-liquid interface. The mesoscopic
model naturally leads to the transient flow permeability effects observed in experiments
[12] - as well as its effect on the concentration dynamics - which have been traditionally
interpreted in terms of microstructural changes such as pore’s swelling or fines particles
migration [13]. An extended model fully coupled with intra-granular transport of solute
has been recently presented in [14].

2 MESOSCOPIC PARTICLE MODEL

In this section the mesoscopic model of coffee filtration is presented. The solid phases
will be modelled based on the different characteristic dimensions of the specific compo-
nents. In particular, in the problem of coffee filtration three main characteristic dimen-
sions are associated to distinct dispersed phases: (i) solid grains (≈450 µm) representing
the fixed porous structure; (ii) the so-called ’fines’ (≈30 µm) representing the flowing
cellular fragments and (iii) the molecular components, e.g. volatile or non volatile com-
pounds such as caffeine etc. (≈ 1-10 nm). Water flowing through the porous structure
and coupled with material transport will be modelled based on standard Newtonian hy-
drodynamics. A sketch of the model is given in Fig. (1).

  

 Fluid particle 

 Solid moving particle: “Fine” 

 Solid boundary particle 

 Solid fixed grain 

Figure 1: Left: sketch of the SPH model. Solid dispersed phases is described at different levels.

(a) Large solid grains representing the fixed porous structures are denoted as violet regions. (b)

Small solid fragments, i.e. the “fines”, are modelled as independent solid moving particles. (c)

The smallest dispersed molecular components - the chemical species - are treated on a continuum

level via a concentration field (color map). Right: sketch of the filter model. Fines are advected

by the flow. Filter is modelled as a buffer region (red area in the figure) of specified thickness.

When fines enter this region they are ’immobilized’ and provide transient mechanical impedance

depending on the instantaneous concentration of trapped fines.

3

70



M. Ellero and L. Navarini

2.1 Suspending fluid phase model: Smoothed Particle Hydrodynamics

The fluid phase dynamics is governed by the isothermal Navier-Stokes equations. The
model adopted in this work is the Smoothed Particle Hydrodynamics (SPH) which is a
Lagrangian meshless method for the numerical solution of partial differential equations [5].
In SPH a set of fluid particles i = 1, .., N are distributed homogeneously over the domain
and move according to conservative and dissipative interparticle forces FC,D

ij estimated
from their local neighborhood. In the isothermal case, the following set of ordinary differ-
ential equations for the particle positions, velocities are solved numerically and represent
a Lagrangian discretization of the Navier-Stokes equations [5]

ṙi = vi, mv̇i = −
∑

j

FC
ij︷ ︸︸ ︷(

pi
d2i

+
pj
d2j

)
W ′

ijeij

︸ ︷︷ ︸
(∇p/ρ)i

+4
∑

j

FD
ij︷ ︸︸ ︷

η̄ij
W ′

ij

didjrij
vij

︸ ︷︷ ︸
η(∇2v/ρ)i

+gi, (1)

where the time derivative is Lagrangian and Wij = W (r = rij) is a kernel function and
W ′

ij = ∂W (r)/∂r|r=rij
its spatial derivative. rij = ‖rij‖ = ‖ri − rj‖, eij = rij/rij is the

unit vector joining particles i and j, whereas vij = vi − vj their corresponding velocity
difference. η̄ij = (ηi + ηj)/2 is the averaged dynamic viscosity of the fluid and ηi is the
local value of viscosity associated to particle i. pi represents the pressure associated to
particle i, calculated via a suitable equation of state (EOS). Here we choose an ideal EOS
pi = c2s(ρi − ρ0) where ρi = mdi is the mass density associated to the particle i (m is
the constant particle mass) and cs is the sound speed in the liquid. di =

∑
j Wij is the

corresponding number density and gi represents any external body force. Finally, in the
previous expression for the EOS the speed of sounds cs must be chosen sufficiently larger
than any other velocity present in the problem in order to avoid artificial compressibility
effects [5]. The SPH model can be generalized to fluctuating hydrodynamics by casting
it into the so-called GENERIC formulation [9] which allows to incorporate additional
stochastic terms in Eq.(1) satisfying Fluctuation-Dissipation Theorem [10].

2.2 Porous solid phase model

Solid regions of arbitrary shapes can be created by immobilizing a certain number of
solid SPH particles located within a prescribed fixed porous structure (i.e. the solid coffee
grains) in a similar way to what done in [15] (see Fig.1 left). No-slip velocity condition
is enforced on the liquid-solid interface where boundary particle velocities are set to zero.
Solid SPH particles (violet in the figure) interact with fluid SPH particles by means of
the same forces presented in Eq.(1), but differently to fluid particles, they are not allowed
to move.

2.3 Dispersed molecular phase continuum model

Due to the large scale separation existing between molecular compounds (e.g. caffeine:
≈ 1nm) and the solid grains forming the porous structure ( ≈ 450µm), the dispersed
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molecular phase can be treated as a continuum and modelled through a concentration
field. In this case, each SPH fluid particle is equipped with an additional microstructural
variable, i.e. a scalar concentration field ci, whose dynamics is governed by an inhomo-
geneous advection-diffusion equation. We consider here the most general case where the
diffusion coefficient D(r) can be space-dependent. The corresponding Lagrangian SPH
discretization reads

ċi = 4
∑

j

D̄i,j

W ′
ij

didj

cij
rij

︸ ︷︷ ︸
D(∇2c)i

(2)

where the time derivative is Lagrangian and cij = ci − cj and D̄i,j = (Di +Dj)/2 is the
average interparticle diffusion coefficient and Di is the local diffusion coefficient associated
to particle i. Note that advection is implicitly taken into account through the Lagrangian
motion of the particles. Note also that the term within the summation in Eq.(2) is
anti-symmetric by swapping i, j indices and therefore the mass of solute is automatically
conserved. Fig. (1) shows a color map describing a frame of the concentration field of a
given molecular compound released from the solid grains (violet: maximum - red: zero).
Note that different D̄i,j values can be associated to different SPH particles-pairs: this
is important, for example, to model the diffusive molecular processes, separately, in the
liquid phase and within the solid grain. In practice, several volatile or non-volatile taste-
active compounds with different diffusional properties are associated to the final sensorial
experience (fruity, malty, honey-like, buttery, roasty etc.). In the process of coffee filtration
it is therefore important to assess the instantaneous time-dependent concentration of
different compounds (i.e. characterized by different Db,s) in the cup, in order to optimize
the product and/or target specific flavors [16].

2.4 Discrete “fines” model

“Fines” are modelled as single solid SPH particles advected by the flow. We adopt here
the so-called minimal single-particle model proposed in the context of Dissipative Particle
Dynamics [17]. We select randomly a number of SPH particles in the fluid domain and,
according to the target fines concentration, we regard them as a solid flowing particles
(black spheres in Fig. (1)). It should be noted that in the bulk flow the fines are just
passive tracers and do not have any influence on the flow. However, if their positions are
constrained they are characterized by a well-defined hydrodynamic radius (approximately
equal to the kernel cutoff radius rc) and therefore they provide a mechanism of mechanical
impedance for the bulk flow itself. This feature is important in the model of the physical
filter.

2.5 Filter model

The filter at the bottom (or upper) boundary of the coffee bed is modelled as an
additional buffer region of finite thickness (red area in Fig. 1: right). The fines move
with the flow under the action of an external pressure force and eventually percolate the
porous structure; when they finally enter the bottom buffer region, their identity change
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and they are regarded as fixed solid boundary particles with zero velocity - of the same type
of those used to model the solid region inside a grain (see Fig. 1 left). As a consequence,
they present an obstacle to the flow of the down-streaming fluid particles which exit the
domain. Depending on the initial concentration of fines dispersed in the liquid domain
(denoted as θ) the total number of fines trapped in the filter can significantly change
together with the values of filter resistance leading to a simple model of transient coffee
bed permeability [12].

3 NUMERICAL RESULTS

3.1 Numerical parameters

In order to model numerically the physical system discussed above, we chose the fol-
lowing setup. (A) Coarse coffee grains (’coarses’: 500µm) : they are modelled as fixed
spherical solid regions of size dgrain = 2.0 using 16 SPH particles per diameter (see Fig. 1).
The ’coarses’ solid volume fraction is φ = 0.48. (B) Fine particles (’fines’: 30µm): they
are modelled as mobile single SPH particles (passive tracers). Being the SPH resolution
of the grain 16, we have a computational ratio dgrain/dfine ≈ 16 (dfine ≈ hydrodynamic
radius SPH particle) which is consistent with the physical ration in real coffee bed. The
’fines’ solid volume fraction will range in θ = 0.001− 0.01. (C) Molecular compounds
(e.g. caffeine, hyperfines etc.: � 1µm). Their small size compared to the other character-
istic lengths (H, dgrain, dfine) justifies a continuum approach based on the solution of an
advection-diffusion equation for the corresponding concentration field (Eq.(2)). Different
species can in principle have different size and therefore different bulk diffusion coefficients
Db as well as release rates Dr. (D) Coffee bed (2cm thickness):to model a realistic coffee
bed of, say, 2cm thickness[18] we consider a height of the simulation domain Ly = 80 (y is
the direction of filtration), leading to a numerical ratio Ly/dgrain = 40. In the transversal
direction (x) it is assumed that the coffee bed is homogeneous and periodic boundary
conditions can be imposed. This allows to minimize the size of the simulation domain
and computing time. Finite size effects can be eliminated by taking Lx = 10 = 5dfine.
In conclusion, we consider a two-dimensional domain Lx ×Ly = 10× 80, discretized with
N = 80× 640 = 51, 200 SPH particles.
Fluid density is chosen to be ρ = 1, whereas viscosity µ = 3. The average flow velocity
(which controls the effective Reynolds number) is tuned by applying an effective body
acceleration mimicking a pressure drop, i.e. F = ∆p/(Lyρ). For example, a value of
F = 2000 leads to peak average velocity Vmax ≈ 15 and peak Reynolds number (in ab-
sence of fines: just fixed solid grains) Remax = dgrainVmaxρ/η ≈ 10, matching experimental
conditions. The speed of sound is chosen sufficiently large than Vmax to reduce density
fluctuations, i.e. cs = 500 � Vmax. Finally, the bulk diffusion coefficient for a specific
compound will range in Db = 0.005− 0.1 to give a bulk Peclet number Pe = 600− 6000
corresponding to transient peak flow velocity. Values for the corresponding rate of of
release coefficients will be typically a factor 10 smaller than the the bulk free diffusion,
i.e. Dr = 0.001− 0.1, but different conditions will be explored.

6

73



M. Ellero and L. Navarini

3.2 Inverse filtration process: transient permeability

In order to understand the different transport processes involved in the percolation of
water through the coffee bed system, a transient direct/inverse filtration is considered
and results are discussed in relation to experimental data [18]. In this section we focus
on the hydrodynamic response of the system. In particular, Fig.2 shows the dynamics
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Figure 2: Inverse discharge. Left: time-dependent dimensionless applied forcing. Right: time-

dependent Reynolds number (absolute value) for different fines concentration θ. Slow perme-

ability decay is evident as result of increase fine concentration.

of the full direct/inverse discharge. Left: the time-dependent dimensionless forcing (i.e.
pressure drop). Right: time-dependent Reynolds number based on spatially-averaged
flow velocity (absolute value) for different fines-concentration θ. Experimental data
for the transient direct/inverse discharge flow reported in [13] have been also showed as
reference. Note that in the experimental data the initial transient flow increase have
been removed since (in experiment) it is due to an applied pressure raising over a fi-
nite time, i.e. not ’instantaneously’ applied as in the simulations. Time has been
made dimensionless with the viscous liquid time τν = d2grain/ν = 22/3 = 1.33. In or-
der to compare with experiments, corresponding real viscous time in SI units should be
τν = d2grain/ν = (400× 10−6)2/10−6 = 0.16s.
Initially a direct discharge process with constant pressure forcing is applied up to dimen-
sionless times approximately equal to t∗ = t/τν = 38. This is followed by a resting state
(zero applied force for t∗=38-55) after which the same constant forcing is applied again.
Finally, an additional resting condition (t∗=75-90) is followed by a constant pressure force
applied in the opposite direction (inverse discharge).
We consider first the flow response of the pure porous structure, i.e. for fine concentration
θ = 0 (light blue line in Fig.2). After application of pressure drop, flow rate increases
quickly and reaches a steady state value (Re ≈ 10). The small transient at θ = 0 (not
visible in the figure) occurs on typical viscous time scales of order τν . After removal of
the forcing, flow rates decay quickly to zero (relaxation time scales ≈ τν) and then again
reach the same value upon re-activation of the forcing in the same direction. After forcing
reversal, again the flow responds very quickly reaching the same value of the Reynolds
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number (absolute value is shown in the figure). Under these conditions (θ = 0), coffee
bed permeability is constant and the results are in agreement with previous simulations.
The case where fines are present (θ �= 0) is, however, qualitatively different. We have stud-
ied different fine concentrations ranging from 0.002 to 0.006 as shown in Fig.2 (right). Ini-
tially (direct discharge at t∗ < 3) the flow reaches the same peak Reynolds number during
the very short viscous time scales. This again corresponds to the fast viscous relaxation
consistent with a fixed porous structure. In this case, however, it does not represent a
steady state but a transient peak. In fact, the meta-stable state at Re=10 is followed by a
transient decay characterized by a significant longer relaxation time compared to τν . This
slow decay (3 < t∗ < 10) is due to the fines be displaced and their transient accumulation
in the filter. In fact, fines need some finite time to migrate from their initial positions
(randomly dispersed in the liquid phase) to the filter at the boundary of the domain. As
the number of trapped particles increases, so does the overall flow resistance leading to
the observed transient permeability.
Flow rate eventually reaches a steady-state value which depends on the initial concentra-
tion of fines present in the liquid phase. Small values of θ = 0.001 (violet line) do not
alter significant the filtration hydrodynamics respect to simple fixed porous case. How-
ever, θ = 0.006 (black line) leads to a significant reduction of flow permeability (nearly
one order in the averaged steady Reynolds number) in substantial agreement with exper-
imental data of espresso extraction reported in Ref.[18].
If the forcing term is temporarily switched off and then re-activated, the flow rate reaches
instantaneously the same steady state. This means that the water flows through the same
geometrical configuration corresponding to the fixed porous structure with an additional
mechanical impedance offered by the unchanged amount of fines trapped in the filter.
Finally, if we invert the flow we observe again the same relaxation process characterized
by the long relaxation time as at the beginning of the simulation. The reversed flow forces
the fines to move in the opposite direction and be released by the filter, i.e. again through
the coffee bed. A typical dimensionless time τ ∗m ≈ H/(Vmaxτν) = 7.1 is required for all
fines to migrate towards the bottom filter, after which the permeability reaches again a
steady state. This is in remarkable good agreement with the transient decay observed in
Fig.2 (right) and in experiment of inverse coffee discharge. These results show that fines
migration is the main mesoscopic transport process responsible for the reversible transient
permeability observed in experiments [13, 12, 18].

3.3 Concentration dynamics

After validation of the hydrodynamic response and transient permeability made in
the previous section, we study here the release and dynamics of a passive scalar field
(the molecular compound concentration, e.g. caffeine) during the filtration process. In
particular, we are interested in the resulting cumulative output concentration in the cup
for different choice of physical parameters, namely the concentration of fines θ, the bulk
diffusion coefficients Db of the molecular compound and release rates Dr. In this work
intra-granular diffusion coefficients Ds is set to zero.
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Figure 3: Direct discharge. Left: time-dependent Reynolds number (absolute value) for different

fines concentration θ. Right: cumulative output concentration.

The cumulative output concentration is defined as compound-to-total mass ratio, i.e.
Mcompound(t)/Mtot(t), where both quantities refer to the instantaneous values collected at
the output and depend on time. We consider here the case of direct discharge (Fig.3:
left). According to the time scale shown Fig.3, the temporal window explored is in the
range of [0-25]s when dimensionalized by τν = 0.16s, which corresponds to the typical
time for an espresso preparation.

3.3.1 Effect of fine concentration θ

We first select two typical values of diffusion coefficients consistent with the discus-
sion given in Sec.III.A, that is Db = 0.005 (corresponding to peak/steady Peclet numbers
Pebulk =6000/600) and Dr = 0.0005 = 0.1Db, and check the effect of the fines concentra-
tion θ on the the cumulative molecular concentration. In this work intra-granular diffusion
coefficients Ds = 0 so release mechanism is limited to the molecular compounds located
inside a grain near the solid/liquid interface. Effect of different intra-granular diffusion
coefficients Ds have been discussed in [14].
From Fig.3 (left) it can be seen how for small values of the fines concentration (e.g.
θ = 0.002) no transient permeability is observed. The resulting dynamics of the output
compound concentration (Fig.3: right) exhibits a peak value (≈ 1.4%) at short times
(t∗ ≈ 15) after which the output compound concentration in the cup decreases softly.
This peak value is shifted towards larger times and increases in magnitude for increasing
θ. For example, for θ = 0.0058, peak concentration (≈ 4%) is reached at dimensionless
time t∗ ≈ 95. Therefore, the present results shows that incorporation of a finite amount
of fines, by inducing a transient permeability of the coffee bed, leads to smaller steady
flow rates during filtration (Re ≈ 1). This, in turn, increases the residence time of the
flow in contact with the solid surface of grains, therefore maximizing the molecular release
process. In the case of fast flow (Re ≈ 10 for θ = 0.002), water is washed quickly through
the coffee bed preventing a proper release of substances into the fluid.
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3.3.2 Effect of bulk diffusion coefficient Db and release rate Dr

In a second stage, we focus on the system with fines concentration θ = 0.0058 (blue line
in Fig.3) which reproduces reasonably well the transient flow rate reported in experiments
with coffee filtration [13], i.e. a peak/minimal Reynolds numbers Re ≈ 10− 1.
In Fig.4 we look at the effect of several parameters on the resulting output cumulative
molecular concentration. In particular, in Fig.4 (left) the cumulative output concentration
is shown for fixed solid grain’s release rate Dr = 0.0005 and different bulk diffusion
coefficients Db ∈ [0.005 : 0.1], spanning nearly two orders of magnitude in the bulk
molecular Peclet number. It can be seen that Db has only a minor effect on the final
output concentration. There is a small consistent increase (less than 5%) in the peak for
increasing Db which can be attributed to difference in the release of molecular compounds
in areas of stagnating flow. For molecular species released in these areas, the only possible
mechanism of escape is by molecular diffusion, i.e. by slowly diffusing into region of large
flow where the material is efficiently advected.

More interesting is the effect of the solid/liquid molecular release rate Dr on the cu-
mulative output concentration (Fig.4: right). Here we consider a molecular compound
with fixed bulk diffusion Db = 0.005 at fine concentration θ = 0.0058 and look at different
release rates coefficients Dr ∈ [0.0005 : 0.02]. It is clear that Dr is the most relevant
parameter controlling the final concentration of substance in the cup. For small values
of the release coefficient (e.g Dr = 0.0005: black line) only a small peak (4%) is reached
at relatively long times after which the cumulative concentration decay very slowly. On
the other hand, large values of Dr (e.g Dr = 0.02: blue line) lead to a peak in the order
of 12%. Moreover, all the material is released very efficiently in the very early stage of
filtration (t∗ < 30) with significant decay occurring later on. Maximization of molecular
concentration in the cup can be therefore reached on extremely fast filtration processes
by tuning the release mechanism. This is independent on the molecular property of the
substance in the fluid (i.e. the diffusion coefficient Db in water). However, it depends
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strongly on Dr and can also depend on the intra-granular diffusion coefficient Ds of the
molecular compound which indirectly affects Dr.

It is interesting to note that different compounds (i.e. different release coefficients)
are clearly characterized by distinct kinetics which suggests that, depending on molecular
specificity, the balance between different compounds is altered if extraction is stopped
at different times. Because different compounds are tightly connected to specific flavors,
and being taste perception a highly non-linear process [19], only minor changes in this
delicate balance can lead to very different sensorial experience. For example caffeine and
trigonelline are typically associated to degree of bitterness, whereas chlorogenic acids to
acidic taste. These results indicate clearly that different preparation time for espresso
can potentially lead to significant changes in taste perception and therefore the current
framework can pave the way for a better flavor-engineering of espresso [14].

4 CONCLUSIONS

We have presented a SPH model for the simulation of espresso extraction which incor-
porates some essential physical features, i.e. (i) bimodal granulometry; (ii) double porosity
model of molecular concentrations dynamics (enabling liquid-bulk and intra-granular solid
diffusion); (iii) stripping mechanism of solid/liquid molecular release; and (iv) a model of
mechanical filter. The correct transient permeability of the coffee bed has been reproduced
under direct-inverse discharge conditions, showing the importance of fines migration on
the hydrodynamic properties of the percolation and extraction process. Concentration
dynamics for different molecular compounds have been studied. It was shown that the
presence of the fines, leading to larger flow resistance leads to a dramatic increase of the
residence time of water near the grain surface, therefore maximizing the release process.
The long-term goal of this work is to use the current framework to control coffee flavors
by monitoring the balance of specific taste-actives compound in the beverage.
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Abstract. Ideas from multi-level relaxation methods are combined with load balancing
techniques to achieve a convergence acceleration for a homogeneous work load distribu-
tion over a given set of processors when the underlying work function is inhomogeneously
distributed in space. The algorithm is based on an orthogonal recursive bisection ap-
proach which is evaluated via a hierarchically refined coarse integration. The method
only requires a minimal information transfer across processors during the tree traversal
steps. It is described of how to partition the system of processors to geometrical space,
when global information is needed for the spatial tesselation.

1 INTRODUCTION

Load imbalance is a common problem for parallel applications, which often arises when
work load distributions are inhomogeneously distributed in the global system setup, or
may occur when local inhomogeneities in the work density show up when increasing the
number of processors. In fact, for many parallel applications which rely on domain decom-
position as a parallel strategy, the processors define a spatial discretisation. Increasing
the processor count, the spatial resolution is increased, which resolves density differences
(which are often related to differences in work distribution) on a finer scale which conse-
quently lead to runtime differences on the individual processors. Since differences in work
load do lead to reduced parallel efficiency, various methods for an improved load balance
between the processors have been proposed [1, 2, 3, 4]. In the present article, problems
related to particle distributions or mesh vertices are considered. Since vertices might
be considered as a kind of abstract particle in the sense that they have properties and
relations to their neighbourhood we will use in the present article the notion of particle,
which might be understood in a more general context.

The problem of load balancing has to consider redistribution of work between processors
in such a way that all processors are actively working for a period of time and reaching
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either the end of the program or a synchronization point at almost the same time, so that
overhead- and waiting-times are minimized. This either includes active redistribution
of work by sending tasks over the network, which reside on the other processors, or by,
e.g., work stealing procedures, which includes forth and back communication between
processors for both task distribution and gathering of results. In the present article we
focus on redistribution of work load such that degrees of freedom (e.g. particles, vertices,
etc.) are communicated between processors as a result of redefining the geometry of
the domains. The basic principle is therefore a modification of the shape and size of
domains such that local work W

(n+1)
i is increased, if W

(n)
i < �W �P , where W

(n)
i is the

total work on processor i ∈ [0, P − 1], P the number of processors and �W �P the average

work of a processor. In analogy, W
(n+1)
j is reduced, if W

(n)
j > �W �P . The goal is that

shapes and sizes of domains are adjusted in such a way that W
(n)
i = �W �P ± δWi, where

δWi is a tolerable difference on each processor from the optimal load, for which holds∑P−1
i=0 δWi = 0.
In that sense, the problem of balancing the load between the processors has different

levels of complexity: (i) how to properly define the load; (ii) which is the proper shape
and size of a domain; (iii) how to control or minimise additional costs, e.g. increased
number of communication partners; (iv) how to minimise the procedure of work redis-
tribution, domain size and shape, e.g., with minimal communication costs between the
global processor grid. In the present article we will mainly focus on issue (iv), which is
related to the computational costs introduced by the chosen load balancing procedure
and which should, of course, be much smaller than the computational overhead which is
related to the work imbalance, i.e. the overhead which exists without any application of
load balancing. Concerning issue (i) we will assume a properly chosen function, which
characterises the work and which is properly measurable. In practice, this could be, e.g.,
the number of particles on each processor, the number of interactions, the total time
of interactions or the wall clock time of one full time step. For convenience we choose
for discrete systems the number of particles, Ni, on each processor. Concerning issue
(ii) there were a number of different approaches discussed in the literature, including (a)
orthogonal shapes in the case of orthogonal recursive bisection method [5] or tensor prod-
uct method [6]; (b) irregular cells in the case of, e.g., Voronoi tesselation [7] or graph
partitioning [8]; (c) distorted meshes with conserved topology [9, 10]. These methods
differ mainly in how the work is redistributed and which constraints for the individual do-
mains are considered. For most proposed methods the computational costs on the domain
are considered, but communication between neighbour domains is neglected or, at least,
not minimised. The latter issue usually leads to a coupled problem, which on the one
hand increases complexity of the minimisation procedure and, on the other hand, leads
sometimes to a non-smooth objective function since communication partners, and there-
fore also the communication overhead, may change discontinuously when increasing or
reducing communication partners during minimisation. This communication overhead is
related to the work on each domain after the load balancing step is finished. But the load
balancing itself needs information which invokes communication between processors and
in the worst case the required information has to be communicated between all processors,
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which especially leads to a big overhead for a large number of processors (i.e. those cases
where load balancing is often crucial for a good parallel efficiency). This overhead might
get crucial, especially when the load balancing has to be performed frequently in the sim-
ulation. This is a common problem for dynamic systems with high density contrasts or
regions, which temporally does not contain any load. In such cases, the domain sizes and
shapes might be reconstructed frequently, e.g. as it is for graph partitioning methods,
or might be smoothly adjusted to a new (smoothly varying in time) work load change,
which allows for iterative schemes, following the work load in time. This, however, has
an important requirement, namely that the change in work load has a slower relaxation
time than the load balancing scheme. Otherwise the load balancing method would lag
behind the work load, not reaching an equal distribution of load.

The current work does not focus on a new formulation of an objective function for
minimising computational work and communication overhead, but on an approach which
minimises the communication volume during the load balancing step for the case when
global information exchange is necessary within the processor mesh. Necessary global
communication in load balancing steps is performed on a hierarchical tree with mini-
mal information exchange. We will focus on the class of Orthogonal Recursive Bisection
(ORB), which is by itself a hierarchical scheme.

Since the work load on a domain is determined by the local degrees of freedom on
each domain, also information about the distribution of work on the domain is necessary,
if it cannot be mapped to a simple mask, which could be communicated over the net-
work. Therefore, we consider here an approach, which adapts elements from multigrid
method [11], which uses the property that inhomogeneities on small scales are smoothed
on a coarser scale. Since the number of degrees of freedom might get large (e.g. N > 109)
on high processor counts (e.g. P > 105), the present approach is formulated in terms of
reduced properties, i.e. only local work densities and domain coordinates are required to
balance the load quite efficiently, even for very inhomogeneous work distributions, i.e.,
computational degrees of freedom, e.g. particles, are only exchanged / redistributed on
the highest tree level and not explicitly communicated along the tree.

The article is organised as follows: In Sec. 2 the method is introduced from a formal
point of view. In Sec. 3 results are shown for various test cases, which include exact
function descriptions (in order to consider convergence properties) and sample systems,
consisting of discrete particle distributions.

2 METHOD

2.1 Multi-Level Description of Workload

The goal of the formal characterization of work load is to describe it as hierarchical
subdivision, where domains on level l+1 in the hierarchical description are constructed by
a bisection of domains of a given level l. In this sense, the coarsest level, l = 0, consists
of the whole system, whereas the finest level l = L consists of 2L sub-domains. The
original computational domains, which are administered by 2L processes are the target
regions for balancing the work load, such that each process has to fulfil the same amount
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of computational work. Therefore, the target work load for each process can be written
as the average work on a given level, i.e.

�W �l = 2−l W (1)

For the highest level L the target distribution of work is

�W �L = 2−L W (2)

=
1

P

2L−1∑
m=0

W
(n)
L,m (3)

=
1

P
W (4)

where W
(n)
L,m is the work on level L on preocess m during multi-level iteration n. Since this

represents the total sum over all partial work distributions, this relation holds for each
iteration n. Splitting a domain into two sub-domains can therefore be described as

W
(n)
l+1,2k = �W �l + δW

(n)
l+1,2k (5)

W
(n)
l+1,2k+1 = �W �l + δW

(n)
l+1,2k+1 (6)

where

δW
(n)
l+1,2k =

∫ x1/2

0

dx ρ(x | x ∈ Ω
(n)
l+1,2k)−

∫ δx
(n)
l+1,2k

0

dx ρ̂
(n)
l+1,2k(x) (7)

=
1

2

[
W

(n)
l+1,2k +W

(n)
l+1,2k+1

]
−

∑
{�}

V
(n)
l+1,�({�}) ρ̂

(n)
l+1,�({�}) (8)

with the set
{�}(n)l+1,2k = {� |Ω(n)

L,� ∩ Ω
(n)
l+1,2k /∈ {∅}} (9)

meaning that all volume and density contributions from the highest level L are sampled
onto the geometric region 2k with finite intersection. δx

(n)
l+1,2k is an approximation for the

location of the division point (in 2d division line, in 3d division plane) which subdivides a
domain on level l into two sub-domains on level l+1 with approximately equal work load.
In this stage, δx

(n)
l+1,2k , can only be computed approximately, since it is based on an average

underlying work density, which does not contain any information about inhomogeneities
in work distribution on a given process, i.e., the density ρ̂

(n)
l+1,2k(x) is constructed as a

coarse grain approximation on the highest level L, which is iteratively refined during the
multi-level procedure. Within multi-level cycle n, a density map of the system on level l
is constructed by concatenating the average densities within the domain geometries, Ω

(n)
l,k .

On the lowest level l = 0 this can be expressed as the complete map

ρ̂
(n)
0,0 (x) =

2L−1⋃
i=0

〈
W

(n)
L,i

V
(n)
L,i

〉

Ω
(n)
L,i

(10)
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This results in a step or plateau function, where constant values are assigned to the density
within the domain boarders of each domain on level l = L.

This approach offers a low communication approach to the implementation, since only
the domain geometries and the local work has to be transferred along the tree traversal.
The communication part is described in more detail in the next sections.

2.2 Tree Down-Traversal: Merging domains between two levels

The amount of communicated data down the tree is reduced to #
(n)
l,i = (2× d + 1) ×

8× |{�}(n)l,2k| bytes, where d is the dimension of the parallel sub-decomposition and which
essentially contains the lower-left- and upper-right-corner of the domain (given that it is an
orthogonal decomposition) and the work function value. To describe the basic procedure,
we consider for the initial geometry a non-staggered, orthogonal decomposition of domains
in 3-dimensional space on level L, which means that each domain has 6 neighbours,
separated by domain interfaces. Here, we consider tilings in each cartesian direction
which contain domains of multiples of 2, i.e. Ω = Dx ⊗Dy ⊗Dz, where |Dα| = 2lα (note
that other tilings of arbitrary number of domains, including prime numbers, are possible
and will be discussed elsewhere [12]). The procedure of merging is then straightforward.
We describe each level l as combination of levels in cartesian directions, i.e.

l = lx + ly + lz (11)

If we consider a given level l, the merging of two adjacent sub-domains is performed in
one of the cartesian directions α, which reduces the next level by one through

l − 1 = (lα − 1) + lβ + lγ (12)

where α, β, γ is any permutation of x, y, z. If we denote 2 adjacent index pairs in the
multi-level decomposition as ([il]α, [il + 1]α), which are subject to be merged in direction
α, then we can write

ix ∈ [0, 2lx−1 − 1] iy ∈ [0, 2ly − 1] iz ∈ [0, 2lz − 1]

[il]x = 2Lx−lx 2ix + 2Lx+Ly−ly iy + 2Lx+Ly+Lz−lz iz (13)

[il + 1]x = 2Lx−lx (2ix + 1) + 2Lx+Ly−ly ily + 2Lx+Ly+Lz−lz iz (14)

ix ∈ [0, 2lx − 1] iy ∈ [0, 2ly−1 − 1] iz ∈ [0, 2lz − 1]

[il]y = 2Lx−lx ix + 2Lx+Ly−ly 2iy + 2Lx+Ly+Lz−lz iz (15)

[il + 1]y = 2Lx−lx + 2Lx+Ly−ly (2ily + 1) + 2Lx+Ly+Lz−lz iz (16)

ix ∈ [0, 2lx − 1] iy ∈ [0, 2ly − 1] iz ∈ [0, 2lz−1 − 1]

[il]z = 2Lx−lx ix + 2Lx+Ly−ly iy + 2Lx+Ly+Lz−lz 2iz (17)

[il + 1]z = 2Lx−lx + 2Lx+Ly−ly ily + 2Lx+Ly+Lz−lz (2iz + 1) (18)

The enumeration of the next lower level is then accordingly [il−1]α = [il]α. Moving down
the tree and merging domains in direction α, the separating surface between domains is
removed and it is Ωl−1,i = Ωl,i1 ∪ Ωl,i2 , with i = [il−1]α, i1 = [il]α, i2 = [il + 1]α.
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Figure 1: Schematics of the parallel implementation of the multi-level load balancing scheme. On lower
levels, only processors with even indices are active.

Merging implies that the domain with index [il]α is the master domain, which combines
information of two sub-domains and takes part in the merging process on the next lower
level. To have all information available, a communication from [il + 1]α to [il]α has to
be performed which contains the lower left, upper right coordinates of the domain and
its total work. On this stage, also the coarse density field of domains on level L, which
overlaps with domain [il + 1]α is communicated to ensure that on each level in the up-
traversal later on the computation of the separating surface can be accomplished.

2.3 Tree Up-Traversal: Splitting domains on a level

The density field of work which has to be integrated to find the proper coordinate for
domain splitting on level l, is fixed on the highest level L in the tree, i.e., it contains the
average work within the geometry of individual domains in a given iteration step k. For
simplicity we first consider a 1-dimensional case. This means that at lower levels, several
sub-volumes from the highest level contribute to the work density field, which means that
several integrals have to be evaluated to find the location of x1/2 = {x : P (x) = 1/2},
where P (x) is the cumulative distribution function of work on a domain. From Fig. 1 it
is understood that x1/2 can be found by the geometric consideration

x1/2 = xk−1 +
1
2
− P (xk−1)

Wk

(xk − xk−1) (19)

= xk−1 +
1

2

1− 2P (xk−1)

P (xk)− P (xk − 1)
(xk − xk−1) (20)
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Here k is the domain, for which holds

k =

{
k : P (xk−1) <

1

2
∧ P (xk) >

1

2

}
(21)

In a multi-dimensional setting this is a bit more involved. The splitting of a domain
is performed in a given direction nα by an intersection plane, which is orthogonal to the
splitting direction. The splitting plane is then introduced at the relative position rα(1/2),
for which the integral holds

∫ rα(1/2)

rα,0

drα

∫ rβ,L

rβ,0

drβ

∫ rγ,L

rγ,0

drγ ρ(r) =
1

2
W (22)

In a discrete set of domains, where the density might change abruptly, depending on the
work distribution over the processors, one can write for the total work on the domain

W =

pα−1∑
iα=0

∫ rα,I[iα+1]

rα,I[iα]

drα

pβ−1∑
iβ=0

∫ rβ,iβ+1

rβ,iβ

drβ

∫ rγ,L

rγ,0

drγ

pγ−1∑
iγ=0

∫ rγ,iγ+1

rγ,iγ

drγ ρiα,iβ ,iγ (23)

In this formulation, I[i] is an ordered set as such that the domains of the highest level,
intersecting with the domain on the coarse level l, are sorted according to their lower
boarder in direction nα. Since the densities are approximated as constant over the domains
at the highest level, the integrals can be computed exactly. Selecting for the splitting e.g.
the z-direction can be formulated as a sum of sub-domains, W<

l , located completely below

z1/2 and those, δW
1/2
l , which are cut by the xy-plane cutting the z-axis at z1/2

W
1/2
l = W<

l + δW
1/2
l (24)

where
W<

l =
∑
p∈Pz

(xp,1 − xp,0) (yp,1 − yp,0) (zp,1 − zp,0) ρp (25)

and
δW

1/2
l =

∑
p∈P1/2

(xp,1 − xp,0) (yp,1 − yp,0) (z1/2 − zp,0) ρp (26)

which leads to the following expression for z1/2

z1/2 =

W
1/2
l −W<

l +
∑

p∈P1/2

(xp,1 − xp,0) (yp,1 − yp,0) zp,0 ρp

∑
p∈P1/2

(xp,1 − xp,0) (yp,1 − yp,0) ρp
(27)

Here, the sets Pz and P1/2 contains all subdomains p on the highest level L for which

Pz =
{
{p} |ΩL,p ∪ Ωl /∈ {∅} ∧ zp,1 > z1/2 ∧ zp,1 ≤ z1/2

}
(28)

P1/2 =
{
{p} |ΩL,p ∪ Ωl /∈ {∅} ∧ zp,0 < z1/2 ∧ zp,1 > z1/2

}
(29)
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Figure 2: Results for Model 1, the trilinear model with an error threshold �1/2 = 10−12 for the detection
of the intersection plane during the up-traversal step of the tree walk. Compared are results for P = 64
and P = 512 domains, which are partitioned applying a multi-level V-cycle. The longer relaxation time
for larger number of domains is in part due to a more inhomogeneous convergence behaviour of some
domains.

Therefore, in order to split the domain Ωl, requires a map of the underlying ΩL distribu-
tion. Once this map is known on the coarse domain Ωl, the cutting plane for the generation
of two sub-domains on level Ωl+1 can be done exactly according to the underlying density
distribution.

It is noted that between multi-level iteration cycles the exact work distribution does
not change, since the sources of work, i.e. particles or mesh points are not moved or
re-weighted. However, after each multi-level cycle, the domain geometries on level L are
adjusted and accordingly the work in each domain is changed, i.e., also the work density
for each domain is modified in general. As a consequence, the underlying domain map and
also the density tesselation is changed, leading to an iteratively converging partitioning
of the domains on level L.

2.4 Generation of the underlying density map

In each multi-level iteration step, the density map has to be known by all levels
l ∈ {0, L}. The multi-level cycle starts from the finest level L, corresponding to the
computational domain of each processor. On that level, the work per domain is explicitly
known and transferred as a characteristic quantity to the load balancing method. Going
down the tree to the coarsest level l = 0, means to merge two adjacent domains and com-
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Figure 3: Results for Model 2, the Gaussian superposition model with an error threshold �1/2 = 10−12

for the detection of the intersection plane during the up-traversal step of the tree walk. As in Fig. 2,
results are compared for P = 64 and P = 512 domains, which are partitioned applying a multi-level V-
cycle. For this case, there is also some inhomogeneous convergence behaviour observed for some domains.
As an example for the result of the partitioning, the domain structure on the highest level, L, is shown
(top).
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bine their individual work, i.e. Wp,l = W2p,l+1 + W2p+1,l+1. Since on the lower level, we
do not want to introduce coarser density descriptions, we keep the context of the density
distribution, i.e. L − 1, there will be two distinct regions in the boarder of ΩL domains,
which have different densities. To distribute the density distribution over the tree, the
processor containing the region Ω2p+1,l+1 communicates its density to processor 2p, which
will contain Ωp,l on the next coarser level. This can be continued along the walk down
the tree, so that on the lowest level the remaining processor p knows about the complete
density map of the system. Having this information available, it is possible to use the
formalism described above to construct a numerically exact subdivision with domains of
equal work load.

3 RESULTS

Model 1: Trilinear function: The density field is defined as

ρw(x, y, z) = x y z (30)

resulting in the total work on level L on domain k, ΩL,k

WΩL,k
=

1

8
(x2

1,k − x2
0,k) (y

2
1,k − y20,k) (z

2
1,k − z20,k) (31)

Model 2: Gaussian superposition: The density field is defined as

ρw(x, y, z) =
1

ng

ng∑
j=1

∏
α=x,y,z

1√
2πσα,j

e−(α−μα,j)
2/2σ2

α,j (32)

resulting in the total work on level L on domain k, ΩL,k

WΩL,k
=

1

ng

ng∑
j=1

∏
α=x,y,z

erf

(
−α0,k − μα,j√

2σα,j

)
− erf

(
−α1,k − μα,j√

2σα,j

)
(33)

Model 3: Gaussian particle distribution: The probability for finding a particle in the
volume dx dy dz is given by

p(x, y, z)dxdydz = pg(x)pg(y)pg(z)dxdydz (34)

with

pg(α) =
e(α−μα)2/2σ2

α∫
Lα

dα e(α−μα)2/2σ2
α

(35)

The work function is the result of the underlying discrete distribution of N particles, so
that the total work on the highest level L, i.e., on each process is given by

WΩL,k
=

1

N

N∑
i=1

1({i |α0,k < αi < α1,k, α = x, y, z}) (36)
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Figure 4: Results for Model 3, the Gaussian density for particle distribution function with an error
threshold �1/2 = 10−12 for the detection of the intersection plane during the up-traversal step of the
tree walk. Compared are results for P = 64 and P = 512 domains, which are partitioned applying a
multi-level V-cycle. Obviously, due to discreteness of particles, the error of work distribution does not
decrease to the prescribed error threshold.

where 1({i | .}) is the indicator function, which is 1 if the criteria for αi are met and 0
otherwise. Therefore, we consider the number of particles on each process as a measure
for the work. In other scenarios, the number of interactions between particles or the wall
clock time of a time step could be chosen as work function on a process.

Each load balancing experiment starts on a regular cartesian mesh. The errors are
computed as local errors of process i

�i =

∣∣∣∣1−
Wi

�W �

∣∣∣∣ (37)

and global errors as

� =

√√√√ 1

P

P−1∑
i=0

�2i (38)

All three models have been tested for P = 64 and P = 512 processes. Model 1 shows
a quite smooth relaxation behaviour to the prescribed error threshold for P = 43 = 64
processes. For the case of P = 83 = 512 processes, Fig. 2(right) shows that there are
different modes present with different relaxation times. It is not yet clear whether this
is an inherent system property, or whether a numerical condition is responsible for this
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behaviour which might be lifted by a correction technique. Qualitatively, the same be-
haviour is observed for Model 2, where for both numbers of processes this inhomogeneous
relaxation can be observed. Nevertheless, although there might be a delay in relaxation
(which might be possible to minimise) the system is converging to a stable final config-
uration of domain distribution, which is shown in Fig. 3(top). A stronger effect of this
behaviour is observed for the discrete particle system. It is understood that the exact
work distribution can ideally only be found if the number of particles is a multiple of
the number of processes. If this is not the case there is an inherent discretisation error,
which brings the error of work distribution δ� = O(P/N), which is likely to reach the
percentage range. For the cases studied, the observed local errors in the relaxed state are
in the range of �i < 10−3 for P = 64 and for P = 512 they are found to be in the range
of �i < 5× 10−3, which is still below the percentage threshold.

4 CONCLUSIONS

We have developed a mathematical description of a multi-level orthogonal recursive
bisection method for the balanced work distribution on parallel processes in particle sys-
tems. The method uses a minimal basis for information exchange between processors, i.e.
communicating information about local domain geometries and a scalar work descriptor
of the underlying finest domain splitting, i.e. the average work on each processor on the
highest level L in the tree. This density field is iteratively refined by correcting the do-
main geometries on each intermediate level l during the up-traversal step, resulting in an
improved work density description on the highest level, which in turn is applied to the
domain-splitting step in the next up-traversal step. This procedure resembles the classical
geometric multigrid scheme and is implemented in analogy as a sequence of V-cycles [11].
For three test cases it has been shown that a domain partitioning can be efficiently com-
puted, which could reduce the work imbalance error in a few steps by several orders of
magnitude. For continuous test cases it could be shown that the global error can even
be reduced to � < 10−10. For discrete systems, smoothness of the problem is lacking and
the error is saturating at a level of � < 10−3, which is certainly satisfying for any realistic
simulation scenario, since dynamics of the underlying particle system is likely to increase
load imbalance quickly into the low percentage range. Analysing the relaxation behaviour
of each domain, it could be observed that the final accuracy of work imbalance is nearly
the same for all processes, but that the relaxation is non-homogeneous, i.e. relaxation
time is not unique for all processes. This might be related to the inhomogeneous work
density distribution, or the convergence of the coarse density field to the true density map.
To investigate the origin, will be a matter of investigation. Also it could be observed that
the final error of the work distribution shows a slight oscillatory behaviour for the case
of the discrete particle system. This is a signature of oscillations of the domain boarder
geometries, i.e. no fix-point has been found for the domain geometry. Whether the sys-
tem is trapped in a local minimum, or an incommensurability of equal work distribution
has been occurred due to the discrete nature and, consequently, possible discretisation
error, will be investigated in a future work. Furthermore, a more detailed analysis of the
convergence behaviour will be conducted and possible criteria for not finding the absolute
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minimum of the work distribution error will be discussed. It is a matter of the under-
lying system dynamics which contains the information of how often the load balancing
procedure has to be called by the program. Experimental studies will be conducted in
future to understand the interplay between system dynamics, gain in load balancing and
penalty costs of calling the load balancing routine.
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[4] F. Schornbaum and U. Rüde. Extreme-Scale Block-Structured Adaptive Mesh Re-
finement. SIAM J. Sci. Comput., 40:C358–C387, 2018.

[5] H.D. Simon and S.H. Teng. How good is recursive bisection? SIAM J. Sci. Comp.,
18:1436–1445, 1997.
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Abstract. Many applications in geohazards prevention involve large deformations of 
unsaturated soils, e.g. rainfall induced landslides, embankment collapses due to wetting etc. 
These phenomena can be investigated with multiphase implementations of the Material Point 
Method (MPM) able to account for the behaviour of unsaturated soils. This paper compares two 
formulations: (i) a fully coupled three-phase formulation (3P) in which the governing equations 
are derived from the momentum balance and the mass balance equations of solid, liquid and 
gas phase assuming non-zero gas pressure, the primary unknowns are the absolute accelerations
of the phases (aS–aL–aG formulation); (ii) a simplified approach that neglects the momentum 
balance equation of the gas (2P_s). Potentialities and limitations of these approaches are 
highlighted considering a 1D infiltration problem. Despite the introduced simplifications, the 
simplified formulation gives reasonably good results in many engineering cases.

1 INTRODUCTION
Many natural hazards involve large deformations of unsaturated soils, e.g. rainfall induced 

landslides, embankment collapses due to wetting etc. These phenomena can be investigated 
with multiphase implementations of the Material Point Method (MPM) able to account for the 
behavior of unsaturated soils.

Recently, Yerro et al. [1] proposed a single-point three-phase (SP-3P) MPM formulation in 
which the governing equations are derived from the momentum balance and the mass balance 
equations of solid, liquid and gas phase assuming non-zero gas pressure. This approach takes 
into account the relative accelerations and relative velocities of the pore fluids and the primary 
unknowns are the absolute accelerations of the phases (aS–aL–aG formulation). The formulation 
is lagrangian for the solid phase; the material points (MPs) move with the kinematic of the solid 
skeleton, but carry the information of all phases (single-point approach).

In contrast, Bandara et al. [2] and Wang et al. [3] used a simplified approach, which neglects
the momentum and the mass balance equations of the gas, thus reducing the computational cost.
The formulation proposed in Wang et al. is an extension of the two-phase formulation 
developed in [4] for saturated soils. The governing equations are derived from the dynamic 

93



First A. Author, Second B. Author and Third C. Author

2

equilibrium of the liquid phase and the mixture and the primary unknowns are the absolute 
accelerations of the soild and the liquid (aS–aL formulation). In Section 2.2 this formulation is 
introduced showing that can be derived as a simplified version of the one presented in Yerro et 
al. [1]. In Bandara et al. the relative acceleration of the liquid with respect to the solid skeleton 
is neglected and the primary unknowns are the absolute acceleration of the solid skeleton and 
the relative velocity of the fluid.

The simplifying assumptions introduced in [2,3] are reasonable in many engineering cases, 
but sometimes deviations from the full three-phase formulation can be relevant. This paper 
highlights the differences between these approaches, considering a 1D infiltration example
simulated with an internal version of the software Anura3D (www.anura3D.eu) (Section 3).

2 MPM FORMULATIONS FOR UNSATURATED SOILS
The unsaturated porous media are assumed to be a combination of three different phases 

(ph): solid (S), liquid (L) and gas (G). The solid phase is made by solid grains that constitutes 
the solid skeleton of the media; meanwhile the liquid and the gas phases fill the voids. The 
fluids are a mixture of two components (c): water (w) and dry air (a) (Fig. 1). The mass fraction 
of a component in a phase are defined as:

𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝ℎ
𝑐𝑐𝑐𝑐 =

𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝ℎ
𝑐𝑐𝑐𝑐

𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝ℎ
(1)

The total mass of a component is:

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 = �𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝ℎ
𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝ℎ
(2)

The volumetric concentration ratio of solid, liquid, and gas are defined respectively as 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆,
𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿, and 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺 , moreover 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 + 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿 + 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺 = 1, 𝑛𝑛𝑛𝑛 = 1 − 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 = 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿 + 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺=porosity. Note that in 
unsaturated soils, the concentration ratio of porous fluids (𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿 and 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺) is controlled by the degree 
of saturation 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝ℎ = 𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝ℎ/𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 = 1 − 𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺) as 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 and 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺.

Figure 1 Definition of phases and components in an unsaturated medium (after [1])
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2.1 Three-phase (3P)
The 3P-SP formulation [1] considers one set of MPs that represent a partially saturated 

porous media. Each MP carries information of the three phases interacting in the continuum 
(i.e., solid skeleton “𝑆𝑆𝑆𝑆”, liquid “𝐿𝐿𝐿𝐿, and gas “𝐺𝐺𝐺𝐺”), and while it provides a Lagrangian description
of the solid (MPs move according to the solid), the fluid phases filling the voids are represented 
by means of a Eulerian approach.

Three main governing equations are posed at the nodes of the computational grid: the 
dynamic linear momentum balances of the gas phase (Eq. 3), liquid phase (Eq. 4), and mixture
(Eq. 5), being the accelerations of each phase (𝒂𝒂𝒂𝒂𝐺𝐺𝐺𝐺 , 𝒂𝒂𝒂𝒂𝐿𝐿𝐿𝐿, and 𝒂𝒂𝒂𝒂𝑆𝑆𝑆𝑆) the primary unknowns of the 
system.

𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝒂𝒂𝒂𝒂𝐺𝐺𝐺𝐺 = ∇𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺 − 𝒇𝒇𝒇𝒇𝐺𝐺𝐺𝐺𝑣𝑣𝑣𝑣 + 𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝒃𝒃𝒃𝒃  (3)

𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝒂𝒂𝒂𝒂𝐿𝐿𝐿𝐿 = ∇𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿 − 𝒇𝒇𝒇𝒇𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣 + 𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝒃𝒃𝒃𝒃  (4)

𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝒂𝒂𝒂𝒂𝑆𝑆𝑆𝑆 + 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝒂𝒂𝒂𝒂𝐿𝐿𝐿𝐿 + 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝒂𝒂𝒂𝒂𝐺𝐺𝐺𝐺 = ∇ ∙ 𝝈𝝈𝝈𝝈 + 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚𝒃𝒃𝒃𝒃 (5)

where the density of the mixture is 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 =  𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆 + 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿 + 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺 , the liquid and gas pressures 
are 𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿 and 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺 respectively, and 𝝈𝝈𝝈𝝈 is the total stress tensor. One assumption is that the liquid and 
gas seepages are assumed laminar in slow velocity regime; hence, drag forces (𝒇𝒇𝒇𝒇𝐺𝐺𝐺𝐺𝑣𝑣𝑣𝑣 and 𝒇𝒇𝒇𝒇𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣) fulfill
Darcy’s law.

As usual in MPM, Eq. 3, 4, and 5 are discretized in space by means of the Galerkin method 
and solved in time with a semi-explicit time discretization scheme. 

The model enables mass exchange between fluid phases, in order to account for dissolved 
air in the liquid and water vapour in the gas, and the mass balance equations are formulated for 
each component (i.e. solid, water “𝑤𝑤𝑤𝑤”, air “𝑎𝑎𝑎𝑎”):

��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�
𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝ℎ
𝑐𝑐𝑐𝑐

𝑉𝑉𝑉𝑉
� + ∇ ∙ 𝒋𝒋𝒋𝒋𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒄𝒄𝒄𝒄 �

𝑝𝑝𝑝𝑝ℎ

= 0 (6)

Where  𝑉𝑉𝑉𝑉 is the volume of the mixture and 𝒋𝒋𝒋𝒋𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒄𝒄𝒄𝒄 is the flux of the component in the phase.
Yerro et. al [1] show that the mass balance equations of the solid, water, and air, can be 
manipulated, leading to the following expressions:

𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝜕𝜕𝜕𝜕

= 𝑛𝑛𝑛𝑛∇ ∙ 𝒗𝒗𝒗𝒗𝑆𝑆𝑆𝑆 (7)

𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕(𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿

𝑤𝑤𝑤𝑤𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 + 𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺
𝑤𝑤𝑤𝑤𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺)

𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿
�̇�𝑝𝑝𝑝𝐿𝐿𝐿𝐿 + 𝑛𝑛𝑛𝑛

𝜕𝜕𝜕𝜕(𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿
𝑤𝑤𝑤𝑤𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 + 𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺

𝑤𝑤𝑤𝑤𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺)
𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺

�̇�𝑝𝑝𝑝𝐺𝐺𝐺𝐺
= −𝛁𝛁𝛁𝛁 ∙ [𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺

𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺(𝒗𝒗𝒗𝒗𝑮𝑮𝑮𝑮 − 𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺)]  − 𝛁𝛁𝛁𝛁 ∙  [𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿(𝒗𝒗𝒗𝒗𝑳𝑳𝑳𝑳 − 𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺)]

− (𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺
𝑤𝑤𝑤𝑤𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺 + 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿

𝑤𝑤𝑤𝑤𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿)𝛁𝛁𝛁𝛁 ∙  𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺 − 𝛁𝛁𝛁𝛁 ∙ 𝒊𝒊𝒊𝒊𝑮𝑮𝑮𝑮𝒘𝒘𝒘𝒘
(8)

𝜕𝜕𝜕𝜕(𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿
𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 + 𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺

𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺)
𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿

�̇�𝑝𝑝𝑝𝐿𝐿𝐿𝐿 + 𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕(𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿

𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 + 𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺)

𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺
�̇�𝑝𝑝𝑝𝐺𝐺𝐺𝐺

= −𝛁𝛁𝛁𝛁 ∙ [𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺(𝒗𝒗𝒗𝒗𝑮𝑮𝑮𝑮 − 𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺)]  − 𝛁𝛁𝛁𝛁 ∙  [𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿(𝒗𝒗𝒗𝒗𝑳𝑳𝑳𝑳 − 𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺)]
− (𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺

𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺 + 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿
𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿)𝛁𝛁𝛁𝛁 ∙  𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺 − 𝛁𝛁𝛁𝛁 ∙ 𝒊𝒊𝒊𝒊𝑳𝑳𝑳𝑳𝒂𝒂𝒂𝒂

(9)
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Where 𝒊𝒊𝒊𝒊𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒄𝒄𝒄𝒄 is the diffusive flux, modelled by the Fick’s law. Note that the previous 
expressions can be simplified when the liquid and gas phases are considered as simply water 
(𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿

𝑎𝑎𝑎𝑎 = 0; 𝒊𝒊𝒊𝒊𝑮𝑮𝑮𝑮𝒘𝒘𝒘𝒘 = 𝟎𝟎𝟎𝟎) and dry air (𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺
𝑤𝑤𝑤𝑤 = 0 ;  𝒊𝒊𝒊𝒊𝑳𝑳𝑳𝑳𝒂𝒂𝒂𝒂 = 𝟎𝟎𝟎𝟎); the examples in Section 3 are solved under 

these hypothesis..
The mass balance equations (Eq. 7, 8, 9) are posed at the MPs and solved in terms of changes 

in porosity, liquid pressure and gas pressure. In this formulation, the solid mass remains 
constant thorough the calculation, and the mass balance of the solid phase is automatically 
fulfilled. However, the conservation of the fluid masses is totally controlled by the accuracy in 
which the mass balance equations are solved. 

The constitutive stresses controlling the unsaturated soil behavior, net stress (𝝈𝝈𝝈𝝈� = 𝝈𝝈𝝈𝝈 − 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺𝑰𝑰𝑰𝑰)
and suction (𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺 − 𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿), are updated at the MPs by considering a constitutive equation. 
Finally, the degree of saturation and the hydraulic permeability are updated taking into account
the corresponding hydraulic constitutive equations, i.e., the soil-water retention curve, and the 
Hillel expression, respectively as introduced in Section 2.3.

2.2 Two-phase with suction (2P_s)
The governing equations of the two-phase formulation with suction effect (2P_s) are derived 

in this section highlighting the additional hypothesis introduced with respect to the 3P 
formulation explained in Section 2.1.

Assuming that:
1) no air is dissolved in liquid (𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿

𝑎𝑎𝑎𝑎 = 0, 𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎 = 1) and no water vapour is present in the gas 

phase (𝜔𝜔𝜔𝜔𝐺𝐺𝐺𝐺
𝑤𝑤𝑤𝑤 = 0, 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿

𝑤𝑤𝑤𝑤 = 1),
2) no diffusion fluxes of air in the liquid phase (𝒊𝒊𝒊𝒊𝑳𝑳𝑳𝑳𝒂𝒂𝒂𝒂 ≈ 0) and water in the gas (𝒊𝒊𝒊𝒊𝑮𝑮𝑮𝑮𝒘𝒘𝒘𝒘 ≈ 0)
3) gas density is negligible compared to the other phases (𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺 ≈ 0),
4) the gas pressure is constant and equal to 0,
5) the gradient of the product 𝑛𝑛𝑛𝑛𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is negligible, i.e. 𝛁𝛁𝛁𝛁(𝑛𝑛𝑛𝑛𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿) ≈ 𝟎𝟎𝟎𝟎

the momentum balance equation and the mass balance equation of the gas can be neglected, 
while the momentum balance of the mixture reduces to Eq. 10.

𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝒂𝒂𝒂𝒂𝑆𝑆𝑆𝑆 + 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝒂𝒂𝒂𝒂𝐿𝐿𝐿𝐿 = ∇ ∙ 𝝈𝝈𝝈𝝈 + 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚𝒃𝒃𝒃𝒃
(10)

where the mixture density is 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 =  𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆 + 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿.
The mass balance equation of the liquid is rewritten as:

𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷(𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿)
𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿

�̇�𝑝𝑝𝑝𝐿𝐿𝐿𝐿 = −(1 − 𝑛𝑛𝑛𝑛)(𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿)∇ ∙ 𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺 − 𝑛𝑛𝑛𝑛(𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿)∇ ∙ 𝒗𝒗𝒗𝒗𝑳𝑳𝑳𝑳 (11)

The left hand side of Eq. 11 can be reformulated by 
1) introducing the constitutive equation for the water: �̇�𝜌𝜌𝜌𝐿𝐿𝐿𝐿 = −𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿 𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿⁄ �̇�𝑝𝑝𝑝𝐿𝐿𝐿𝐿, 𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿=liquid bulk 

modulus
2) considering that 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is a function of 𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿 which leads to Eq. 12.

�−
𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛
𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿

+ 𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿

� �̇�𝑝𝑝𝑝𝐿𝐿𝐿𝐿 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿∇ ∙ 𝒗𝒗𝒗𝒗𝑳𝑳𝑳𝑳 + (1 − 𝑛𝑛𝑛𝑛)𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿∇ ∙ 𝒗𝒗𝒗𝒗𝑺𝑺𝑺𝑺 (12)

The derivative of the degree of saturation with respect to suction is given by the soil-water 
retention curve (Section 2.3). 
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Note that, due to the introduced simplifications, the difference between the 3P and the 2P_s 
formulation increases when

1) gas density increases
2) suction increases
3) gas pressure is not zero (i.e. atmospheric pressure)
4) degree of saturation decreases
5) derivative of the degree of saturation increases

The effect of these simplifications will be more clear with the infiltration examples reported in 
Section 3.

2.3 Hydraulic constitutive equations
The well know Van Genuchten soil-water retention curve (SWRC) [5] can be used with 

assumed constant parameters 𝜆𝜆𝜆𝜆 and 𝑝𝑝𝑝𝑝0.

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 = 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 + �1 + �
𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝0
�

1
1−𝜆𝜆𝜆𝜆

�

−𝜆𝜆𝜆𝜆

(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 − 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚) (13)

Alternatively, an approximated linear law (Eq.14) can be used to compute 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿.

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 = 1 − 𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠 (14)

Furthermore, since the hydraulic conductivity parameter is susceptible of variable water 
content in soil unsaturated zones, the seepage process should be modelled with permeability 
laws function of 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. An example of this kind of law is the Hillel expression [6] as function of 
the saturated hydraulic conductivity and an exponent r, which assumes values between 2 and 
4.

𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿 = 𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 ∙ 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟 (15)

3 NUMERICAL EXAMPLES
In order to compare the formulations presented in the previous section a one-dimensional

infiltration problem, similar to the one presented in [7], is considered here. A 1m column has 
an initial suction of s0=500kPa; for t>0, zero suction is applied at the head of the column and 
the suction begins to decrease with time.

The equation that represents the movement of water in unsaturated soils is the Richards 
equation. However, because of the nonlinearities of soil hydraulic parameters (for instance, 
permeability depends on degree of saturation, and degree of saturation depends on fluid 
pressures), it is very difficult to obtain an analytical solution to describe the unsaturated flow. 
In order to derive an analytical solution the following assumptions are introduced [8]:

• vertical liquid flow,
• deformability of the solid skeleton and the solid grains are neglected,
• neither water vapour nor dissolved air are considered in the gas and liquid phases 
respectively,
• validity of the Darcy’s law and constant permeability,
• barotropic behaviour of the liquid,
• linearized water retention curve, i.e. Eq. 14
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The mathematical expression that describes the one-dimensional vertical water flow within 
an unsaturated soil can be derived from the mass balance equation of the liquid (Eq. 11).

Under the aforementioned assumptions it reduces to Eq. 16

�
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿
𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿

+ 𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣�
𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝑘𝑘𝑘𝑘
𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑔𝑔𝑔𝑔

𝜕𝜕𝜕𝜕2𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

(16)

Which can be written as

𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣
𝜕𝜕𝜕𝜕2𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

(17)

This expression is the diffusion equation, where y is the infiltration direction and Ci
corresponds to

𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣 =
𝑘𝑘𝑘𝑘

𝑛𝑛𝑛𝑛𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿𝑔𝑔𝑔𝑔 �
𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿
𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿

+ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠�
(18)

Assuming that the variation of 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣 is small in the considered process, a dimensionless time T
can be defined as function of Ci and the column height h as

𝑇𝑇𝑇𝑇 =
𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝜕𝜕𝜕𝜕
ℎ2

(19)

The analytical solution that comes out applying the boundary conditions previously 
described, is the following:

𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠0

=
4
𝜋𝜋𝜋𝜋
�

(−1)𝑗𝑗𝑗𝑗−1

2𝑗𝑗𝑗𝑗 − 1

∞

𝑗𝑗𝑗𝑗=1

cos �(2𝑗𝑗𝑗𝑗 − 1)
𝜋𝜋𝜋𝜋
2
𝑦𝑦𝑦𝑦
ℎ
� 𝑒𝑒𝑒𝑒−(2𝑗𝑗𝑗𝑗−1)2𝜋𝜋𝜋𝜋

2

4
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠
ℎ2 (20)

being s suction (s = pG-pL), s0 initial suction, h the infiltration length, and t time.
Note that the previous equation is equivalent to the one-dimensional consolidation problem 

in saturated media, the well-known Terzaghi’s solution.
Figure 2 compares the numerical results with the analytical solution for different values of 

av assuming s0=500kPa. Material parameters are summarized in Table 1. In this conditions the 
degree of saturation varies between 0.5 and 1 for the case av=1.0e-3 kPa-1 and between 0.995 
and 1 for the case av=1.0e-5 kPa-1. When SL is close to 1 and the derivative 𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠⁄ is small, 
the additional terms comparing in the 3P formulation are small, thus the two formulations give 
the same results. When reducing the initial suction to 5kPa in case av=1e-3kPa-1, a good 
agreement between the two formulations is recovered as the suction varies only between 0.995 
and 1.

Table 1. Material Parameters of the infiltration problem (* parameters not used in 2P_s)

Solid density 2700 kg/m3 Gas bulk modulus* 10 kPa
Liquid density 1000 kg/m3 Intrinsic permeability liquid 5∙10-11m2/s
Gas density* 10 kg/m3 Intrinsic permeability gas* 5∙10-11m2/s
Porosity 0.3 Liquid viscosity 10-6 kPa s
Liquid bulk modulus 80000 kPa Gas viscosity* 2∙10-8 kPa s
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Figure 2: Numerical results of normalized suction evolution along depth; comparison between 2P_s and 3P 
for av=1e-3kPa-1 and av=1e-5kPa-1 in case s0=500kPa

Figure 3: Numerical results of suction evolution along depth y, comparison between 2P_s and 3P for av=1e-
3kPa-1 in case s0=5kPa

The simulations are now repeated using the Van Genuchten water retention curve and the 
Hillel law. Two sets of parameters have been used (Tab. 2, Fig. 4), which are close to typical 
values for clay (soil A) and sand (soil B).

Assuming an initial suction corresponding to an initial degree of saturation of 0.85 the 3P 
and the 2P_s gives very similar results (Fig. 5). The normalized time T in Figure 5 is computed 
for a value of Ci,ref calculated with the values of k, SL, and 𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣 = 𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿⁄ at the beginning of 
the simulation.
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These conditions are probably the most frequent in many geohazard problems such as dam 
and levee stability or shallow landslides.

When running these simulations in a common laptop computer, the 2P_s is 6 times faster 
than the 3P, thus the use of the 2P_s can be more convenient for problems when SL is relatively 
close to 1 and varies in a narrow range.

Figure 4: SWRC for parameters in Table 2

Table 2: Parameters of Van Genuchten SWRC

Soil A Soil B
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 0.2 0.125
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 1 1
𝑝𝑝𝑝𝑝0 5 3
λ 0.17 0.7

(a) Soil A, s0=10kPa (b) Soil B, s0=2kPa

Figure 5: Comparison between MPM results using different hydraulic conductivity curves: evolution of the 
degree of saturation with depth for soil A (a) and B (b).

Increasing the suction to values corresponding to an effective degree of saturation 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 =
𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
= 0.13 the results obtained by the two formulations are slightly different, especially 

for the lower values of SL.
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(a) Soil A, s0=80000kPa (b) Soil B, s0=7kPa

Figure 6 Comparison between MPM results using different hydraulic conductivity curves: evolution of the 
degree of saturation with depth for soil A (a) and B (b).

4 CONCLUSIONS
This paper briefly illustrates two mathematical formulations for unsaturated soils recently 

implemented in the MPM code Anura3D, namely the full three-phase formulation and the 
simplified two-phase formulation with suction effect. The results obtained with 3P and 2P_s 
are compared for different material parameters in a one-dimensional infiltration case showing 
that the differences increases when

1) suction increases
2) degree of saturation decreases
3) derivative of the degree of saturation increases, i.e. the SWRC is relatively steep like in 

Soil B of Fig. 4
In many real cases under analysis for geohazard assessment the differences between 3P and 

2P_s are negligible, thus the simplified formulation can be used to reduce significantly the 
computational cost.
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Abstract. Catastrophes involving mass movements has always been a great threat to
civilizations. We propse to simplify the behavior of the mass movement material as a
highly viscous fluid, possibly non-Newtonian. In this context, this study describes the
application of two improvements in highly viscous fluid simulations using the smoothed
particle hydrodynamics (SPH) method: an implicit time integration scheme to overcome
the problem of impractically small time-step restriction, and the introduction of air ghost
particles to fix problems regarding the free-surface treatment. The application of a fully
implicit time integration method implies an adaptation of the wall boundary condition,
which is also covered in this study. Furthermore, the proposed wall boundary condition
allows for different slip conditions, which is usually difficult to adopt in SPH. To solve a
persistent problem on the SPH method of unstable pressure distributions, we adopted the
incompressible SPH [1] as a basis for the implementation of these improvements, which
guarantees stable and accurate pressure distribution. We conducted non-Newtonian pipe
flow simulations to verify the method and a variety of dam break and wave generated by
underwater landslide simulations for validation. Finally, we demonstrate the potential of
this method with the highly viscous vertical jet flow over a horizontal plate test, which
features a complex viscous coiling behavior.

1 INTRODUCTION

Landslide, debris flow, avalanche and dam collapse are examples of mass movement
events. They are among the most harmful and widespread forms of disasters either natural
or manmade. For instance, the 2019 tsunami in Indonesia, aka 2018 Sunda Strait tsunami,
was caused by an underwater landslide triggered by Anak Krakatau volcano eruption. It

1
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caused more than 400 deaths and 14 thousand injured people. Another example is the
Brumadinho dam disaster in Brazil, 2019. The iron ore tailings dam collapse led to a
mudflow that inundated a large area of the city of Brumadinho. More than 200 people
lost their lives. Given the recent concern in this topic, it is essential for present and future
public administrators to prepare preventive measures for mass movement events, which
requires extensive studies on the phenomenon.

We propose to use the SPH method to simulate the bahavior of mass movements
approximating its rheology into a non-Newtonian fluid, which can reach high viscosities.
Here, we show a verification and validation (V & V) procedure of the method for different
settings, which resulted in good agreement with theoretical solutions and past physical
experiments.

2 SPH METHOD FORMULATION

The SPH method is one of the several Lagrangian mesh-free particle methods which
was first proposed simultaneously by Lucy [2] and Gingold and Monaghan [3] in 1977
and it is widely applied to fluid dynamics problems. In this section, we present the basic
aspects of this method.

2.1 Governing equations

The ISPH is designed to solve numerically the two main equations of hydrodynamic
problems of incompressible flows, the continuity equation and the NavierStokes equation,
respectively,

∇ · v = 0, (1)

Dv

Dt
= −∇P

ρ
+∇2(νv) + g, (2)

where v is the velocity vector, D/Dt the time derivative, P the pressure field, ρ the
density of the fluid, ν the kinematic viscosity, g the external forces vector, and t the time.

2.2 SPH approximations

The SPH method is a space integration method that smoothly approximates the value
of functions and its derivatives by integrating the contribution of the neighbor particles
varying its influence according to a weight function W , which is chosen from a wide range
of possibilities. In this study, we speted for the quintic spline function [4]. Then, one can
approximate the value of a generic function φ for a given particle and its derivatives as

〈φi〉 =
N∑

j=1

mj

ρj
φjW (rij, h), (3)

〈∇φi〉 =
1

ρi

N∑

j=1

mj(φj − φi)∇W (rij, h), (4)
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〈∇φi〉 = ρi

N∑

j=1

mj(
φj

ρ2j
+

φi

ρ2i
)∇W (rij, h), (5)

〈∇2φi〉 =
2

ρi

N∑

j=1

mj
rij · ∇W (rij, h)

r2ij
(φi − φj), (6)

where the subscripted indices i and j labels the target and neighboring particles, respec-
tively, m is the mass, rij = xi − xj the relative position vector between particles i and j,
and symbol 〈 〉 signifies the application of the SPH approximation. Note that there are
two formulations to approximate the first spatial derivative of a function as expressed by
Eqs. 4 and 5.

3 FULLY IMPLICIT TIME INTEGRATION SCHEME

The original time integration scheme for the ISPH method [1] is based on a projection
method which updates the velocity in a semi-implicit manner divided into two steps:
predictor and corrector steps. In a similar way, we propose a fully-implicit time integration
scheme using the same predictor and corrector steps [5]. The objective is to avoid the
Courant-Friedichs-Lewy condition [6] on the maximum allowed time increment, which
could lead to infeasibly small values for highly viscous fluid simulations.

3.1 Time integration based on the projection method

First, the contribution of the viscous term and the external forces of Eq.2 results in a
predicted velocity field calculated implicitly as

v∗ = vn +∆t(∇2(νv∗) + g). (7)

Then, the pressure is calculated from a pressure Poisson equation

∇2P n+1 =
ρ0
∆t

∇ · v∗ + α
ρ0 − ρn

∆t2
. (8)

Finally, adding the contribution of the pressure field, we calculate implicitly the up-
dated velocity field as

vn+1 = v∗ +∆t
(
− ∇P n+1

ρ0

)
. (9)

In the above equations, ∆t is the time increment, ρ0 the reference density of the fluid,
ρn a SPH approximation of the density based on Eq.3, α a relaxation coefficient, n and
n+ 1 indices referring to the current and next iterations, and the superscript ∗ indicates
the predictor step. Eqs. 7 and 9 are referred to as the predictor and corrector steps,
respectively.
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3.2 Rheological model

In this study, we use three different rheological models: Newtonian, Bingham plastic
and Bingham pseudoplastic fluids.

In Newtonian fluids, the viscosity parameter has a fixed value, so ν = ν0. In con-
trast, Bingham plastic and Bingham pseudoplastic rheologies are evaluated using the
cross model and the Herschel-Bulkley model, respectively,

ν̃ = ν0 +
τy
γ̇ρ0

, (10)

ν̃ =
Kγ̇n0−1

ρ0
+

τy
γ̇ρ0

, (11)

where ν̃ represents the approximated viscosity, ν0 the initial viscosity, K the consistency
index, n0 the flow behavior index, τy the yield stress, and γ̇ the equivalent strain rate
approximated as [7]

γ̇2
i =

1

2

N∑

j=1

mj
ρi + ρj
ρiρj

rij · ∇W (rij, h)

r2ij
|vi − vj|2. (12)

To avoid numerical problems of dividing by zero, the final viscosity is evaluated as

ν =

{
νMAX if ν̃ > νMAX

ν̃ otherwise.
(13)

3.3 Discretization of the governing equations

Using the SPH approximations of Eqs. 4, 5 and 6, we discretize Eqs. 7, 8 and 9 as

v∗
i = vn

i +∆t
( N∑

j=1

Bij(v
∗
i − v∗

j) + g
)
, (14)

N∑

j=1

Aij(P
n+1
i − P n+1

j ) = bi, (15)

vn+1
i = v∗

i +∆t
(
−

N∑

j=1

mj(
P n+1
j

ρ2j
+

P n+1
i

ρ2i
)∇W (rij, h)

)
. (16)

where

Bij = mj
ρiνi + ρjνj

ρiρj

rij · ∇W (rij, h)

r2ij
, (17)

Aij =
2

ρi
mj

rij · ∇W (rij, h)

r2ij
, (18)

bi =
1

∆t

N∑

j=1

mj(vi − vj)∇W (rij, h) + α
ρ0 − ρni
∆t2

. (19)

Notice that Eq.17 uses a slightly different SPH discretization compared to Eq.6 to result
in a symmetric linear equation. In addition, it was necessary to simplify the viscosity term
on Eq.17 as the viscosity of the previous time step n, since the strain rate (Eq.12) is non-
linear by nature.
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Figure 1: Wall boundary particles input information and virtual marker

4 BOUNDARY TREATMENT

For the correct application of the abovementioned equations, we need to define the
boundary conditions accordingly. We propose the usage of ghost particles for both solid
wall and free-surface boundaries.

4.1 Solid wall boundary

Following a similar procedure as [8], we selected a fixed wall ghost particle (FWGP)
approach for the treatment of the solid wall boundary. First, fixed wall particles are
placed in the wall domain, in which, for every wall particle, it is necessary to provide the
normal direction n and the distance to the wall surface dw as input information. Then, a
virtual marker is placed on the boundary surface, as Fig.1 shows schematically.

To evaluate different slip conditions, we define the γslip parameter, which correspond
to the percentage of slip on the projection of the velocity over the wall surface; that is,
γslip = 0 means no-slip condition, γslip = 0, free-slip condition, and 1 > γslip > 0, general
slip condition.

Decomposing the velocity of a fluid particle(subscript f) near a wall particle (subscript
w) into normal (subscript n) and orthogonal directions (subscript t) leads to

vf,n = (nw · vf )nw, (20)

vf,t = vf − vf,n. (21)

where nw represents the normal direction of a wall neighbouring particle.
Then, we derived the geometrical relationship

vw,t = Cvf,t, (22)

where

C = γslip −
(1− γslip)dw

|xf − xw|cosθ − dw
, (23)
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cosθ =
nw · (xf − xw)

|xf − xw|
. (24)

Let’s define the no-penetration condition as

vw,n = −vf,n. (25)

Then, using Eqs. 22 and 25 leads to

vw = Cvf − (1 + C)(nw · vf )nw, (26)

which can be interpreted as a relationship between the velocity of a target fluid particle
and its wall neighbouring particle; therefore, can be applied on Eq.7.

Next, we define the pressure in the wall ghost particles based on a Neumann boundary
condition stating that the acceleration a of the water particles close to the boundary
surface in the normal direction of the wall should be zero; in other words,

a · n = 0. (27)

We then project the NavierStokes equation, Eq.2, along the normal to derive

a · n = [−∇P

ρ
+∇2(νv) + g] · n, (28)

∂P

∂n
= ρ(∇2(νv) + g) · n, (29)

Pw = Pw,VM − dwρ(∇2(νv) + g) · n, (30)

where the index VM represents the virtual marker of a wall particle.
Similarly to the velocity boundary condition, Eq. 30 can be applied to Eq.15 in the

case of a target fluid i particle and its neighbouring wall particle j, since it is a general
relationship between fluid and wall particles. However, to simplify this calculation, sim-
ilarly to [8], we propose to approximate the pressure of a virtual marker J linked to the
neighbouring wall particle j as

P n+1
J = (1− β)P n+1

i . (31)
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Figure 2: Process of creating AGPs

4.2 Free-surface boundary

In the original SPH method, there is no transition between inner fluid particles and
void spaces outside the fluid domain, which causes some instability on the free-surface
particles. Here, we propose the implementation of AGPs to create a fictitious mass around
the free-surface to overcome this problem.

The algorithm described here is inspired by the space potential particle implementation
[9] as follows. First, during the neighbouring search procedure, we attach the free-surface
particle label for those with less than 160 neighboring particles in 3D simulations. Then,
with an algorithm proposed by Marrone et al. [10], we reaffirm the free-surface particle
label for those that have no particles in the conical plus a hemispherical region in the
normal direction of each particle. Lastly, we create an AGP in the normal direction of
each free-surface particle. Fig. 2 schematically illustrates this process.

If necessary, one may repeat processes (b) and (c) in Fig. 2 as often as needed to fill
entirely the domain of influence of all free-surface particles. For the quintic spline weight
function used in this study, three layers of AGPs are necessary to achieve the highest
accuracy.

Null divergence of the velocity field on the free-surface particles boundary condition
must be satisfied, which leads to a simplification in which the velocities of neighbouring
AGPs are equal to the velocity of the fluid target particle. In addition, the zero pressure
Dirichlet boundary condition must be satisfied on the AGPs.

5 NUMERICAL EXAMPLES

Here, we demonstrate the efficiency of the proposed SPH method with several numer-
ical examples. The objective is to show a full process of verification and validation (V
& V). First, the implicit time integration scheme is verified through several pipe flow
simulations. Then, we validate it with dam break numerical tests, channel flow and un-
derwater landslide. To finalize, we demonstrate the robustness of this method with the
viscous coiling behavior.
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Figure 3: (a) Geometrical parameters of the pipe flow ; (b) Comparison between numerical and theo-

retical results of the non-Newtonian pipe flow simulation

5.1 Non-Newtonian pipe flow

We conducted the non-Newtonian pipe flow problem for the Bingham fluid, to verify our
implicit time integration technique of the viscous term and the wall boundary treatment.
Fig.3(a) illustrates the geometrical parameters of this problem. We utilized the following
parameters during the simulation: R = 0.1325m, P1 = 2000Pa and P2 = 1000Pa (P =
1000Pa), L = 0.6m, 0 = 0.1m2/s, and d = 0.005m. Fig.3(b) is a graph comparing the
numerical results with the theoretical solution. The theoretical value of the pipe flow
velocity for Bingham plastic fluid is defined as [11]

u(r) =

{
∆PR2

4ρν0L

[(
1− 2Lτy

∆R

)2( r
R
− 2Lτy

∆R

)2]
if r > r0

∆PR2

4ρν0L

[(
1− r0

R

)2]
if r ≤ r0,

(32)

where

r0 =
2Lτy
∆P

. (33)

As expected, the numerical results are very consistent with the theoretical values.

5.2 Non-Newtonian Dam break

In this section, we conducted a series of dam break validation tests. First, we selected
the well-known experimental study from Martin and Moyce [12] to verify the proposed
SPH method applied on simple low viscosity case. To maintain the same notation as
utilized in [12], lets define the non-dimensional quantities

T = t
(g
a

)1/2

, (34)

Z =
z

a
, (35)

where t is the time after the dam collapse, g is the gravity acceleration, a is the base
length of the fluid, and z is the distance of the surge front from the initial wall. The
chosen parameters in this validation test are Height = a = 0.056m, width = 0.056m,
d = 0.002m, ρ0 = 1000kg/m3, ν0 = 1.4 · 10−7m2/s, and ∆t = 1 · 10−4s.
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Figure 4: Comparison between numerical and experimental results of the Newtonian dam break simu-

lation

Figure 5: Non-Newtonian dam break: (a) Particle positioning after 0s, 1s and 1.5s of simulation; (b)

Comparison of the non-Newtonian dam break results with [13]

Fig. 5.2 shows the simulation results graphically for the proposed SPH method. As
expected, the results are very accurate.

Next, we analyze the dam break of a Bingham pseudoplastic fluid comparing with
experimental results from Minussi and Maciel [13]. The following parameters were used
in this verification test: height = 0.13m, a = 0.5m, width = 0.32m, ρ0 = 1000kg/m3,
τy = 49.179Pa, k = 7.837Pa sn0 , n0 = 0.442, νMAX = 100m2/s, and ∆t = 1 · 10−4s.

Fig.5(a) shows the particle distribution of the non-Newtonian daybreak verification test
after 0s, 1s and 1.5s of simulation, and Fig.5(b) shows the comparison between the results
with different particle resolutions (d = 0.01m and d = 0.005m). The results become more
accurate as the particle resolution is finer, which shows the convergence of the proposed
method. Also, as showed in Fig.5(b), our proposed method resulted in a better accuracy
than the reference numerical solution presented in [13].

9
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Figure 6: Underwater landslide comparison between the numerical solution and experiments from [16]

at (a) 0.4s and (b) 0.8s

5.3 Underwater landslide

The next example is a validation test involving a multi-phase problem. [16] in collab-
oration with CEMAGREF institute (Centre National du Machinisme Agricole du Gnie
Rural des Eaux et des Forts, France) conducted an experiment to evaluate the waves
generated by underwater mass movements in a small scale experiment. The experiments
consists of a portion of sand sliding over a frictionless plane inclined at 45 degrees. Ini-
tially, the channel with geometry specified in Fig.6 is filled with water at 1.6m depth and
a sand mass of triangular cross section of 0.65m x 0.65m is positioned at the top of the
inclined plane.

The numerical parameters are listed in table 1. As demonstrated in Fig.6, the numerical
results are consistent with the experimental results, with the exception of one instance
at 0.4s, which shows one data point that seems to not agree with the present numerical
solution. We hypothesize that this one divergent data point might have been generated
by the abrupt opening of the gate that was holding the sand mass at the initial position.
In addition, this example shows the capability of our proposed method to simulate the
no-slip condition at the inclined plane (γslip = 0).

Table 1: Parameters of the underwater landslide numerical test

d ∆t ρ0,water νwater ρ0,sand ν0,sand τy,sand
(m) (s) (kg/m3) (m2/s) (kg/m3) (m2/s) (Pa)
0.01 1 · 10−5 1000 1.4 · 10−7 1950 5 · 10−5 250

5.4 Viscous coiling

The viscous coiling behavior is a widely used benchmark test for highly viscous fluid
simulation, since it is not possible to generate it without special treatment
citeVileauRodgers. It is expected that viscous coiling behavior occurs on a vertical jet
flow over a horizontal plate experiment, with a high enough viscosity and H/D (height
over diameter) proportion [15].
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Figure 7: Vertical jet flow example without (left) and with (right) AGPs

The objective is to represent the behavior of honey falling over a bread. First, Fig.7
(left) reveals a rendered visualization of the vertical jet flow without the application of
AGPs. Since the free-surface condition is not well verified, coiling could not occur, and
the result is a radial motion. As oppose to that, Fig.7 (right) shows the same simulation
solved with the introduction of AGPs. In this example, coiling occurs as a result of the
improved free-surface treatment, and the movement appears to be very natural.

6 CONCLUSIONS

We proposed several improvements for highly viscous fluid and non-Newtonian fluid
simulations using the SPH method. The main improvements are related to an implicit
time integration scheme with a special boundary treatment of both the free-surface and the
wall boundary using ghost particles. In addition, our proposed wall boundary approach
(FWGP) may be applied to different slip conditions.

In the numerical tests, we validated our method using pipe flow numerical tests with
non-Newtonian Bingham plastic rheology model. Next, we validated it with several dam
break and underwater landslide simulations, which exhibited highly accurate results com-
pared to previous experiments. Furthermore, we demonstrated the robustness of our
improvements with a coiling behavior test of a highly viscous fluid. Although the free-
surface treatment without AGPs in this last example could not reproduce the coiling
behavior, our proposed model with FWGPs and AGPs naturally reproduces the coiling
behavior.

As for future work, we plan to test the accuracy of this method in simulating large
scale disasters such as landslides and debris flow. For this, we need to increase the com-
putational speed and memory capacity of the program using high-performance computing
(HPC) with expanding slice grid domain decomposition. In addition, we plan to couple
this method with an SPH formulation for solid Mechanics to forecast the occurrence of
landslides for different situations.

REFERENCES

[1] Asai, M., Aly, A.M., Sonoda, Y. and Sakai Y. A stabilized incompressible SPH
method by relaxing the density invariance condition. Int. J. Appl. Math. (2012)

11

113



Daniel S. Morikawa, Mitsuteru Asai and Masaharu Isshiki

2012:139583. https://doi.org/10.1155/2012/139583.

[2] Lucy, L.B. A Numerical Approach to the Testing of the Fusion Process. Astron. J.
(1977) 88:1013-1024.

[3] Gingold R.A., Monaghan J.J. Smoothed Particle Hydrodynamics: Theory
and Application to Non-Spherical Stars. Astron. Soc. (1977) 181:375-389.
https://doi.org/10.1155/2012/139583.

[4] Schechter H., Bridson R. Ghost SPH for Animating Water. Proceedings of SIG-
GRAPH 2012 Conference 31 (2012) 4, Article No. 61.

[5] Morikawa, D.S., Asai, M., Nur’Ain, I., Imoto, Y., Isshiki, M. Improvements in highly
viscous fluid simulation using a fully implicit SPH method. Comp. Part. Mech. (2019)
https://doi.org/10.1007/s40571-019-00231-6.

[6] Violeau D., Leroy A. On the maximum time step in weakly compressible SPH. J.
Comput. Phys. (2014) 256:388-415. <hal-00946833>.

[7] Violeau D., Issa R. Numerical modelling of complex turbulent free-surface flows
with the SPH method: an overview. Int. J. Numer. Meth. Fl. (2007) 53:277-304.
<10.1002/d.1292><hal-01097824>.

[8] Idris, N.A., Sonoda, Y. A Multi-Scale Tsunami Simulations Based on 2D Finite
Difference Method and 3D Particle Method with a Virtual Wave Maker. Kyushu
University Doctoral Dissertation (2017).

[9] Tsuruta N., Khayyer A., Gotoh H. Space Potential Particles to Enhance the Sta-
bility of Projection-based Particle Methods. Int. J. Numer. Meth. Fl. (2015) DOI:
10.1080/10618562.2015.1006130.

[10] Marrone S., Colagrossi A., Le Touz D., Graziani G. Fast Free-surface Detection and
Level-set Function Definition in SPH Solvers. J. Comput. Phys. (2010) 229:3652-
3663.

[11] Mattiusi E.M. Escoament Laminar de Fluid Newtonianos Generalizados em Tubos de
Seo Transversal Elptica. Doctoral Dissertation of the Federal Technological University
of Paran (2007).

[12] Martin J., Moyce W. An experimental study of the col-lapse of liquid columns on a
rigid horizontal plane. Philos. Trans. R. Soc. Lond. (1952) 244:312-324.

[13] Minussi R.B., Maciel G.F. Numerical experimental com-parison of dam break
flows with non-Newtonian fluids. J. of the Braz. Soc. of Mech. Sci. Eng. (2012)
XXXIV:2/167.

[14] Violeau D., Rogers B.D. Smoothed Particle Hydrodynamics (SPH) for Free Surface
Flows: Past, Present and Future. J. Hydraul. Res. (2016) 54:1-26.

[15] Tom M.F. et. al. A Numerical Method for Solving Three-dimensional Generalized
Newtonian Free Surface Flows. J. Nonnewton. Fluid Mech. (2004) 123:85-103.

[16] Rzadkiewicz, S.A., Mariotti, C. and Heinrich, P. Modelling of submarine landslides
and generated water waves. Phys. Chem. Earth (2004) 123:-2, pp.7-12 (1996).

12

114



IS - Vortex Particle Method in Fluid DynamicsAccurate Solution of the Boundary Integral Equation in 2D Lagrangian Vortex Method at Flow 
Simulation Around Curvilinear Airfoils
I.A. Soldatova, I.K. Marchevsky and K.S. Kuzmina

VI International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2019
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Abstract. The problem of numerical solution of the boundary integral equation is con-
sidered for 2D case. Viscous vortex domains (VVD) method is used for flow simulation, so
vorticity is generated on the whole surface line of the airfoil, and there are a lot of vortex
elements close to the airfoil. The aim of the research is to provide high accuracy of numer-
ical solution of the integral equation; at the same time the computational complexity of
the numerical algorithm should be at rather low level. The third-order accuracy numerical
scheme, based on piecewise-quadratic solution representation on the curvilinear panels is
presented, approximate analytic expressions are obtained for the matrix coefficients.

These schemes work perfect in the case of potential flow simulation, when vorticity
is absent and also when vortex elements are placed rather far from the airfoil surface
line. A trivial way to the accuracy improvement for the closely located vortices, which
consists in extremely fine surface line discretization, leads to unacceptably high numerical
complexity of the algorithm. This problem is solved by developing semi-analytical correcti-
on procedure which makes it possible to achieve high accuracy at extremely coarse surface
line discretization. For example, in the model problem of flow simulation around elliptical
airfoil with 2:1 semiaxes ratio only 20 panels are required to achieve the error level less
than 1 % for arbitrary position of the vortex element in the flow.

1 Introduction

Despite the fact that vortex methods are being developed for more than 50 years, there
are a lot of problems to be solved. The most part of the researchers pay their attention to
the problems, connected with vorticity evolution simulation in the flow, whereas vorticity
generation on the streamlined surface is much less investigated area.
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Even for 2D flows, which are much easier in comparison to three-dimensinal case due
to orthogonality of vorticity and velocity vectors, the existing numerical schemes for flow
simulation around airfoils sometimes are based on some semi-empirical hypotheses and not
fully proven; their accuracy can be rather poor, that requires very detailed discretization
of the airfoil surface line. However, even detailed and uniform discretization sometimes
doesn’t permit to achieve high accuracy. The source of such problems is connected with
the properties of the mathematical model — the boundary integral equation (BIE). In
well-known modifications of 2D vortex methods the singular BIE is usually considered
with Hilbert-type kernel; the corresponding integrals are understood in Cauchy sense,
and the numerical procedure of its calculation is non-trivial [1, 2]. Moreover, it is not
easy to provide its correct calculation for non-uniform airfoil surface line discretization.

As it is mentioned in [2], it is impossible to develop higher-order numerical scheme with-
out explicit taking into account the curvature of the airfoil surface line. In the present
paper the other approach is developed which makes it possible to consider Fredholm-type
BIE of the 2-nd kind with bounded (or absolutely integrated) kernel [3, 4, 5]. This allows
arbitrary airfoil surface line discretization into panels, taking into account the curvilin-
earity of the airfoil, developing higher-order numerical schemes according to well-known
Galerkin approach. Such schemes work perfect in the case of potential flow simulation,
when vorticity in the flow domain is absent or it presents, but located rather far from the
airfoil.

A successive attempt was made to derive approximate analytical expressions also for
the integrals, arising in the right-hand side coefficients for closely placed vortex elements,
at least for piecewise-constant and piecewise-linear numerical schemes [6, 7, 8], but such
representation of the numerical solution doesn’t permit one to approximate the exact
solution with high accuracy in principally if there are vortex elements in the flow do-
main, placed at the distance smaller than the panel’s length to the airfoil surface line.
A trivial way to the accuracy improvement which consists in extremely fine surface line
discretization, leads to unacceptably high numerical complexity of the numerical algo-
rithm, especially for flow simulation around a system of movable airfoils. In order to solve
this problem, semi-analytical approach can be used which makes it possible to achieve
high accuracy even for extremely coarse surface line discretization. It consists in explicit
addition of the terms, which correspond to the exact solution taking into account the in-
fluence of the vortex elements placed close to the panel, which, in turn, is approximately
considered as the arc of an osculating circle.

2 The governing equations

Two-dimensional flow of the viscous incompressible media is described by the Navier
— Stokes equations

∇ · V = 0,
∂V

∂t
+ (V · ∇)V = ν∆V −

∇p

ρ
, (1)

where V is the flow velocity field; p is the pressure field; ρ = const and ν are the density
and kinematic viscosity coefficient, respectively.
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For simplicity we consider the flow around immovable airfoil, however all the results
can be applied to more general case of arbitrary movable and deformable airfoil or system
of airfoils. The boundary condition on the airfoil surface line K is the no-slip condition:

V (r, t) = 0, r ∈ K.

The unbounded flow domain is considered, and the perturbation decay conditions are
satisfied on infinity:

V (r) → V ∞, p(r) → p∞, |r| → ∞,

where V ∞ and p∞ are the velocity and pressure in the incident flow.
The most efficient modification of 2D vortex methods is the Viscous Vortex Domains

method (VVD), developed by prof. G.Ya. Dynnikova and described in [10, 11]. The
vorticity is a primary computational variable, and the velocity field can be reconstructed
in the flow domain by using the Biot — Savart law, which can be considered as a particular
case of the Generalized Helmholtz Decomposition (GHD) [3]:

V (r) = V ∞ +
1

2π

∮

K

γ(ξ)× (r − ξ)

|r − ξ|2
dlξ +

1

2π

∫

S

Ω(ξ)× (r − ξ)

|r − ξ|2
dSξ, (2)

where Ω = Ωk is known vorticity distribution in the flow domain S; γ(ξ) = γ(ξ)k
is unknown intensity of the vortex sheet on the airfoil surface line K; k is unit vector
orthogonal to the flow plane.

The GHD, being considered at the airfoil surface line and taking into account the
no-slip boundary condition, makes it possible to write down the BIE with respect to
unknown vortex sheet intensity γ(ξ), ξ ∈ K. It is proven in [3], that in order to solve it,
two approaches can be used:

• the equation can be projected onto outer normal direction, that leads to “tradi-
tional” numerical schemes of vortex methods with singular BIE of the 1-st kind; the
disadvantages of such approach have been mentioned above;

• the equation can be projected onto tangent direction, that allows obtaining the 2-nd
kind integral equation:

∮

K

(r − ξ) · n(r)
2π|r − ξ|2

γ(ξ)dlξ−
γ(r)

2
= −

∫

S

(r − ξ) · n(r)
2π|r − ξ|2

Ω(ξ)dSξ − V∞(r) · τ (r)
︸ ︷︷ ︸

f(r)

, r ∈ K.

(3)
Here n(r) and τ (r) are unit outer normal vector and tangent vector, respectively.

The unique solution of the equation (3) can be selected with help of the additional
condition [1] ∮

K

γ(r)dlr = Γ, (4)

where Γ is given value of the velocity circulation along the airfoil.
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3 Galerkin approach to the boundary integral equation numerical solution

Due to the boundedness (or integrability in the traditional sense) of the kernel of
the BIE (3), the most efficient way to its numerical solution is the use of Galerkin
method [4, 5, 12]. Let us briefly describe its main ideas.

1. We consider, that the airfoil surface line is parameterized with the arc length, then
the equation (3) takes the form

∫ L

0

Q(s, σ)γ(σ)dσ − γ(s)

2
= f(s), s ∈ [0, L], (5)

where L is total length of the surface line.

2. The surface line is split into N parts, traditionally called “panels”, which endings
correspond to arc length parameter values si, i = 0, . . . , N , where s0 = 0, sN = L;
the i-th panel corresponds to s in range [si−1, si].

3. The basis functions family {φq
i (s)}, i = 1, . . . , N , q = 0, . . . , m is introduced; we

assume that the functions φq
i (s) can have non-zero values only at the i-th panel.

The projection functions family {ψp
i (s)} we choose coincide with the basis one.

4. The approximate solution has the following form:

γ(s) =
N∑

i=1

m∑

q=0

γq
i φ

q
i (s), (6)

where the coefficients γq
i are unknown and can be found from the orthogonality

condition of the equation (3) residual to the projection functions:

N∑

j=1

m∑

q=0

γq
j

∫ si

si−1

ψp
i (s)ds

∫ sj

sj−1

Q(s, σ)φq
j(σ)dσ − 1

2

m∑

q=0

γq
i

∫ si

si−1

ψp
i (s)φ

q
i (s)ds =

=

∫ si

si−1

ψp
i (s)f(s)ds, i = 1, . . . , N, p = 0, . . . , m. (7)

The additional condition (4) now has the following form:

N∑

i=1

m∑

p=0

γp
i

∫ si

si−1

φp
i (s)ds = Γ. (8)

Thus, the initial BIE (3) and the unique solution condition (4) are discretized and rep-
resented as linear system (7)-(8). The main difficulty is the calculation of its coefficients.

This problem is considered in [4, 5, 7, 8] for rectilinear panels, where piecewise-constant
and piecewise-linear basis functions have been used. The first and second order of accuracy

4
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numerical schemes are developed. However they are suitable only for close to uniform
airfoil discretization, and it is impossible to raise the accuracy by introducing quadratic
basis functions. In order to do it, we should take into account explicitly the curvature
of the airfoil. It can’t be done exactly; in [6, 8] the original technique is developed for
calculation of the matrix coefficients for curvilinear panels, but only for piecewise-constant
and piecewise-linear basis functions. Those approximate formulae are obtained as Taylor
expansions with respect to the panel length Li, and the only terms, proportional to L3

i

are taken into account.
Now we consider 3 families of the basis functions:

• piecewise-constant and piecewise-linear, as in [5, 8]

φ0
i (s ) =

{
1, s ∈ [si−1, si],

0, s /∈ [si−1, si];
φ1
i (s ) =





s(r)− s(ci)

Li
, s ∈ [si−1, si],

0, s /∈ [si−1, si];

• piecewise-quadratic

φ2
i (s ) =




4

(
s(r)− s(ci)

Li

)2

− 1

3
, s ∈ [si−1, si],

0, s /∈ [si−1, si].

Here Li is the length of the i-th panel, ci is its center. Note, that the introduced in such
a way basis functions are orthogonal.

The linear system (7)-(8) now has the following matrix form



A00 +D00 A01 A02 I
A10 A11 +D11 A12 O
A20 A21 A22 +D22 O
L0 O O 0







γ0

γ1

γ2

R


 =




b0

b1

b2

Γ


 ,

where Apq are matrix blocks of N×N size; Dpp are diagonal matrices; bp is the right-hand
side vector parts; γp = (γp

1 , . . . , γ
p
N)

T is vector of unknown coefficients, p = 0, 1, 2; I and
O are the vectors/raws consist of units and zeros, respectively, L0 is a raw consists of
curvilinear panel lengthes; R is regularization variable [1].

The matrix and right-hand side coefficients are calculated as the following integrals:

Apq
ij =

∫

Ki

φp
i (s)ds

(∫

Kj

Q(s, σ)φq
j(σ)dσ

)
, Dpp

ii = −1

2

∫

Ki

φp
i (s)φ

p
i (s)ds,

bpi =

∫

Ki

φp
i (s)f(s)ds, i, j = 1, . . . , N, p, q = 0, 1, 2. (9)

The diagonal coefficients Dpp
ii can be calculated exactly:

D00
ii = −Li

2
, D11

ii = −Li

24
, D11

ii = −2Li

45
.

5
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For the Apq
ij coefficients approximate calculation Taylor expansions technique similar

to [6] is used, but now term of order L4
i also should be taken into account.

We denote the “signed curvature” as κ(s) = (r ′(s) × r ′′(s)) · k, where κ > 0 for the
convex parts of the airfoil surface line; the formulae, similar to Serret — Frenet ones can
be easily obtained for the derivatives of the vectors n(s) and τ (s).

For the diagonal components of the matrices Apq
ii , p, q = 0, 1, 2 we obtain

A00
ii ≈

36L2
iκi + L4

iκ
′′
i

144π
, A01

ii ≈
κ′

iL
3
i

144π
, A02

ii ≈
κ′′

i L
4
i

2160π
,

A10
ii ≈

κ′
iL

3
i

72π
, A11

ii ≈
κ′′

i L
4
i

3456π
, A12

ii ≈ 0, A20
ii ≈

κ′′
i L

4
i

720π
, A21

ii ≈ 0, A22
ii ≈ 0.

Here κi is the signed curvature at the center of the i-th panel, the prime mark denotes
the derivative with respect to the arc length.

For non-diagonal coefficients, which calculation requires integration over different pan-
els (i �= j), we introduce auxiliary vector dij = ci − cj, which connects centers of the
corresponding panels, unit tangent vector τ i at the center of the i-th panel, and the
angles α and β between the vectors τ i, τ j and dij, respectively (Fig. 1).

Figure 1: Two curvilinear panels, vector dij and the angles α and β

The resulting formulae have the following form:

A00
ij ≈

LiLj

48πd3

[
2
(
L2
j sin(α + 2β) + 12d2 sinα + L2

i sin 3α
)
+

+ d
(
L2
jκj cos(α + β) + L2

i

(
dκ′

i cosα− κi(3 cos 2α + dκi sinα)
))]

,

A01
ij ≈

LiL
2
j sin(α + β)

24πd2
, A02

ij ≈
LiL

3
j

(
dκj cos(α + β) + 2 sin(α+ 2β)

)

180πd3
,

A10
ij ≈

L2
iLj cosα

(
dκi − 2 sinα

)

24πd2
, A11

ij ≈
L2

iL
2
j

(
dκi cos(α + β)− 2 sin(2α + β)

)

288πd3
,

A20
ij ≈

L3
iLj

180πd3

[
2 sin 3α− d

(
κi(3 cos 2α + dκi sinα)− dκ′

i cosα
)]
,

A12
ij ≈ 0, A21

ij ≈ 0, A22
ij ≈ 0.

Here κi is the curvature at the center of the i-th panel, the prime mark denotes the
derivative with respect to the arc length; d is the length of the vector dij.
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In case of smooth airfoil the following approximate formulae can be used for the matrix
coefficients which calculation requires integration over the neighboring panels (|i−j| = 1):

A00
ij ≈

LiLj

288π

[
72κij ± 12

(
Lj − 2Li

)
κ′

ij +
(
6L2

i − 3LiLj + 2L2
j

)
κ′′

ij

]
,

A01
ij ≈

LiL
2
j

(
4κ′

ij ±
(
Lj − Li

)
κ′′

ij

)

576π
, A10

ij ≈
L2

iLj

(
8κ′

ij ±
(
Lj − 3Li

)
κ′′

ij

)

576π
,

A02
ij ≈

LiL
3
jκ

′′
ij

2160π
, A11

ij ≈
L2
iL

2
jκ

′′
ij

3456π
, A20

ij ≈
L3
iLjκ

′′
ij

720π
, A12

ij ≈ A21
ij ≈ A22

ij ≈ 0.

Here κij denotes the signed curvature of the airfoil at the common point of the neighboring
panels; the prime, as earlier, means the derivative with respect to the arc length; sign
“+” is used for j = i+ 1, and “−” for j = i− 1.

Note, that in case of the airfoil with sharp edges [9], the formulae for rectilinear panels
derived in [7, 8] are more suitable for the matrix coefficients corresponding to the panels
which are adjacent to the angle points. Those formulae don’t permit to take into account
the curvilinearity of the panels, however, they are exact for rectilinear panels.

Let us consider firstly the potential flow when there is no vorticity in the flow domain
and the right-hand side of the equation (5) has form f(s) = −V ∞ · τ (s). In this case the
right-hand side components of (3) can be calculated as following:

b0i ≈ −(V ∞ · τ i)Li +
1

24

(
(V ∞ · ni)κ

′
i + (V ∞ · τ i)κ

2
i

)
L3
i ,

b1i ≈
1

12
(V ∞ · ni)κiL

2
i , b2i ≈

1

90

(
(V ∞ · ni)κ

′
i + (V ∞ · τ i)κ

2
i

)
L3
i .

The described approach provides the 1st, 2nd and 3rd order of accuracy for the piecewise-
constant, linear and quadratic solution representation, respectively. In the Table 1 the
number of panels is shown, which is required to achieve the accuracy 10−3 (for unit incident
flow velocity, angle of incidence π/6).

Table 1: Number of panels required to achieve the accuracy 10−3 for elliptical airfoils

rectilinear panels curvilinear panels

uniform discretization

semiaxes piecewise- piecewise- piecewise- piecewise-

ratio constant linear linear quadratic

2:1 9 600 244 136 52

5:1 13 400 760 360 196

10:1 24 000 2 000 900 640

non-uniform discretization

2:1 7 800 132 104 36

5:1 8 700 152 144 60

10:1 9 000 186 184 80

Note, that it seems to be reasonable to use non-uniform discretization of the airfoil
(length of the panels are inversely proportional to the square root of the curvature) since it
permits to reduce number of panels significantly; usage of the piecewise-quadratic solution
representation for curvilinear panels makes it possible to reduce additionally number of
panels by 2.5–3 times.
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4 Vortex elements influence accounting by numerical solution correction

In practice there are a lot of vortex elements in the flow, which simulate vorticity
distribution. However, due to the linearity of the governing integral equation (5), the
influences of separate vortices can be taken into account independently, so here we consider
a model problem, when there is only one vortex element. In this case the only difference in
numerical scheme is the form of the right-hand side term f(s), for which the corresponding
coefficients bpi of the linear system can be calculated either numerically (e.g., by using
Gaussian quadrature formulae), of approximately analytically [6]. In the Fig. 2, the
results are shown for the cases, when the vortex element is placed at the distance, which
corresponds to 10 %, 25 %, 50 % and 100 % of the panel length (uniform discretization
of the elliptical airfoil with 2:1 semiaxes ratio, split into 20 panels is considered).

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

a b

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

c d

Figure 2: Exact solution (black solid line), piecewise-linear (blue dashed) and piecewise-quadratic (red

solid) solutions for the vortex sheet intensity in presence of the vortex at the distance of 10 %, 25 %,

50 % and 100 % of panel size (a, b, c, d, respectively)

8

122



Irina A. Soldatova, Ilia K. Marchevsky and Kseniia S. Kuzmina

It is seen, that it is possible to obtain more or less correct numerical solution only for
vortex elements, placed rather far from the airfoil surface line, i.e., at the distance which is
not smaller than 50 % of the panel size. In practice, however, the typical distance from the
vortex elements, which simulate the boundary layer, to the airfoil surface line has order
of 10−6 . . . 10−5 (with respect to the chord). It means, that the required number of panels
should have order of 105; for smaller number of panels it is impossible to reconstruct it
correctly.

However, this issue can be overcome by implementing the correction procedure.
Note that for the vortex placed at the arbitrary point of the flow domain, the exact

solution for the vortex sheet intensity is known for circular airfoil. It has the following
form [4]

γ̃(s) = Γg

(
r(s)− rg

2π|r(s)− rg|2
−

r(s)− rm

2π|r(s)− rm|2
+

r(s)− rc

2π|r(s)− rc|2

)
· n(s), (10)

where r(s) is the point on the circle of radius R, n(s) in outer unit normal vector for
the circle, rg is position of the vortex, rc is center of the circle, rm is the position of the
mirrored vortex,

rm = rc +
R2

|rg − rc|2
.

Now for the vortex, placed in neighborhood of the k-th panel we suppose that this
panel can be approximately replaced with the osculating circle of radius Rk = κ−1

k , then
we are able to take into account the influence of this vortex semi-analytically by explicit
introducing to the numerical solution the term, similar to (10):

γ(s) =
N∑

i=1

m∑

q=0

γq
i ϕ

q
i (s) +

kf∑

k=kb

γ̃k(s)ϕ
0
k(s). (11)

Here

γ̃k(s) = Γg

(
r(s)− rg

2π|r(s)− rg|2
−

r(s)− rm
k

2π|r(s)− rm
k |2

+
r(s)− rc

k

2π|r(s)− rc
k|2

)
· nk(s)

is additional term, which determines the influence of the system of mirrored vortices with
respect to the k-th panel, rm

k is the position of the vortex, mirrored with respect to the
k-th panel, rc

k is the center of the osculating circle, nk(s) unit outer normal vector for
the osculating circle; kb . . . kf is the range of panel numbers, for which the correction
procedure is implemented. It can be easily shown, that the expression for γ̃k(s) can be
simplified:

γ̃k(s) = Γg

(
r(s)− rg

)
· nk(s)

π|r(s)− rg|2
.

For such solution representation, the above described Galerkin approach remains ap-
plicable, but instead of the system (7) now we obtain the following linear system

9
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N∑

j=1

m∑

q=0

γq
j

∫ si

si−1

ψp
i (s)ds

∫ sj

sj−1

Q(s, σ)φq
j(σ)dσ − 1

2

m∑

q=0

γq
i

∫ si

si−1

ψp
i (s)φ

q
i (s)ds =

= −
kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)ds

∫ sk

sk−1

Q(s, σ)γ̃k(σ)dσ +

kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)fg(s)ds+

+

∫ si

si−1

ψp
i (s)fv(s)ds, i = 1, . . . , N, p = 0, . . . , m, (12)

where it is denoted

fv(s) = V ∞ · τ (s), fg(s) =
Γg

(
r(s)− rg

)
· n(s)

2π
∣∣r(s)− rg

∣∣2 .

The system (12) can be written down in the matrix form:



A00 +D00 A01 A02 I
A10 A11 +D11 A12 O
A20 A21 A22 +D22 O
L0 O O 0







γ0

γ1

γ2

R


 =




b0v + b0g + b0γ
b1v + b1g + b1γ
b2v + b2g + b2γ

Γw


 ,

where the left-hand side remains the same as earlier (without correction), the coefficients
bpv are connected with the incident flow influence, bpg — with influence of the vortices
in the flow domain, which is taken account straightforwardly without correction; bpγ —
additional terms, arising due to the correction procedure:

bpv,i =

∫ si

si−1

ψp
i (s)fv(s)ds, bpg,i =

kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)fg(s)ds,

bpγ,i = −
kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)ds

∫ sk

sk−1

Q(s, σ)γ̃k(σ)dσ, i, j = 1, . . . , N, p, q = 0, 1, 2.

For the last component of the right-hand side vector the following expression is obtained:

Γw = Γ−
kf∑

k=kb

∫ sk

sk−1

γ̃kds.

For computation of all the integrals, arising in the right-hand side, Gaussian quadra-
tures can be used, as well as approximate analytical expressions.

In the Fig. 3 the results of computations for the model problem, considered in the
previous section, but with implemented correction procedure, are shown. The correction
is performed not only for the panel, closest to the vortex, but also for the neighboring
panels on both sides. Note, that the correction procedure preserves the accuracy order
of the initial scheme. Moreover, it provides the more accurate results, the closer vortex
element is located to the airfoil. It seems reasonable to use correction technique for the
vortices placed at the distance of not more, than 75 % of the panel length.
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L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

a b

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

c d

Figure 3: Exact solution (black solid line), piecewise-linear (blue dashed) and piecewise-quadratic (red

solid) solutions for the vortex sheet intensity in presence of the vortex at the distance of 10 %, 25 %,

50 % and 100 % of panel size (a, b, c, d, respectively) after implementation of the correction procedure

5 CONCLUSIONS

In the present paper the numerical scheme of the third order of accuracy is developed
by using the Galerkin approach, which takes into account the curvature of the surface
line of the airfoil and piecewise-quadratic solution representation. This scheme makes
it possible to deal with non-uniform discretization, moreover, considering panel lengths
inverse proportional to the square root of the curvature permits to reduce number of
panels significantly.

In order to take into account the influence of the vortex wake, simulated with separate
vortices, the correction procedure is developed, which permits to consider arbitrary panel
length with correct representation of the influence of closely placed vortices. Numerical
experiments prove the properties of the developed scheme and the correction procedure.
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Abstract. The paper is dedicated to the numerical simulation of two-dimensional vis-
cous incompressible flow. The Viscous Vortex Domains method is considered, which is
one of the modifications of Lagrangian vortex methods. This method is implemented in
the open-source VM2D code, which developes by the authors. Model problems of exter-
nal and internal flow simulation are considered for VM2D testing. For the problem of
the flow simulation around two closely spaced circular cylinders, VM2D is compared to
OpenFOAM in terms of computational efficiency. As the internal flow problem the flow
in a channel with a backward-facing step is considered. For both problems, the results
obtained in VM2D are in good agreement with the results of other researchers.

1 INTRODUCTION

Today in computational hydrodynamics, different mesh methods are widely used, such
as the finite difference method, the finite volume method and, rarely, the finite element
method. There are a large number of their modifications; many of them are implemented
in widely used software packages, both commercial and free: Fluent, OpenFOAM, STAR-CCM,
Flow Vision and others. As a result, researchers and engineers have efficient tools for
numerical simulation both in fundamental and industrial applications.

However, in recent decades meshless CFD methods are also gaining popularity. This
class includes vortex methods, where vorticity is the primary calculated variable. The
range of application of vortex methods is limited by incompressible flows; however, for such
problems they can significantly exceed the efficiency of mesh methods. They are especially
efficient for external flows simulation, since in this case the flow region with non-zero
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vorticity is relatively small in comparison to the computational domain usually considered
in mesh methods. The advantages of meshless methods are even more pronounced when
simulating flows around movable/deformable bodies, due to no need of mesh deformation
or reconstruction.

There are many modifications of vortex methods. The key difference between them
is the approach to the viscous forces modeling. From this point of view, stochastic and
deterministic algorithms can be distinguished. The stochastic approach, for example, the
random walk method (called also Random Vortex Method) [1] was one of the first meth-
ods of taking viscosity effects into account. According to it, the diffusion of vorticity is
simulated by a stochastic process. There are two deterministic approaches: the methods
of circulations redistribution and the diffusive velocity methods. Among the circulations
redistribution method, the Particle Strength Exchange method [2] and Vorticity Redis-
tribution Method [3] can be pointed out. PSE is a quite popular method, and there are
various two- and three-dimensional implementations [4, 5, 6, 7, 8].

In the present paper, only two dimensional flows are considered, and deterministic
approach is used, called the Viscous Vortex Domains method (VVD) [9, 10], which is
pure Lagrangian and belongs to a class of diffusive velocity methods. According to this
approach, the vortex particles retain their circulations and move according to the velocity
field, which is a superposition of the convective and diffusive velocities.

Despite the fact that there are number of scientific groups involved in vortex methods
development, today there is a very limited number of available codes implementing vortex
methods. Mostly, such implementations are in-house codes, which are used by a narrow
circle of specialists. It is easy to found the vvflow code [11], implemented by scientists led
by prof. G.Ya. Dynnikova in Moscow State University. The vvflow can be downloaded for
free as executable (binary) application; the source code is not available, so it is impossible
to study it and introduce any modifications.

This paper discusses the authors implementation of the VVD method — the VM2D

code, which is open source and available on the GitHub platform [12]. The VM2D code
is cross-platform and it has a modular structure. Parallel algorithms in VM2D are im-
plemented using OpenMP, MPI and Nvidia CUDA technologies, that allows performing
computations on multiprocessor systems with classical (CPU) architecture and using GPU
accelerators. In VM2D it is possible to simulate incompressible flows around airfoil or sys-
tem of airfoils, including transient regimes, to calculate hydrodynamic loads acting the
airfoils, to solve fluid-structure interaction (FSI) problems when the airfoils move under
the hydrodynamic loads. It is also possible to simulate internal flows.

The aim of this paper is to verify the VM2D code on number of model problems with
intermediate Reynolds numbers (Re ∼ 102 . . . 103) and to compare its efficiency with the
OpenFOAM code, which implements the finite volume method. The structure of the paper
is as follows. The second section briefly describes the main ideas of the VVD method
and some specific aspects of its numerical implementation in the VM2D code. In the third
section, a test problem of the flow simulation around two closely spaced circular airfoils of
different diameters is considered. In [13] the results are given for hydrodynamic loads and
the Strouhal number, obtained experimentally and numerically using the finite element
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method. In the last section, the verification of the VM2D code for the simulation of internal
flows is performed. For this purpose, the problem of flow simulation in a channel with a
backward-facing step [14] is considered.

2 VISCOUS VORTEX DOMAINS METHOD AND VM2D CODE

In the VVD method, as in other vortex methods, the vorticity �Ω(�r, t) = curl�V (�r, t) is
the primary calculated variable. Its distribution in the flow domain is represented by a
set of vortex elements, each of them is characterized by its circulation Γi and position
�ri. New vorticity, i.e., new vortex elements is generated only on the airfoil surface line
(or on the outer boundaries in the case of internal flows). Further in the description
of the algorithm only external flows and immovable airfoils are discussed, but all ideas
and numerical schemes can be easily transferred to more general cases without significant
modifications.

A time-step of the VVD algorithm implemented in the VM2D code can be divided into
4 blocks:

• vorticity generation on the airfoil surface line,

• vorticity transfer from the airfoil surface line to the flow area,

• vortex wake evolution simulation,

• pressure reconstruction and hydrodynamic loads calculation (if necessary).

1. Vorticity generation. The vorticity which is generated during a time-step period is
simulated by a thin vortex sheet at the airfoil surface line K. Its intensity γ(�r) can be
found from the no-slip boundary condition, which can be written down in the form of a
boundary integral equation [16]

∮

K

�k × (�r − �ξ)

2π|�r − �ξ|2
γ(�ξ)dlξ −

γ(�r)

2
�τ(�r) = �f(�r), �r ∈ K, (1)

where �k is unit vector orthogonal to the flow plane, �τ(�r) is tangent unit vector, �f(�r) is a
known function depending on the incident flow velocity, the airfoil surface line velocity and
vorticity distribution in the flow. There are two possible ways to satisfy vector integral
equation (1): by projecting it onto the normal or tangential direction on the airfoil surface
line.

In the original VVD method, the projection onto the normal direction is used [9];
however it is possible to achieve higher accuracy by projecting (1) onto tangent direc-
tion [17, 18]. In the VM2D code “tangent” approach is implemented and the following
boundary integral equation is solved:

∮

K

(�r − �ξ) · �n(�ξ)
2π|�r − �ξ|2

γ(�ξ)dlξ −
γ(�r)

2
= �f(�r) · τ(�r), �r ∈ K.
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There are several numerical schemes for the numerical solution of this equation based
on the Galerkin method and various approaches to airfoil surface line discretization [17, 18,
19]. In this paper, one of the simplest schemes is used, based on discretization of the airfoil
surface line by a polygon and a piecewise-constant representation of the solution [17].

2. To transfer the vorticity from the airfoil surface line to the flow domain the dis-
tributed vorticity, which forms the vortex sheet at the airfoil surface line, is transformed
into separate vortex elements (VE). They become part of the vortex wake.

3. Vortex wake evolution simulation. According to the VVD method, vortex elements
in the flow with circulations Γi and positions �ri, i = 1, . . . , N, move along the velocity
field (�V + �W ):

d�ri
dt

= �V (�ri) + �W (�ri), i = 1, . . . , N,

where �V is convective velocity and �W is so called diffusive velocity. Convective velocity
can be calculated from the vorticity distribution using the Biot — Savart law

�V (�r) = �V∞ +

∫

S

�Ω(�r)× (�r − �ξ)

2π|�r − �ξ|2
dSξ +

∮

K

�k × (�r − �ξ)

2π|�r − �ξ|2
γ(�ξ)dlξ =

= �V∞ +
N∑

i=1

�k × (�r − �ri)

2π|�r − �ri|2
ΓidSξ +

∮

K

�k × (�r − �ξ)

2π|�r − �ξ|2
γ(�ξ)dlξ, �r ∈ S,

where �V∞ is incident flow velocity. Note, that direct calculation of the vortex elements
velocities through the Biot — Savart law is time-consuming procedure for large number
of vortices, so in practice fast approximate methods are used, which have logarithmic
(∼ N logN) complexity against quadratic one (∼ N2).

The diffusive velocity [20]

�W (�r) = −ν
∇�Ω(�r)

Ω(�r)

is proportional to the flow viscosity ν and depends both on the vorticity distribution in
the flow domain in a neighborhood to the point r and on the shape of the flow region
boundary (if there is such in a neighborhood to r).

4. Hydrodynamic loads calculation. In order to reconstruct the pressure distribution
in the flow domain, an analogue of the Cauchy — Lagrange integral can be used [21].
However, in practice, as a rule it is necessary to determine hydrodynamic loads (forces
and torque) acting the airfoil in the flow. It is possible to use for this purpose the integral
formulae derived by prof. G.Ya. Dynnikova and adapted to several types of problems
being solved by means of vortex methods [10, 15, 22]:

• flow around an immovable airfoil;

• flow around a rigid airfoil in translational motion;

• flow around a rigid airfoil in rotational motion;
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• flow around a rigid airfoil in arbitrary motion.

These integral formulae have been obtained by analytical integration of the pressure
distribution over the airfoil surface line. There is also approximate formula for viscous
stresses computation.

The VM2D source code is written in C++ and has a modular structure. It is a cross-
platform code and can be compiled under Windows, Linux and MacOS by using MSVC,
GCC, Intel C++ Compiler, Clang compilers (as well as other ones supporting the C++11
standard). The Eigen external library is used in VM2D for the numerical solution of
linear equations systems. The OpenMP, MPI and Nvidia CUDA technologies are used
for computation acceleration on multi-core and multiprocessor cluster systems, including
hybrid architectures with graphic accelerators [23].

A detailed description of the code structure and instructions for compiling and running
can be found in [12, 24]. There is also doxygen-documentation for the VM2D [12], to date
only in Russian.

3 FLOW SIMULATION AROUND TWO CLOSELY SPACED CIRCULAR
AIRFOILS

A series of model problems of the external flow simulation around two circular airfoils
with different mutual positions is considered (fig. 1). The angle α varies from 0◦ to 180◦,
as in [23], where numerical and experimental results for such problems are presented. The
simulations were carried out for the regime with intermediate Reynolds number, namely
Re = 103. The Reynolds number is calculated with respect to the diameter of a large
cylinder: Re = ρDV∞

ν
.

 

D

d

y

x
α

Figure 1: Mutual position of two circular cylinders with different diameters

For simulation in OpenFOAM, meshes with different number of cells were used: 50 000
cells, 150 000 cells, 450 000 cells. Computations in VM2D were performed with different
discretization: the large circle was discretized into 250, 500 and 1000 elements (panels),
which corresponds to approximately 15 000, 29 000 and 100 000 vortex elements in the
vortex wake in steady-state mode, respectively.

The results obtained with different discretization show that for both codes the most
coarse discretization is sufficient to obtain results that are in acceptable agreement with
the results of 2D simulation in [13].
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The following characteristics were investigated: the average values and the root mean
square (RMS) amplitudes for the drag coefficient CD and the lift coefficient CL and the
dimensionless vortex shedding frequency St. The drag and lift coefficients for the large
cylinder are calculated as CD1 = 2FD1

ρDV 2
∞

and CL1 = 2FL1

ρDV 2
∞
, respectively, and those on the

small cylinder by CD2 =
2FD2

ρdV 2
∞
and CL2 =

2FL2

ρdV 2
∞
, respectively, where FD and FL are the drag

and lift forces acting the cylinder in the x- and y-direction, respectively, the subscripts 1
and 2 represent the large and small cylinders, respectively.

In the figures 2–3, average values of drag and lift coefficients are shown for different
values of α (for the most coarse mesh/discretization) in comparison to the data given
in [13].
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Figure 2: Average values of drag coefficients for large and small cylinders
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Figure 3: Average values of lift coefficients for large and small cylinders:

It is seen that the results obtained in OpenFOAM and VM2D are in acceptable agreement
with the data given in [13]. The highest difference between VM2D and [13] results is
observed for RMS of CL for the small cylinder, while the graph for OpenFOAM is nearly
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the same as the results [13]. However, for a large cylinder, the results for RMS of CL

obtained in VM2D and [13] correlate well enough, while OpenFOAM gives a notable error and
incorrect tendency of dependence on the angle.

The vortex shedding frequency is determined by applying the Fast Fourier Transform
to the lift coefficients of the large cylinder and choosing the dominant frequency from the
spectra. The dependency of the Strouhal number, calculated as St = fD/V∞, where f is
the dominant frequency of the oscillation of the lift coefficients, is shown in the figure 4.
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Figure 4: The dimensionless vortex shedding frequency

It is seen that the results obtained in VM2D and OpenFOAM agree with each other quite
well, but slightly differ from the results [13].

The VM2D allows performing computations using GPU accelerators. Such technology is
highly efficient due to the fact that vortex methods are particle methods. For the discussed
model problem, the computations were carried out using two GPU accelerators: Nvidia
GeForce GTX970 (with rather small peak performance, approx. 100 Gflops) and Nvidia
Tesla V100 (flagship GPU accelerator for today, approx. 7 Tflops in peak). Simulations
in OpenFOAM were performed using 12 CPU Intel Xeon X5670 (2.93 GHz).

The table 1 shows times of computations for simulations in OpenFOAM and VM2D using
various discretization. Each simulation was performed for time period T = 0 . . . 150. In
VM2D, the time step was set manually, and in OpenFOAM it was selected automatically. For
VM2D, number N of elements discretizing the airfoil surface line, the approximate number
Nwake of vortex elements in the wake, and the number of time steps are specified. For
OpenFOAM, the number N of mesh cells is specified.

It can be seen that simulations in VM2D using 1 GPU accelerator GeForce GTX970 with
rather low performance require less computational time than simulations in OpenFOAM

using 12 CPUs. When using a video card Tesla V100, simulations in VM2D require 5–10
times less computational time than simulations in OpenFOAM.
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Table 1: The computation times for simulations in VM2D and OpenFOAM

VM2D OpenFOAM

N Nwake steps Time GTX970 Time V100 N steps Time
250 13 500 18750 50 min 11 min 45 000 60 000 58 min
500 29 000 37500 300 min 41 min 125 000 120 000 340 min

4 FLOW SIMULATION IN A CHANNEL WITH A BACKWARD-FACING
STEP

In this section, VM2D will be tested for the case of internal flow simulation. To this
purpose, the flow inside the channel with a backward-facing step is considered. In [14],
the results of experiments and numerical simulations are shown for this problem. The
form of the channel is shown in the figure 5.

1 

 

 
h

H

x

V∞

l L

Figure 5: Scheme of the channel with backward-facing step

The channel with a backward-facing step has the following parameters: the height of
the input part of the channel h = 1, the height of the output part H = 1.94. The figure 5
schematically shows the point of flow reattachment, the distance from step to this point
is noted by x. An example of the flow for the Re = 100 is shown in the figure 6. The
Reynolds number is calculated as

Re =
V D

ν
,

where V is two-thirds of the measured maximum inlet velocity, D is the hydraulic diameter
of the inlet (small) channel and is equivalent to twice its height, D = 2h, and ν is the
kinematic viscosity.

We will compare the positions of the flow reattachment point obtained from the simu-
lations in VM2D and from experiment in [14] for different Reynolds (50 . . . 400) numbers.
In order to eliminate the influence of the front and back boundaries of the region, simu-
lations were performed for channels with different lengths of the input and output parts l
and L, respectively: l = 7, L = 13; l = 10, L = 19; and l = 15, L = 28. The simulations
show that in all cases the results for the position of the point of flow reattachment are
approximately the same.
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Figure 6: x-component of the flow velocity in the channel with backward-facing step

The figure 7 shows the dependency of the value s = x
H−h

on the Reynolds number. It
can be seen that the results are in a very good agreement in the interval Re = 50 . . . 300.
There is a significant difference between the results when Re > 300, due to the fact that, as
also noted by the authors of [14], the flow becomes three-dimensional and two-dimensional
simulation is incorrect.
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Figure 7: Positions of the flow reattachment point s for different Reynolds numbers

5 CONCLUSIONS

In this paper, using the model problems, the author’s software package VM2D is verified
for two-dimensional incompressible flows simulation. In VM2D, the Viscous Vortex Domains
method is implemented, which is pure Lagrangian vortex method. For the problem of flow
simulation around two circular closely spaced airfoils, the computational efficiency of VM2D
was compared with the OpenFOAM code, where the Finite Volume Method is implemented.
It is shown that for such problem, simulations in VM2D using one GPU accelerator take the
same or even less time than simulations in OpenFOAM using dozens of CPU cores.

VM2D was also verified for internal flows. The flow in a channel with a backward-facing
step was considered. The comparison of the numerical and experimental data for the flow
reattachment point behind the step show a very good agreement between the results.

The research is supported by Russian Science Foundation (Project No. 17-79-20445).
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Abstract. A new approach is developed for incompressible 3D flow simulation around
bodies by Lagrangian vortex method. Closed vortex loops are considered as vortex ele-
ments, which are generated on all the body surface and provide the satisfaction of the
no-slip boundary condition. The procedure of double layer potential density reconstruc-
tion is considered, which consists of two steps. Firstly, the integral equation with respect
to vortex sheet intensity is solved, which expresses the equality between the tangential
components of flow velocity limit value and the body surface velocity. It is solved by using
Galerkin approach. Secondly, the least-squares procedure is implemented, which permits
to find nodal values of the double layer potential density. It is shown that the developed
algorithm makes it possible to improve significantly the quality of solution for the bodies
with very complicated geometry and low-quality surface meshes. The combination of this
approach with vortex wake modelling with vortex loops, permits to simulate unsteady
flows with higher resolution with acceptable numerical complexity. It can be useful for
CFD applications and visual effects reproducing in computer graphics.

1 INTRODUCTION

Vortex methods are well-known tool for unsteady incompressible flows simulation and
coupled FSI-problems solution in engineering applications [1, 2]. These methods are also
useful in computer graphics in visual effects simulation [3]. One of the key problems in
vortex methods is connected to boundary condition satisfaction with high accuracy.

There are number of known models of vortex elements for flow simulation around
3D bodies: closed vortex framework, vortex filament, vorton, vortex dipole, vortex frag-
menton, etc. Each of them has some advantages and restrictions. In “classical” vortex
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element methods, for example, in the discrete vortex method [4], vorticity is concentrated
in vortex framework segments and it is absent outside them in the flow. However, this
method requires number of empirical models to determine the location of the vortex sheet
separation lines. In case of vortex methods with vortex particles (vortons, vortex blobs,
etc.) flow separation zones are formed “naturally” due to vorticity flux approach – vortex
elements are generated on the whole body surface and these elements self-organization in
the flow [5, 6]. The main part of the vorticity is concentrated in neighbourhood of the
vortex elements themselves, however, there is distributed non-zero “additional” vorticity
in the flow domain, according to the Helmholtz theorems. Its intensity vanishes far from
vortex elements. This additional vorticity may cause significant errors, both at computing
aerodynamic loads acting the body, and the boundary condition satisfaction, because the
“virtual” velocity field inside the body is not vorticity-free.

Some interesting approach has been proposed in [3] for 3D smoke dynamics simulation,
which implies vorticity flux simulation through vortex loops generation of equal circulation
on the body surface on the basis of the double layer potential density, which, in turn,
provides the boundary condition satisfaction.

The aim of this paper is new numerical approach development in order to improve the
existing numerical schemes of vortex methods.

2 INTEGRAL EQUATIONS ARISING IN VORTEX METHODS

The problem of 3D incompressible flow simulation around an immovable body is con-
sidered. The governing equations are the Navier – Stokes equations with no-slip boundary
conditions on the body surface K and perturbation decay conditions.

It is well-known from physical point of view, that in order to take into account the
presence of the body in the flow, it is possible to replace it with the vortex sheet of
unknown intensity .γ(r), placed on the body surface, .r ∈ K, which generates the velocity
field V γ(r). Then the summary velocity field is the superposition of the incident flow
velocity V ∞, velocity field, generated by vorticity inside the flow domain V Ω(r), and the
introduced field V γ(r):

V (r) = V ∞ + V Ω(r) + V γ(r).

From mathematical point of view, the velocity V γ potential can be expressed through
unknown double layer potential density g(r) [4]:

Φ(r) =
1

4π

∮

K

g(ξ)
∂

∂n(ξ)

1

|r − ξ|
dSξ.

Note, that the velocity field, which corresponds to this potential

V γ(r) = ∇Φ(r) =
1

4π

∮

K

g(ξ)
∂

∂n(r)

∂

∂n(ξ)

1

|r − ξ|
dSξ, (1)

also can be written down in the following form [4]:

V γ(r) = ∇Φ(r) =
1

4π

∮

K

γ(ξ)× (r − ξ)

|r − ξ|3
dSξ, (2)
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where vector γ(r) = −Grad g(r) × n(r); Grad is surface gradient operator. One can
notice, that the expression (2) coincides with the Biot – Savart law for incompressible
flows. So the potential g(r) is closely connected with vortex sheet intensity γ(r). The
velocity V (r) is discontinuous at the body surface; its limit value is

V −(r) = V (r)− Grad g(r)

2
= V (r)− γ(r)× n(r)

2
, r ∈ K.

Taking into account the no-slip boundary condition in the form V − = 0 at the body
surface, we obtain form (1) and (2) two forms of the integral equation:

1

4π

∮

K

g(ξ)
∂

∂n(r)

∂

∂n(ξ)

1

|r − ξ|
dSξ −

Grad g(r)

2
= −(V ∞ + V Ω(r)), r ∈ K, (3)

or
1

4π

∮

K

γ(ξ)× (r − ξ)

|r − ξ|3
dSξ −

γ(r)× n(r)

2
= −(V ∞ + V Ω(r)), r ∈ K. (4)

It is proven in [7], that in order to satisfy these equations, it is enough to satisfy them,
being projected either on surface normal unit vector or on tangential plane.

3 DOUBLE LAYER POTENTIAL DENSITY DIRECT RECONSTRUC-
TION

The most common approach to solve of the problem is the equation (3) projection on
normal unit vector, that leads to the hypersingular integral equation with respect to the
double layer potential [8]. Its solution is normally found as piecewise-constant double
layer density on surface mesh, which consists of polygonal panels. The efficient numerical
formulae for the Hadamard principal values calculation of hypersingular integrals are
suggested by I. K. Lifanov [4].

Note, that the i-th polygonal panel with double layer potential density gi = const
put exactly the same contribution V (i)

γ to the velocity field as closed vortex filament,
placed on the panel circumfery, with circulation Γi = gi. So the vorticity on the body
surface automatically becomes represented as closed vortex lines, that corresponds to the
Helmholtz fundamental theorems [9].

Numerical experiments show that such approach works satisfactory for flows simulation
around smooth bodies of rather simple shape, when the surface mesh is close to uniform.
However, even in this case the directions of vortex line on the body surface is determined
by the mesh, and can differ significantly from true vorticity surface distribution. This
can lead to significant error in velocity field reconstruction in neighborhood of the body
surface, especially in the case of unsteady flow simulation around the body with vorticity
generation on the surface (vorticity flux model) [1].

The mentioned problems can be overcomed by closed vortex filaments (vortex loops)
reconstruction. Positions and circulations of vortex loops can be found according to the
following algorithm [3, 10]:

3
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1. the double layer potential density values are calculated at the surface triangular
mesh vertices; if the surface mesh consists of polygonal cells, they should be split
into triangular sub-panels, maybe by introducing additional nodes;

2. the double layer potential surface distribution is reconstructed by FEM-type inter-
polation using 1-st order shape functions;

3. vortex loops are generated along the level lines of this potential; vortex loops cir-
culations are determined by the difference between potential density values at the
neighboring level lines.

Such approach works perfect, for example, in computer graphics applications [3], where
it is enough to provide only qualitative results and high accuracy is not required. Its usage
for flow simulation and hydrodynamic forces calculation is restricted, again, with rather
simple body geometries and uniform meshes [10].

4 VORTEX SHEET INTENSITY RECONSTRUCTION

The other way to the boundary condition satisfaction is developed in [7, 11] and it
supposes the equation (4) projection on the tangential plane. It leads to the 2-nd kind
equation

n(r)

4π
×

(∫

K

γ(ξ, t)× (r − ξ)

|r − ξ|3
× n(r)dSξ

)
− γ(r, t)× n(r)

2
= f(r, t), r ∈ K, (5)

where the right-hand side f(r, t) is known vector function, which depends on the vortex
wake influence and the incident flow velocity:

f(r, t) = −n(r)× ((V ∞ + V Ω(r))× n(r)) .

Note, that the kernel of the equation (5) is unbounded when |r − ξ| → 0, so in order to
solve it numerically with rather high accuracy the following assumptions are introduced:

1. The body surface is discretized into N triangular panels Ki with areas Ai and unit
normal vectors ni, i = 1, ..., N .

2. The unknown vortex sheet intensity on the i-th panel is assumed to be constant
vector γi, i = 1, ..., N , which lies in the plane of the i-th panel, i. e., γi · ni = 0.

3. The integral equation (5) is satisfied on average over the panel, or, the same, in
Galerkin sense: its residual is orthogonal to the basis function which is equal to the
1 on the j-th panel and equal to 0 on all other panels.

According to these assumptions the discrete analogue of (5) can be derived:

1

4πAi

N∑

j=1

∫

Ki

(∫

Kj

ni ×
(
γj × (r − ξ)

|r − ξ|3
× ni

)
dSξ

)
dSr−

γi × ni

2
=

1

Ai

∫

Ki

f(r, t)dSr,

i = 1, . . . , N. (6)
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To write down (6) in the form of a linear algebraic system we choose local orthonormal

basis on every cell (τ
(1)
i , τ

(2)
i , ni), where tangent vectors τ

(1)
i , τ

(2)
i can be chosen arbitrary

(in the plane of the cell, orthogonal one to the other) and τ
(1)
i × τ

(2)
i = ni, so

γi = γ
(1)
i τ

(1)
i + γ

(2)
i τ

(2)
i ,

and we can project (6) for every i-th panel on directions τ
(1)
i and τ

(2)
i [12, 13].

Note, that the obtained algebraic system has infinite set of solutions; in order to select
the unique solution the additional condition for the total vorticity (the integral from the
vorticity over the body surface) should be satisfied:

∫

K

γ(r, t)dSr = 0,

which also should be written down in the discretized form.
The resulting algebraic system is overdetermined, it should be regularized similarly

to [4] by introducing the regularization vector R = (R1, R2, R3)
T :

1

4πAi

τ
(1)
i ·

(
N∑

j=1

γ
(1)
j ν

(1)
ij +

N∑

j=1

γ
(2)
j ν

(2)
ij

)
− γ

(2)
i

2
+R · τ (2)

i =
b
(1)
i

Ai

,

1

4πAi

τ
(2)
i ·

(
N∑

j=1

γ
(1)
j ν

(1)
ij +

N∑

j=1

γ
(2)
j ν

(2)
ij

)
+

γ
(1)
i

2
+R · τ (1)

i =
b
(2)
i

Ai

,

N∑

j=1

Aj

(
γ
(1)
j τ

(1)
j + γ

(2)
j τ

(2)
j

)
= 0, i = 1, . . . , N.

(7)

The semi-analytical numerical algorithm is developed [12, 13] for the integrals calculation
in the coefficients

ν
(k)
ij =

∫

Ki

(∫

Kj

τ
(k)
j × (r − ξ)

|r − ξ|3
dSξ

)
dSr, b

(k)
i =

∫

Ki

τ
(k)
i · f(r, t)dSr.

Numerical experiments show that the developed algorithm permits to reconstruct surface
vorticity distribution with rather high accuracy, even on coarse meshes and, that more
important for practice, on non-uniform meshes with refinements. Velocity field, generated
by such vorticity, is rather smooth near to the body surface.

In order to use this approach in the above described in section 3 algorithm of the vortex
loops generation, it is necessary to reconstruct the double layer potential at the vertices
of the surface mesh. The solution of linear system (7) gives us piecewise-constant vortex
sheet intensity distribution over the panels. From the other side, vortex sheet intensity is
surface gradient of the double layer potential density. It means, that the most convenient
way to double layer potential density recovery is its approximation by a function, which
is piecewise-linear at the panels. To do it, we consider the nodal values of the potential
gj, j = 1, . . . , M to be unknown; M is number if vertices of the surface mesh. Then

5
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the potential density can be recovered by FEM-type interpolation using 1-st order shape
functions. Let us note positions of al the vertices of the surface mesh as ρj, j = 1, . . . , M ,
the vertices of the i-th triangular panel have indices pki , k = 1, 2, 3. The shape functions,
defined over the i-th panel, coincides with barycentric coordinates on the triangle:

φ
(k)
i (ρ) =

|(ρpli
− ρ)× (ρpmi

− ρ)|
|(ρpli

− ρpki
)× (ρpmi

− ρpki
)|
, ρ ∈ Ki,

where (k, l, m) = (1, 2, 3), or (2, 3, 1) or (3, 1, 2), then the double layer density over
the i-th panel is linear function with respect to ρ and has the form

g(ρ) =
3∑

k=1

gpki φ
(k)
i (ρ), ρ ∈ Ki.

The gradient of the approximate double layer on the every i-th panel, multiplied by
normal unit vector ni gives the constant vector, which physical sense is approximate
value of vortex sheet intensity at the corresponding panel:

γ∗
i = −

3∑

k=1

gpki (Gradφ
(k)
i × ni), ρ ∈ Ki,

where the surface gradients of the shape functions Gradφ
(k)
i are constant vectors.

The unknown values gj can be found from the least-squares procedure:

Ψ =
N∑

i=1

|γi − γ∗
i |2 → min .

Taking partial derivatives of Ψ with respect to gj, j = 1, . . . , M , and making them equal
to zero, we obtain linear system of M ×M size with symmetric matrix.

This system is singular (in practice, due to the truncation errors, it is ill-conditioned),
that follows from the fact, that the value of potential density can be chosen arbitrary at
some arbitrary specified point. We assume gM = 0, that means that the last row and last
column in least-squares matrix should be nullified, the diagonal coefficient can be chosen
arbitrary (non-zero); the last coefficient in the right-hand side also should be nullified.
The resulting regularized matrix is symmetric and positively defined.

5 VORTEX WAKE SIMULATION

The developed modification of vortex method is based on the closed vortex loops us-
age for numerical simulation of the vortex wake and its evolution. The vortex wake is
considered to consist of K closed vortex loops of the same circulation Γ.

The loop with index k, k = 1, ..., K is simulated by the polygonal vortex line (vortex
filament) with Nk vertices. These vertices are considered as the Lagrangian markers rk,i,
i = 1, ..., Nk, moving in the flow along the streamlines; their motion is described by ODE:

drk ,i

dt
= V (rk ,i, t), rk ,i(0) = r0

k, i, i = 1, ..., Nk, k = 1, ..., K. (8)

6
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We assume the loop legs between two neighboring vertices to be rectilinear line segments,
which are described by vectors

∆rk ,i = rk, i+1 − rk ,i, i = 1, ..., Nk, k = 1, ..., K.

They induce the velocities Γvk,i (r), which can be calculated analytically as vortex frag-
mentons influences, regularized by introducing of small smoothing radius ε and finally
give contribution to the velocity field V Ω, generated by vortex wake:

V Ω(r, t) = Γ
K∑

l=1

Nk∑

m=1

vl,m (r, t) .

Numerical integration of system (8) is carried out by using explicit Euler method with
constant step ∆t. Initial conditions for markers positions in (8) are parameters of the
loops at the time of their generation on the body surface.

Firstly, maximal and minimal values of the double layer intensity for all the panels
vertices on the body surface gmax = max

j=1,...,M
gj and gmin = min

j=1,...,M
gj should be found.

The panels are assumed to be triangular, as it was mentioned above, so it is easy to
construct level lines of the potential density, which correspond to potential values, which
differ from one to another on value Γ. These level lines determine the initial shape of the
vortex loops. For the given value of the potential density there can be one or more closed
level lines, which correspond to separate vortex loops. The number of level lines values is
determined as the integer part of expression

Nq = [(M −m)/Γ]− 1. (9)

Then the generated vortex loops become part of vortex wake. The vortex loops, generated
on the surface, should be shifted from the surface in normal direction on small constant
distance ∆. It should be noted, that the contribution of the vortex loop to the velocity
field V Ω(r, t) is not considered at the time step immediately after its generation, and
for velocity field influence of the corresponding panels on the body surface (which give
contribution to V γ(r, t)) is taken into account.

When vortex elements move in the flow, some marker positions can intersect the body
surface, mainly due to numerical errors in velocity field reconstruction and vorticity mo-
tion equations integration. In such cases, the loop legs, which intersect the body surface,
is replaced with some other loop legs, which lay on the body surface and provide the
shortest way. The Dijkstra’s algorithm is used for such procedure [14].

At every time step several procedures for smoothing of loops geometry, loop segments
length alignment and loops reconnection are used [15]. It is necessary to control the angle
values between the neighboring line segments in vortex loops:

ψk, i = arccos

(
∆rk,i ·∆rk,i−1

|∆rk,i| · |∆rk,i−1|

)
.

If for some vortex loop vertex ψk, i < ϕ, where ϕ is a given constant, then vertex position
should be corrected.

7
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After angle correction, when the vortex loops are smooth enough, it is necessary to
“rediscretize” them in order to provide nearly the same length h for all the segments. In
this procedure cubic spline interpolation is used in order to reconstruct smooth shape of
the vortex filaments.

Vortex loops reconnection is carried out according to the following algorithm. For each
marker rk, i the nearest marker rl,j is searched (j = 1, ..., Nl, l = 1, ..., K), for which the
conditions are satisfied:

|rl j − rk i| < µ, arccos

(
Dk,i ·Dl,j

|Dk,i| · |Dl,j|

)
> ϕ, (10)

where µ > 0 is some given value, Dl,j = rl,j+1 − rl,j−1, Dk,i = rk,i+1 − rk,i−1.
From all the marker pairs, for which conditions (10) are satisfied, that pair is selected,

for which |rl,j − rk,i| has minimal value, and the reconnected is performed for the coppe-
sponding legs. In this procedure either two vortex loops are formed from one, or, vice
verca, two loops are merged into one. Then for the newly formed vortex loop (or loops)
the reconnection algorithm is repeated.

6 NUMERICAL RESULTS

Let us consider firstly the results of double layer potential density reconstruction ac-
cording to the “direct” method (see Section 3) and to the “indirect” one (through vortex
sheet intensity recovery intermediate step, see Section 4).

The results are shown in the Fig. 1 for the sphere discretized into 714 triangular panels
of nearly the same size. The incident flow is directed vertically (upward). It is seen that
the indirect approach leads to more accurate results: level lines are more smooth and very
close to be horizontal, that corresponds to the considered problem.

Figure 1: Level lines of the double layer potential density, obtained “directly” (left picture) and “indi-

rectly” (right picture) on the uniform mesh

The “indirect” algorithm permits to obtain rather good results also on coarse and non-
uniform meshes. In Fig. 2 the same sphere is split into 342 panels when the ratio of the
largest panel area to the smallest one is close to 32. The quality of the level lines shape
remains high for ”indirect” method, in opposite to the “direct” one.

8
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Figure 2: Level lines of the double layer potential density, obtained “directly” (left picture) and “indi-

rectly” (right picture) on the coarse non-uniform mesh

The difference between two approaches is kept for the bodies of more complicated
geometry. The example of the flow around doubly connected body: the model of sport
weight is shown in Fig. 3; the incident flow is directed diagonally from low right to up
left corner. The triangular mesh with local refinement was constructed in the Salome
open-source software and consists of 636 panels.

Figure 3: Level lines of the double layer potential density, obtained “directly” (left picture) and “indi-

rectly” (right picture) for the body of complicated shape

For essentially non-uniform meshes, for example, obtained from the stl-file, which con-
sist of large number of “bad” cells (elongated triangles with small angles) generated in
some CAD software, the “direct” approach doesn’t permit to obtain solution at all. At
the same time the “indirect” approach makes it possible to reconstruct the solution with
rather good quality (Fig. 4).

The example of unsteady flow simulation around the body of complicated shape (sport
weight model) is shown in Fig. 5 for four different time steps. Number of loops during
the simulation becomes rather small, however number of markers P =

∑K
k=1 Nk grows,

because the vortex loops length growth and their shape becomes complicate.

9
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Figure 4: Level lines of the double layer potential density for the fish stl-model, obtained by using

“indirect” method

Time step no. 2.
Number of vortex loops K = 17
Number of markers P = 2 077

Time step no. 10.
Number of vortex loops K = 8
Number of markers P = 13 386

Time step no. 100.
Number of vortex loops K = 7
Number of markers P = 9 713

Time step no. 150.
Number of vortex loops K = 14
Number of markers P = 12 573

Figure 5: Vortex wake behind the sport weight model. Incident flow is directed from left to right. Vortex

loops are shown as red lines

10
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The application of the developed technique for the flow simulation around the wind
model of the finite span (with elongation 5), is shown in Fig. 6. High quality of the
boundary condition satisfaction on the body surface, provides good self-organization of
the vortex wake. Clear structure of the Prandtl’s horseshoe vortex is seen. Note, that this
result is obtained without any additional hypotheses about flow separation line position
or any equal suggestions.

Figure 6: Vortex wake structure behind the wing model. Incident flow is directed from right to left.

Time step no. 360, number of vortex loops K = 109, number of markers P ≈ 20 000.

7 CONCLUSION

The developed algorithm permits to improve significantly the quality of the double
layer potential density reconstruction for the bodies with very complicated geometry and
low-quality surface meshes. Its numerical complexity is higher than for the “direct” one
due to solution of twice-larger linear system to recover vortex sheet intensity and the
least-square problem. The combination of this approach with vortex wake modelling
with vortex loops, makes it possible to simulte unsteady flows with higher resolution
with acceptable numerical complexity. The developed approach can be useful for CFD
applications and visual effects reproducing in computer graphics.
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ABSTRACT 

Self-locomotion of the fish-like foil is simulated by the mesh-free method of viscous vortex domains 
(VVD). The foil consists of three rigid sections connected by the spring hinges. The forcing periodic 
moment is applied between first and second sections imitating the muscular effort of the fish. The 
hinge between the second and third sections is elastic and passive. The task is solved as coupled 
flow-structure interaction. 

 

Keywords: Flow-structure interaction, vortex method, VVD, flapping foil, elastic connections, 
Navier-Stokes equations 

 

1. INTRODUCTION 

To understand the bionic wings flow mechanism will be helpful to design high performance 
underwater vehicles and new conception aircrafts. Investigations of flapping wing thrust performance 
were carried out in a number of experimental and theoretical works (see, for example, [1-12]),  

In most of theoretical works on this topic, the law of body motion in a constant incoming flow is set. 
The forces resulting from the movement are investigated. However, this formulation of the problem 
differs from the real situation, where the speed in a quasi-stationary motion is the result of applied 
efforts, the average horizontal hydrodynamic force is zero, and the vertical component balances the 
force of gravity if the density of the body exceeds the density of the medium. In addition, the speed 
of the body is not constant. To study such movement it is necessary to solve the flow-structure 
problem coupled motion. An effective method for solving such problems in a two-dimensional 
formulation based on the mesh-free method of viscous vortex domains (VVD) [13] was developed in 
[14, 15]. The method allows calculating the coupled motion of fluid and body systems with elastic 
connections. 

 

2. METHODOLOGY 

The model of a fish is represented by a foil consisting of three sections, which are connected by 
hinges (see fig. 1). The moment of force is applied between the first and second sections by harmonic 
law, resulting in the bending of the fish body. This simulates the muscular effort of a fish. The 
second hinge is elastic and passive. Its torque obeys the Hooke's law. The angles between the 
sections are determined by the dynamics equations. At the initial moment the fish begins bending in 
resting medium. This leads to the forward movement. 

2.1 General governing equations 

Fluid flow is described by the Navier–Stokes equations which are written for the vorticity   in the 
form  

 , , ,

,

d d

z

t
 

     
 
  

u u V V V

ω e V
     (1) 

where V is fluid velocity, dV  is so called diffusion velocity [16],  is kinematic viscosity. The no-
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slip condition is imposed on the foil surfaces. 

The fish-like foil is composed of three sections connected by elastic hinges. The contour of each 
section consists of circular arcs and straight line segments tangent to the arcs (see fig.1). 

 

 
Fig.1 The fish-like model 

 

The position of each section is described by the coordinates of the point Ri, (i = 1,2,3) called the 
section axis and by the rotation angle i relative to the horizontal. The point Ri, (i = 2,3) is connected 
with Ri-1 and  i-1 as following 
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            (2)  

The movement of the ith section is composed of the axis velocity i iu R  and the angular velocity 

i i   . An arbitrary point r of the ith section moves at the velocity 

 i i i   r U Ω r R      (3) 

Each section is acted upon by hydrodynamic forces FH and moments MH, as well as forces and 
moments Fh and Mh in the hinges. We suppose that the friction in the hinges is missing, and the 
moment of elastic coupling is directly proportional to the deviation angle from the equilibrium 
position Mh,i = kii, where ki is spring constant. In addition, a moment of force Mf is applied in the 
second hinge simulating the muscular efforts of the fish. The dynamic equations of the sections are:  
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Here Ii, rm,i, Um,i are moment of inertia, coordinates and velocity of the center of mass of i-th section 
respectively. The hydrodynamic forces and moments of forces consist of pressure and friction 
components Fp, Mp and Fw, Mw. The pressure forces acting on the contour between points A and B 
can be written as the following 
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The pressure difference B Ap p  is 

d
B
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A
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      (6) 

Equations (5) – (6) make it possible to express forces and moments acting on the sections as integral 
of the function /p l   over its contour. The partial derivative along the contour /p l   is expressed 
from the Navier-Stokes equation 

  l l c d
p p
l


       


e e V n V ,    (7) 

where cV  is the fluid acceleration at the body surface. Due to the no-slip condition it is equal to the 
acceleration of the surface. The term  d n V  is the vortex flux density from the surface.  

For calculating the friction stress the following formula was used [17] 
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2.2 Numerical method 

The equation of the vorticity evolution (1) is solved here by the fully Lagrangian method of Viscous 
Vortex Domains (VVD) [13] which is the improved kind of the Diffusion Velocity method [16]. As 
well as in [16], the vortex region of the flow is presented by the set of vortex “particles” (domains). 
The domains move at the velocity d u V V . The circulation of each domain are not varied. The 
main advantage of the VVD method is its more accurate way of calculating the diffusion velocity 
near the surfaces. New vortex domains are generated near the nodes of the body contour at each time 
step. The values of the new domains circulation new

i must provide the boundary conditions. These 
conditions are written as the linear equations relative to these values. It was shown in [17] that the 
value  d n V  is the vortex flux density from the surface. For k-th segment of the surface contour it 
can be approximated as the following 

  ,
new
k

d
kl t


  
 

n V  

This equality leads to the expressions of the hydrodynamic forces and moments of force (5) via 
unknown values new

k . As a result equations (4) together with boundary conditions equations and 
equalities (2) form a closed system of linear equations for all unknown quantities ,new

k  ui i [18]. 
Solution of this system satisfies the boundary conditions and the dynamic equations of the body 
simultaneously. 
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3. NUMERICAL RESULTS 

The moment of force imitating the muscular efforts of the fish was set as  0 sin 2f f ft M M . The 
task was solved in the dimensionless variables. All linear dimensions are related to the length of the 
foil L, time is /t t f , velocity is V V L f  moments of force per unit span 4 2

fM M L f  , where 

f  is fluid density, 2Re /L f  , 4 2
fk k L f  , the body density f   .  

A vortex pattern obtained at 0 2 35.5,  Re 1000, 13.4,  3.33f k k   M  is depicted in fig.2. Blue and 
red points depict clock-wise and counter clock-wise vortex domains. As can be seen from the figure, 
the vortex street is not reversive, since the motion is close to quasi-stationary. Average dimensionless 
velocity 0.96U  . 
.  

 
 

Figure 2 The vortex pattern around the self-moved fish-like foil 

 

Dependency of the quasi-stationary velocity on the spring constant between the second and third 
sections 3k  at different dimensionless amplitude of the forcing moment is presented in fig.4 at Re = 
1078, and 2 0.06k  . One can see that the dependencies are not monotonical, that is, in each case 
there is an optimal value of 3k . 

 

 
Figure 3. Dependency of the quasi-stationary velocity on the spring constant between the second and third 

sections at different amplitude of the forcing moment. Re = 1078, 2 0.06k   
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Dependence of the quasi-stationary velocity on the dimensionless amplitude of the forcing moment at 
different spring constant between the second and third sections 3k  is presented in fig.4 at Re = 1078, 
and 2 0.06k  .  

 

 
Figure 4. Dependence of the quasi-stationary velocity on the amplitude of the forcing moment at different 

spring constant between the second and third sections. Re = 1078, 2 0.06k   

4. CONCLUSIONS 
The methodology of modeling body self-locomotion is presented. A method is applied for modeling 
the calculations performed by the developed method have shown its effectiveness. The dependency 
of the obtained quasi-stationary velocity on the recovery coefficient is investigated. It is shown that 
very low spring constant of the hinge is not optimal as well as very high one.  
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Abstract. Vortex methods are a powerful tool for solving engineering problems of incom-
pressible flow simulation at small subsonic speeds. The main idea is to consider vorticity
as a primary computed variable. Vorticity distribution is simulated by a set of elementary
vorticity carriers — vortex elements. Their velocity in the flow is a sum of the convective
and diffusive ones. The simplest way to compute the convective velocity of each vortex
element is to summarize the influences of all the other vortices, it should be done at every
time step. Such problem is similar to the N -body gravitational problem, its computa-
tional complexity is proportional to N2 (N is number of vortices). This fact restricts
significantly the applicability of vortex methods.

Two approximate fast methods of logarithmic (N logN) computational complexity are
implemented and investigated. The first method is analogous of the Barnes — Hut fast
method for the gravitational N -body problem; the second one is based on the possibility
of convolution integral fast calculation through Fast Fourier Transform (FFT) technique
with further results correction, which permits to take into account the influence of closely-
spaced vortices. Sequential and parallel implementations of both methods are developed.
Numerical experiments show that the FFT-based method is more efficient in comparison
to the Barnes — Hut method; it provides the acceleration of about 1000 times for the
velocities calculation for N = 500 000 vortex elements (in comparison to the direct “point-
to-point” calculation). The number of mesh cells doesn’t effect the method accuracy,
however it determines the computational complexity of the algorithm. It is found that
the mesh size should be chosen according to the derived estimation of the algorithm’s
numerical complexity and available computational resources.
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1 INTRODUCTION

For many problems of two-dimensional outer gas and fluid flows simulation the La-
grangian vortex methods [1, 2] can be very efficient in comparison to well-known mesh
methods. Their range of applicability is limited by incompressible flows, however for
some engineering applications the compressibility can be neglected. We consider pure
Lagrangian meshless modification of vortex methods, namely Viscous Vortex Domains
method [3]; its main idea is considering the vorticity as a primary computed variable.
The vorticity in the flow moves with the velocity which is a sum of the convective velocity
and diffusive one caused by the viscosity influence. The vorticity distribution Ω = Ωk
is simulated by a set of elementary vorticity carriers — vortex elements, characterised by
their positions in the flow domain ri and circulations Γi, which remain constant:

Ω(r) =
N∑

i=1

Γiδ(r − ri),

where N is number of vortex elements, which simulate the vortex wake, δ(r) is two-dimen-
sional Dirac delta-function, k is the unit vector orthogonal to the flow plane.

The convective velocity of the vortex elements is calculated through known vorticity
field and incident flow velocity V ∞ according to the Biot — Savart law (we consider flows
without streamlines surfaces, however all the presented results can be transferred to more
general cases):

V conv(r, t) = V ∞ +

∫

S

k × (r − ξ)

2π|r − ξ|2︸ ︷︷ ︸
Q(r−ξ)

Ω(ξ, t)dSξ = V ∞ +
N∑

i=1

ΓiQ(r − ri). (1)

The vortex influence calculation by direct summation according to (1) is the most time-
consuming operation in the vortex method algorithm [4]. The computational complexity
is proportional to N2, and is similar to the gravitational N -body problem. In practice
the number of elements N can reach 105, so it takes about 1010 operations only for the
sum (1) calculation. Note, that such sum should be calculated at every time step while
the number of steps can has order of tens thousands. So, the direct calculation of the
sum (1) becomes impossible in a reasonable time.

This problem can be partially solved using the modern graphic accelerators (GPU). As
for all the particle methods, implementation of the vortex methods by using the Nvidia
CUDA technology is very efficient [4]. However this approach doesn’t solve the men-
tioned problem fundamentally, because the computational complexity remains squared
and computations for more than 3 · 105 vortex elements again require unacceptable time.

The computational complexity of the problem can be reduced significantly by im-
plementing of the approximate fast methods. In this paper we consider the Barnes —
Hut-type method [5], initially developed for N -body problem, and the method based on
the fast Fourier transform and further correction procedure [7]. Both methods have loga-
rithmic computational complexity (proportional to N logN); their sequential and parallel
implementations are developed.

2

157



Daria D. Leonova, Ilia K. Marchevsky and Evgeniya P. Ryatina

2 THE BARNES — HUT-TYPE METHOD

The main idea of this method is that the influence of the groups of closely adjacent vor-
tex elements on another such groups located far apart, can be calculated approximately
using linearized formulae [5]. For this purpose the hierarchical tree-structure of rectangu-
lar space domains (cells) is constructed in the flow domain. The zero-level cell contains
all the vortex elements, and then it is divided across its long side into two first-level cells,
each is reduced horizontally and vertically according to its vortices in order to exclude
empty area. Next, similarly the second-level cells are constructed, etc. Such procedure is
continued until the target level is achieved or the cell contains single vortex. The whole
algorithm consists of the following stages:

1. Zero-level cell formation which contains all the vortex elements.

2. Tree structure construction.

3. Calculation of the necessary tree-cells parameters (centers of positive and negative
vorticity and total circulations).

4. For every terminal tree-cell the following operations are performed:

a) tree traversal and determination of the far-spaced cells according to chosen
proximity criteria;

b) accumulation of the linear expansion coefficients for all far-spaced cells;

c) exact calculation of the influence from the vortices in cells from neighboring
zone according to (1);

d) summation of the influences calculated approximately and exactly.

The numerical experiments were performed for different time-consuming problems
(Fig. 1) and the results (time of computations) are in a good agreement with theoret-
ical estimation (logarithmic computational complexity).

* * * * * * *
*

1·105 2·105 3·105 4·105 5·105N
5

10

15

20

Time, sec

33*10-7NlogN

Figure 1: Time of computations for different number of vortex elements N
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The method has two adjustable parameters: the proximity parameter θ and number
of tree levels k (tree depth).

The first parameter allows changing ratio between the accuracy and computational
complexity. All numerical results, presented in the paper, are obtained with relative error
not exceeding 0.2% comparing with the “direct” calculation according to the (1). The
number of tree levels effects only the computational complexity, and for every particular
problem there is an optimal value, which provides the minimal computational cost.

3 PARALLEL IMPLEMENTATION OF THE BARNES — HUT METHOD

The parallel implementations of the method are developed using both OpenMP and
MPI technologies. The terminal cells are split between MPI-processes (or/and OpenMP
threads). The stages 1–3 are performed in sequential mode simultaneously by all MPI-
processes due to their small contribution in all algorithm.

3.1 Efficiency of the parallel implementation for shared memory system

The first numerical experiment was performed for 18-cores CPU Intel Core i9-7980XE
using both OpenMP and MPI technologies. The achieved acceleration is shown in Fig. 2
for the time-consuming problem with large number of vortex elements (N = 1000 000).

1 2 4 6 8 10 12 14 16 18
Cores number1

2
3
4
5
6
7
8
9
10
11
Acceleration N = 1 000 000

MPI
OpenMP

Figure 2: Acceleration of the Barnes — Hut-type method algorithm

It is seen that OpenMP-implementation is more efficient for shared memory systems.
Its efficiency for 18 cores is about 55% while MPI-implementation efficiency is 46%.
Obtained results correspond to the Amdahl’s law with 5% and 7% of sequential code (for
OpenMP and MPI technologies, respectively).

3.2 Efficiency of the parallel implementation for cluster system

For the cluster system there is a possibility of simultaneous usage of both OpenMP
and MPI technologies. The numerical results for 3-nodes cluster system with 4-cores
processors Intel Core i7-940 are shown in Table 1 for the same problem.
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Table 1: Time of computations and acceleration of the Barnes — Hut-type method algorithm for the

cluster system

1 OpenMP thread 4 OpenMP threads 4 MPI process

Nodes per node per node per node

number Time, sec Acceleration Time, sec Acceleration Time, sec Acceleration

1 106.13 1.00 30.84 3.44 33.58 3.16

2 54.02 1.96 16.82 6.31 18.20 5.83

3 36.67 2.89 12.11 8.76 13.17 8.06

It is seen that the usage of both OpenMP and MPI technologies is more efficient in
comparison to the only MPI technology. The efficiency of parallel implementation on
12-cores cluster system is 73%. Note, that for this case total acceleration comparing to
the “direct” sequential algorithm is about 1000 times.

The Barnes — Hut-type method is satisfactory scalable, at the same time its sequen-
tial implementation is not very efficient itself. The fact is that this method initially had
been developed for the gravitational N -body problem, but we consider two-dimensional
problem statement. While in 3D problems the influence of a body on another decreases
proportionally to squared distance between them, in 2D case it is inversely proportional
to the first degree of the distance only. That’s the reason of the other method implemen-
tation, which is more efficient for 2D problems.

4 THE FFT-BASED METHOD

This method is based on the possibility of the convolution integral in (1) calculation
using Fast Fourier Transform (FFT) technique [6]. As it is shown in [7], the usage of this
method “directly” leads to the significant error caused by inaccurate calculated influence
from vortex elements located in some neighboring zone. So, the special correction pro-
cedure is required. It is based on the linear dependency between the velocity and nodal
circulations through some correction matrix {V } = [C]{Γ}. In such a way it is possible to
exclude the inaccurately calculated influence from the neighboring zone of each cell and
add the accurate one, calculated directly using the Biot — Savart law. It was found in
numerical experiment, that the optimal neighboring zone size is 3 cell layers [7]. In this
case the relative error level is less than 0.2%; it is acceptable for most applications.

In the flow domain rectangular uniform mesh is introduced, which for simplicity con-
tains M ×M nodes (M � N). The FFT-based algorithm can be split into 3 blocks:

1. Q1 — nodal circulations calculation (by using the Monaghan’s operator M4 [8]) and
correction velocities calculation (which afterwards should be subtracted).

2. Q2 — convolution integral calculation using the FFT technique.

3. Q3 — velocities interpolation from the mesh nodes onto the vortex elements and
addition the accurately (exactly) calculated vortex influence from the neighboring
zone of each cell using the Biot — Savart law.

5
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Note, that the coefficients of the correction matrix [C] depend only on the cell size, so
it can be calculated only once at the beginning of the calculation procedure.

The ratio of the operations Q1, Q2 and Q3 significantly depends on the mesh size.
Herewith for fixed number of vortex elements N there is some optimal mesh size M when
computational complexity of the method is the lowest. The optimal ratio is shown in
Fig 3, a. But in practice such ratio almost can’t be reached due to well-known fact,
that for the optimal performance of the fast Fourier transform subroutines the mesh size
should be chosen as M = 2d, d ∈ N. This fact limits the variability of value M , so the
real optimal ratio for each problem is deviates from the ratio in Fig. 3, a. The examples
for two different problems with N = 100 000 and N = 500 000 are shown in Fig. 3, b, c.

��

��

��

a) Theoretical estimation

��
��

��

b) N = 100 000, M = 128

��

��
��

c) N = 500 000, M = 512

Figure 3: An optimal ratios of the FFT-based algorithm operations

Assuming that the number of vortex elements increases in time, it is important to
determine when the mesh size should be doubled. The time of calculations for different
time-consuming problems is shown in Fig. 4. The calculations were performed for two
mesh sizes: M = 256 and M = 512.

* * * * * * * * * * * *
* * * * * * * * * * * *

�·��� �·��� �·��� �·��� �·��� �
�

�

�

Time, sec

36*10-7NlogN
25*10-7NlogN

Figure 4: Computational time for different problems (number of vortex elements N); blue asterisks

correspond to calculations with M = 256; red ones — with M = 512
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It is seen that the FFT-based method has logarithmic computational complexity
O(N logN), when the mesh size is optimal; the change-over of the mesh size should
be performed from M = 256 to M = 512 when N > 500 000.

If the number of vortex elements is large (N = 1000 000), the vortex influence calcu-
lation using the “direct” method takes about 3 hours (at one time step); the Barnes —
Hut-type method takes 60 seconds and the FFT-based method takes only 4.5 seconds.
Thus, we obtain the acceleration more than 2000 times.

5 PARALLEL IMPLEMENTATION OF THE FFT-BASED METHOD

The simulation of the vortex elements movement requires the velocities calculation at
every time step. Besides the fact that the number of vortex elements in real problems can
exceed hundreds of thousands, the number of time steps can also be tens or even hundreds
of thousands, therefore any possible acceleration of calculations is required. For this
purpose, assuming that all modern processors are multi-core, the parallel implementation
of the above mentioned fast method algorithm is developed.

5.1 Parallel implementation using OpenMP technology

The following stages of the algorithm are implemented in parallel mode using OpenMP
technology:

1. Mesh cells initialization.

2. Calculation of the matrix {Γ} of nodal circulations.

3. Velocities interpolation from the mesh nodes onto vortex elements.

4. Calculation of the influence in the neighboring zone directly according to the Biot
— Savart law.

5. Summation of the influences calculated approximately and exactly.

As noted earlier, the mesh size M significantly effects the numerical complexity of
operations Q1, Q2 and Q3 of the FFT-based method. The operation Q2 is implemented
sequentially, and it takes the most part of the sequential code in the whole algorithm. Its
numerical complexity depends only on the mesh size, so the ratio of sequential code can
vary. The parallel implementations of the operations Q1 and Q3 are developed.

There is an relationship between these two blocks of operations: increasing contribution
of one of them leads to decreasing of the other. For small values of M the operation Q3

preponderates (since in this case the neighboring zone is rather large and it contains
large number of vortex elements). Therefore, the acceleration of this operation should
increase for coarser mesh and decrease at the mesh refinement. For the operation Q1 the
situation is opposite. So, for optimal mesh size the acceleration will be quite moderate.
The numerical results for the problem with N = 1 000 000 vortex elements prove these
estimations (Fig. 5). Here Q′ is total numerical complexity of the parallelized operations
Q1 and Q3. All calculations were performed for the 12-cores CPU Inter Core i9-7980XE.
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Figure 5: Different operations accelerations obtained using OpenMP-implementation

It is seen that total acceleration (green points) located somehow between accelerations
of operations Q1 and Q3, approaching to the most time-consuming one. The highest
acceleration and the lowest calculation time are achieved for non-optimal mesh M = 256
(Table 2). Here Qtot includes all the operations (Q1, Q2 and Q3).

Table 2: Calculation time and acceleration of the FFT-based method operations using OpenMP

Acceleration Time, sec

M = 256 M = 512 M = 1024 M = 256 M = 512 M = 1024

Q1 1.81 2.35 2.79 0.36 0.56 1.69

Q3 10.05 8.82 7.69 0.61 0.19 0.10

Q′ 7.00 4.00 3.12 0.97 0.75 1.79

Qtot 6.57 3.05 2.08 1.05 1.12 3.24

In sequential mode the optimal mesh consists of M = 512 nodes for such problem,
however now we obtain the best result for M = 256. It means that the mesh choice
depends on available computing resources. Obtained accelerations for the mesh M = 256
have a good agreement to the Amdahl’s law with 7% of sequential code.

5.2 Parallel implementation using MPI technology

In parallel implementation of the FFT-based method using MPI technology the com-
putational domain is split vertically into rectangular bands; number of such bands corre-
sponds to the number of MPI-processes.

The MPI-implementation includes the following parts:

a) parallel code (every MPI-process performs this code for its mesh domain):

1. Cells initialization.

2. Calculation of the circulation matrix {Γ} at mesh nodes.

3. Correction velocities calculation.

8
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4. Velocities interpolation from the mesh nodes onto vortex elements.

5. Calculation of the neighboring zone influence using the Biot — Savart law.

6. Summation of the influences calculated approximately and exactly.

b) data exchange:

1. Transferring the information from the shadow edges. It includes nodal circu-
lations {Γ} (1 cell layer) and correction velocities (3 cell layers).

2. Gathering all nodal circulations on the master-process for the convolution in-
tegral calculation using the FFT (non-blocking data transfer is used).

3. Transferring of the vortex elements data for boundary cells of each process for
correct calculation of the vortex influence in neighboring zone of such cells.

c) sequential code:

1. Convolution integral calculation using the Fast Fourier Transform technique.

The numerical results are similar to the previous section (OpenMP implementation).
They are shown in Fig. 6 for the same problem with N = 1000 000 vortex elements.
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Figure 6: Different operations accelerations obtained using MPI-implementation

It is seen again, that the total acceleration for Q′ = Q1 +Q3 (green points) is located
somehow between accelerations for Q1 and Q3; the highest acceleration is again achieved
on the coarser mesh (M = 256), but in this case computational time is less on the optimal
mesh for considering problem (M = 512). The resulting acceleration and computational
time are shown in Table 3. Comparing with the similar results shown in Table 2, it can
be seen that the MPI technology is more efficient from the computational time point of
view, so it is preferable even for the systems with shared memory.

Numerical experiment results for the mesh with the best acceleration (M = 256) are
in good agreement with Amdahl’s law with 6% of sequential code.
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Table 3: Calculation time and acceleration of the FFT-based method operations using MPI

Acceleration Time, sec

M = 256 M = 512 M = 1024 M = 256 M = 512 M = 1024

Q1 2.59 4.12 6.81 0.24 0.31 0.58

Q3 9.24 8.51 7.78 0.66 0.21 0.11

Q′ 7.49 5.89 6.96 0.90 0.51 0.68

Qtot 6.97 3.69 2.50 0.98 0.92 2.65

5.3 Efficiency of the parallel implementation for cluster system

For the cluster system both OpenMP and MPI technologies can be applied simulta-
neously. The numerical results for 3-nodes cluster system with 4-cores CPU Intel Core
i7-940 are shown in Table 4 for the same problem.

Table 4: Computational time and acceleration of the FFT-based method on cluster system

1 OpenMP thread 4 OpenMP threads 4 MPI processes

Nodes per node per node per node

number Time, sec Acceleration Time, sec Acceleration Time, sec Acceleration

1 4.46 1.00 2.57 1.73 1.77 2.52

2 2.80 1.59 1.80 2.47 1.49 2.99

3 2.23 2.00 1.56 2.86 1.41 3.16

As it was discussed in the previous section, the MPI technology is more efficient. So,
despite the data transfer, the maximal acceleration (and minimal time) is obtained using
only the MPI technology.

6 COMPARISON WITH THE “DIRECT” METHOD

As noted earlier, the “direct” method is highly scalable. Thus, the calculation with
usage GPU Tesla V100 takes about 10 seconds (for N = 1000 000), while the direct
velocities computation takes about 3 hours. The calculation using the Barnes — Hut-
type method in sequential mode takes about 60 seconds, while the FFT-based method in
sequential mode takes only 4.5 seconds. Thus, the FFT-based method is more efficient
even in sequential mode than “direct” method, been running on the most powerful graphic
accelerator nowadays. Considering the parallel implementations of both fast methods, we
obtain that for the same problem the Barnes — Hut-type method, being run on multicore
CPU requires nearly the same time, that the direct method on GPU. At the same time,
the FFT-based method on the same CPU is 10 times faster (it takes only 0.9 seconds).

The numerical experiment was performed for 12-cores CPU Intel Core i9-7980XE. The
computational time for “direct” and FFT-based method is shown in Fig. (7). It is seen
that for 12 cores the FFT-based method becomes more efficient for N > 150 000. If
only 4 cores are used (which the most modern processors have) the FFT-based method is
comparable with the “direct” GPU-implementation already for N = 200 000.
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31

Видно, что максимальное ускорение, несмотря на пересылки, оказы-

вается больше при использовании только MPI технологии.

3.4. Cравнение с «прямым» методом

При сравнении параллельных реализаций быстрого и «прямого» ме-

тодов было получено, что для задачи с N = 1000 000 ВЭ рассматрива-

емый быстрый метод, запущенный на 12 ядрах персонального компьюте-

ра, десятикратно превосходит «прямой» метод, исполняемый на одной из

самых мощных графических карт в настоящее время — Tesla V100. При

этом уже при N = 100 000 время вычислений становится сравнимо, а при

N > 200 000 параллельный быстрый метод значительно «обгоняет» пря-

мой на GPU. Ранее было получено, что последовательный быстрый метод

становится эффективнее при N > 500 000. Для наглядности представим

графически результаты времени проведения расчетов прямым методом (на

графической карте) и быстрым методом (в последовательном режиме и с

использованием MPI) на рис. 3.10.

   

Time, sec

Direct method  
FFT-based method   
FFT-based method   
FFT-based method 

    






Рис. 3.10. Время выполнения прямого и быстрого методов

Если рассматривать ускорения, полученные с использованием 4-х про-

цессов MPI (именно столько обычно имеется в доступе на большинстве

ПК), быстрый метод становится сравним с прямым, исполняемым на GPU,

уже при N = 200 000.

Time, sec

Figure 7: Time of calculations for the FFT-based and “direct” methods

7 CONCLUSIONS

The problem of computational complexity reduction in the algorithms of vortex meth-
ods is considered. Two fast approximate methods for vortex influence computation are
implemented. Both methods have a logarithmic computational complexity instead of the
squared one. Their sequential and parallel implementations are developed. Acceptable
relative error for all numerical experiments is less than 0.2%.

The first method is an analogue of the Barnes-Hut fast method for the gravitational
N -body problem. The efficiency of this method for 2D problems is lower in comparison
to 3D problems, however, it is scalable and can be parallelized rather easily. For the
sequential code the acceleration in comparison to the “direct” (the Biot — Savart law-
based) method for the problem with 106 vortex elements is about 180 times. Using the
OpenMP technology it is possible to achieve additional 10 times acceleration for 18-cores
Intel i9-7980XE CPU. For MPI-implementation the acceleration is slightly lower.

The other considered fast method is based on the possibility of convolution integral
fast calculation by using the Fast Fourier Transform (FFT) technique with further results
correction on the coarse mesh for correct influence accounting of closely-spaced vortex
elements. For sequential implementation this method is about 10 times more efficient in
comparison to the previous one. For 106 vortex elements it is more than 2 000 times faster
in comparison to “direct” calculation. At the same time the efficiency of its parallelization
is lower, the maximal achieved acceleration for 12-cores CPU is about 6 times (for all the
operations, excluding the FFT transform itself).

Even for sequential version the FFT-based method is faster than the “direct” approach,
being implemented for GPU architecture for the most powerful graphical accelerator Tesla
V100 for number of vortices N > 500 000. Parallel implementation of the FFT method
(12 cores) makes it possible to perform one time step for 106 vortices within 0.9 seconds,
while for Tesla V100 about 10 seconds is required.
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ABSTRACT 

A numerical mesh-free method of dipole domains [1,2] is used for simulation of a butterfly flapping 
model. This method is based on the representation of a vortex field by the set of dipole particles. The 
vector function D describes density of dipole moments in accordanse with Navier-Stokes or Euler 
equations [3]. The butterfly model consists of two flat plates with a common edge performing 
harmonic oscillations in two planes. New mechanism of the thrust performing is proposed. 

 

Key words: Mesh-free numerical method, three dimensional flow, dipole particles, butterfly model, 
mechanism of the thrust performance. 
 

1. INTRODUCTION 

The mesh-free particles-based methods are effective for modeling the flows with intensively 
changing boundaries. In the grid based methods two strategies are usually utilized: morphing grids 
and overset grids. The first approach is not applicable when the computational domain variation is 
large. The overset grid technology suffers from the low accuracy of computations which is caused by 
non conservative character of the interpolation between grids. Mesh-free methods could be a good 
alternative to grid based techniques for such problems. 
Among the mesh-free methods, the vortex methods have an advantage in modeling incompressible 
flows in an unbounded space, since the region with essentially non-zero vorticity has a small volume. 
In addition, the boundary conditions at infinity are automatically provided. 
Simulation of 3D vortex flow in 3-D space has the problem of the representation of three-
dimensional vortex field by discrete elements. This field must be divergence-free as a curl of velocity 
field. But when the discrete vortex particles are used, this property can be destroyed. The velocity 
field which the vortex particle induces in accordance with Biot-Savart formula has non-zero vorticity 
in the whole space but not only in the localization of the particle. If the set of the vortex particles 
does not form a divergence-free vector field then the rotor of the induced velocity field does not 
coincide with this vector field. This leads to errors in the calculation if special measures are not 
taken. Therefore hybrid methods are often applied with combination of the Eulerian and Lagrangian 
approaches [4]. After the particles have been moved, their intensities are recalculated at Euler mesh 
for recovering the solenoidality at each step. This procedure enforces to build grids, and can increase 
the numerical viscosity. 
In this work the dipole particles are used for simulating of the 3-D vortex field. This representation 
provides a solenoidality of the vortex field. The fully lagrangian method of Dipole Domains (DD) is 
developed in [1]. Dipole distributions are widely used in hydrodynamics to calculate the potential 
flows (double-layer potential). The idea to construct a numerical method based on the dipole particles 
was suggested by Yanenko, Veretentsev and Grigoriev [5]. However, numerical implementation  
hasn’t been performed. Chefranov [6] used the point dipoles to model the vorticity in an ideal fluid 
for analyzing the mechanisms of turbulence and turbulent viscosity. It has been shown that 
interaction of the point dipoles in an ideal fluid can lead to explosive growth of localized vorticity. 
The vortex dipoles were applied in papers [7-9] for the simulation of the inviscid vortex flow and 
analyzing of the turbulence. In the method of Dipole Domains the smooth dipole particles are used. 
Viscous interaction of the particles can be taken into account.  
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2. GOVERNING EQUATIONS 

The method of dipole domains is based on the equation for the vector function D called as density of 
dipole moments 

 2

t


      

D V Ω V VD D  ,   (1) 

where V is fluid velocity, , 0,  Ω V V ,  is kinematic viscosity. Applying curl to 
equation (1) one can see that evolution of the field D  obeys the same equation as the vorticity 
Ω . Hence at the equivalent boundary conditions  D Ω . The velocity field V is a divergence-
free part of D. It can be expressed via D with the help of Biot-Savarat formula. In infinite 
space  it has the form 
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Expression (4) can be transformed to following 
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Here the integral is taken in the principal value. The integrand is the velocity which the point 
dipole located in r induces in the point R. That is why we call function D as dipole density.  

The use of the field D has an advantage over the natural variables because the numerical scheme 
can be constructed in such a way that D will have a non-zero value mainly in the wakes behind the 
bodies. The advantage over the vortex methods is that the solenoidality of the vorticity field is 
provided automatically. 
For the hydrodynamic force calculation we use expression of the hydrodynamic impulse of the flow 
via D. In accordance with [10] in the case of the infinite space and finite distribution of the vorticity, 
the hydrodynamic impulse I is equal to 

1 d
2
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Taking into account  D Ωand applying the general Stokes theorem we obtain 
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Formulas (5), (6) are also valid in the case of flows around infinitely thin bodies, if they are 
represented as the distribution of D. The hydrodynamic force acting on the body is equal to 

d
dH t

 
IF

 
 

3. NUMERICAL METHOD 

In this work we use the simplified model of the ideal incompressible flow around infinitely thin 
bodies. The field D is represented by the set of dipole particles with dipole moments i. Each particle 
is smoothed by function 
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Equation (1) is transformed to the following form 
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This equation corresponds to the particle movement at the velocity V with changing dipole moment 
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The discrete formulas for the velocity are: 
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The rate of the dipole moment changing has the following discrete form 
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One can see that in ni δ δ , that is hydrodynamic impulse i
i

I ς  conserves if the bodies and 

external forces are absent in the flow. 

The infinitely thin plates are simulated by the attached dipole particles. They have to provide the 
boundary non-flow condition. New free dipole particles shed into the wake from trailing edge 
satisfying the Kutta-Zhukovcky condition. 

 

4. RESULTS AND DISCUSSION 
 

The method is applied for simulation of the ideal incompressible flows around the model of butterfly 
wings. The particles are generated at the plates and detach from the trailing edges. 

 
Figure.1 The wake behind the flapping wings of the butterfly model 

 

The model of the butterfly wings consists of two plates with the common edge (see Fig.1). The plates 
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perform angular oscillations about this edge according to law = /2  (t), where  = 0sin(2ft). In 
addition, the entire system performs angular oscillations about the Z axis  = 1 + 0sin(2ft+). A vortex 
wake behind the wings is shown In fig. 2 at 0 = 10, 1 = 5, 0 = 10,  = 150, Strouhal number 
Sh = 0.15. The time dependencies of the coefficients Сx, Сy, and the angles  and  are presented in fig.2. It 
can be seen that the average lifting force in this mode is positive, and the average resistance is negative, i.e. 
there is a propulsive force towards the flow. 

 

 
Figure 2. Time dependencies of the coefficients Сx, Сy, and the angles  and  

 

Most of investigators studying flapping wings find the reason of thrust performance in the vortex 
structures arising near the bodies such as reversive vortex street and vortex ring [11-16]. But it is 
more credible that these structures are not a cause but a consequence of thrust. We think that the 
reason of thrust is accelerated wing movement at an appropriate angle of attack. Let us consider the 
combined oscillations of a two-dimensional plate consisting of translational oscillation along Y-axis 

(see fig. 3) 0
2siny y t
T
   

 
 and angular oscillation 0

2sin t
T
     

 
 around the leading edge (the 

left point).  

 

 

 
a)                                      b)                                      c)                                        d) 

Figure 3. Scheme of the vectors directions in different oscillation phase  
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In the first quarter of the period, the plate moves up, but the acceleration is directed downwards (fig. 
3a). When the body moves with acceleration, a force Fa arises associated with the added mass of 
fluid. This force is directed against acceleration, i.e. in this case, upwards. If the acceleration is large 
enough, this force dominates. This means that the pressure on the lower side of the plate is higher 
than on the top. The horizontal component of Fa is directed from the right to the left. The counter 
clock-wise vortex sheds from the trailing edge. In the second quarter of the period, the acceleration is 
also directed downward. The horizontal component of the force Fa is also directed from the right to 
the left. In the second half of the period, the acceleration changes sign. The angle of the plate changes 
the sign also. As a result, the horizontal component of the force conserves direction. Thus the 
interaction of the plate with the added mass of fluid creates a propulsion force. The pressure 
difference between the lower and upper sides of the plate determines the sign of the vortex shedding 
from the trailing edge. In the first half of the period this is the counter-clock-wise vortices, and clock-
wise in the second half. In such a way a reversive vortex street arises.  

 

4. CONCLUSIONS 
 

The mesh-free dipole particles-based methods is developed and applied for simulation of the insect 
flapping wings. It is shown that the main cause of the thrust performance is interaction of wings with 
an added mass of fluid at the wings acceleration. 
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Abstract. This paper presents a novel Large Eddy Simulation approach with a direct
resolution of the subgrid motion of fine concentrated vortices. The method, proposed
first by [10], is based on combination of a grid based and the grid free computational
vortex particle (VPM) methods. The large scale flow structures are simulated on the grid
whereas the concentrated structures are modeled using VPM. Due to this combination the
advantages of both methods are strengthened whereas the disadvantages are diminished.
The procedure of the separation of small concentrated vortices from the large scale ones
is based on LES filtering idea. The flow dynamics is governed by two coupled transport
equations taking two-way interaction between large and fine structures into account. The
fine structures are mapped back to the grid if their size grows due to diffusion. Algorith-
mic aspects specific for three dimensional flow simulations are discussed. Validity and
advantages of the new approach are illustrated for a well tried benchmark test of the
decaying homogeneous isotropic turbulence using the experimental data of [4] and free
turbulent jet flow using experiments of [8, 2, 15].

1 INTRODUCTION

Insufficient resolution of fine vortex structures in turbulent flows is one of the key
problems in Computational Fluid Dynamics (CFD). The most advanced and popular
technique to resolve multi scale flow structures is the Large Eddy Simulation (LES) which
is based on the idea of scale decomposition into large and small ones. While the large
eddies are directly resolved on the grid, the effect of small vortices is taken into account
through a subgrid stress (SGS) model.

The subgrid motion is not resolved in LES but rather it is modelled using different
functional and structural approaches. However, there are many problems which require
direct representation of the subgrid motion to simulate, for instance, mixing or particle
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dynamics in turbulent flows. In our previous papers (see [9], [10], [11], [16] ]), we proposed
a simulation technique resembling LES with an effort to directly reproduce the subgrid
motion at least in the statistical sense. It is suggested to apply a hybrid grid and particle
based method, utilizing a combination of the finite volume and computational vortex
particle (VPM) (see [5]) methods. The large scale field is represented on the grid like in
LES, whereas the small scale one (subgrid field) is calculated using the VPM. The new
method called VπLES is a purely Lagrangian one for small structures and purely grid
based one for large scale structures.

The method is based on the decomposition of the velocity u and vorticity fields ω into
the distributed large scale (upper index ’g’) and concentrated small scale (upper index
’v’) fields:

u(x, t) = ug(x, t) + uv(x, t),ω(x, t) = ωg(x, t) + ωv(x, t) (1)

The fine vortex detection procedure utilizes the Large Eddy Simulation (LES) filtration
applied to the grid based velocity field ug:

ug(x, t) =

∞∫

−∞

ug(s, t)F (x− s)ds (2)

where F (x− s) is a certain filter function. The small scale velocity field u� calculated as
the difference between the original and filtered fields

u�(x, t) = ug(x, t)− ug(x, t) (3)

should be approximated by vortex particles in regions of concentrated vortices which are
detected using any vortex identification criteria, for instance, λci ([1]). The cells with
λi > λci,min contain the vortices which in principle can be converted to vortex particles.
Such cells are marked as active ones using the λi,active field:

λi,active =

{
1, if λci > λci,min

0, otherwise
(4)

where λci,min is a certain small value introduced in order to limit the number of particles.
To keep the required computational resources on an acceptable level, only small vortices

with size proportional to the local cell size Δ are to be converted to single vortex particles.
Neighboring cells which all have λi,active = 1 form large vortices. For them it is supposed
that the larger vortices with scales of a few Δ can accurately be represented on the grid.
Therefore the next task is to detect cells with fine vortices. According to the algorithm,
all neighboring cells of the i − th cell are checked for the condition λci > λci,min. If all
neighbors fulfill this condition, we identify a cell cluster which remains on the grid and
all its cells become non- active λi,active = 0. Only vortices in cells with λi,active = 1 are to
be replaced by vortex particles.

At each cell with λi,active = 1 the new vortex particle is introduced at the cell center
if the permissible number of vortex particles per cell Npt is not exceeded. Otherwise,
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the new vortex replaces the cell’s weakest one. The number Npt was introduced to keep
the total number at a reasonable level. This restriction is conform with the concept that
the largest contribution to the subgrid kinetic energy is made by a small fraction of the
strongest vortices. The radius of the new vortex is set as σ = βV ol

1/3
i , where β is the

overlapping ratio which is taken as β = 2 and V oli is the volume of the i-th cell. A
thorough analysis of the influence of Npt and λci,min for the jet case is given in [11] in Sec.
4.3.5. The vortex particle strength is calculated as

α = V oliω
v = V oli(∇× u′) (5)

The velocity uv(x, t), induced by the vortex particles, is calculated at grid points x using
the Biot-Savart law

uv(x, t) =
1

4π
∇×

∫

FlowV olume

ωv(ξ, t)

|x− ξ|
dV (ξ)

and subtracted from the grid velocity ug,new = ug − uv. Thus, the total velocity at grid
points ug,new + uv = ug remains constant after the vortex particle generation procedure.

2 GOVERNING EQUATION

The evolution of vortex particles and large scale flow represented on the grid is described
by a system of two coupled transport equations derived in [9, 10, 11] for incompressible
isothermal flows:

∂ug

∂t
+ (ug · ∇)ug = −1

ρ
∇pg + νΔug + uv × ωg (6)

dωv

dt
= (ωv · ∇)(uv + ug) + νΔωv +∇× [uv × ωg − uv × ωg], (7)

The sum of the curl of the first equation and the second equation retrieves the original
Navier Stokes equation written in the form of the vorticity transport equation. The first
equation (6) is coupled with the second one (7) through the additional term uv × ωg

whereas the coupling of the second equation with the first one is due to the terms (ug ·
∇)ωv, (ωv · ∇)ug and ∇ × [uv × ωg − uv × ωg. The equations (6) and (7) are solved
sequentially. The first equation is solved on the grid whereas the second one uses the
grid free Vortex Particle Method (VPM) [5]. The physical meaning of the coupling term
uv × ωg is explained in [10].

The vortex particle displacement is calculated from the trajectory equation

dri
dt

= ug
i + uv

i , (8)

where i is the particle number. Computation of the velocity induced by vortex particles
uv is performed with the direct summation of the Bio-Savart law taking into account
one or two layers of neighboring cells. Only induction of the neighboring points is taken
into account because the velocity uv is much less than ug and it is mostly determined
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by interaction of neighboring particles lying at a short distance. The justification of this
simplification presented in [11] is that the correlation between neighboring small scale
vortices is weak and they are well separated. This simplification can be considered as a
kind of model which results in a very fast computational procedure of a local character
suitable for parallel calculations.

The velocity induced by a vortex particle can be calculated from the formula

uv
p =

1

4π

α× ξ

ξ3
(1− e−ξ3/σ3

) (9)

proposed by [14]. Here α and σ are the strength and the radius of a vortex particle, which
are defined below. The velocity induced by a set of particles uv is calculated as the sum
of uv

p. It should be noted that the technique presented here is independent of any specific
choice of vortex particles. Particularly, a set of functions introduced in [12] can be used
within the present method.

2.1 Numerical solution of the equations (7) and (8) using the VPM

Instability of numerical solution of the equation (7) caused by the stretching term
(ω · ∇)u is the most important problem of the VPM along with the computation of the
velocity uv. In grid based methods with low and moderate order schemes, the action
of the stretching is effectively counterbalanced by the numerical viscosity which is very
low in Langrangian vortex particle methods. Theoretically, a stable VPM solution can
be obtained by increasing the accuracy of the stretching and diffusion simulation which
can be attained by a high number of vortex particles and high temporal resolution. Both
make the method impractical at least for high Reynolds numbers. After many efforts the
authors settled on the algorithm which was originally proposed by [7] and modified in
[11]. This algorithm consists of the following substeps:
• Calculation of the change of the vorticity strength magnitude

d|ωv|
dt

=
d
√
ωv · ωv

dt
=

ωv

|ωv|
· dω

v

dt
(10)

where dωv

dt
is calculated from (7) without the viscous diffusion term. The term (ωv · ∇)uv

is calculated taking into account adjacent vortex particles located only within one or two
layers of neighboring cells.
• Calculation of the particle length from the equation of the elementary section dl trans-
ported in inviscid flow

dl

dt
=

l

|ωv|
d|ωv|
dt

(11)

• Calculation of the particle core radius from the equation describing the transport of an
elementary tube with length l and radius σ in inviscid flow

dσ

dt
= − σ

2l

dl

dt
(12)
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• Consideration of the viscosity influence using the core spreading method (CSM) (see
[5]). The particle core radius is increased by Δσ:

Δσ =
√
4νΔt (13)

• Calculation of the new particle orientation

ω∗ = ωv(t) +
dωv

dt
Δt (14)

• Calculation of the particle strength magnitude from [7]

|α(t+Δt)| = |α(t)|σ(t+Δt)

σ(t)
(15)

• Calculation of the new strength vector

α(t+Δt) = |α(t+Δt)| ω
∗

|ω∗|
(16)

In the original version proposed by [7] the next step should be the redistribution of
particles whose length has doubled. According to our experience the redistribution results
in an avalanche-like increase of the vortex particles number in areas of strong stretching.
To prevent this [7] proposed a special elimination procedure based on a knowledge of
a threshold for the dissipation rate which is difficult to set in a general flow case. To
develop a robust code, to obtain a stable solution and to keep the particle number in a
reasonable range we avoid the redistribution procedure in our computations. Thus, the
smallest vortices are removed. This reduces the range of scales that must be resolved in
a numerical calculation. Such a reduction, as pointed out by [3], is an immanent part of
every turbulence model.

There is a permanent exchange between the small vortices and large scale ones repre-
sented on the grid. Large scale vortices become small due to stretching and are converted
to particles. If particles grow due to viscosity and flow stagnation and exceed some size
they are mapped back to the grid. The simple Euler method is used for the integration
of the differential equations. The flowchart of the whole algorithm is presented in [11].

The present method has the same error sources as every LES model [6]. Two comments
should be made on the filtering errors. First, the applicants understand that the models
relying on the small scales comparable with cell sizes can suffer from the filter aliasing
errors inherently presented in each numerical method. For instance, such errors most
strongly affect dynamic type models which rely heavily on the smallest scales to determine
SGS properties [6].Second, since our algorithm does not use commutation of differencing
and filtering operators which is the big difficulty in LES formalism and represents the
second part of the filtering errors, the commutation error is not present.
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3 RESULT AND DISCUSSION

3.1 Summary of previous result

Validation and verification is performed for wall free flows including decaying isotropic
turbulence (DIT) [4] and free turbulent jet [8, 2] test cases. Results revealed that the
effect of the term uv × ωg in the equation (7) is similar to that of a LES subgrid model.
The term uv × ωg behaves as an energy drain transferring the energy of the grid based
motion into the fine scale energy. At coarse resolutions, it acts as a diffusive Large Eddy
Simulation subgrid model resulting in a LES-like behavior of the whole method.

The additional term uv × ωg is automatically switched off when the resolution in-
creases, the present method is consistent and converges to the Direct Numerical Simula-
tion. The energy back scattering is also captured by the present method. As mentioned in
[16], the intensification of the turbulent kinetic energy due to back scattering is proved to
be very important to properly reproduce the jet breakdown and transition to turbulence
close to the nozzle without any artificial turbulence forcing at the nozzle. The Reynolds
stresses of the velocity field induced by particles possess the pronounced anisotropy which
is space dependent. It was also shown that the model for the jet case can be sufficiently
reduced by neglecting the inner interaction between particles. This results in a drastic
reduction of the computational time. Some additional result on the model reduction and
anisotropy Reynolds stresses are given in the next section. The result are obtain for the
free jet at the Reynolds number Re = 104. More details about grid properties and set up
of the simulation are thoroughly described in [16].

3.2 Model reduction

As shown in [11] the equations 7 and 8 can sufficiently be reduced by neglecting inner
interaction between vortex particles without a significant loss of the simulation accuracy.
The reduced equations take the form:

∂ωv

∂t
+ (ug · ∇)ωg = (ωv · ∇)ug + νΔωv, (17)

and the r.h.s of the trajectory equation (18) contains only the grid based velocity

dri
dt

= ug
i (18)

As seen in [11], the influence of inner interactions on spatially averaged kinetic energy
and scalar dissipation rate is relatively weak and can be neglected in the calculation.
Thereby the computations can be done sufficiently faster.This model is further referred to
as the passive vortices model. Within the next simplification step the influence of the grid
based solution on the evolution of vortex particles strengths is neglected. The equations
describing the vortex particle evolution take the simplest form:

∂ωv

∂t
+ (ug · ∇)ωg = νΔωv, (19)
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(a) influence of ignoring inner interaction between
vortex particles

(b) influence of considering vortex particles only in
the curretn time step

Figure 1: Influence of the interaction between vortex particles and grid on the evolution of urms

dri
dt

= ug
i (20)

Figure 1-a demonstrates results for the r.m.s. of the axial velocity obtained using the
full model equations 7 and 8, passive vortices model equations 17 and 18 and the model
without influence of the grid based flow on vortex particles strengths equations 19 and
20. The difference between results is negligible pointing out that vortex particles serve
just as triggers or intensifiers of turbulence and their inner interaction doesn’t contribute
sufficiently to the flow evolution. Hence the name of the method is the LES intensified
by the vortex particles or VπLES .

In the next step of model reduction only the influence of vortex particles generated in
the current time step are considered and vortex particles generated in the previous time
step were mapped back to the grid. In this case the time of computations is less than
full model since we only deal with a vortex particles in the current time step. As can be
seen in Figure 1-b the result shows that the vortex particles trigger the turbulence and
have a good agreement with experiment in the near jet exit region while in far field region
decay of kinetic energy is not physical. It can be interpreted in this way that the energy
drain of fine scale motion from large scale motion is not high enough and accumulation
of kinetic energy on the grid flow motion happens. Concluding, not only new generated
vortices but also the whole set of vortices including those generated upstream in previous
time steps have a significant influence on the turbulence development downstream. With
other words, the fine scale vortices model (7) and (8) can be reduces but not neglected.

3.3 Anisotropy of fine scale structures induced by vortex particles

Since a deterministic prediction of a turbulent flow as mentioned in the definition of the
turbulent motion by Lesieur [13] is practically impossible, the task of every SGS model is
to reproduce the subgrid motion only in the statistical sense. The following features of the
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(a) total velocity (ug + uv) (b) fine scale velocity uv

Figure 2: Distribution of the diagonal Reynolds stresses components for the total and fine scale velocity
along the jet axis

subgrid motion should be captured by a proper subgrid model: non-equilibrium effects
including laminar-turbulent zone, energy backscatter and anisotropy of fine scale motion.
In this subsection the anisotropy of velocities induced by fine vortices is discussed.

The total flow shows a well pronounced anisotropy with the dominance of the axial
fluctuations on the jet centerline (see Fig. 2-a). Reynolds stresses Rv

ii of the velocity field
uv shows also a clear anisotropy which is space-dependent. On the center line at x/D > 5
two diagonal stresses are equal to each other Rv

22 ≈ Rv
33 and dominate over Rv

11(see
Fig. 2-b). To explain this effect, we consider stochastic distribution of the statistically
independent axis-symmetric vortex particles on the centerline with strengths aligned with
the x-axis. They induce velocities uv

x = 0 and uv
y �= 0, uv

z �= 0. Due to axis symmetrical
character of each vortex the spatially averaged squares of velocities uv

y and uv
z are equal,

i.e. (uv
y)

2 = (uv
z)

2. Precession of vortices around their spins causes the appearance of
the longitudinal velocities uv

x which are much smaller than uv
y and uv

z. Thus, the jet
axis area at x/D > 5 is populated by vortex particles with axes predominantly oriented
along the jet propagation or mean flow direction. At x/D < 5 on the centerline and
r/D = 0.25 the fine scale turbulence is nearly isotropic Rv

11 ≈ Rv
22 ≈ Rv

33 in the beginning
of the jet development (see Fig. 3-a), i.e. this area is populated with vortex particles
with orientations uniformly distributed around a sphere. Further downstream the same
anisotropy takes place as that on the jet axis. At the jet boundary the fine scale turbulence
becomes anisotropic with a clear dominance of the radial fluctuations Rv

22 > Rv
11 ≈ Rv

33

(see Fig. 3-b), i.e. the dominating fluctuations are in the direction of the dominating large
scale entrainment motion. Figures 4 shows the p.d.f of vortex axes orientation where Lx,
Ly and Lz are defined as Lx = αx

|α| , Ly = αy

|α| , Lz = αz

|α| .

4 CONCLUSION

The paper presents validation and verification study of a novel VπLES method which is
based on the decomposition of the flow structures in large scale ones, resolved on the grid,

8

181



S. Samarbakhsh and N. Kornev

(a) (b)

Figure 3: Distribution of the diagonal Reynolds stresses components for the fine scale velocity uv along
the line r/D = 0.25 and r/D = 0.5

(a) (b)

Figure 4: p.d.f of vortex axes orientation line r/D = 0
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and small scale ones, represented by vortex particles ([10] and [11]). In this paper it was
shown that the model can be sufficiently reduced. However, the reduction has a certain
limit. The inner interaction between vortices and the influence of large scales on strengths
of fine vortices can be neglected. This results in a very efficient and fast computational
procedure. However, velocity field induced by particles possesses a pronounced anisotropy
which is space dependent. The future work is the validation of VπLES for wall bounded
flows.
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Abstract. Vortex methods offer an alternative way for the numerical simulation of problems
regarding incompressible flows. In the present paper, a Vortex Particle Method (VPM) is
combined with a Boundary Element Method for the study of viscous incompressible planar flow
around solid bodies. The method is based on the viscous splitting approach of Chorin [3] for
the Navier-Stokes equations in vorticity-velocity formulation and consists of an advection step
followed by a diffusion step. The evaluation of the advection velocity exploits the Helmholtz-
Hodge Decomposition (HHD), while the no–slip condition is enforced by an indirect boundary
integral equation. In order to deal with the problem of disordered spacial distribution of
particles, caused by the advection along the Lagrangian trajectories [1], in the present method
the particles are redistributed on a Regular Point Distribution (RPD) during the diffusive step.
The RPDs close to the solid bodies are generated through a packing algorithm developed
by [4], thanks to which the use of a mesh generator is avoided. The developed Vortex Particle
Method has been called Diffused Vortex Hydrodynamics (DVH) and it is implemented within
a completely meshless framework, hence, neither advection nor diffusion requires topological
connection of the computational nodes. The DVH has been extensively validated in the past
years (see e.g. [8]) and is used in the present article to study the vorticity evolution past an
inclined elliptical cylinder while increasing the Reynolds number from 200 up to 10,000 in
a 2D framework. The flow evolution is characterized by a periodic behaviour for the lower
Reynolds numbers which is gradually lost to give its the place to a chaotic behaviour.

1 INTRODUCTION

Two dimensional studies of flow past bluff bodies is long researched problem due to the
importance and utility of flow separation, its immediate impact on the forces on the both in
aerodynamic and hydrodynamic applications. While most of the studies are concentrated on
the circular cylinders, applications require the study of a less symmetric geometry in order
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to be more realistic as for is the case of an elliptical cylinder which can exhibit richer flow
characteristics.

Studies of the dynamical characteristics on two dimensional flows past elliptic cylinders
involve mostly works at low Reynolds regimes. The questions addressed at these regimes
include establishing the critical Reynolds for separation to occur and their dependence from
different aspect ratios (see for example [14], [11], [7], [12], [20]). At these Reynolds it is
possible to study the inception of instabilities using analytic or semi-analytic tools as in [10],
[15].

Additionally, a large part of the studies performed concern the near wake characteristics.
On the other hand, also the far wake analysis may reveal important qualities of the flow for
the relevant applications (for example acoustics or sound propagation). Regarding the far
wake wake studies of elliptic cylinders, these also refer to low to moderate Reynolds numbers
(< 1000), for varying both the angle of incidence and the Reynolds number.

In the current work, the goal is to extend the study of the flow past an elliptic cylinder at
incidence to Reynolds between 200 and 10000 and to study the characteristics of the wake using
tools from non linear dynamical systems such as Lyapunov theory. Moreover, the numerical
simulations are performed using a VPM, which allows to study the more realistic unbounded
problem without enforcing any unphysical boundary condition on the computational domain.

Vortex Particle methods are Lagrangian methods for the numerical simulation of unsteady
viscous flow problems (see e.g. [6]) where the fluid is discretized into vortex elements. These
methods have the definite advantage of eliminating the pressure, requiring no CFL condition,
and the implicit fulfillment of the far field conditions.

The Vortex Particle Method described in this work is called Diffused Vortex Hydrodynamics
(DVH), recently developed and tested on numerous benchmark tests (see [16–18], [5] and [8]).
This approach yield an accurate evaluation of both near and far flow fields. In the numerical
simulations considered, high spatial resolutions are used for the near field around the body as
well as for the wake region. Furthermore, computations were carried out for very long time, in
order to achieve stable regime values of average forces and of their oscillating part.

In the present paper, the study of the flow past an ellipse at incidence is discussed. The
Reynolds number is changing from 200 up to 10000, whereas the angle of attack remains
constant at 20◦. The main goal of the paper is to study the effect of the Reynolds on the drag
and lift forces and also to reveal the way in which the periodic behaviour of the solution leads
to the inception of a chaotic regime.

The paper is organized as follows: in section 2 the essential features of the methodology
followed in this work are reported, whereas in section 3 the evolution from periodic to non
periodic of the lift and drag coefficients is investigated for increasing Reynolds numbers.

2 Brief description of DVH algorithm

In this section, the main characteristics of the vortex particle method (DVH) used for
simulations are briefly discussed; further details can be found in [16–18].

The vorticity formulation of the two-dimensional, incompressible Navier-Stokes equations
is used and the evolution of the flow field is solved through an operator splitting.
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By following [2], an advection step and a diffusion step are defined. The advection step is:


Dω
Dt

= 0

Dx
Dt

= u(x, t)
with ∇2u = −∇×ω (1)

where u(x, t) is the velocity field of the material point x at time t and ω = |ω| is the vorticity
modulus. The right equation in (1) is the Poisson equation linking the vorticity with the velocity
field.

The velocity field is decomposed through a HHD in a curl-free (potential) part uφ and a
divergence–free (non potential) part uω. The velocity component due to the free stream u∞ is
also added. The uω component is obtained through the Biot–Savart law in a 2D framework
for an unbounded domain. Indeed this law is a free solution of the Poisson equation (1). The
enforcement of the no-slip boundary condition on ∂DB is performed with the uφ solution using
an Indirect Boundary Element Method (IBEM). The IBEM solution also provide the circulation
density distribution γ used as source term during the diffusion-step.

The latter consists in the diffusion of the vorticity due to the viscosity which is a phenomenon
governed by the linear heat equation:



∂tω = ν∇2ω, x ∈ D

ν
∂ω

∂n
= −γ̇, x ∈ ∂DB

(2)

where γ is the circulation density on ∂DB which, as stated above, is exploited to enforce the
no-slip condition on the solid boundary (for details see [9])

In order to discretize the above PDEs, the vorticity field is discretized by a collection of Nv
discrete vortices as:

ω(x, t) =
Nv∑
j=1

Γ j(t)Wε(x−x j(t)), (3)

where Γ j is the circulation of the j-th particle and Wε is the kernel function, which is a smoothed
Dirac function with parameter ε > 0.

3 Flow past ellipse with angle of attack α = 20◦ for different Reynolds numbers

The geometry considered for this test case is an ellipse set at incidence α = 20◦, with a
Reynolds number spanning from 200 to 10000. The axes ratio is b/a = 0.4, a and b being
the major and minor axes respectively; in order to be consistent with the usual definition for
an airfoil, the Reynolds number is defined as Re = Ua/ν, where U is the modulus of the free
stream velocity and ν is the kinematic viscosity.

From the vorticity fields (see figure 2), a very smooth arrangement of the wake dipoles is
evident for Re up to 3000, whereas it appears definitely chaotic for higher Reynolds numbers
(figure 3).

This behaviour is in agreement with [19], where, by changing the Reynolds number at fixed
incidence, the vorticity wake pattern changes with the Reynolds number becoming even more
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Figure 1: Ellipse geometry. a, b are the major and minor axes, respectively, and α is the angle
of attack

chaotic with its increasing. Accordingly, the lift time histories (in figure 4) are very regular for
Re ≤ 3000 and the Fourier transforms (in figure 5) show one greater evident peak corresponding
to the Strouhal shedding frequency; at Re = 4000 subharmonic modulations are manifested in
the time signal and reflected in the Fourier spectrum where peaks at lower intensity appear
almost symmetrically respect to the dominant one. From Re = 5000 to Re = 10000 the spectra
become continuous without the evidence of a single dominant peak and similarly the wakes do
not exhibit an ordered arrangement of the vorticity cores anymore.

Regarding the time-averaged values of CL and CD, the figure 6 shows the variation of the
force coefficients with the Reynolds number.

For 200 ≤ Re ≤ 1000, the ellipse manifests a drag force greater than the lift, while a sudden
increase of the lift force is evident for Re up to 4000. For Re= 5000 the lift drops down, although
it rise up again for Re = 6000 and then lowers with the increasing of the Reynolds number. The
figure 7 shows the maximum Lyapunov exponents variation with the Reynolds number. The
exponents are calculated for every lift time history according the Wolf algorithm [21]. The
Lyapunov exponent of a dynamical system is a quantity characterizing the rate of separation of
infinitesimally close trajectories, so that it represents a measure of the sensitivity of the system
to become unstable under certain initial conditions. Positive values of the exponent may indicate
an evolution of the system toward a chaotic behaviour, although it does not represent a sufficient
condition (see for example [13]). From 200 to 3000, coherently with the vorticity wake field
and with the Fourier transforms, the Lyapunov exponents are very low, meaning that the system
is in a equilibrium condition. At Re = 4000 the exponents start to increase and at Re = 5000
assume the greatest value, when the system moves toward a chaotic condition. After Re = 5000
the exponents lower with the increasing of the Reynolds number. In figure 8, the phase portraits
diagram CL − ĊL are shown and coloured with an intensity increasing with the time. A single
and sharp orbit is visible for Re up to 4000, where a large number of orbits appears.
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Figure 2: Vorticity fields for the flow past an ellipse from Re = 200 to Re = 3000.
Dimensionless vorticity ωa/U scales from -2 (blue) to 2 (red).
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Figure 3: Vorticity fields for the flow past an ellipse from Re = 4000 to Re = 10000.
Dimensionless vorticity ωa/U scales from -2 (blue) to 2 (red).
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Figure 4: Time history of the lift coefficients for the Reynolds numbers simulated.
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Figure 5: Fourier coefficients for the lift time history for the Reynolds numbers under study
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Figure 6: Time averaged Lift C̄L and Drag C̄D coefficients versus Re number. The error bars
corresponding to standard deviations are also indicated.

The chaotic time histories of the lift force for Re ≥ 5000, portrayed in figure 4, are
immediately related to the impossibility for the system to find a stable limit cycle. As shown
in figure 7, from Re = 5000 the system passes toward a chaotic state that persists for higher
Reynolds numbers.

Figure 7: Maximum Lyapunov exponents of the lift coefficients, for each Reynolds number
studied.

4 Conclusion and perspectives

In the present work, the flow past an ellipse at 20◦ is investigated for varying Reynolds
number. The vorticity wake field, as well as the lift force are analysed. In particular, the
Fourier transform and the CL − ĊL maps are sketched and exploited for the analysis of the
system stability. The maximum Lyapunov exponents of the lift force are also calculated and
their behaviour with the Reynolds number has been reported. In order to get a better insight
on the dynamical system, a wider number of simulations must be performed, clustering them
within the interval 4000−5000, where the chaotic behaviour take place. Moreover, the effect of
the thickness of the ellipse at fixed Reynolds number may be interesting and should be analysed
in the extended version of the present paper.
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Figure 8: CL− ĊL maps for the Reynold numbers simulated.

10

194



O. Giannopoulou, D. Durante, A. Colagrossi and C. Mascia

Acknowledgements

The research activity was developed within the Project Area Applied Mathematics of the
Department of Engineering, ICT and Technology for Energy and Transport (DIITET) of the
Italian National Research Council (CNR).

REFERENCES

[1] L. Barba, A. Leonard, and C. Allen. Vortex method with fully mesh-less implementation
for high-reynolds number flow computations. European Congress on Computational
Methods in Applied Sciences and Engineering ECCOMAS, pages 24–28, 08 2004.

[2] A. J. Chorin. A numerical method for solving incompressible viscous flow problems.
Journal of computational physics, 2(1):12–26, 1967.

[3] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of
computation, 22(104):745–762, 1968.

[4] A. Colagrossi, B. Bouscasse, M. Antuono, and S. Marrone. Particle packing algorithm for
SPH schemes. Computer Physics Communications, 183(8):1641–1653, 2012.

[5] A. Colagrossi, E. Rossi, S. Marrone, and D. Le Touzé. Particle Methods for Viscous
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Abstract. The  paper  is  devoted  to  the  theoretical  study  of  the  mechanical  behavior  of

materials in the friction pair of hip resurfacing endoprosthesis. The investigation was based on

three-dimensional computer simulation by the movable cellular automaton (MCA) method,

which is a representative of the methods of particles in the mechanics of materials. The results

indicate the promising use of metallic alloys with biocompatible ceramic coatings in friction

pairs to increase the service life of hip resurfacing.

1 INTRODUCTION

For the treatment of pathologies of the hip joint in the modern world, endoprosthesis (EP)

are widely used. Two types of endoprosthesis are used for hip: total hip replacement and hip

resurfacing arthroplasty. For the treatment of osteoporosis and other diseases of the hip joint,

a hip resurfacing arthroplasty is preferable.  The advantage of using hip resurfacing is the

possibility of maintaining healthy bone and the possibility of revision operations [1].

An important factor affecting the durability of the hip joint endoprosthesis is wear in pair

of friction “acetabular cup-femur head”. In the case of resurfacing, just the surface of the

femur head is replaced by the cap, which is specially shaped like a mushroom [2-3]. The

difference in the diameters of the hip resurfacing cup and the acetabular cup averages about 2

mm [4]. Polyethylene-metal friction pairs were the first generation of a pair of materials used

in a friction pair of hip resurfacing endoprosthesis, however, a large degree of wear led to

look for other materials suitable for use in the friction pair [5]. Metal friction pairs based on

cobalt-chromium alloys are suitable for the manufacture of endoprosthesis even for young

physically active people, since due to their mechanical behavior they are able to withstand

high dynamic loads. However, during wear, metal endoprosthesis excrete particles that induce

inflammatory processes in the surrounding tissues [6–7]. The use of titanium alloys is a good

alternative to the use of cobalt-chromium alloys due to its biocompatible properties, however,

these  alloys  are  prone  to  increased  wear.  Another  group  of  materials  with  good
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biocompatibility are ceramic products, however, this type of prosthesis is applicable mainly to

people with low and medium physical activity due to their tendency to brittle failure under

high dynamic loads. Therefore, at present, the directions of hip resurfacing endoprosthesis

based  on  metallic  titanium  alloys  with  ceramic  coatings  [8],  which  combine  good

biocompatibility and wear resistance, are being actively developed.

Endoprosthesis testing of has two main stages: preclinical and clinical trials. Clinical trials

are  carried  out  by installing  the  endoprosthesis  in  a  living  human  body.  However,  when

conducting  clinical  trials  there  is  a  danger  that  poor-quality  or  incorrectly  chosen

endoprosthesis may adversely affect the patient's health, therefore, great attention is paid to

preclinical trials in the development of endoprosthesis. Preclinical studies of the mechanical

behavior of the endoprosthesis can be divided into experimental and theoretical. Experimental

studies  are  tests  using  a  technological  installation  that  simulates  the  dynamic  loading

experienced by the  endoprosthesis.  Theoretical  studies  of  the  mechanical  behavior  of  the

endoprosthesis  using  computer  simulation  make  it  possible  to  investigate  the  mechanical

behavior of endoprosthesis taking into account the influence of various factors.

Most of the work on modeling the mechanical behavior of materials in friction pairs is

devoted to total hip replacement. Works on modeling hip resurfacing are mainly devoted to

studying  the  mechanical  behavior  of  a  single-component  endoprosthesis  and  the  system

“bone-endoprosthesis” under dynamic loads without rotation in a friction pair [9-11]. In [12],

a force action scheme with rotation of the head in the acetabular cup with and without friction

is presented. However, there is no work to simulate the rotational motion of the resurfacing

cap in the acetabulum; therefore, it is important to build a numerical model for the rotation of

the  resurfacing  cap  in  the  acetabulum  consisting  of  one-component  and  two-component

materials.

This paper proposes a numerical study of the mechanical behavior of contacting elements

of a friction pair consisting of a homogeneous material and a material with a coating during

rotational motion using the method of movable cellular automata.

2 METHOD OF MOVABLE CELLULAR AUTOMATA

MCA is a  new efficient  numerical  method in particle  mechanics that  is  different  from

methods in  the traditional  continuum mechanics  [13,14].  Within the frame of MCA, it  is

assumed that any material is composed of a certain amount of elementary objects (automata)

which interact among each other and can move from one place to another and rotate, thereby

simulating a real deformation process. The automaton motion is governed by the Newton-

Euler equations:

¿

¿

mi

d
2
Ri

dt
2

=∑
j=1

Ni

F ij

pair+Fi

Ω
,

Ĵi

dωi

dt
2

=∑
j=1

Ni

M ij

¿{
¿

(1)

where Ri, ωi, mi and Ĵi are the location vector, rotation velocity vector, mass and moment
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of inertia of ith automaton respectively, F ij

pair
 is the interaction force of the pair of ith and

jth automata, Fi

Ω
 is the volume-dependent force acting on ith automaton and depending on

the  interaction  of  its  neighbors  with  the  remaining  automata.  In  the  latter  equation,

M ij=q ij(n ij× F ij

pair )+K ij  , here  qij is the distance from the center of  ith automaton to the

point of its interaction (“contact”) with  jth automaton,  nij=(R j− Ri )/rij  is the unit vector

directed  from the  center  of  ith  automaton  to  the  jth  one  and  rij is  the  distance  between

automata centers, K ij  is the torque caused by relative rotation of automata in the pair.

The forces acting on automata are calculated using deformation parameters, i.e. relative

overlap, tangential displacement and rotation, and conventional elastic constants, i.e. shear

and bulk moduli. A distinguishing feature of the MCA method is calculating of forces acting

on the automata within the framework of multi-particle interaction [15,16], which provides

for an isotropic behavior of the simulated medium regarded as a consolidated body rather than

a granular medium. Moreover, stress tensor components can be calculated for the automaton

taking  into  account  all  the  forces  acting  on  the  automaton  [15-17],  which  enables  the

realization of various models of the plastic behavior of materials developed in the frame of

continuum mechanics.

A pair of elements might be considered as a virtual bistable cellular automaton, which

permits simulation of fracture and cracks healing and micro welding by the MCA. In this

work, a fracture criterion based on the threshold value of von Mises stress was used [15,16]. A

criterion  based on the threshold value of  plastic  work was used for  making a new bond

between contacting automata [16].  Switching of a  pair  of automata from bonded to non-

bonded state and vice versa would result in a changeover in the forces acting on the elements;

in particular, non-bonded automata would not resist moving away from one another. 

3 DESCRIPTION OF THE MODEL

3.1 Material characterization

From the literature [18] we chose the following values for the material properties of the

titanium alloy Ti6Al4V: density ρ = 4420 kg/m3, shear modulus  G = 41 GPa, bulk modulus

K = 92 GPa, Young’s modulus E = 110 GPa, yield stress σy = 0.99 GPa, ultimate strength σb =

1.07 GPa and ultimate strain εb = 0.10. The mechanical properties of the TiN coating [19]:

density ρ = 5220 kg/m3, shear modulus  G = 104 GPa, bulk modulus  K = 129 GPa, Young’s

modulus E = 258 GPa, yield stress σy = 3.00 GPa, ultimate strength σb = 3.5 GPa and ultimate

strain εb = 0.075.

3.2 Geometry of the model and scheme of loading

In the case of a one-component material, the geometric model consists of a hemisphere

simulating the resurfacing cap for femur head, with an external diameter D_ext_cap=36 mm

and an interior  diameter  D_int_cap=33 mm, a hemisphere simulating the acetabulum cup

insert,  with  an  outer  diameter  of  D_ext_insert=41  mm  and  an  iterior  diameter  of

D_int_insert=38 mm, and also a prismatic shell for the insert imitating the surrounding bone

tissue  (fig.  1).  In  the  case  of  a  two-component  coated  material,  hollow hemispheres  are

additionally specified for the resurfacing cap with an outer diameter of 35.9 mm and an inner

3
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diameter of 33.1 mm (fig.2, a).

Figure 1. Schematic representation of the model of friction pair of the resurfacing

endoprosthesis in cross-section

The load is applied by specifying the translational and rotational velocity of the resurfacing

cap automata, corresponding to its rotation as an absolutely rigid body around the axis of

symmetry of the corresponding sphere and parallel to the axis X. 

a b

Figure 2. General view of the model for friction pair of hip resurfacing endoprosthesis (a) and its

cross-section with loading parameters (b), represented by automata packing

In this case, the value of the corresponding rotational velocity gradually increases from 0

to 10 1/s. The bottom layer of the automata of the cylindrical shell of the bone tissue is rigidly

fixed (fig 2, b).

4
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4 SIMULATION RESULTS

When simulating a single rotational cycle, the maximum reaction force was not greater

than 3000 kN, which corresponds to the load of a walking man, and the angle of rotation of

the resurfacing cap was 120°, which is typical for standard daily physical activities for an

ordinary healthy person.

a

b

Figure 3: Distributions of mean stress in the friction pair of the hip resurfacing

endoprosthesis of titanium alloy (a) and titanium alloy with TiN coating (b)

The simulation results showed that in the case of a friction pair of a homogeneous material

in the zone of contact interaction of the acetabulum insert and resurfacing cap and behind it at

extreme positions (edge of the acetabulum) a large are of tensile stress with a maximum value

5
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not  reaching  990 MPa appeared  in  the  cap.  Such  a  load  exceeds  the  yield  strength  and,

therefore, can lead to rapid wear of the surface of the resurfacing cap of the femur head of the

joint (fig.3, a). These results are consistent with the data on the stress distribution in the metal

head obtained in [20]. At the same time, the stress in the acetabulum insert did not exceed

100 MPa.

In the case of a coated endoprosthesis, a zone of tensile stresses with a maximum value of

1.1  GPa  was  observed  in  the  contact  zone,  but  this  area  was  significantly  smaller  and

concentrated  mainly  in  the  coating  (fig.3,  b).  In  addition,  when  using  two-component

materials in the friction pair, there was no noticeable increase in stress values in the cap when

it  was in  the  extreme positions.  Consequently,  the  use  of  titanium alloys  with  a  ceramic

coating allows avoiding premature wear at the extreme positions of the femur head in the

acetabulum. In the insert consisting of titanium alloy and coating, the value of compressive

stresses reached 300 MPa. It should be noted that the magnitude of such stresses is not critical

for the coating.

In general, the results of the numerical simulations suggest that the use of coated materials

in the friction pair of hip resurfacing endoprosthesis can help avoiding premature wear of the

endoprosthesis.

5 CONCLUSIONS

A three-dimensional model of the mechanical behavior of materials in a friction pair of hip

resurfacing  endoprosthesis  during  rotational  motion  is  presented  based  on  the  method  of

movable cellular automata. The obtained simulation results allow us to draw the following

conclusions.

The greatest value of tensile stresses in the cap made of titanium alloy during rotation is

observed at the extreme positions of the resurfacing cap, in the case of the cap made of TiN

coated titanium, this tendency is avoided.

The use of a hardening coating would help to avoid premature wear of the contacting

elements of the hip resurfacing endoprosthesis.
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ABSTRACT 

A particle tracking model was applied to estimate the bed sediment transport in open channel with 
skewed box-culvert in rivers in Mexico, for which purpose the calculation of the hydrodynamics of 
the study channel was determined the three-dimensional velocity field [1], later, the calculation of 
particle transport was obtained, which was determined in any direction of the space caused by the 
velocity field and the turbulent dispersion (random movement of the Brownian type). The dispersion 
and re-suspension mechanisms of the particles used were represented by stochastic models, which 
describe the movement by means of a probability function [2]. The validation of the model was 
previously carried out by [3], obtaining average relative errors of less than 4.8%.  

Three numerical scenarios were calculated including different alternatives and its behaviour at the 
entrance, interior and exit of the water flow in the construction to determine which is the best option 
to be used on the skewed multi barrel crossings. In order to accomplish this, a variable slope channel 
and 1: 60 scale models of box culverts with 10, 22 and 45 degrees of skewedness were used. 

The results observed in the multi-eyed box culverts were favourable, due to the fact that the speed 
spans are low increase inside and outside of them, which favours the hydrodynamic behaviour and 
minimize the accumulation of sediment into structure in the river. 

  

INTRODUCTION 

The analysis and design of culvert for the flow of water through bridges, roads or road infrastructure 
works are important to minimize environmental problems and environmental impact on rivers and 
streams in the area of construction and civil engineering.  
 
The behavior of these culverts has been studied in relation to the number and placement of these in 
the bridges or crossings over rivers and streams, all depending on the geographical, hydrological and 
construction characteristics, always with the purpose of minimizing the natural channel and 
associated environmental processes such as sediment transport. 
 

For the study of these structures that facilitate the transit of water through roads and bridges, the use 
of numerical models is necessary to test different arrangements and configurations before the 
hydraulic scenarios that occur in the area at different times of the year. 

Various results have been proposed by works related to the hydrodynamics of rivers, irrigation 
channels and control works to regularize fluid flow and flow measurement. 

The numerical computational model developed in this work for the transport of the particles is 
governed by the Lagrangian approach, where the particles are located following a concentration 
exponential law or randomly located in the space. The advantage of using Lagrangian models to 
estimate sediment transport and some temporal changes in the morphology of the bottom lies in the 
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computational speed of using a previously calculated hydrodynamic field for the movement of 
particles. These allow the approximation of the temporal concentration of sediments contemplating 
the density of the material and using the PIC method to quantify the sediment transport associated 
with the displacement of the particles near the bottom. 

The Lagrangian approach is widely used in the study of the trajectories of movement of solid 
particles in fluid environments. This is due to the fact that it is possible to track the movement for 
each specific particle in more detail, in comparison with determining average concentration for grid 
cells. However, in practice, the most difficult part to use a Lagrangian based method is the strong 
dependence on the performance of computational resources, such as the amount of memory required 
for the particles. 

The Lagrangian mathematical approximations, based on methods of random movement, are well 
established tools for the calculus of sediment transport and pollutant discharges into aquatic 
environments. The discharges are treated as a finite number of particles; these particles move under 
the influence of the previously established flow field. 

The results of the hydrodynamic calculation correspond to a stable field and converged in time, 
which indicates that the velocity fields and their turbulent parameters can be assumed as constants, 
but with an important spatial variation, in this way the simulation of the transport of particles is 
performed for times greater than those obtained in the hydrodynamic simulation. Therefore, for the 
transport of particles, the same hydrodynamic field can be used repeatedly, for all time intervals, (Dt) 
as many times as required, until the simulation period is completed. The velocities of the particles are 
obtained by linearly interpolating the velocities around the particle in the three-dimensional mesh.  
An advantage of separating the hydrodynamic simulation from the simulation of particle movement, 
allows us to develop large numbers of transport simulations [4], in this way we can simulate particle 
movements with: different locations and types of sources, several simulation durations, different 
transport parameters and different physical properties of the particles (specific weight and diameter), 
all this based on a hydrodynamic velocity simulation. 

According to some current review papers regarding the Lagrangian modelling of Saltating Sediment 
Transport [5, 6], a model for the transport of sediment has to include mainly the motion of saltating 
grains, diffusion of particles, and calculation of bedload transport rate and to improve the motion of 
particles representing more natural shapes. And, for rivers, it must consider the nonuniform character 
of sand, distribution of particle saltation lengths, and excursion lengths may be more important in 
determining the morphodynamic behavior of the channel bed than the average particle motion. 

The application problem was to estimate the bed sediment transport in open channel with skewed 
box-culvert in rivers in Mexico, the study was in specific three different scenarios with a variable 
slope channel laboratory and 1:60 scale models of box culverts with 10, 22 and 45 degrees of 
skewedness were used, all conditions were controlled on flow rate and velocities to get the 
hydrodynamics field. 

Three sediment particle diameters were considered in all domain, shape regular and sand material 
properties in all simulation time; the seeded of 700,000 particles is homogeneous throughout the 
domain, 3 different diameters D15, D50 and D90 are included with a percentage distribution of 40, 
40 and 20 respectively of the total particles. 
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METODOLOGY  

The governing equation hydrodynamical model 
 

The Navier-Stokes equations in free surface flow, in cartesian coordinates; use the hypothesis of 
hydrostatic pressure and considering the postulates of Reynolds [7]. 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑤𝑤 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = −𝑔𝑔𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑣𝑣 (𝜈𝜈𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜕𝜕)) 

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝑤𝑤 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕 = −𝑔𝑔𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑣𝑣 (𝜈𝜈𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑣𝑣)) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 (∫ 𝜕𝜕
𝜂𝜂

−𝑧𝑧𝑧𝑧
𝑑𝑑𝜕𝜕) − 𝜕𝜕

𝜕𝜕𝜕𝜕 (∫ 𝑣𝑣
𝜂𝜂

−𝑧𝑧𝑧𝑧
𝑑𝑑𝜕𝜕) 

(1) 

where 𝝂𝝂𝒆𝒆 effective viscosity coefficient, obtained by adding the turbulent and molecular viscosity 
coefficient 𝝂𝝂𝒆𝒆 = 𝝂𝝂𝒕𝒕 + 𝝂𝝂𝒎𝒎, [8] proposes the following model to solve the turbulent viscosity: 
 

𝜈𝜈𝑡𝑡 = {ℓℎ
4 [2 (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)
2
+ 2 (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)
2
+ (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)

2
] + ℓ𝜕𝜕

4 [(𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧)

2
+ (𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧)
2
]}

1
2
     (2) 

where the vertical length scale 𝓵𝓵𝒗𝒗 = 𝜿𝜿(𝒛𝒛 − 𝒛𝒛𝒃𝒃)  for (𝒛𝒛−𝒛𝒛𝒃𝒃)
𝜹𝜹 < 𝝀𝝀

𝜿𝜿  and 𝓵𝓵𝒗𝒗 = 𝝀𝝀𝜹𝜹 for, 𝝀𝝀𝜿𝜿 < (𝒛𝒛−𝒛𝒛𝒃𝒃)
𝜹𝜹 < 𝟏𝟏 𝜿𝜿 is 

the von Kármán constant typically 0.41, (𝒛𝒛 − 𝒛𝒛𝒃𝒃) is the distance from the wall, 𝜹𝜹 is the boundary-
layer thickness and 𝝀𝝀 is a constant, typically 0.09. In the case of shallow-water flows, due to a steady 
current, the boundary-layer thickness may be assumed to be equal to the water depth h. The 
horizontal length scale is usually different than the vertical length scale, and the simplest assumption 
is to assume direct proportionality defined by 𝓵𝓵𝒉𝒉 = 𝜷𝜷𝓵𝓵𝒗𝒗. The constant 𝜷𝜷 has to be determined 
experimentally. 
 
Free surface and bottom conditions  

𝜏𝜏𝜕𝜕
𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜈𝜈𝑒𝑒

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕|

𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
= 𝑔𝑔√𝜕𝜕2 + 𝑣𝑣2

𝐶𝐶𝜕𝜕2  (𝜕𝜕) 

             (3) 

𝜏𝜏𝜕𝜕
𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜈𝜈𝑒𝑒

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕|𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

= 𝑔𝑔√𝜕𝜕2 + 𝑣𝑣2

𝐶𝐶𝜕𝜕2  (𝑣𝑣) 

 
where 𝑪𝑪𝒛𝒛 is the Chezy friction coefficient. The velocity components are taken from values of the 
layer adjacent to the sediment-water interface. 
 

 𝝉𝝉𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 = 𝝂𝝂𝒆𝒆

𝝏𝝏𝒔𝒔
𝛛𝛛𝒛𝒛|

𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆
= − 𝝆𝝆𝒂𝒂𝒔𝒔𝒔𝒔𝒆𝒆

𝝆𝝆𝒂𝒂𝒂𝒂𝒔𝒔𝒂𝒂
𝒂𝒂𝒗𝒗𝒔𝒔𝒆𝒆𝒗𝒗𝒕𝒕𝒗𝒗𝝎𝝎𝒙𝒙|𝝎𝝎𝒙𝒙| 

             (4) 

  𝜏𝜏𝜕𝜕
𝑠𝑠𝜕𝜕𝑠𝑠 = 𝜈𝜈𝑒𝑒

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕|𝑠𝑠𝜕𝜕𝑠𝑠𝑒𝑒𝑠𝑠𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒

= − 𝜌𝜌𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒
𝜌𝜌𝑎𝑎𝑎𝑎𝜕𝜕𝑎𝑎

𝑔𝑔𝜕𝜕𝑠𝑠𝑒𝑒𝑓𝑓𝑡𝑡𝑓𝑓𝜔𝜔𝜕𝜕|𝜔𝜔𝜕𝜕| 

where 𝝆𝝆𝒂𝒂𝒔𝒔𝒔𝒔𝒆𝒆 = 1.29 kg/m3, 𝝎𝝎𝒙𝒙 y 𝝎𝝎𝒚𝒚  are the horizontal components at x and y respectively of the 
wind speed at 10 m altitude. The unidimensional coefficient 𝒂𝒂𝒗𝒗𝒔𝒔𝒆𝒆𝒗𝒗𝒕𝒕𝒗𝒗 can be obtained using the 
equation given by [9]. 
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𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0.565 × 10−3;   𝑠𝑠𝑠𝑠 |�⃗⃗�𝜔 | ≤ 5 𝑚𝑚/𝑠𝑠 

𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = (−0.12 + 0.137|�⃗⃗�𝜔 |)10−3 ;  
𝑠𝑠𝑠𝑠 5 ≤ |�⃗⃗�𝜔 | ≤ 19.22 𝑚𝑚/𝑠𝑠                                   

 
𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 2.513 × 10−3;   𝑠𝑠𝑠𝑠 |�⃗⃗�𝜔 | ≥ 19.22 𝑚𝑚/𝑠𝑠 

(5) 
The governing equation particle tracking model 

 
The numerical model for particle transport is given under a Lagrangian approach; the particles are 
placed following an exponential law of concentrations or by an initial position in three-dimensional 
space [10]. For the movement of particles, a stochastic model is considered and discretized in three 
dimensions (Fig. 1), considering the specific weight of each particle as well as the fall velocity of the 
same [11] and it is verified if these are within the domain study for a single time step (Dt) from (n) to 
(n + 1) is given by: 
 

𝑥𝑥𝑣𝑣
𝑣𝑣+1 = 𝑥𝑥𝑣𝑣

𝑣𝑣 + 𝑢𝑢𝑣𝑣,𝑗𝑗,𝑘𝑘(∆𝑡𝑡) ± (2𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑟𝑟) − 0.5)√(2𝜐𝜐𝑡𝑡𝑣𝑣,𝑗𝑗,𝑘𝑘∆𝑡𝑡) 

𝑦𝑦𝑣𝑣
𝑣𝑣+1 = 𝑦𝑦𝑣𝑣

𝑣𝑣 + 𝑣𝑣𝑣𝑣,𝑗𝑗,𝑘𝑘(∆𝑡𝑡) ± (2𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑟𝑟) − 0.5)√(2𝜐𝜐𝑡𝑡𝑣𝑣,𝑗𝑗,𝑘𝑘∆𝑡𝑡) 

𝑧𝑧𝑣𝑣
𝑣𝑣+1 = 𝑧𝑧𝑣𝑣

𝑣𝑣 + 𝑤𝑤𝑣𝑣,𝑗𝑗,𝑘𝑘(∆𝑡𝑡) ± (2𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑟𝑟) − 0.5)√(2𝜐𝜐𝑡𝑡𝑣𝑣,𝑗𝑗,𝑘𝑘∆𝑡𝑡 − 𝑤𝑤𝑠𝑠∆𝑡𝑡)  

  
 (6) 

 
 

Fig. 1. Location in the three-dimensional space of the particle and its associated velocities 
 
where (𝑥𝑥𝑣𝑣

𝑣𝑣, 𝑦𝑦𝑣𝑣
𝑣𝑣, 𝑧𝑧𝑣𝑣

𝑣𝑣) is the position of the particle in time (t), (u, v, w) are the average velocities in (i, j, 
k), (𝜈𝜈𝑣𝑣) is the turbulent viscosity coefficient, (Dt) is the Lagrangian time step and (𝑤𝑤𝑠𝑠) is the velocity 
of sediment falling. The tracking of the particles is using the Eq. (6), therefore each particle is subject 
to a spatial displacement of magnitude 

±(2𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑟𝑟) − 0.5)√(2𝜐𝜐𝑡𝑡𝑣𝑣,𝑗𝑗,𝑘𝑘∆𝑡𝑡), in any direction of the domain, the sign is positive or 

negative depending on the sense of its location. In that moment of time the velocity field acts on each 
particle, in this way the movement has a sense in function of the main movement, given by the 
velocity fields. The term (𝜈𝜈𝑣𝑣) is found over the entire domain, represented by a field of positive 
scalars, which possesses information of turbulent intensities. 
 
The shear forces in a turbulent flow, along its depth (z), can be written as: 
 

𝜏𝜏𝑣𝑣 = 𝜌𝜌𝜈𝜈 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 − 𝜌𝜌𝑢𝑢𝑖𝑖𝑤𝑤̅̅ ̅̅ ̅                          (7) 

 
where: (𝜏𝜏𝑣𝑣) bottom shear stress, (𝜌𝜌) fluid density, (𝜐𝜐) cinematic viscosity coefficient, (U) 
mean fluid velocity and (𝑢𝑢𝑖𝑖𝑤𝑤̅̅ ̅̅ ̅) bottom double correlation. 
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The critical shear stress that perform on the particles, is written: 
 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.03(𝜌𝜌𝑠𝑠 − 𝜌𝜌)𝑔𝑔𝑑𝑑50                        (8) 
 
where: (𝜌𝜌𝑠𝑠) solid density, (𝜌𝜌) water density, (g) gravitational constant and (d50) particle diameter 
50%. 
 
The probability function for the deposition of the particles is determined with the following equation: 
 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑ó𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = {
0

(1 − 𝜏𝜏𝑥𝑥,𝑦𝑦
𝜏𝜏𝑐𝑐𝑐𝑐í𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡

)} ,
𝜏𝜏𝑥𝑥,𝑦𝑦 ≥ 𝑐𝑐𝑐𝑐í𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡
𝜏𝜏𝑥𝑥,𝑦𝑦 < 𝑐𝑐𝑐𝑐í𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡         (9) 

 
And the probability function for the resuspension of the particles is established in the following way: 
 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑ó𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = {
0

(1 − 𝜏𝜏𝑐𝑐𝑐𝑐í𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡
𝜏𝜏𝑥𝑥,𝑦𝑦

)} ,
𝜏𝜏𝑥𝑥,𝑦𝑦 ≤ 𝑐𝑐𝑐𝑐í𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡
𝜏𝜏𝑥𝑥,𝑦𝑦 > 𝑐𝑐𝑐𝑐í𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡        (10) 

 
Velocity fall of sediment 
 

To determine the velocity fall of sediment particles, these are considered to have non-spherical shape, 
so the effect of the shapes have a considerable influence on their velocity, mainly on relatively large 
particles (>300μm), the expressions that determine the magnitude of velocity fall [12] are expressed 
below. 

 

𝑤𝑤𝑠𝑠 =
(𝑆𝑆 − 1)𝑔𝑔𝑑𝑑2

0.8𝜈𝜈 ;   1 < 𝑑𝑑 ≤ 100𝜇𝜇𝜇𝜇

𝑤𝑤𝑠𝑠 = 10𝜈𝜈
𝑑𝑑 [(1 + 0.01

(𝑆𝑆 − 1)𝑔𝑔𝑑𝑑3

𝜈𝜈2 )
0.5

− 1] ; 100 < 𝑑𝑑 ≤ 1000𝜇𝜇𝜇𝜇  

𝑤𝑤𝑠𝑠 = 1.1((𝑆𝑆 − 1)𝑔𝑔𝑑𝑑2)0.5;    𝑑𝑑 > 1000𝜇𝜇𝜇𝜇

 

      (11) 
 
where (d) diameter of particle, (S) specific gravity, (𝜐𝜐) kinematic viscosity coefficient y (g) 
gravitational constant. 

 

RESULTS AND APPLICATION 

The physical scale open channel (Fig.2) had 2.32 m length, 0.18 m depth and 0.25 m width; the flow 
rate was 0.0019 m3/s, slope 0.006 and three skewed multi barrel crossings with 0, 10, 22 and 45 
degrees. 

 
Open channel scheme 

 
Open channel laboratory 

 
Fig. 2. Open channel domain 
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The numerical model was worked with a mesh in finite elements (Fig. 3) the first scenario contained 
8986 nodes and 17280 triangles to zero degrees of skewedness; the second scenario contained 7730 
nodes and 14816 triangles to ten degrees of skewedness; the third scenario was 2034 nodes and 3736 
triangles to twenty-two degrees of skewedness; and the last scenario was 8178 nodes and 15712 
triangles to forty-five degrees of skewedness were simulated with increments of Dt = 0.01 s and total 
time of 1500 s. 

 
 

Scenario 1: zero degrees of skewedness 

 
 

Scenario 2: ten degrees of skewedness 
 

 

 

Scenario 3: twenty-two degrees of skewedness 

 

Scenario 4: forty-five degrees of skewedness 

 
Fig. 3. Finite element mesh in different degrees of skewedness 

 

The hydrodynamic model was used to generate the velocity field corresponding to 1500 s., taking as 
force the magnitude of flow rate in all scenarios. 

In the Fig. (4 to 7) the results of the behavior of the hydrodynamic in laboratory channel are 
presented, it is observed that the velocity magnitude had change in each scenario, especially near to 
the box-culvert. 
 

 
Velocity magnitude (m/s) Field velocity vector (m/s) 
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Fig. 4. Hydrodynamic field in zero degrees of skewedness (m/s) 
 

 
Velocity magnitude (m/s) 

 
Field velocity vector (m/s) 

 
Fig. 5. Hydrodynamic field in ten degrees of skewedness (m/s) 

 

 
Velocity magnitude (m/s) 

 
Field velocity vector (m/s) 

 
Fig. 6. Hydrodynamic field in twenty-two degrees of skewedness (m/s) 

 

 
Velocity magnitude (m/s) 

 
Field velocity vector (m/s) 

 
Fig. 7. Hydrodynamic field in forty-five degrees of skewedness (m/s) 

 
Once the velocity field has been obtained, the seeding of sediment particles is placed at the bottom, 
the characteristic diameters of the sediment in the study area, which feed the sediment model are 
mentioned in the table (1), the material is constituted in 87% sand and the remaining 13% is 
distributed in coarse and bulky material. 
 

Table 1. Characterization of bottom sediments 
 

Grid Sand particle diameter (mm) 
 

Bulky particle diameter (mm) 

D15 0.19 1.25 
D50 0.28 1.65 
D90 0.42 1.80 

 
 
The seeding of sediment particles in the bottom of laboratory channel was established with an 
approximation by the PIC method (Particle in Cell), generalizing an initial concentration of 
sediments in a moment of time zero with 700,000 particles in this case. The concentration in an 
individual cell is obtained dividing the total mass in the cell by its volume.  
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The Fig. (8) presents the results of sediment transport for 1500 s in zero degrees of skewedness, in 
these images observed at different times (500, 1000 and 1500 s) the evolution of the transport in the 
bottom and consequently, the areas of sediment accumulation before and after the box culverts. 
 

 
Simulation of sediment particle transport  

at 500 seconds 

 
Simulation of sediment particle transport  

at 1000 seconds 

 
Simulation of sediment particle transport  

at 1500 seconds 
 

Fig. 8 Simulation of cloud evolution sediment particle transport to zero degrees of skewedness 
 

The Fig. (9) presents the results of sediment transport in ten degrees of skewedness, we observed the 
different distribution by the hydrodynamic field near to bottom box culvert inlet, the areas of 
sediment accumulation were increased. 
 

 
Simulation of sediment particle transport  

at 500 seconds 

 
Simulation of sediment particle transport  

at 1000 seconds 
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Simulation of sediment particle transport  

at 1500 seconds 
 

Fig. 9 Simulation of cloud evolution sediment particle transport to ten degrees of skewedness 
 
In twenty-two degrees of skewedness, the Fig. (10) presented low behaviour in distribution of the 
particle transport in the bottom, the areas of sediment accumulation were reduced by angle increment 
of box culvert position. 
 

 
Simulation of sediment particle transport  

at 500 seconds 

 
Simulation of sediment particle transport  

at 1000 seconds 

 
Simulation of sediment particle transport  

at 1500 seconds 
 

Fig. 10 Simulation of cloud evolution sediment particle transport to twenty-two degrees of skewedness 
 
The Fig. (11) presents the results of sediment transport for 1500 s in forty-five degrees of 
skewedness, in these images observed at different times (500, 1000 and 1500 s) the evolution of the 
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transport in the bottom and consequently, the areas of sediment accumulation before and after the 
box culverts. 
 

 
Simulation of sediment particle transport  

at 500 seconds 

 
Simulation of sediment particle transport  

at 1000 seconds 

 
Simulation of sediment particle transport  

at 1500 seconds 
 

Fig. 11 Simulation of cloud evolution sediment particle transport to forty-five degrees of skewedness 
 
To visualize the behavior of the distribution of the number of particles of the three different 
diameters (D15, D50 and D90), in Fig. (12) the results of the distribution of the particles in the 
evolution of the simulation time are shown. 
 

 
Results to zero degrees of skewedness 

 
Results to ten degrees of skewedness 
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Results to twenty-two degrees of skewedness 

 
Results to forty-five degrees of skewedness 

 
Fig. 12 Number of sediment particle diameters to different degrees of skewedness along to time simulation 

 
The Fig. (13 to 16) shows the distribution of particles at the midpoint of sections A, B, C and D as a 
function of the number of particles in the water column represented as sediment concentration. 
 
For the configuration of zero degrees of deflection, the results of the distribution of water column 
particles in the center of each section are shown in Fig. (13), the suspension of the background 
particles produced by the velocities of the flow in each section of the channel. 
 

 
Section A Section B 

 
Section C 

 
Section D 

 
Fig. 13 Concentration profiles in all sections in zero degrees of skewedness at final time simulation 

 
For ten degrees of skewed, in Fig. (14) the results of the concentrations of particles in each section 
are observed, sections B and C show values in D15 with representative changes in their concentration 
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in water column, due to the randomness of the functions used and the speed field through these 
sections. 
 

 
Section A Section B 

 
Section C 

 
Section D 

  
Fig. 14 Concentration profiles in all sections in ten degrees of skewedness at final time simulation 

 
Similarly, in Fig. (15), we show the results for twenty-two degrees of skewed, where in section D, it 
presents a different behavior in the representative D15 in its concentration in water column, in 
relation to the other sections, It is estimated that it is due to the velocity field that passes through this 
section. 
 

 
Section A 

 
Section B 
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Section C 

 
Section D 

 
Fig. 15 Concentration profiles in all sections in twenty-two degrees of skewedness at final time simulation 

 
Finally, in Fig. (16), the results for forty-five degrees of skewed are shown, where it is observed that 
the values of the concentration of particles in water column increase their value in suspension due to 
the velocity field that is presented in this configuration. 
 

 
Section A 

 
Section B 

 
Section C 

 
Section D 

 
Fig. 16 Concentration profiles in all sections in forty-five degrees of skewedness at final time simulation 

 
The results show that, for different degrees of skewed, they cause a different behavior of the particles 
in the water column, especially in those sections such as C and D which are further away from 
sections A and B which are the ones that they have a first contact with the flow. 
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CONCLUSIONS 

 
A general model for the sediment transport and dispersion of pollutants has been developed, based on 
a Lagrangian formulation.  The model allows to describe the evolution of tracer cloud both in the 
near and far-field. 
The introduction of random motion to the equations of the particle movement produces good results 
by simplifying the equations of particle motion, thus producing a model that can withstand a large 
number of particles without consuming too many computational resources. 
The model has the capacity to simulate 700,000 particles, limited only by the memory of the 
computer that is used. In this case, the evolution of tracer cloud is a function of the velocity field of 
the open channel and sediment process. 
The results of the distribution of particles show considerable changes in the magnitude of 
concentration or number of particles in suspension that can be measured in a water column; due to 
the increase in the angle of skewed and the number of multi-barrel that are placed in the cross 
section, as well as the dimensions of each section and its geometry. 
Actually, we are calibrating the numerical model with PIV measurements to 4 different scenarios of 
skewed multi barrel crossings.  
Therefore, it may be concluded that sediment particle transport allows estimate which is the better 
configuration of skewed box-culvert to minimize suspension sediment particles and erosion in each 
cross section. 
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Abstract. In this publication a sensitivity analysis for DEM modelparameters with respect to
the pile- and the oedometer experiment is described. The analysis is performed with Sobol’
indices. Since the huge computational effort of the corresponding DEM models different
metamodels are used to determine these indices. The (RSM) metamodels are established by
using Latin Hypercube sampling points.
A three-dimensional ansatz for the determination of the angle of repose as well as the algorithm
of a force-controlled plate is described in order to get results for the pile- and the oedometer
experiment.

1 INTRODUCTION

The Discrete-Element-Method (DEM) is a capable method to investigate huge deformations
in granular media [23]. These could occur e.g. in tire-soil-interactions [7, 9], the flow of
particles through hoppers [5].
A very important and challenging point is the identification of DEM-parameters. A common
way for the parameter identification is the calibration of experiments. An often used experiment
is the calibration of granular piles [2]. The angle of repose could be used to determine the
accordance between the numerical pile and the experimental one. Another experiment is the
oedometer test, which is a one-dimensional compression test where the horizontal displacement
of the soil is prevented [16, 10]. This test is used to investigate the stress-displacement behavior
[13, p. 252]. Often the calibration process is done with a trial-and-error procedure despite its
disadvantages with the high number of parameters [11, p. 73]. A more appropriate calibration
process could be performed if the influence of parameters and their interactions are known
[2, p. 333] e.g. if some parameters have a negligible influence, they could be neglected in
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the parameter calibration process. In order to determine the influence of parameters and their
interactions a sensitivity analysis is performed with Sobol’ indices [3, p. 1]. Sobol’s indices are
a common used for sensitivity measurements[17, p. 964].
The determination of the angle of repose is performed in [11, p. 74] with an image processing
algorithm. In [6, p. 375] a two dimensional approach is used. In this work a three dimensional
ansatz is used. The first step is the searching of boundary particles of the pile. Then straight
lines are positioned with the minimization of the distance of the line to the boundary particles.
The angle of repose is achieved with the average of all the angles corresponding to these lines.
In [16, 13] the oedometer experiment is performed with non-spherical particles. The influence
of the particle size for spherical particles is investigated in [10]. One result of the latter work is
that particle assemblies with a good graduation have a denser packing density and are less
compressible [10, p. 52]. A common way for the oedometer-test is that the plate for the
compression is velocity-driven. In [16, p. 422] the velocity is controlled to reduce the difference
between the measured and the simulated forces.
In this work a force-driven plate was implemented. With this plate a static case is simulated for
four load-steps. The implemented force-plate prevents incorrect simulation conditions where
the resultant force of the particles is huger than the actual load-step.

2 DEM

Each particle is identified by the index I ∈MP where MP is the set of all particle-identifiers.
Each particle has a mass m

I
and a radius R

I
. The location of the center of mass is denoted by SSS

I
(t)

and the rotational velocity by θ̇θθ
I
(t). The units which are used in this work are listed in table 1.

Quantity Used units SI-units

Mass mg 10−6kg
Length mm 10−3m
Time ms 10−3s

Table 1: Summary of the used units

In the following paragraphs the contact-displacement law is shown. Let TC = [ts, te] be a
time interval in which the two particles are in contact. Shortly before ts and after te the two
particles are not in contact.
The material parameters for all particle are identical. Hence a tupel

P = (E,ν,µPP,µPW,er,µR,PP,µR,PW) (1)

is introduced, where the components are the Young’s modulus E, Poisson ratio ν, the coefficient
of friction between two particles µPP, the coefficient of friction between a particle and a wall
µPW, the coefficient of restitution er, the coefficient of rolling resistance between two particles
µR,PP and between a particle and a wall µR,PW, respectively. In order to determine the force-
displacment law for contact between particle I and J the equivalent radii, mass and Young’s-
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and shear modulus (cf. [9, p. 233-235]) must be determined with1

R
IJ

:=
R
I

R
J

R
I
+R

J

, m
IJ

:=
m
I

m
J

m
I
+m

J

,
∗
E(P) :=

E
2 (1−ν2)

and
∗
G(P) :=

G
2 (2−ν)

, (2)

respectively [18, p. 242]. A nonlinear spring-dashpot model is used for the contact-displacement
law [4, p. 985]. The stiffness and the viscous-damping in the normal direction is determined
(cf. [9, p. 234]) with

K
IJN

(P) :=
4
3

∗
E(P)

√
R
IJ

and γ
IJN

(t, δ
IJN

,P) := β(P)
√

m
IJ

K
IJN

(P) 4

√
δ

IJN
(t) , (3)

with β(P) := ln(er)

√
5

ln2
(er)+π2

, (4)

where er is the coefficient of restitution and δ
IJN

(t) the overlap of the particles in the normal

direction. The contact-force in the normal direction equals (cf. [18, p. 242])

F
IJN

(t, δ
IJN

, δ̇
IJN

,P) :=−K
IJN

(P) δ
IJN

(t)
3
2 − γ

IJN

(t, δ
IJN

,P) δ̇
IJN

(t) . (5)

The stiffness and the viscous-damping in the tangential direction (cf. [9, p. 234]) equals

K
IJT

(P) := 8
∗
G
√

R
IJ

and γ
IJT

(t, δ
IJT

,P) := 2β(P)

√
1
6

K
IJT

(P) 4

√
δ

IJT
(t) , (6)

respectively and the corresponding force could be determined with

F
IJT

(t, δ
IJT

, δ̇
IJT

, F
IJN

,P) := min

((∣∣∣ K
IJT

(P) δ
IJT

(t)+ γ
IJT

(t, δ
IJT

,P) δ̇
IJT

(t)
∣∣∣
)
,
∣∣∣ µPP F

IJN
(t, δ

IJN
, δ̇

IJN
,P)

∣∣∣
)

,

(7)

where µPP is the coefficient of the Coloumb friction and δ
IJT

(t) is the tangential overlap (see [22,

p. 155]).

2.1 Rolling friction

Rolling friction is introduced to decrease the translational and rotational velocity of a particle.
In reality the particle velocity decreases during the movement. In order to achieve this behavior
in the simulation rolling resistance is introduced (cf. [21, p. 540]). The used rolling friction
model is Method-B from [21, p. 539]

MMM
IR
(t,P, F

IJN
) :=−µR,PP

∥∥∥θ̇θθ
IJ
(t)

∥∥∥ F
IJN

(t, δ
IJN

, δ̇
IJN

,P)
θ̇θθ
I
(t)

∥∥θ̇θθ
I
(t)

∥∥ , (8)

where θ̇θθ
IJ
(t) is the relative angular velocity at the contact point.

1Usually the equivalent Young’s modulus and the shear modulus are determined with specific values of Poisson
Ratio and Young modulus.
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3 COMPUTATIONAL MODEL FOR THE PILE

In this section the computational model of the dynamic simulation of the pile is described.
Different ways for generating piles can be found in [2]. The simulation in this work is treated
similar to the dynamic investigation of a hopper. In order to investigate only the influence of
the material parameters with regard to the angle of repose the model must only depends on
the material parameters. Hence the initial position of each particle must be identical for each
simulation.
The sensitivity analysis is performed for two different particle sets in order to compare the
sensitivity of two different particle size distributions. The particle radii for both assemblies
are created by means of a normal distribution. In table 2 the interval for the restriction of the
particle radii R

I
∈ [rL;rU], the mean values, the standard deviation and the number of particles

of the two assemblies are shown.

Particle-set Interval for radii Mean value Standard deviation Number of particles

1 [1;3.5]mm 2mm 0.5mm 6000
2 [0.8;2.5]mm 1.5mm 0.35mm 8000

Table 2: Summary of parameters for the particle generation

3.1 Particle positioning

The particle assembly consists of discs with a radius of rfu = 20mm in which particles are
positioned like it is depicted in Fig. 2a. One of such discs is depicted in Fig. 1a.
The generation of these disc is performed with an algorithm which fills sequential annuli (see. Fig. 1a).
The vertical position of the discs starts with h = rU. For the following discs the vertical position
is increased by 2rU until the maximal height of hfu is reached (see Fig. 2a). Then all following
in sequence generated discs get the height hfu.

(a) Illustration of a disk of spheres for the pile
investigation

(b) Measurement of the angle of repose

Figure 1: Particle-positioning for the pile assemblies
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(a) Initial stage of the simulation (b) Simulation of the pile

Figure 2: Simulation of the pile

(a) Simulated pile after the ralaxation (b) Heap after the filter process

Figure 3: Finished simulation of the pile

3.2 Simulation

In order to lower the influence of the interaction between the particles and the plane a cylinder
is introduced (cf. [2, p. 318]). It has a radius of rcy = 50mm and height of hcy = 5mm. In
the initial stage of the simulation all particles of the discs with a height below hfu = 100mm
are treated, like it is depicted in Fig. 2a. In the following steps the simulation is performed

for t =
√

4rU∥∥ggg
∥∥ , thus the upper discs covers a distance of 2rU. Then the treated particles are

appended by the next disk with a height of hfu (see Fig. 2b). These steps are repeated until all
particles are treated.
In order that the last inserted particles find a stable position at the end a simulation is carried
out for t = 600ms. The state after this integration is shown in Fig. 3a. Then a filter process is
performed. All particles in the box or below the upper edge of the cylinder are removed, like it
is depicted in Fig. 3b. During the filter-process the height of the pile hP is determined.

3.3 Determination of the steepest angle of repose

A picture, in which the the steepest angle of repose of a real sandpile is measured, is shown in
Fig. 1b. It can be seen that the top of the pile is rounded while the boundary of the remaining part
is formed like a truncated cone. In order to determine the steepest angle of repose a cylindrical
coordinate system is introduced. The origin of the coordinate system is placed at the bottom
in the middle of the rounded base area of the pile. The angle of the polar axis is divided into
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(a) Boundary particles (b) Visualization of the truncated cone

Figure 4: Approximation of the angle of repose

φN = 180 parts. These direction vectors are given with

eeeiφ :=
(

cos(φiφ)

−sin(φiφ)

)
with φiφ :=

360
φN

iφ , (9)

where iφ = 0, . . . , iφN − 1 holds. In each direction several equidistant level of heights between
0.2hP and 0.75hP are defined in which the particle with the largest radial distance is searched.
In Fig. 4a the particles which lie on the boundary are marked with the color which changes
from red to blue with increasing iφ. The dark blue particles are particles which doesn’t lie on
the boundary.
A line for each eeeiφ is fitted with the minimization of the orthogonal distance between the
particles and the line. The average angle φ of all these lines is the approximated angle of
repose2. In Fig. 4b the line elements on the marked particles are shown.
The values of the measured angle of repose (see Fig. 1b) are 32◦ and 35◦. The goodness of the
fit Eφ(P) = (φ̂−φ(P))2 is determined with the average φ̂ = 33.5◦.

4 OEDOMETER

The oedometer test is a one-dimensional compression test [19, p. 115 ff.]. A soil sample is
put inside a box. On top of the soil sample a load-plate is installed on which different loads
are applied. The used box has a base area of 10cm× 10cm and a height of 10cm. This box
prevents horizontal deformation of the soil sample. The average of six oedometer experiments
is shown in Fig. 5. The settlement s is determined with h0 − h where h is the actual height of
the plate and h0 the height of the plate at the initial load step of 100N.
The computational model consists of a rigid box which is filled with particles. In Fig. 6a the
particle assembly in the box is shown after a compression with 100N. Two assemblies are
investigated. Assembly one consists of 4642 particles and has a void ratio of e1 =

VS
VP

= 0.66,
while assembly two consists of 3361 particles and has a void ratio of e2 = 0.67. The quantity VS
is the solid volume taken by the particles and VP = 10 ·10 ·5cm3 −VS the volume of the voids.

2The implementation was performed in the bachelor thesis ”Entwicklung eines Algorithmus zur Approximation
des Schüttwinkels und Sensitivitätsanalyse” of Mr. B.Sc. Fabian Pfaff.
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Figure 5: Stress-displacement curve for P120

The force driven plate is applied for four loads Ln with n ∈ {0,1,2,3}. The plate iteration
starts with the following three steps: The generation of a backup of the particle positions and
velocities, the movement of the load-plate downwards by a trial step δTa and an integration of
ns = 15000 integration-steps.

This procedure is repeated until the resulting particle force of the force plate FR satisfies the
condition FR > Ln. If this condition is fulfilled an integration of nL = 80000 integration-steps
is performed in order to relieve the particle force. If the resulting force FR falls below Ln, the
procedure with the short integrations and the backups is performed again. If the resulting force
FR after a long integration of nL integration steps exceeds Ln, the backup of the last valid trial-
step is loaded and the corresponding height of the force plate is applied. If this case occurs
the trial step δTa is reduced in each following trial-step with δTa ← δTa mT, where mT = 0.95
is a reduction factor. The reduction of the trial step considers the amount of the residuum
R = |FR−Ln|, so that mT is adjusted to the residuum. It is also considered that the trial step does
not fall below a critical value of 0.05δT0. The trial step is initialized with δTa ← δT0 = 0.0075.
If the absolute value of the residuum is lower than the precision Rpr = 30 which equals 0.03N
the iteration is finished.
With this procedure static states for the loading steps are simulated. Incorrect simulation
conditions where the resulting force exceeds the plate force do not occur, since in such situations
the backup of the last valid simulation state is loaded.
The simulation is performed with four loading steps L0 = 100N, L1 = 400N, L2 = 1100N and
L3 = 2700N. In Fig. 6b the iteration for the load-step L0 is shown. The achieved precision
for this load step is (100000− 100017.59)10−3N ≈ 0.017N. The corresponding settlement
s0 = 2.4337952mm is used as a reference value for settlements of the following load-steps (see
Fig. 5). The experimental settlement for the initial load-step was much smaller. The reason for
this could be that the packing density must be much higher. This could be achieved with lower
particle radii or/and a good graduation [10, p. 52]. In Fig. 5 the displacement-stress curve of the
load-steps L1 = 400N, L2 = 1100N and L3 = 2700N is shown. In Fig. 5 and 6b the purple dashed
lines marks the simulated load-steps Li, the blue curve is the average of the measurements while
the red one is the simulated curve. The error-bar in Fig. 5 represents the lowest and the highest
measured values of the settlement. The quality of the simulation is quantified with the error

7

224



M. Jahn and M. Meywerk

(a) Particle assembly after a compression with
100N
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(b) Iteration of the load-plate with 100N for P120

Figure 6: Oedometer test sample 120

measure E0 :=
√

∑3
i=1(s̃i − si)2. which treats only the deviation of the settlements, since the

deviation of the forces are negligible small due to the precision Rpr = 0.03N.

5 DESIGN OF EXPERIMENTS AND METAMODELS

Since the numerical models for the investigation of the pile and the oedometer test are
time expensive the sensitivity analysis should be performed using metamodels. The numerical
model of the pile described in section 3 assigns each DEM-input parameters P (see (1)) a
corresponding approximation of the angle of repose φ(P). The numerical model for the oedometer-
test described in section 4 is investigated with respect to the failure measure E0. Hence both
models assign each parameter tuple with a scalar for the quality of the fit with the experimental
measurement.
The DOE is performed with the Latin-Hypercube-sampling (LHS) (cf. [8, p. 240]) with 160
points for the pile and 200 for the oedometer test. In Tab. 3 the investigated interval3 for each
element of P (see (1)) is shown.
On this basis four different meta-models are generated. A quadratic and a cubic polynomial
response surface method (cf. [1, p. 2123]) is used. The quality of the metamodel could be

determined with the regression coefficient R2 =
SSE
SST

where SSE is the sum of square error
and SST the total square error [1, p. 2123]. In [1, p. 2123] it is mentioned that generally with
increasing R2 the quality of the fit is rising. The quadratic polynomials have a poor quality of
fit for the pile- and the oedometer model in comparison to the cubic ones. An interpolating
metamodel is generated as well with radial basis functions (RBF). A cubic (triharmonic) ansatz
function4 ψT(r) = r3 [20, p. 55] and the thin-plate ansatz ψP(r) = r2 log(r2) is used [1, p. 2124].

3The inverval for µR,PP and µR,PW for the oedometer experiment is [5 ·10−5,0.01].
4The parameter c which is used in [1, p. 2124] is equal to one in this work.
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Quantity Interval

Young’s modulus E E ∈ [105,106]

Poisson’s ratio ν ν ∈ [0.2,0.4]
Coefficient of friction between particles µPP µPP ∈ [0.7,1.9]
Coefficient of friction between particles and the wall µPW µPW ∈ [0.4,1.9]
Coefficient of restitution eR eR ∈ [0.2,0.6]
Coefficient of rolling resistance between particles µRPP µRPP ∈ [0.45,4.5]
Coefficient of rolling resistance between particles and the wall µRPW µRPP ∈ [0.8,5]

Table 3: The DOE interval for the sensitivity analysis

6 Sobol’ indices for the angle of repose

The global sensitivity-analysis is used to determine the influence of input variables or their
combinations on the output of a system [14, p. 271]. Sobol’ indices are often used since they are
appropriate for the most models [17, p. 964]. A disadvantage is, that 2n = 128 terms [12, p. 259]
must be determined for n = 7 input parameters. In this work the first and second order Sobol’
indices are calculated for the pile and the oedometer experiments. Since the high computational
effort of the numerical models the Sobol’ indices are determined with the metamodels. In order
to determine the Sobol’ indices the input space must be defined in a n-dimensional unit cube
[3, p. 3]. Hence the 7-dimensional input space (see tab. 3) for the parameter-tuple P must be
transformed in a 7-dimensional unit cube P̂ = [0,1]7. The investigated models are the quadratic
and the cubic polynomial RSM, the thin-plate - and the cubic RBF of the pile experiment as well
as the oedometer experiment. Each investigated model f (P̂) with P̂ ∈ [0,1]7 is decomposed in
2n summands of different dimensions based on the Fourier-Haar series [15, p. 408] hence

f (P̂1, · · · , P̂n) = f0 +
n

∑
i=1

fi(P̂i)+
n−1

∑
i=1

n

∑
j=i+1

fi j(P̂i, P̂j)+ · · ·+ f1,...,n(P̂1, · · · , P̂n) (10)

holds with P̂ = (P̂1, · · · , P̂n). If P̂ is a uniform distributed random variable in [0,1]n, then f (P̂)
and the summands fi1,...,is(P̂i1 , · · · , P̂is) are random variables, too. The corresponding variances

are D and Di1···is =
∫

(P̂i1 ,··· ,P̂is)∈[0,1]s

fi1,...,is(P̂i1 , · · · , P̂is)
2d

(
P̂i1 , · · · , P̂is

)
, respectively [14, p. 272].

In order to determine the variance eq. (10) could be rewritten with

D =

∫

P̂S∈[0,1]n

f (P̂S)
2dP̂S − f0

2
=

n

∑
i=1

∫

P̂i∈[0,1]

fi(P̂i)
2dP̂i +

n

∑
i=1

n

∑
j=1

∫

(P̂i,P̂j)∈[0,1]2

fi j(P̂i, P̂j)
2d

(
P̂i, P̂j

)
+ · · ·

(11)

The Sobol’ indices are determined [14, p. 272] with Si1,...,is :=
Di1,...,is

D
. The second order Sobol’

indices are lower than 0.05. Hence, they are negligible small. In Tab. 4 and 5 the first order
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metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 0.0166 0.0087 0.0370 0.0102 3.7E−5 0.8961 0.0040 0.035
RSM cub. 0.030 9.4E−4 0.0165 0.0132 7.8E−6 0.5302 0.0066 0.4483
RBF th. pl. 0.0419 0.0260 0.0091 0.0160 0.008 0.701 0.0215 0.1938
RBF cub. 0.0429 0.0275 0.0163 0.0185 0.019 0.547 0.0299 0.3302

Table 4: First order Sobol’indices for the pile experiment with assembly one

metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 0.0072 0.022 0.003 0.0297 2.3E−5 0.9118 7.5E−4 0.0405
RSM cub. 0.014 0.054 0.0241 5.5E−4 1.3E−6 0.5065 0.0208 0.4096
RBF th. pl. 0.013 0.0218 0.0048 0.0015 0.020 0.759 0.010 0.2463
RBF cub. 0.016 0.019 0.0069 0.010 0.0194 0.6642 0.0207 0.3489

Table 5: First order Sobol’indices for the pile experiment with assembly two

Sobol’ indices for the pile experiment are shown. The Sobol’ indice for the parameter µR,PP
has by far the biggest influence for all metamodels and both particle assemblies. In Tab. 6 and
7 the first order Sobol’ indices for the oedometer experiment are shown. The most significant
parameter of the oedometer model is by far the Young’s modulus E. The sum of all indices
should not exceed one. This isn’t achieved in Tab. 7 for the quadratic polynomial RSM and the
cubic RBF due to numerical errors.

7 CONCLUSION

In this work a sensitivity analysis with Sobol’ indices is performed for the pile- and the
oedometer experiment. Since the computational models of the two treated experiments are
very time consuming sampling-points are generated with the Latin Hypercube sampling. On
this basis four different metamodels are used to determine the first- and second order Sobol’
indices. The second order Sobol’ indices are negligible. The influence of the rolling friction
parameter between particles is by far the most significant parameter in the pile experiment. For
the oedometer experiment the Young’s Modulus is by far the most significant parameter. With
this information a more appropriate parameter fitting could be performed with an optimization
of these parameters. A three dimensional ansatz was described to determine the angle of

metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 0.9877 0.0058 0.0060 0.0018 7.1E −6 0.0011 0.0077 0.0103
RSM cub. 0.981 0.0017 0.0050 0.0057 1.6E −5 0.0059 0.0085 0.0416
RBF th. pl. 0.892 0.0011 0.0042 0.0029 0.0214 0.0026 0.0031 0.0885
RBF cub. 0.879 0.0029 0.0040 0.0049 0.0193 0.0012 0.0019 0.1066

Table 6: First order Sobol’indices for the oedometer experiment with assembly one
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metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 1.00 0.0094 0.0070 0.0017 1.2E −5 1.8E −4 0.0038 0.0250
RSM cub. 0.9314 0.0018 0.0067 0.0048 2.4E −6 0.0029 0.0069 0.0587
RBF th. pl. 0.9373 3.4E −4 0.0036 0.0084 0.0082 0.0021 4.0E −4 0.0444
RBF cub. 1.00 0.0093 0.0070 0.0017 1.2E −5 1.894 0.0038 0.025

Table 7: First order Sobol’indices for the pile experiment with assembly two

repose as well as a force-driven plate, which prevents incorrect simulation conditions where
the resulting particle force exceeds the load-step.
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ABSTRACT 

Classical continuum mechanics faces substantial difficulties for adequately describe stress and strain 
distributions around microstructural material discontinuities such as crystallographic defects, voids, 
and grain boundaries. One way to improve the microstructural model is the development of the 
atomistic submodel that provides a minimal increase in the amount of atomistic data, but provides 
more accurate stress predictions without time consuming calculation of full atomistic model. In the 
proposed approach continuum model, discretized by finite elements, provides a displacement field for 
atoms on the edge of the simulation cell of the the atomistic submodel driven by molecular dynamics. 
The final result is the utilization of the best from both worlds, calculation speed of the constinuum 
mechanics using finite elements method and informing it with relevant material properties inferred 
from atomistic simulations by using molecular dynamics where it is the necessary. 

1 INTRODUCTION 

One way to improve the continuum mechanics (CM) material model is the development of the 
atomistic, ab initio, atomistic submodel (AS) for atomic dynamics that underline material strength 
under the temperature and stress loading. Molecular dynamics (MD) is a prominent theoretical tool of 
choice used to investigate responses of different materials at the nanoscale. With the advent of access 
to the high-speed computer throughout recent decades, there has been a substantial advance in the 
atomistic simulation applications. However, as soon as one tries to tackle with a vast quantity of 
information that arises at that scale, even tiny macro scale piece of real material, usually force us to 
use multiscale (MS) approach. Coupling of the two models poses significant challenges as described 
in [1], [2]. In the essence difficulty reconciling the CM and MD approach is caused by the very 
different nature of the underlining theories. Discrete chunky nature of atomistic reality features 
phenomena that are very hard to connect with some CM features. For example, the crack tip 
propagation is a process that simultaneously involves many different scales at ones. This fact of the 
crack propagation brings us to the high interest in the development of MS models tuned up for a 
specific purpose. Many examples of a MS approach aiming to couple atomistic and continuum models 
have been proposed, among many, in the following reviews [2-6]. 

One route to go around that problem is a combination of the standard finite elements method (FEM) 
techniques and the MD approach. Microstructural objects like defects, micro porosities, impurities, or 
misorientation in crystalline systems very often cause long-range effects, far beyond immediate 
atomistic neighborhood where they are [7]. From the physical point of view, we also do not need an 
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immense quantity of information that is provided by MD simulation. Important types of nanoscale 
defects in material typically involve many atoms and are identified as critical individual objects that 
describe material properties. Atomistic to CM models coupling methods are used to mutually 
exchange of information between atomistic and continuum systems. If this coupling is a successful 
one can describe nanosized effects in great detail within the unified model.  

2 MULTISCALE MODELING 

2.1 Molecular dynamics 
Modeling of materials by MD starts with a description of the atom dynamics within MD where they 
are material points without internal degrees of freedom. By this approach, we are left with a system of 
multiple point particles which position and velocities can be calculated using Newton’s laws of 
motion. However apparent simplicity of general idea hides complexities and nonlinearity of the 
coupled partial differential equations that are second-order and nonlinear. Also of the complexity of 
the system of equations are even further scaled up with the sheer number of atoms and dimensionality 
of the problem. Therefore the system is far from trivial to solve and even more difficult to accurately 
interpret from the macroscopic point of view. The central question is how to reconcile immense 
complexity and data redundancy given by atomistic degrees of freedom with standard CM physical 
quantities. For a recent review, see an in-depth discussion of the subject provided by Admal and 
Tadmor [8]. 

For atomistic simulation, we use field de facto standard software suite known as LAMMPS (stands for 
Large-scale Atomic/Molecular Massively Parallel Simulator) as described in [9]. LAMMPS is a 
classical MD simulation code that is capable to effectively solve the system with millions of 
Newtonian equations for different macro phases of matter including solid material. To be predictive, it 
needs information about particles interactions and external forces. A significant effort of the 
community in recent decades resulted in many realistic potentials that can be used in modeling tasks. 
One of the prominent projects along those lines that we use here is OpenKIM framework [10-11] that 
gives us reproducible and reliable realistic interaction potential input for atomistic simulation. 

2.2 Atomistic to continuum coupling 
MS modeling incorporates forming of a material model that spans over several orders of magnitude in 
the time and length scale. Usually, MS methods are used to connect the fine scale of atoms and more 
coarse scale of CM. By this coupling, one can, in the same model, study nanostructure in the localized 
region of particular interest where dynamics of an individual atom is relevant and use computation less 
expensive CM in the area, where deformation is more homogenous and smooth. Usualy the atomistic 
model described by using MD is surrounded by finite element (FE) mesh. Model space is therefore 
divided into two parts: one dominated by discrete atomistic features like chemical bonding and the rest 
of the area where computationally less demanding CM approach is applied. Depending on the type of 
transitions between two regions, different computational strategies are developed. Frequently used 
methods are Quasicontinuum (QC) method developed by Tadmor, Ortiz, and Phillips [12] and 
Bridging Domain (BD) developed by Belytschko and Xiao [13]. In QC coupling of the atomistic and 
continuum model is achieved by refining FE mesh in the area of interest until one node corresponds to 
one atom. In BD to achieve a smooth transition from atomistic into the CM so-called handshake 
region is introduced, where atomistic and continuum models are simultaneously present. 

The first problem to be solved is the identification of the parts of the model space where MD 
calculation is to be applied. This way, atomistic submodel can used only around the areas where 
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continuum models are about to fail. Significant problem visible in such a composite model is the 
correspondence of the continuum and atomistic quantities like stress, strain and displacement. In our 
approach, we have chosen a path inspired by already developed MS methods and couple the AS by 
imposing displacement boundary conditions. Simulations run separately on different scales and by 
using FEM we have implied that one FE contains many atoms. This is similar to QC and that the 
displacement of atoms follows the movement of FE edges (in accordance with Cauchy-Born rule 
[14]). Since the goal is to get the entire stress field, there has been no necessity to impose any kind of 
model overlapping since beyond the stress concentration area there is an agreement of stress field of 
FEM and MD.  

2.3 Atomistic stress analysis 
Here we briefly outline the procedure for atomistic stress calculation. For the AS we go along the 
same lines as in [7] for microscopic stress calculation, which can be broken down into four steps: 

1) define a representative set of points in space, 
2) choose one point and identify all atoms within the averaging radius rave around that point, 
3) add up all stress contributions per chosen atoms (equation (1)), 
4) divide the obtained cumulative stress with the total volume (area in our 2D case) summing the 

volumes per identified atoms (equation (2)). 

For calculating stress per atom we use standard expression available in LAMMPS: 

    ,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2 ,3 ,3

1 1

1 1 ...
2 3

p aN N

ij i j i j i j i j i j i jmv v r f r f r f r f r f         

 


 

 
        

 
   (1) 

where interaction potential takes care of atoms present within the defined cutoff range that contributes 
to the stress. 

 
Figure 1, Determination of the averaging 

radius (all atoms within the circle are taken 
into account for the stress averaging 

procedure) [7] 

 

Figure 2, Representation of the Voronoi tessellation used for 
volume per atom determination [7] 

Once the stress for each atom in a given region is calculated, we obtain spatially averaged stress for 
this region using the standard expression for N atoms: 

   1

1

N

Nr




















σ
σ  (2) 

N is the number of particles within the area we examine, while Ωα is volume associated with the 
particular atom obtained using Voronoi tessellation. The process is shown in Figure 1 and Figure 2.  
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In addition to spatial stress also averaging include time averaging by conducting stress averaging 
procedure on snapshots of atomistic configuration every 1 ps, so local thermal excitement of atoms is 
washed out which result in the correct stress field. Time averaging is a simple mean value of averaged 
stress for the same point in space. In both cases (whole model and AS) configuration snapshots are 
taken after the system thermalizes for at least 10 ps. 

3 MODELS  

3.1 1D system 
For the demonstration purposes, we outline the main idea in the case of a 1D system, as shown in 
Figure 3. To be as simple as possible but keep the main features, we analyze the standard mechanical 
problem of truss fixed at one end and loaded with some force on the other one. When translated into 
the atomistic picture, we get a chain of atoms connected with nonlinear elastic springs. As is well 
known realistic atomistic interaction like here, Lennard-Jones contains nonlocal contributions coming 
from distant atoms. Despite rapid decay of the force magnitude with distance and screening effects, 
this introduces a noticeable difference in calculated response to the external loading. 

 
Figure 3, Atomistic submodel within full model space 

 
Figure 4, Comparison of atomistic chain analysis by FEM and MD for different cutoff radii 

In Figure 4 we show the main results in the 1D case with the dependency of the displacement from the 
equilibrium position and coordinate along the full chain. The main message to be drawn from this is 
that we see a noticeable difference between MD and CM results. This difference gives a clear 
indication of how nonlinear and long-range interaction contribution influence results even in elastic 
regime. Namely, for CM and MD results to agree it is not enough to stay in elastic regime during 
loading but also cut off radii rcut has to be small including just nearest‐neighbor interatomic 
interactions. So this result demonstrates clearly that physical modeling in regions of high-stress 
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concentration even in topologically trivial 1D case calls for caution in the proper account for relevant 
physical quantities.  

3.2 2D system 
Our strategy following these results from the 1D model is to devise a combined model taking the CM 
results far from the hole and impose deformation as boundary conditions to the AS. This limited 
region is identified based on atomistic to CM stress ratio as criteria following the prescription given in 
[7]. Basic configuration in a 2D system that is the main objective of the present paper is shown in 
Figure 5. One of the results that we have obtained is that it is unimportant what is the shape of the 
submodel region as long as we are far away from the high values of stress gradients. We have chosen 
the square because of computational simplicity. According to the external loading, we first calculate 
deformation within the CM framework by standard FE discretization in the system. 

 
Figure 5, The geometry of the 2D sheet with the position of a circular hole 

 

Table 1, Model parameters follow labeling symbols in Figure 5 
 full model submodel 

sheet size (before loading) 
lx = 168.4 nm 
ly = 169.9 nm 

lx,s = 39,86 nm 
ly,s = 40,91 nm 

the thickness of fixed atoms in the atomistic submodel / lfa = 2 nm 
hole radius r = 9 nm 

imposed deformation εy = 0.025 / 
2D elasticity modulus 3300 GPa/Å / 

Poisson ratio 0.16 / 
temperature T = 300 K 

initial thermalization time ttherm = 10 ps 
stretching time tload = 100 ps / 

equilibration time teq = 10 ps teq = 30 ps 
number of atoms 1,116,371 53,611 
averaging radius rave = 2 nm 

the average number of atoms within an average radius Nave ≈ 473 
number of time frames for averaging 10 

the span between time frames 1 ps 
calculation time 660.42 h 5.17 h 
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In the region depicted in Figure 5 by yellow color (narrow square strip) we impose deformation on 
atoms as obtained from FE calculation. Using MD simulation, we let the subsystem equilibrate and 
calculate stress distribution using equations (1) and (2). For relevant simulation parameters, see Table 
1. For atomistic simulation, we have used AIREBO (Adaptive Intermolecular Reactive Empirical 
Bond Order potential) potential, developed by Stuart et al. [15], from OpenKIM repository for carbon 
giving us account for graphene sheet with a topology defined in Figure 5. AIREBO potential is an 
upgrade to REBO (Reactive Empirical Bond Order potential) initial developed by Brenner et al. [16]. 
Using such a realistic description of interaction gives us the confidence to faithfully reproduce 
experimentally relevant elastic properties and strength, as presented in [17]. In the case of full 
atomistic model calculations are conducted using thermostating procedure in the isobaric-isothermal 
(NpT) ensemble at a zero pressure and temperature of 300 K (provided by LAMMPS thermostating 
facility) with periodic boundary conditions were used along x and y axsis with imposed deformation in  
with imposed deformation in y direction. 

First, we solve the CM problem using standard FEM procedures for linear static analysis and elements 
are first order four nodes 2D FEs. After FEM analysis, deformation is imposed faraway from hole 
(yellow square edge of the AS) to the atomistic system. Boundary conditions for AS are fixed edge 
atoms. Bulk atoms are subjected to the Canonical ensemble and left to thermalize for 30 ps. 

4 RESULTS 

Figure 6 is the result of the AS output. Stress averaging has been performed spatially using the 
averaging radius rave of 2 nm. Since boundary atoms of the AS are fixed and unaffected by relaxation, 
their contribution to the stress distribution is not affected by thermalization of the system and therefore 
should not be taken into account. The results of stress averaging on the AS are shown in Figure 6 with 
leaving out the parts of the model space with unmovable atoms. 

 
Figure 6, Spatially averaged atomistic stress distribution within AS  

The stress distribution calculated using the atomistic model by the spatial and time averaging 
procedure is used to inform the full model in the concurrent region. Figure 7 shows stress distribution 
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through the model space with CM stress far away from the hole, and atomistic averaged stress around 
the opening. To visualize the final results more clearly in Figure 7, we show a series of the stress 
distribution results from the CM model on the left figure and averaged atomistic on the right one. In 
the Figure 7 right, we have inserted instead of CM results values obtained from AS. Connecting 
criteria is that the displacement of the atoms and CM media agree in the joint region as inspired by the 
Cauchy-Born approximation. This way, we have obtained a composite multiscale solution which 
combines the calculation speed of CM with accuracy and realistic properties of MD. With the natural 
implementation of boundary effects around the hole and with a substantial reduction of computer 
processing time. 

 
Figure 7, Stress distribution around the hole as seen from the full model only by FEM (left)  

and with submodel correction (right), 

5 CONCLUSION 

In this paper, we report on the simple yet effective way to unite CM and atomistic approach for the 
case of 1D and 2D system under external loading. First, we have shown a simple 1D academic 
example that examined key differences between atomistic and CM models and possible difficulties we 
might face in connecting the two approaches. In the second part, we show how we can effectively deal 
with the 2D problem of a graphene sheet with a circular hole under the uniaxial tension. We present an 
effective procedure of how one can use atomistic MD simulation in regions where the CM model is 
about to fail without proper account for near the edge stress distribution. Precise calculations of the 
stress distribution were atomistic discrete nature of matter plays a decisive role is of great importance 
with nanosized structures similar to the ones presented here. We have also outlined the main 
difficulties in developing proper physical MS connections of the CM system with the AS. 
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Abstract. Design of Rockfall Protection Embankments and estimation of their capacity to 
control the trajectory of rock boulders are complex issues, which give considerable room for 
research and improvement. A lack of detailed models for the simulation of block rebound in 
the embankment vicinity is mainly due to the large number of parameters that influences the 
phenomenon. Therefore, the evaluation of the embankment efficiency in satisfactorily acting 
on the block trajectory, as a function of the site characteristics and boulder kinematics, is still 
precluded to design engineers. 

In the present paper, the open-source code YADE, based on a discrete element method 
(DEM), is used to model the bouncing of a rock block on the embankment face, while taking 
into account a certain number of parameters with influence on the impact. 

By contrast with previously developed models (DEM, FEM or coupled approaches), the 
aim is here to propose a model with limited computation cost. In this purpose, the 
embankment is modelled as a membrane interacting with the rock block. The embankment 
body is not represented because it would require a large number of particles, and, 
consequently, a high computational time. Various elements implemented in YADE are used 
to model the embankment surface, with the aim of mimicking the mechanisms involved 
during the rock boulder rebound. The validity of the approach is addressed comparing 
simulation results with the few experimental data available from the literature. The influence 
of characteristics of the impacting block (radius and weight) and kinematic parameters 
(impact angle and velocity) on the restitution coefficients is explored. In particular, the 
normal (Rn), tangential (Rt) and energetic (RTE) coefficients of restitution are monitored. The 
goal of defining an efficient model in a realistic range of these parameters is pursued. 
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1 INTRODUCTION 
 

Rockfall protection embankments are massive civil engineering structures, built in 
elevation with respect to the ground to intercept large falling rocks. They are typically 3 to 7 
m high and up to a few hundred meters long. On a functional point of view, the design of an 
embankment aims in assessing the ability of the structure in adequately modifying the blocks 
trajectories. This is particularly related to the way the blocks bounce on the embankment’s 
face. Such a rebound appears to be extremely complex as it depends on many parameters 
related to the block shape, velocity (translational, rotational), to the impact point location and 
to the embankment characteristics (constitutive materials and geometry).  

Different studies have addressed numerically the impact response of embankments (Peila 
et al. [10], Plassiard and Donzé [12], Breugnot et al. [2]). The block rebound and its post-
impact trajectory have been investigated by Plassiard and Donzé only ([12]). It is worth 
highlighting that, as shown by Lambert et al. [7], simulation tools used by design engineers 
for modelling the trajectory of rock blocks down natural slopes are not appropriate for 
modelling the rebound after impact on rockfall protection embankments. 

The purpose in this study is to create a model that can properly reproduce the block 
bouncing, accounting for the relative influence of each parameter, structural or mechanical. 
The main interest is to develop a model, inexpensive in terms of computational time, which 
permits a calibration as simple as possible. This model is developed using YADE [14], an 
open source software based on a discrete element method (DEM). 

The impacted surface is modelled considering a physical idea and a design that strictly 
simulate the response of the real structure. Its body is not considered in the representation 
because of the large dimension and, consequently, large number of particles that would be 
required in the modelling, and the computational time. The model is calibrated and the 
response is verified using experimental data and empirical relations. 

 
2 PHYSICAL MECHANISM 

 

Embankments are designed in order to limit the there that the block jumps or rolls over the 
structure after bouncing on the structure face. This risk depends on many parameters.  

It is increased if (1) the uphill face inclination is insufficient (inclination higher than 65° 
are sometimes recommended for avoiding any ‘springboard effect’), (2) the block trajectory 
before impact is oriented upward and (3) the incident rotational velocity of the block is high.  
The shape of the block can influence its behaviour post impact: a shape with edges can favour 
bouncing over the structure while a spherical one will favour rolling over. 

Bouncing also depends on the energy dissipation occurring in the embankment during the 
impact. The impact by the block induces a high stress in the vicinity of the impacted area, 
with compaction and particle crushing inducing energy dissipation. These mechanisms are 
associated to longer impact durations (up to 300 ms) depends on the embankment fill 
materials characteristics.  

The developed model aims at proposing a tool to be used by design engineers and 
accounting for the influence of all these parameters on the post-impact trajectory of the block. 
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3 THE STRUCTURE 
 

3.1 The model – Physical idea 
 

The aim of this work is to develop a computationally-efficient model of the block rebound 
on embankments uphill face. The main mechanisms controlling the block-structure interaction 
are the penetration (in terms of force and deformation) and the friction at the block/face 
interface. It is proposed to model this interaction via a membrane located at the embankment 
face. This membrane is supported by simple mechanical systems as shown in Figure 1. This 
physical model is based on vertical elements supporting a surface with frictional 
characteristics. These elements can reflect a combined behaviour of springs, dampers, sliders, 
etc., simulating the overall structure’s behaviour. 

 
 
 
  

 
 

 
 
 

 
 

Figure 2: Scheme of the elementary structure (circled in red), reproduced to create the overall structure. 
 

3.2 Model construction 
 

The surface is built reproducing a square elementary structure (Figure 2). The surface’s 
edges are blocked, in order to maintain the overall position of the surface in the modelling 
space during the impact. The vertical elements are calibrated in order to control the behaviour 
of the structure during the penetration. 

Some points are crucial: 
• The surface has to be large enough in order to avoid any influence of the boundary 

conditions on the block-surface interaction.  

Figure 1: Physical model considered for the structure 
modelling. 
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• The dimension of the elementary structure has to be small with respect to the radius of 
the impacting block, to ensure a contact as continuous as possible between these two 
bodies during impact. For this reason, a dimension of 1/5 the radius was chosen. 

• The expected maximum penetration being 1.5 m, a length of the vertical elements of  
2 m is used.  

As for the surface mass, two cases have been tested: (1) constant surface mass, even 
changing the dimensions of the boulder and (2) surface mass proportional to the boulder 
mass. Simulations showed that the two cases led to the same maximum penetration values. 
However, an irregular behavior of the surface during deformation was observed when its mass 
was too high compared to the boulder mass. Some areas of the surface showed temporarily an 
unexpected and non realistic deformation. Therefore, choice was made to give the surface a 
mass proportional to the boulder mass. 

The study of the penetration focuses on the impact moment having a duration typically less 
than 300ms. Gravity was not considered in the modelling, due to its very limited influence on 
the block trajectory over such a short period of time.  

 
3.2.1 The elementary structure 

 

The elementary structure is built using available elements from YADE: nodes (Grid 
Nodes), cylinders (Grid Connections), and PFacets.  
 

 

 

 

 
PFacets are used to manage the friction between the boulder and the surface. These were 

preferred over the so-called Facets elements, because these latter did not allow creating a 
continuous surface, due to discontinuities from one element to the other. This problem was 
overcome considering PFacets inside a triangular configuration between physical elements: 
nodes (Grid Nodes) in the angles, and cylinders (Grid Connections) connecting them. In this 
way the space between two of these elements in contact is occupied by the cylinders, which 
guarantee continuity in the structure.  

Two different configurations for the elementary structure were tested (Figure 4). The 
elementary structure was created using 2 or 4 PFacets. In Figure 4, PFacets are the triangular 
elements, the Grid Nodes appear in yellow and the Grid Connections appear in orange. Using 
4 PFacets an additional node is located in the structure centre and the radius of Nodes and 
Grid Connections is smaller than in the previous case. 

 

Figure 3: Elements of Yade - cylinders, spheres, Pfacets. 

241



G. La Porta, S. Lambert and F. Bourrier 
 

5 
 

                      
 

Figure 4: The two types of elementary structures tested (2 and 4 Pfacets, left and right, resp.)  
 

The behaviour of the model with the first elementary structure resulted problematic. The 
response of the surface to the impact was not symmetric with respect to the impact point in 
case of a normal impact. This problem was attributed to the fact that the mass of PFacets is 
concentrated on the nodes at the edges of the triangle. In fact these elements were originally 
developed for fixed configurations, while in the proposed application these elements are 
mobile and experience large and fast displacements. The proposed solution to overcome this 
problem was to use the second type of elementary structure, with 4 PFacets.  

In the case of the model built reproducing the second elementary structure, with 4 PFacets, 
the number of vertical elements is twice that of the previous case, because all the central 
elements of the elementary structures are clumped to vertical units. The overall surface is now 
symmetric with respect to each axis crossing the central node. Therefore, the response of this 
model to the impact is regular and symmetric.  

 
4 ELASTO-PLASTIC MODEL 

 

The membrane mechanical response to impact is mainly governed by the vertical elements, 
which response governs the penetration (including dissipation) and rebound.  Vertical 
elements consist of Yade’s elements named cylinders (Grid Connections) which were 
attributed the law developed by I. Olmedo et al. [9]. This interaction law allows the input of 
an elasto – plastic constitutive law, specifying parameters like the elastic deformation 
modulus, the deformation modulus in the plastic phase, or the unloading one, the yielding 
point (Figure 5). Nevertheless, these elements only work in tension, while it is supposed to 
work in compression in this application. As a solution, the trick consisted in placing these 
elements on the same side as the projectile (green lines on Figure 6) while making them 
invisible to the projectile so that there was no interaction between these two body types. 

Each vertical element is connected, on one side to the surface thanks to a Clump with each 
Node of the elementary structures and to a fix point on the other side. In Figure 6, the 
boundary nodes of the surface are coloured in blue because these are fix compared to other 
nodes from the surface.  

The parameters of these elements were calibrated, in combination with the characteristics 
of the surface, in order to have a response in terms of deformation vs the impact force as 
realistic as possible. The parameters reported in Table 1 were considered for the boulder and 
the embankment materials. 
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Figure 5: Scheme of the trilinear hysteresis. 
 

 
 

Figure 6: Overall structure (vertical elements in green). 
 

Table 1: Model average parameters. 
 

Young’s Modulus [Pa] 4.00E+07 
Poisson’s Modulus [-] 0.3 

Density [kg/m3] 2650 
Friction Angle [°] 20 

 

 
 

Figure 7: Impact simulation in the elasto-plastic model. Velocity of the rock block: (0,10,0) m/s. 
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4.1 Model calibration 
 

The calibration was conducted with the aim of making the model able to approach realistic 
values for the penetration and impact force, considering existing knowledge from different 
sources. This calibration is not conducted for a specific study case. The values reported in 
Table 2 were used to calibrate the developed model, referring to an impact of a sphere 1 m in 
radius, and 11100 kg in mass, translational velocity perpendicular to the surface and rotational 
one null.  
 

Table 2: Values used for the calibration of the model. 
 

Boulder’s velocity 10 m/s 25 m/s 
Impact force 4000 kN 12000 kN 

Max penetration 0.40 m 0.75 m 
Duration 55 ms 45 ms 

 
The maximum impact force was calculated by the Montani’s equation [8]. 
 

 𝐹𝐹𝑖𝑖 [𝑘𝑘𝑘𝑘] = 1.35 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝑟𝑟
3𝑡𝑡) ∗ 𝑟𝑟0.2 ∗ 𝑀𝑀𝐸𝐸

0.4 ∗ (𝑡𝑡𝑡𝑡𝑡𝑡)0.2 ∗ (𝑚𝑚 ∗ 𝐻𝐻𝑐𝑐 ∗ 𝑔𝑔
103)

0.6
 (1) 

 

With: 
• r: radius of the projectile [m]; 
• t: soil layer thickness [m]; 
• ME : impacted material static elastic modulus [kPa]; 
•  : friction angle of the impacted material; 
• m: mass of the projectile [kg]; 
• Hc : projectile free falling height [m]; 
• g: gravity [m/s]. 

 
Then the penetration was evaluated, using the simplified formulae: 
 

 
𝑒𝑒 = 𝑚𝑚𝑣𝑣2

𝐹𝐹𝑖𝑖
 (2) 

 

The penetration was also compared to an equation derived from the work by Calvetti and 
di Prisco (2007) [3]: 

 

 𝑒𝑒 = 0.027 ∗ 𝑟𝑟 ∗ 𝑣𝑣 + 0.24 (3) 
 

with r the radius of the impacting block and v its velocity.  
 
Finally, the duration of the impact (penetration until the maximum value) was evaluated 
through the relation: 
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 𝛥𝛥𝛥𝛥 = 2𝑚𝑚𝑚𝑚
𝐹𝐹𝑖𝑖

 (4) 
 

Regarding the penetration, it was decided to consider an average value between the values 
calculated from Montani’s, and Calvetti and di Prisco’s relations. 

 
5 MODELLING APPROACH RELEVANCY 

 

The model was tested varying the boulder’s radius, impact angle, and impact translational 
and rotational velocity with aim of assessing the relevancy of the proposed modeling 
approach in mimicking the block rebound.  

 
Maximum penetration trend - impacts perpendicular to the surface 

The first comparison concerns impacts perpendicular to the surface, varying the impact 
velocity. Calvetti and di Prisco [3] established trends between the maximum penetration and 
the projectile free falling height, considering different values of boulder’s radius. The 
application case was a concrete gallery covered with a granular layer from 1 to 2 meters, and 
an impacted by block of mass 850 kg. Based on numerical simulations, they proposed the 
chart presented in the Figure 8, on the left. A regular increase of the maximum penetration 
with the falling height is observed. Additionally, the slope of the curves increases with the 
boulder’s radii. 

 

 
 

Figure 8: On the left, maximum penetration trend by Calvetti and di Prisco (2007) [3].  
On the right, maximum penetration trend of the developed model.  

 
In the developed model, the test was conducted in order to verify the regularity in the 

response of the system. Simulation results presented in the Figure 8, on the right, reveal 
similar trends. It means that, even though the model parameters were calibrated a rough way, 
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the system reacts to the variations of the simulation conditions in a satisfactory way, varying 
the initial velocity and block radius. 
 
Influence of the incidence angle and impact velocity 

The model was then tested in the case of inclined impacts and compared with the state of 
the art and the experimental results presented in Heidenreich in 2004 [6] with the aim, again, 
at evaluation the relevancy of the modeling approach in reproducing established trends. 
One way to study the rebound evolution with the incidence angle is to consider the normal, 
tangential and energetic coefficients of restitutions: 

 

 𝑅𝑅𝑡𝑡 = 𝑣𝑣𝑡𝑡,𝑟𝑟
𝑣𝑣𝑡𝑡,𝑖𝑖

 (5) 

 𝑅𝑅𝑛𝑛 = |𝑣𝑣𝑛𝑛,𝑟𝑟
𝑣𝑣𝑛𝑛,𝑖𝑖

 | (6) 

 𝑅𝑅𝑇𝑇𝑇𝑇 = 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇,𝑟𝑟
𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖

 (7) 

 𝑅𝑅𝜔𝜔 = 𝜔𝜔𝑟𝑟
𝜔𝜔𝑖𝑖

 (8) 
 

Where: 
• 𝑣𝑣𝑡𝑡 and 𝑣𝑣𝑛𝑛: respectively tangential and normal components of the velocity; 
• 𝜔𝜔: angular velocity; 
• “indices” i and r: incident and rebound elements, characterizing the velocity and the 

energy before and after the impact; 
• 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇: total energy, sum of 𝐸𝐸𝑡𝑡 and 𝐸𝐸𝑅𝑅, defined as 

 

 𝐸𝐸𝑡𝑡 = 0.5 ∗ 𝑚𝑚 ∗ (𝑣𝑣𝑥𝑥
2 + 𝑣𝑣𝑦𝑦

2) (9) 
 𝐸𝐸𝑟𝑟 = 0.5 ∗ 𝛩𝛩 ∗ 𝜔𝜔2 (10) 
  

With 𝑚𝑚 the boulder mass, 𝛩𝛩 the inertia moment and 𝜔𝜔 its rotational velocity (rad/s). 
 

These coefficients allow quantifying the variation in the velocity components and the 
energy dissipation during the impact. Additionally, these restitution coefficients allow 
highlighting couplings between the different component of the generalized velocity vector 
(ex: After an inclined impact by a block without rotation, the rotational velocity is not null 
anymore).  

The influence of the impact angle and the impact translational velocity (the rotational 
velocity, in this case, is imposed equal to zero) on the block rebound is studied considering 
two spheres, with radii of 0.3 and 1 m, and correspondent masses of 300 and 11100 kg.  In 
this way, even the influence of the boulder’s mass, directly linked to the boulder’s radius, is 
showed.  
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Figure 9: Influence of the impact velocity and the impact angle on the restitution coefficients.  
 

 

 
In order to schematize the observations on the graphs, the trends are explained by arrows, 

indicating with the symbol ↗ an increasing, and with the symbol ↘ a decreasing. 
➢ Influence of the parameters related to the kinematics: 

• Maintaining the falling height constant (and, consequently, the impact velocity), and 
decreasing the impact angle 

Rn ↗, Rt ↗, RTE ↗↗ 
• Maintaining the impact angle constant, and increasing the falling height (and, 

consequently, the impact velocity) 
Rn ↘, Rt ↘, RTE↘. 

 It is possible to observe an initial increasing of Rn for the block with a radius of 0.3 m. 
➢ Influence of the parameters related to the block: 

• Increasing the block radius and, therefore, the weight 
Rn ↗, Rt ↗, RTE ↗ 

The trends may be compared to trends cited in the literature ([6]): 
o Ritchie [13], in 1963, and Gerber [4], in 1995, basing on in situ observations, affirmed 

that the characteristics of the slope influence the blocks’ kinematics. They observed 
that increasing the impact angle, the loss of energy becomes bigger. 

o Habib [5], in 1977, declared that the normal coefficient of restitution is not only 
related to the ground material, but it is also a function of the block’s kinematics, the 
mass and the shape. 

o Bozzolo and Pamini (1986) [1], noticed that the RTE depends on the impact angle: the 
energy dissipated rises with the growth of the impact angle, till a maximum value for 
an impact perpendicular to the surface.  

o Pfeirrer and Bowen (1989) [11] perceived that faster blocks dissipate more energy 
than slower ones, during impact. 
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o B. Heidenreich (2004) [6] explained what happens during the impact: the translational 
energy decreases quickly, and the rotational one rises due to friction between block 
and slope. 
Additionally, B. Heidenreich observed that for falling heights between 5 and 10 m, Rt 
grows slightly with the coupled raise of mass and radius of the boulder. Even Rn 
shows a growing in this context. 
Finally, for increasing falling heights (so, impact velocities), she ascertained that Rt 
decreases greatly, while Rn and RTE present, generally, a slower decreasing. In the half 
– scale experiments context (block with a radius of 0.3 m, in our case), she observed 
an initial increasing of the Rn with the falling height, that she justified in the way 
explained below. For small values of falling heights, the block rolling imposes the 
rebound direction (fairly tangential, so Rn results little, and Rt assumes a high value). 
For increasing falling heights, the growing slope ground resistance in front of the 
block provokes a more normal rebound, with respect to the slope (Rn initially rises, 
while Rt decreases strongly). 

The comparison highlights that the trends from the model are consistent with test results 
obtained considering different experimental conditions.  

Unfortunately, no real – scale data were available to check the behavior of the model 
considering a block radius of 1 m. However, in the hypothesis of good functioning of the 
system, that simulations would be useful to extend the study to more serious cases. 

 
6 CONCLUSIONS 

 

A simple block-soil interaction model has been proposed for modeling the rebound of 
rockfall on the uphill face of embankments. This simplified model relies on the substitution of 
the structure body by a surface, located on its impacted face, in order to save computation 
costs.  

Different DEM strategies were considered for developing such a model using Yade’s 
elements. The optimum consisted in a membrane made of the repetition of elementary 
structures made of 4 PFacets, supported by cylinder elements. The proposed model allows 
accounting for plasticity of soil associated to compaction and for friction at the block-surface 
interface.  

A first comparison with previous studies confirmed the relevancy of the proposed 
modeling approach. In case of normal-to-the membrane impacts, observed trends concerning 
the penetration are in line with previously described ones. Varying the angle of incidence of 
the rock block also shows similar trends as those observed in the past. However, some 
limitations rose when addressing the influence of the block angular velocity (not shown here). 
Indeed, the latter appeared to have a moderate influence on the restitution coefficients, 
contrary to what was expected. This point will be improved.  
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Abstract. Some high-speed rail lines go through desert zones where sand particles
transported by winds may foul track ballast layers. This fouling can be troublesome since
it increases the stiffness of the layer and reduces its capacity to absorb vibrations from
the rolling stock.
We are studying this phenomenon through both laboratory and numerical experiments.
In the laboratory, we performed two kinds of experiments: 9 inches triaxial tests and
physical modelling in the CEDEX Track Box testing facility. The latter is a unique 1:1
model of railway track section (of dimensions 21 m ×5 m ×4 m) that has been built to
model high-speed rail lines (with passenger and freight trains passing at velocities of up
to 400 km/h). The laboratory experiments allowed us to measure the change of stiffness
with the fouling level (represented through the void contaminant index, VCI). Numerical
simulations are being performed with the Discrete Element Method, reproducing drained
triaxial test conditions. Due to the considerable different size of railway ballast and sand
grains, we are using idealized packings of spherical particles to study this phenomenon. We
are paying particular attention to the sample size effects and are registering the evolution
of the stiffness with the fouling level up to high values of VCI. The results obtained from
these idealized systems will be contrasted to the laboratory experiments carried out with
real railway ballast and sand.

1 INTRODUCTION

The railway track is a layered foundation made of several layers: railway ballast, com-
pacted sub-ballast and form layer, followed by an embankment or formation soil. Railway
ballast is an uniformly graded coarse granular material that is placed underneath and be-
tween track sleepers. The purpose of railway ballast is to provide drainage and structural
support for the loading applied by trains. Rock type, quality, size distribution, and parti-
cle shape are among the major considerations in ballasted railway track design. Usually,
the ballast is produced by crushing locally available rocks such as granite or basalt.

1
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Pablo Jiménez, Clara Zamorano, José Estaire, Alejandro de Benito and Ignacio G. Tejada

One of the challenges found in ballasted tracks is the fouling, i.e. the contamination with
thinner granular materials, which increases the stiffness of the layer and can make it loose
its capacity to absorb vibrations. The fouling may be caused by ballast breakdown, by
the migration of subgrade particles or by the deposition of coal dust, among others. In
railway lines crossing desert zones, the sand carried by the wind can foul the ballast.
In this context, the CEDEX conducted some studies to analyze the phenomenon of bal-
last fouling with sand [1]. These studies were mainly experimental and consisted on large
triaxial tests and the measurement of track stiffness in a 1:1 scale model of a railway track
built in CEDEX Track Box. In these tests, ballast was fouled with fine sand in different
levels to determine its influence in the ballast mechanical properties. Both tests presented
very good agreement. The study concluded that the stiffening is only noticeable at high
levels of contamination and also helped to quantify the effect.
In the light of these results, we are now setting up a series of numerical simulation with
the Discrete Element Method [2]. This method may help to understand the behavior of
railway ballast [3, 4, 5, 6, 7, 8] or phenomena caused by the fouling [3] The purpose of this
on-going work is twofold: to quantify the uncertainty of the measurements and to explain
the stiffening curve that has been observed in the laboratory. The main advantage of nu-
merical modeling is that the experiments can be massively repeated, something imposible
in the laboratory because of the difficulties to handle such amount of railway ballast, the
duration of the tests and the specific needs. Although some DEM models reproduce much
better the complex shape of the particles with clumps [3, 5] or contact models [8], fouling
phenomena need a lot of particles and considerably simplifications are necessary. In fact,
the modelling of the fouling needs the inclusion of so many particles that these have to
be pretty simple to make numerical experiments computationally feasible.

2 METHODOLOGY

2.1 Theoretical background

Fouling degree: several index have been proposed to quantify the degree of fouling [9].
We have used the Void Contaminant Index [10], which is defined as:

V CI =
1 + ef
eb

Gb

Gf

Mf

Mb

=
Vf,t

Vb,void

, (1)

being ef, eb the void ratios, Gf, Gb the relative gravity and Mf, Mb the masses of fouling
material, f, and railway ballast, b, respectively. Vb,void is the volume of the voids in the
clean railway ballast and Vf,t is the total volume occupied by the fouling material. There-
fore the definition of V CI actually corresponds to a saturation degree, which ranges from
0 (clean ballast) to 1 (completely fouled ballast).

Mechanical behavior of clean railway ballast: if the railway ballast was supposed
to be a homogeneous, isotropic and lineal elastic material, under drained triaxial testing
conditions, the next relationship between deviatoric stress and axial strain would be found
(after the isotropic compression of the sample):

σ1 = E0ε1 , (2)

2
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where E0 is the Young’s modulus of the material. σ3 is assumed to not change during the
application of the deviatoric load.
The linear model is useful only for low stress (or strains) levels. When this is not the
case, a more advanced constitutive relationship is needed. A well-known model, which
is widely used to reproduce the relationship between deviatoric stress and axial strain in
drained triaxial compression tests, is the celebrated hyperbolic model [11]:

σ1 − σ3 =
ε1

1
E0

+ ε
(σ1−σ3)ult

. (3)

The elastic tangent modulus E0 and the ultimate deviatoric stress (σ1 − σ3)ult are the two
parameters that scale this model. For small strains and constant σ3, Eq. 2 approximates
Eq. 3.

Mechanical behavior of fouled railway ballast: when the ballast is fouled with
a material made of much smaller grains, because of gravity, most of the fouling material
goes down and saturates the bottom of the sample, while the rest of the sample remains
clean. As a result, the mechanical behavior is that of a bilayered material. A simplistic
approximation to the bilayered material would be a sample of height H that is made
of two layers of different materials, of heights H1 and H −H1 and whose corresponding
Young’s moduli are E1 and E2 (with E1 > E2). An elastic 1D approximation to the
drained triaxial conditions, would lead to a relationship like Eq. 2, with an equivalent
Young’s modulus given by:

1

Eeq

=
H1

H

1

E1

+
(H −H1)

H

1

E2

. (4)

If the Young’s modulus of a railway ballast fully saturated with sand is Eb+f and that of
the clean ballast is Eb and H1 = V CI ·H, this simplistic approximation would give:

1

Eeq

=
V CI

Eb+f

+
(1− V CI)

Eb

. (5)

Equation 5 predicts that the equivalent Youngś modulus should progressively increase
from Eb (V CI = 0) to Eb+f (V CI = 1), with a higher rate as V CI → 1.

2.2 Laboratory experiments

Several laboratory tests were performed with real railway ballast. More details are
found in [1]. Ballast grains were composed of an andesite that came from an authorized
quarry for railway ballast in high speed lines in Spain. Ballast sieve sizes ranged between
25 and 60 mm, with D50 = 40 mm and a coefficient of uniformness Cu = 1.48. The sand
used to evaluate the effects of railway ballast fouling was composed mainly by quartz,
with D50 = 0.4 mm and Cu = 1.6. The relative density of the sand was Gf = 2.65 and
it presented maximum and minimum densities of 1.64 · 103 and 1.44 · 103 kg/m3. These
values correspond to porosities of nmin = 0.37 and nmax = 0.46.

3
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2.2.1 Triaxial testing

The mechanical behavior of the fouled ballast was studied through large triaxial testing.
Clean and fouled specimens were tested (with corresponding V CIs of 0.0, 0.15, 0.30, 0.45,
0.62, 0.80 and 1.00). This was done by pouring a certain weight of of sand into the cell
containing the ballast. The sand went down and filled the void from the bottom of the
specimen. The dimensions of the cell were 230 mm diameter and 460 mm high. The ballast
was compacted in five layers with vibratory hammer until reach a porosity of nb = 0.39.
The maximum particle size in the sample was 60 mm so the ratio cell diameter to particle
size was 3.85, a little below the recommended value 5.0 [12]. The confinement pressure
was 150 kPa. The deviatoric vs axial strains curves were fitted with a hyperbolic model
to obtain a value of the initial tangent modulus E0 for each V CI.

2.2.2 Physical modeling

The CEDEX Track Box (CTB) is a unique physical model of high speed railway track.
This 21 m long, 5 m wide and 4 m deep model allow to test, at the real scale, complete
railway track sections of conventional and high speed lines for passenger and freight trains,
at speeds up to 400 km/h [1]. The simulation of the effect of the approaching, passing-
by and departing of a train in a test cross-section is achieved by applying loads that
are adequately unphased as a function of the train velocity. Forces are applied by three
pairs of servo-hydraulic actuators (each of them can apply a maximum load of 250 kN
at a frequency of 50 Hz), placed on each rail and 1,5 m longitudinally separated. Two
piezoelectric actuators can apply loads up to 20 kN at 300 Hz to reproduce wheel or
trach defectives. The railway track response, in terms of displacements, velocities and
accelerations, is collected from a great number of LVDTs, geophones, accelerometers and
pressure cells installed both inside the embankment and the bed layers (ballast, sub-
ballast and form layer) of the track.
Quasi-static loading tests were performed to assess the mechanical behavior of the track
fouled with sand at different levels of V CI. The tangent elastic modulus was estimated
from the deformations.

2.3 DEM simulation

The discrete element method [2], implemented in YADE-DEM [13]1 is used to get
more insights into the stiffening of the railway ballast fouled with sand. The toy-models
are made of spherical particles. The interaction between spheres is frictional-Hookean,
with normal stiffness kn = 2ER̄ and 1/R̄ = 1/R1 + 1/R2 (being R1 and R2 the radii of
interacting particles). The introduction of small particles may considerably increase the
computational cost of simulations since the number of particles is much larger and the
critical timestep is reduced. As the computer performance is undoubtedly limited, not
all V CI levels can be simulated. We have set up a simulation plan including two main
stages:

1https://yade-dem.org/.
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1. Determination of the representative cell size for clean railway ballast: the
first step is the establishment of the lowest number of large spheres that have to
be included in the simulation box to get accurate measurement of the parameters
for the hyperbolic model. To do that, several samples of almost equal sized spheres
were compressed at scaled rates to reach the confinement isotropic stress. Then a
deviatoric load was applied in one of the direction while the stress was maintained
in the perpendicular ones. The deviatoric strain vs axial strain curve was fitted by
a least squares procedure to get the parameters for the hyperbolic model in each
case. This process was repeated several times for each number of large spheres to
generate a statistical sample. The confidence interval of the measured parameters
are Eo±∆E0 and (σ1 − σ3)ult±∆(σ1 − σ3)ult were established -after expecting that
the values follow a normal distribution- from the following equation:

∆x = tα,N−1
Sx√
N

, (6)

where N is the number of tests, Sx is the squared root of the unbiased sample vari-
ance and tα,N−1 is the double side t-distributed value corresponding to a confidence
level α. A coefficient of variation has been defined as

CoV =
∆x

x
. (7)

CoV is expected to decrease with the number of large spheres Nb in the simulation
box. The critical value Nb,c is that on which boundary or other effects have no
influence on the results. This will be precisely the number of large spheres that we
will use in simulations with fouled samples.

2. Triaxial testing of fouled samples: Once Nb,c is known, we follow the same
triaxial testing procedure that we followed with clean samples. However, when the
sample has been isotropically compressed and right before the application of the
deviatoric load, a set of small spheres is introduced within the voids. We would
desire to include as many, and as small, as possible spheres to approximate the
real conditions but this is not always possible. As the large sphere to small sphere
ratio increases, the number of small spheres explodes. This has been illustrated in
Figure 1. These data have been obtained after assuming that the coarse fraction
reaches a random close packing [14] with porosity n = 0.36 and that the small
fraction is packed with the same porosity within the voids created by the coarse

packing. The total number of spheres in the simulation will be Nb,c ·
(
1.0 + Nf

Nb

)
.

Size ratios below 10.0 are undesired because small particles could block the throats
between the voids. Much higher sizes ratios would make simulations unfeasible. For
example, in the laboratory experiments (section 2 above), D50,b/D50,f = 100, and
this means that 360, 000 small spheres should be included per each large one to
reach a V CI of 1.0.
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Figure 1: Number of small spheres to be included in the simulation of each large to small
particle size ratio and V CI.

Table 1: Parameters used in the DEM numerical simulations to generate ensemble sam-
ples.

Mean diameter D 0.1 m

Diameter variation
∆D
D 0.2 -

Young’s modulus E 1.5 · 107 Pa

Particle density ρs 2.6 · 103 kg.m−3

Interparticle friction Φ π/6 rad

Confinment pressure σ3 50.0 kPa

The parameters used in the simulations are included in Table 1. Packings were generated
by slowly compressing a loose cloud of particles until the confinment pressure is reached.
The cell is surrounded by elastic walls, which are moved to reduce or increase the cell size
and hence increase or reduce the stress. Both the size of the initial cell and the applied
strain rates were scaled with N

1/3
b factors. The diameters of the spheres uniformly laid

within the interval Db ±∆Db. After the isotropic compression, two opposite walls were
moved at constant rate until produce an axial strain of ε1 = 0.2. The walls parallel to
direction 1 were moved to keep the value of the confinement pressure constant.

3 RESULTS

Laboratory triaxial tests and the DEM simulation of these are showing a nonlinear de-
viatoric stress vs. axial strain curve that can be approximated by a hyperbolic model. In
Figure 4 these curves are shown for different experiments performed with 5000 particles.

6

255
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(a) Coefficient of Variation (b) Mean value and % 95 confidence interval.

Figure 2: Initial tanget modulus E0

(a) Coefficient of Variation (b) Mean value and % 95 confidence interval.

Figure 3: Asymptote, (σ1 − σ3)ult.
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Figure 4: Deviatoric stress vs. axial strain simulated with DEM for 2000 spheres.

5000 is precisely the number that we take as Nb,c, according to what is shown in Figures 2
and 3.

In Figure 5 the first values of Eb+f/Eb obtained from DEM at low V CIs are compared
to those obtained in the laboratory. A value of Db/Df = 10 was used. A few set of data
have been produced to the date, so the uncertainty is high and conclusions cannot be yet
established.

4 CONCLUDING REMARKS

- Laboratory experiments (large triaxial testing and physical 1:1 model) had shown
an increase of the stiffness of railway ballast fouled with sand characterized by a
bimodal behavior: no stiffening below a threshold V CI and almost linear increase
over that value. However the variation of the data is considerable and the data set
is reduced.

- We are investigating if an idealized DEM model made of almost uniform spherical
particles contaminated with smaller spheres may help to understand how the stiff-
ness changes at different levels of V CI. In particular we aim to understand if the
curve stiffening vs V CI is actually bi-modal or not.

- The on-going DEM simulation campaign first tries to establish the confidence in-
tervals to reduce as much as possible the number of coarse particles included in the
simulation. An additional analysis on whether or not the critical number of large
particles could be reduced for high V CI values will be performed.

8
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Figure 5: Stiffening as a function of the V CI.

- Once the confidence intervals are properly established, the bi-modal or continuously
growing shape of the stiffening curve would be more clearly understood.
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[1] J. Estaire, V. Cuéllar, and M. Santana. Track stiffness in a ballast track fouled with
desert. In GEORAIL International Symposium, 11 2017.

[2] P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assem-
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Abstract. Particle damping has become a favorable passive damping technique for
lightweight structures, however, its complex dimensioning process hinder its wide use in
technical applications. An experimental based model and a numerical model are developed
in order to investigate the energy dissipation of the dampers regardless of the underly-
ing structure. The experimental model consists only of the particle box with a free-free
boundary condition, which is excited by a harmonic force. Via the complex power, the
loss factor and the energy dissipation are obtained. A corresponding numerical discrete
element model is developed. With these models, a large frequency and acceleration range
is analyzed. Different filling ratios of the particle box are investigated, indicating the high
potential of particle dampers for different excitation ranges. First comparisons of experi-
ments and simulations showing a good qualitative agreement, enabling the simulation as
a future design tool for particle dampers.

1 Introduction
One favorable passive tool to reduce vibrations of technical applications is the utiliza-

tion of particle dampers being a derivative of impact dampers. Instead of using only
one impact object, dozens or even thousands of particles might be included in a single
particle damper. Thus, the particle size normally ranges from the micrometer scale to
the millimeter scale. Either a box or a hole in the vibrating structure serves as a parti-
cle container. The structural vibrations are transferred via the container walls onto the
particles. Interactions between particles and between particles and the container walls
cause an energy dissipation by impacts and frictional phenomena, resulting in vibration
attenuation.
Particle dampers show several advantages when compared to other existing passive damp-
ing techniques [1]. However, despite the efficiency of particle dampers, they have been
used only in a few different engineering applications so far mostly designed for a very
specific system. This might be due to the fact, that the physical processes in the particle
dampers are complex and highly nonlinear. These processes are not fully understood yet
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and depend on a variety of different influence parameters, like the excitation frequency,
the vibration amplitude, the filling ratio of the container and the used materials. These
dependencies make the optimal design of particle dampers so far very burdensome and
time intensive due to empiric parameter tuning.
Particle dampers might be analyzed utilizing a specific underlying vibrating structure [2].
Instead, in this paper investigations are performed concerning the energy dissipation of
particle dampers directly, by excluding the underlying structure. The obtained exper-
imental and numerical results and insights provide a tool for a target-oriented particle
damper design. Therefor, an experimental based model and a numerical model for the
particle damper are introduced. Both models consist only of the particle box with a
free-free boundary condition, which is excited by a harmonic force. The complex power
is calculated by the velocity signal and the excitation signal. Via the complex power,
the loss factor and the energy dissipation are obtained. A large frequency range (40 Hz -
1 kHz) and acceleration range (10 m/s2 - 400 m/s2) is investigated.
For the numerical model the discrete element method is used. The simulations help
to identify the interdependent parameters affecting the energy dissipation of particle
dampers. Particles are considered as unconstrained moving bodies only influenced by
their interactions. The experiments are compared with the numerical results. The influ-
ence of the different contact parameters are analyzed. A good qualitative agreement is
achieved by using a velocity dependent coefficient of restitution and sliding friction.

2 Experimental model
In [2] particle dampers are analyzed utilizing an underlying vibrating structure. Here,

the energy dissipation of particle damper alone is investigated, i.e. without an under-
lying structure. Thus, a corresponding testbed is developed, see also [3]. A systematic
representation and a picture of these are shown in Fig. 1. The concept of the testbed is
a particle box with a free-free boundary condition and excited by a controlled harmonic
force via a shaker. The excitation force is controlled such, that the frequency and accel-
eration magnitude of the box stays constant. Via the measured velocity of the box and
the measured force of the shaker, the complex power is determined [4]. By the complex
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Figure 1: Systematic representation (left) and picture (right) of the testbed.
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power, the energy dissipation and the loss factor can be calculated.
The box is made of aluminum with a cubical shape and an inner edge length of 4 cm.
The free-free boundary condition is accomplished by two ropes. The force sensor, the
accelerometer, and the control system are from Brüel & Kjaer. While the box is ex-
cited by the LDS V455 shaker, its acceleration is controlled via the LDS Comet system.
Due to the impacting particles on the box walls, the acceleration signal is very noisy. In
order to use this acceleration signal in the control of the excitation, the accelerometer
is additionally equipped with a mechanical low-pass filter. It consists of a plastic tube
with a Young’s modulus of 86 N/mm2. This filter element is designed in a way that its
eigenfrequency ω is at 2.5 kHz. Hence, the single particle impacts on the box walls are
filtered efficiently, as their contact frequency is normally significantly above 5 kHz. Simul-
taneously, frequencies up to the measurement range of 1 kHz are only little influenced.
The velocity of the particle box is measured via a laser vibrometer (LV), the PSV-500,
from Polytec. The data acquisition of the velocity and force signals are accomplished
by the Front-End of the PSV-500 with a sampling frequency of 250 kHz. The second
accelerometer, seen in Fig. 1 (right), is not equipped with a filter as it is only used for
triggering the measurement. The feasible measurement range of the system is between
40 Hz till 1 kHz and between 10 m/s2 till 400 m/s2. The measurement range is divided
into a logarithmic grid of 108 points. Nine frequencies and twelve acceleration values are
used and each combination is measured for 2.5 s.

3 Complex power
For the determination of the dissipated energy and the loss factor, the complex power P ,

introduced for particle damper analysis by Yang [4], is used and briefly summarized here.
Given a harmonic excitation, the complex power follows to

P = 1
2FV ∗. (1)

Hereby, F denotes the fast Fourier transform (FFT) of the force signal and V ∗ the con-
jugate FFT of the velocity signal. The dissipated power Pdiss and the maximum power
stored in a cycle Pmax follow from the complex power as

Pdiss = Real(P ) = 1
2 |F ||V | cos(φF − φV), (2)

Pmax = Imag(P ) = 1
2 |F ||V | sin(φF − φV). (3)

The phase angles of the force and velocity signals are denoted by φF and φV respectively.
To obtain the dissipated energy per radiant Ediss the dissipated power is divided by the
excitation frequency Ω as

Ediss = Pdiss

Ω . (4)
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The loss factor η is defined as the ratio of the dissipated power to the maximum power
stored in a cycle as

η = Pdiss

Pmax
= Real(P )

Imag(P ) . (5)

4 Discrete Element Method
The Discrete Element Method (DEM) is a discrete simulation method for granular

materials. The DEM has been developed by Cundall and Strack [5] for the simulation of
systems consisting of discs and spheres. Its general concept can be used for any system
of many unconstrained particles where the system behavior is governed by the contacts
between these particles [6]. While in general the particles can have an arbitrary shape, for
efficiency purpose mostly spherical particles are used in the simulations. Every particle
is considered as an unconstrained moving body only influenced by applied forces. The
dynamics are obtained by setting up Newton’s and Euler’s equation of motion for every
particle [7]. For spherical particles, this reads

miẍi = F i, I iω̇i = M i (i = 1, ..., N), (6)

with ẍi and ω̇i being the translational and rotational accelerations. The particle mass
is denoted by mi and its diagonal inertia tensor by I i, whereby all three entries of I i

are identical. The applied forces and moments are denoted by F i and M i, and N is
the total number of particles. The Eq. (6) is in general a coupled nonlinear differential
equation with 6N degrees of freedom for 3D simulations. Particle systems often contain a
large number of particles (up to thousands or millions). During the time integration, all
existing contacts need to be detected and resolved in every time step. Therefore, efficient
detection algorithms and contact laws are needed. Also, the choice of an appropriate time
integration scheme is crucial [6]. In this research, the algorithms presented in [2] are used
and only shortly introduced.

4.1 Contact forces
In DEM simulations, particle-particle and particle-wall continuous contacts occur. The

contact partners are treated as rigid, thus only touching in a single point. In continuous
contact modeling, the contact partners i and j are allowed to overlap, and virtually con-
nected by unilateral springs and dampers, as shown in Fig. 2. Hereby, the corresponding
contact forces occur which counteract the overlap δij. For the calculation of the contact
forces, various models have been developed [8, 9, 10]. The contact law of Hertz [8] is
widely used for a sphere-sphere contact, as it is based on physical parameters, namely
the Young’s modulus Ei/j and the Poisson’s ratio νi/j. Later on, the result of Hertz was
extended by a dissipative term [9, 10]. In the simulations, the formula of Gonthier [10]
for the normal contact force is used, which reads,

FN,ij = kijδ
3/2
ij

(
1 + d̄

e

δ̇

δ̇a

)
. (7)
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Figure 2: Contact states (left) and contact model (right) of two spheres.

Hereby, the contact stiffness and the material parameters are given as

kij = 4
3π(hi + hj)

√
rirj

ri + rj

, (8)

hi/j =
1 − ν2

i/j

πEi/j

. (9)

The penetration velocity and the initial penetration velocity in normal direction are de-
noted as δ̇ and δ̇a respectively. The coefficient of restitution e (0 < e < 1) controls the
amount of energy dissipation during the contact. In contrast to other contact models, e.g.
Lankarani [9], the formula of Gonthier (7) can be applied to nearly the complete range
of e. The nonlinear parameter d̄ is only depending on e and can be solved once offline [10].
For spherical particles, the tangential forces result only from sticking and sliding friction,
whereas the resistance of the surface is described by the coefficient of friction µ. For
highly dynamical systems the sticking friction can be neglected [6]. When only sliding
friction is considered, a smoothing hyperbolic tangent function can be used, in order to
avoid jumps in the friction forces at zero velocity, see [11]. The sliding friction reads

F R,ij = −µ|FN,ij|tij tanh(τ |vt
P,ij|), (10)

with vt
P,ij being the relative, tangential velocity at the boundary point P and τ as the

smoothing parameter. The tangential direction is denoted by tij. The resulting torques
on the particles are only depending on the friction forces, as the normal forces are always
pointing towards the center of mass of the particles. For comparison also sticking friction
is implemented, see [12]. However, in the simulation this model is much more time
consuming.

4.2 Contact detection and time integration
Another very important component of the DEM is the contact detection. All existing

contacts have to be determined in every time step. A variety of algorithms have been
developed for this task, such as sort-based, cell-based, or tree-based ones, decreasing the
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complexity to an optimum of O(N). In the program, the verlet list in combination with
the link cell algorithm is used [7].
Also, the time integrator has a big influence on the simulation speed and the overall
stability. As the contact detection and evaluation of the contact forces are most time-
consuming in DEM simulations, the numerical effort for the time integrator itself is often
negligible. But, its choice has a big influence on the number of evaluations of the equation
of motion. In this research, good results with the fifth order Gear predictor-corrector
algorithm [13] have been achieved.

4.3 Coefficient of restitution calculation using FEM
In DEM simulations often a constant coefficient of restitution (COR) is used. Indeed,

this is in reality not the case, as the COR depends on a variety of influence parameters.
These influence parameters are mainly associated with the energy dissipation effect. For
the used metals (S235 and Al6060) in this work, the energy dissipation comes mainly from
plastic deformations in the contact zone. Thus, the impact velocity has a big influence on
the COR. There exist different investigations on the COR, as for instance in [14, 15, 16]. In
this work, the FEM-approach and material data from [16] are used. Metals often behave
elastic-viscoplastic. This means, that the plastic flow also depends on the strain-rate. For
the material description the Perzyna model [17] is used. This model relates the dynamic
yield stress σd by a factor β with the quasi-static yield stress σy and the effective plastic
strain-rate ε̇ by

σd = βσy with β = 1 +
(

ε̇

γ

)m

. (11)

The material viscosity parameter is denoted by γ, and the strain-rate hardening param-
eter by m. Both parameters have to be obtained from the Split Hopkinson pressure bar
test.
In Fig. 3 the quasi-static yield stress for S235 and Al6060 are shown. In Tab. 1 the corre-
sponding material data and Perzyna coefficients are listed. Finite Element simulations of
two impacting particles are performed to determine the COR. A schematic representation
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Figure 3: Quasi-static stress-strain curves.

Table 1: Material parameters.

Material E [GPa] ν [-] ρ [kg/m3]
S235 208 0.3 7800

Al6060 67.7 0.33 2702

σy [MPa] γ [-] m [-]
230 305 0.403
205 5548 1
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of the sphere-sphere model is shown in Fig. 4 (left). The spheres have an initial radius of
5 mm, which can be scaled for different sizes. Each sphere consists of 6093 axis symmet-
ric 2D elements, in Abaqus called CAX4R. The element size varies between 0.5 mm till
0.015 mm. Both spheres are assigned with half the collision velocity (δ̇a) with opposed
signs.
The kinematic COR is evaluated by the normal velocities of the spheres before (0) and
after (1) the collision of sphere I and II, reading

e = v1
I − v1

II
v0

I − v0
II

. (12)

The velocities before impact are priori known. The velocities after impact are evaluated
at the reference points of the spheres. The mean value of the last 200 time steps is
taken, as the velocity is oscillating a little bit due to mechanical vibrations of the spheres,
which are induced thru the collision. If instead of a sphere-sphere contact a sphere-
wall contact is simulated one sphere is replaced by a wall. The wall is modeled as a
cylinder with its diameter and length being the diameter of the sphere. The contour of
the cylinder is completely clamped. In the later DEM simulations steel spheres of 5 mm
radius will be used. The box is made of aluminum. For these settings, the COR is shown
in Fig. 4 (right). A high dependency on the impact velocity is observed. For both settings
the COR is close to one for small impact velocities. When the impact velocity increases
the COR starts to decrease rapidly. For high velocities the COR drops to 0.5 till 0.4.

5 Experimental and numerical investigations
To check the experimental measurement system the empty particle box is analyzed

first. As only minor damping effects, arising from the boundary condition or material
damping, exist the energy dissipation is very small. The mean value of the loss factor
is about 0.01. In the next step, particles are filled in the box. Unhardened, steel balls
made of V2A, which are used in the hardened form for ball bearings, are utilized. These
have a high degree of roundness and accurate material parameters are available for the
later simulation purposes. For the first setup, 58 of 62 maximum possible particles with
a radius of 5 mm are used. The total weight of the particles is 241 g.
The energy dissipation and loss factor for this setting are shown in Fig. 5. From the loss
factor a high energy dissipation over a big area of the measurement range can be observed.
The mean loss factor is 0.18, which is eighteen times higher than in the empty case. The
loss factor is especially high for medium frequencies (60 Hz - 150 Hz) or medium acceler-
ations (20 m/s2 - 70 m/s2) with an value up to 0.7. Only at high frequencies (>200 Hz)
and high accelerations (>100 m/s2) the dissipation is comparatively small. The minimum
value of the loss factor is here only 0.03. In the area of high frequencies (≈800 Hz) and
low accelerations (≈10 m/s2) the loss factor becomes unrealistic high. However, in this
area the energy of the system is very low and inaccuracies in the force signal have a bigger
effect on the result. At the lower border of the frequency range (<60 Hz) and acceleration
range (<20 m/s2) the loss factor starts to drop, showing that here another ineffective area
of the particle damper starts.
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The model consists only of the particle box with a free-free boundary condition, which
is excited by a harmonic force. Via the complex power, the loss factor and the energy
dissipation are obtained. A large frequency and acceleration range is analyzed. Different
filling ratios of the particle box are investigated, indicating the high potential of particle
dampers for different excitation ranges. First comparisons of experiments and simulations
showing a good agreement, enabling the simulation as a future design tool for particle
dampers.
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Figure 4: Left: Schematic representation of the FEM model of two impacting spheres.
Right: Velocity dependent COR for a sphere-sphere and sphere-wall contact with a size of 10 mm.
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Figure 5: Measured energy dissipation (left) and loss factor (right) with 58 particles of 5 mm radius.

5.1 Numerical investigations of the contact parameters
In the following, the DEM simulation results are compared with the measurements. In

order to do so, the measured frequencies and acceleration values are simulated. Each grid
point is simulated for 25 periods, whereas the first five periods are cut off to remove the
irregular movement of the particles introduced by the initial conditions. The main adjust-
ment parameters are the force laws and their parameters. As normal force the formula of
Gonthier (Eq. (7)) is chosen, whereby a constant COR as well as the velocity dependent
COR from Fig. 4 are utilized. Indeed, not the exact same materials for the particles are
used in the experiment (V2A) as in the FEM simulation (S235), but their characteristics
are very similar. For the friction force no friction, sliding friction, see Eq. (10), and stick-
ing friction [12] are analyzed.
The best result between experiment and simulation is achieved with the velocity depen-
dent COR and the sliding friction with µ = 0.1. The relative mean difference of the energy
dissipation is 0.36. This setting is thus used for all following simulations. If instead a
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constant COR is used, the relative mean difference is 0.44, and the best COR has to be
found by excessive tuning. By neglecting friction the minimal relative mean difference
becomes 0.43. Taking the sticking friction algorithm the relative mean difference is 0.36,
but the simulation time is much higher as with the sliding friction algorithm.

In Fig. 6 the simulation results for

10-5

103
102

100

102

Figure 6: Comparison of experimental and numerical
results for the energy dissipation.

the chosen contact parameters are com-
pared to the measured results. The
biggest differences occur at low ac-
celerations (<20 m/s2) and high fre-
quencies (>250 Hz). Indeed, this area
is also prone to measurement inac-
curacies of the force signal. Also,
around 400 m/s2 and 100 Hz there is
a small area where the difference is
much bigger as in the surroundings.
In this area an offset in the energy
dissipation curves is observed and out-
side this area both curves agree well. This shows that the simulations meet the qualitative
characteristics of the energy dissipation very well, with some quantitative differences in
its magnitude. However, besides the quantitative discrepancies the simulations are very
useful to give qualitative insights on the complex dynamics inside the damper.
One special characteristic of particle dampers is the complex movement of the particles.
In the following, it is analyzed by simulation how this movement and the contact pa-
rameters are affecting the energy dissipation of the dampers for different periods. For
this purpose, the energy dissipation is directly calculated by the given force laws. In
Fig. 7 (left) the relative standard deviation of the energy dissipation is given for the four
edge points of the measurement range for one and for 20 periods. For only one period the
relative standard derivation is comparably high. Especially at high frequencies this is the
case. However, combining 20 periods reduces the standard deviation significantly. Thus,
in the simulations 20 periods are used for the calculation of the complex power.
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) periods.
Right: Ratio of dissipated energy of normal contacts to frictional contacts.
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In Fig. 7 (right) the ratio of the energy dissipation of normal contacts to frictional con-
tacts is shown. There exist three major regions, i.e. the energy dissipation is dominated
by the normal contacts, by friction or is on the same scale. For low frequencies (<100 Hz)
and low accelerations (<40 m/s2) the dissipation is dominated by friction by a factor up
to two. When the acceleration is increased, the dissipation becomes dominated by the
normal contacts up to a factor of three. For high frequencies (>250 Hz), independent
of the acceleration, both dissipation effects are on the same scale. Especially in this
area the highest standard deviations for the energy dissipation are determined, as seen in
Fig. 7 (left).

5.2 Filling ratio of the particle box
In the next step, different filling ratios of the particle box are analyzed using the ex-

periment and simulation. In addition, to the 58 particles, 40 and 62 particles are utilized,
with 62 being the maximum possible particle number. Here as well, a good qualitative
agreement between simulation and experiment is obtained. An extended frequency and
acceleration range is investigated using the simulation with 20 grid points for the fre-
quency and acceleration values. The frequency varies between 10 Hz till 1 kHz and the
acceleration between 10 m/s2 till 1000 m/s2. The results for the lost energy are shown in
Fig. 8. Comparing, 40 with 58 particles in Fig. 8 (left), one can see that the 58 particles
perform better for frequencies above 70 Hz. For frequencies below 70 Hz there is a strong
dependency on the acceleration. The 40 particles are here especially suited for the higher
accelerations. The energy dissipation in this area is dominated by the normal contacts,
which dissipate up to five times more energy as the frictional losses. A similar behav-
ior is seen by comparing 58 with 62 particles in Fig. 8 (right), but with shifted values.
For frequencies below 70 Hz, the 58 particles perform always better as the 62 particles.
For higher frequencies indeed, a high dependency on the acceleration is observed again.
Here, the 62 particles are especially suited for medium to high accelerations (>40 m/s2),
whereby the energy dissipation by the normal and tangential forces in this area is on
the same scale. The different dissipation values can be explained by the varying particle
activities [18]. The higher the particle activity is, the higher is the energy dissipation.
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Figure 8: Simulated energy dissipation for 40 vs. 58 particles (left) and 58 vs. 62 particles (right).
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Important factors seem to be amongst others the excitation frequency and acceleration,
the particle inertia, the available space to move for the particles and their material.

6 Conclusion
An experimental based model and a numerical model for the determination of the en-

ergy dissipation and the loss factor of particle dampers alone are presented. Excluding
the underlying vibrating structure and concentrating on the particle damper, enables to
make general statements about the energy dissipation effects in a single particle damper.
Thereby, a large frequency and acceleration range is analyzed. A significant energy dis-
sipation is determined with a high loss factor for specific excitations showing the high
potential of particle dampers. A good agreement between experiment and simulation is
achieved. The dissipation effect varies between normal contacts and frictional effects,
depending on the given excitation. Also, the filling ratio of the particle box showing a big
influence on the dissipation energy, as for different frequency areas different filling ratios
are better suited. With this parameter, a particle damper can be tuned for a specific
excitation, and thus maximizing the damping of the underlying structure. First compar-
isons of experiments and simulations showing a good qualitative agreement, enabling the
simulation as a future design tool for a target-oriented particle damper design. Though,
some quantitative differences remain and are focus of future research.

Acknowledgments.
The authors would also like to thank the German Research Foundation (DFG) for their

financial support of the project SE1685/5-1.

REFERENCES
[1] H. Panossian, Structural damping enhancement via non-obstructive particle damping

technique, Journal of Vibration and Acoustics 105 (114).

[2] N. Meyer, R. Seifried, Numerical and experimental investigations in the damping
behavior of particle dampers attached to a vibrating structure, Preprint Reihe des
SPP 1897 Calm, Smooth, Smart (7).

[3] N. Meyer, R. Seifried, An experimental model for the analysis of energy dissipation
in particle dampers, PAMM 19 (1), accepted.

[4] M. Y. Yang, G. A. Lesieutre, S. Hambric, G. Koopmann, Development of a design
curve for particle impact dampers, Noise Control Engineering Journal 53 (2005) 5–13.

[5] P. A. Cundall, O. D. L. Strack, Discrete numerical model for granular assemblies,
International Journal of Rock Mechanics and Mining Sciences and Geomechanics
16 (4) (1979) 77.

[6] F. Fleissner, T. Gaugele, P. Eberhard, Applications of the discrete element method
in mechanical engineering, Multibody System Dynamics 18 (1) (2007) 81–94.

11

270



Niklas Meyer, Robert Seifried
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ABSTRACT 

In agriculture, food, chemical, plastic and pharmaceutical industries for designing and operat-
ing machines, it is essential to determine the mechanical parameters of the processed granular 
materials. In most cases, these characteristics are the internal friction angle, the contact cohe-
sion developed by the surface moisture and the apparent cohesion occurred by the shape of 
the granular material. Further physical quantities are required to characterize the motion state 
of the particles, which were determined by laboratory measurements in this study. Hulled mil-
let was used for the measurements because its geometric shape can be modeled as sphere in 
the numerical investigations with good approximation. The porosity, the particle and bulk den-
sity of the hulled millet were determined by means of an air pycnometer in case of several 
moisture content. Using laboratory direct shear box test, under standard conditions, the shear 
strength of the cohesive liquid bridges and the internal friction angle in the bulk were deter-
mined. The results obtained were used for input parameters of a discrete element model. The 
aim of this research was to determine the micromechanical parameters by simulation, based 
on the macromechanical results of the hulled millet bulk during laboratory measurements. 

1. INTRODUCTION 
In the industry, it is necessary to know the physical and mechanical properties of the processed 
materials in order to operate and design different machines. Such parameters can be, for ex-
ample, the angle of repose and the internal friction angle of the materials in agriculture and 
food industry, as well as their bulk and particle density. It is important to distinguish between 
dry and wet material bulks, as the moisture content of the surface and the material can greatly 
affect the movement and behavior of the bulk. Nowadays, various design and operation tasks 
are supported by computerized numerical models. Discrete Element Method (DEM) is a solu-
tion for modeling the movement of granular materials, which builds up a particle assembly 
from discrete elements with their own micromechanical parameters during the simulations [1]. 
Thus, we can distinguish between the mechanical parameters of the macro- and micromechan-
ical, ie. the bulk-level and the one-particle only. The former is used for operational planning 
and operation, and the latter for computer modeling and other grain processing operations (eg. 
hulling, seed separation, cleaning, grinding, etc.). 
C. J. Coetzee (2016) [2] described the steps of a DEM model calibration procedure and the 
effects of the particle shape. In his research, he determined some macromechanical material 
properties of crushed stones of less than 40 mm size by laboratory measurements and cali-
brated each micromechanical material parameters with DEM simulations. The internal friction 
angle was determined between particle-particle with direct shear box tests and angle of repose 
tests. He pointed out that the internal friction angle values obtained by the angle of repose tests 
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should be handled with care because they may prove to be low in other applications. In the 
DEM simulations, a particle model of linear springs, viscous dampings and Coulomb friction 
was used to model the real processes. 
In the research of Tamás K. et al. (2015) [3], mechanical properties of rapeseed were deter-
mined by measurements and DEM simulations, in which a particle contact model consisting 
of liner springs, viscous dampings and Coulomb friction was also used to describe the colli-
sions between the particles. In addition, the adhesion forces created by the surface moisture 
between the particles were modeled by cohesive bonds. In their research, direct shear box test 
was used, but the effect of the moisture content was not investigated. 
J. Horabik and M. Molenda (2016) [4] collected micromechanical parameters of agricultural 
crops and different DEM contact models used in the studies of other researchers. Considering 
the absorbent effects of each material, ranges were given for each material properties, but 
based on the parameters collected in this way, it is not possible to determine the range and 
function characteristics of the domains depending on the moisture content. 
In this study, DEM numerical simulations were carried out using cohesive-frictional contact 
model [5]. After developing the model of the direct shear box test and using the macrome-
chanical parameters obtained from the laboratory measurements, micromechanical parameters 
were determined. These were the rolling and twisting resistance coefficients and the normal 
and shear strengths of the cohesive bonds depending on the moisture content of the material. 
The aim of this research was to determine the micromechanical parameters by simulations, 
based on the macromechanical results of the hulled millet bulk during laboratory measure-
ments. 

2. MATERIAL AND METHOD 

2.1. Material 
In this research, hulled millet (Panicum miliaceum L.) was used, which is illustrated in Fig. 1. 

 
Figure 1. Hulled millet (Panicum miliaceum L.) 

Before the measurements, the impurities and the broken particles were removed by the wind 
classification device, and the nearly homogeneous distribution of particles was  created in the 
examined bulk. The material was wetted in a uniquely made rotating drum unit, into which a 
certain amount of millet and water was loaded. The drum was operated for 4 hours and it 
mixed the material at 10 minutes intervals for 2 minutes. The method for determining the 
moisture content of the hulled millet is to dry a sample from the bulk to constant weight at 
105±5 °C which takes generally about 24–48 h. By weighing the wet sample before drying 

273



3 
 

(𝑚𝑚𝑤𝑤𝑤𝑤) and after drying (𝑚𝑚𝑑𝑑𝑤𝑤), the moisture content on wet basis of the material could be 
calculated: 

𝑥𝑥 = 𝑤𝑤𝑤𝑤𝑤𝑤−𝑤𝑤𝑑𝑑𝑤𝑤
𝑤𝑤𝑤𝑤𝑤𝑤

∙ 100% (1)  

The typical diameter of the hulled millet was 𝑑𝑑 = 1.8 𝑚𝑚𝑚𝑚, which was determined by sieve 
analysis and the moisture content-dependent particle density by air pycnometer [6]. 

2.2. Experimental method 
Using direct shear box tests, geotechnical investigations can be carried out primarily, but now-
adays, with the widespread use of discrete element modeling, researchers are also using it for 
investigating larger granular materials [2], [3], [7], [8]. The operation of the equipment is 
based on the shearing of the particulate material bulk and the measurement of the resulting 
shear force at different normal direction loads which produces the normal stresses. The stand-
ard rectangular device used in laboratory measurements is illustrated in Fig. 2. 

 
Figure 2. The laboratory direct shear box (a), and the shear box filled with hulled millet (b) 

The standard laboratory direct shear box apparatus had an inner size of 60×60×30 mm where 
the granular material could be loaded. The shear speed of 𝑣𝑣𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 0.02 𝑚𝑚𝑚𝑚/𝑠𝑠 and shear 
displacement of ℎ = 6 − 9 𝑚𝑚𝑚𝑚 were set based on [9]. During the measurements, shear tests 
were carried out using 𝜎𝜎𝑙𝑙𝑙𝑙𝑒𝑒𝑑𝑑 = 11.96; 19.61; 29.42 𝑘𝑘𝑘𝑘𝑘𝑘 normal loads, and the evaluation was 
performed according to standard [8]. The shear force, shear displacement and time were rec-
orded during the measurement. For a given normal load, by knowing the shear cross-section 
(𝐴𝐴 = 60 ∙ 60 = 3600 𝑚𝑚𝑚𝑚2) and the measured maximum shear force (𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑤𝑤𝑒𝑒𝑚𝑚), the maxi-
mum shear strength of the granular material could be determined: 

𝜏𝜏𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑤𝑤𝑒𝑒𝑚𝑚 = 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑤𝑤𝑒𝑒𝑚𝑚
𝐴𝐴 (2)  

By illustrating the maximum shear strength (𝜏𝜏𝑤𝑤𝑒𝑒𝑚𝑚) and the normal load (𝜎𝜎) point pairs and 
then fitting a linear trend line, the failure envelope of the granular assembly can be obtained. 
The slope of the failure envelope defines the internal friction angle (𝜑𝜑 ′), and the axis section 
to the macromechanical apparent and contact cohesion shear strength of the particle assembly 
(𝜏𝜏𝑐𝑐𝑙𝑙ℎ,𝑤𝑤𝑒𝑒). 
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2.3. Discrete element method 
For numerical simulations, the Yade open-source discrete element software [10] was used, in 
which the model building can be done using python programming language. Cohesive-fric-
tional particle contact model (CohFrictMat) illustrated in Fig. 3 was utilized to model the rhe-
ological processes between the particles, in which the tensile forces resulting from the interpar-
ticle liquid can be modeled with bonds [5]. 

 
Figure 3. The schematics of the cohesive-frictional contact model (CohFrictMat) 

The particle contact model consists of a normal and a tangential linear spring and a friction 
slider modeling the Coulomb friction. Cohesive bond can be modeled as a rigid beam behav-
ioral element that can break due to tensile force in normal direction. In case of a particle col-
lision, the normal contact stiffness (𝐾𝐾𝑛𝑛) can be calculated from the modulus of elasticity of the 
colliding particles (𝐸𝐸1;𝐸𝐸2) and the radius of the particles (𝑅𝑅1;𝑅𝑅2), taking the harmonic average 
of the parameters: 

𝐾𝐾𝑛𝑛 = 2 𝐸𝐸1𝑅𝑅1𝐸𝐸2𝑅𝑅2
𝐸𝐸1𝑅𝑅1+𝐸𝐸2𝑅𝑅2

= 2 𝑘𝑘𝑛𝑛1𝑘𝑘𝑛𝑛2
𝑘𝑘𝑛𝑛1+𝑘𝑘𝑛𝑛2

(3)  

The tangential contact stiffness (𝐾𝐾𝑠𝑠) can be given by a proportional factor (𝜐𝜐), which can be 
used to control the Poisson ratio indirectly: 

𝐾𝐾𝑠𝑠 = 𝜐𝜐𝐾𝐾𝑛𝑛 = 2 𝐸𝐸1𝑅𝑅1𝜐𝜐1𝐸𝐸2𝑅𝑅2𝜐𝜐2
𝐸𝐸1𝑅𝑅1𝜐𝜐1+𝐸𝐸2𝑅𝑅2𝜐𝜐2

= 2 𝑘𝑘𝑠𝑠1𝑘𝑘𝑠𝑠2
𝑘𝑘𝑠𝑠1+𝑘𝑘𝑠𝑠2

(4)  

The normal force vector occurring during the collision of the particles can be calculated from 
the normal contact stiffness, the normal overlap of the particles (𝑢𝑢𝑛𝑛) and the normal vector (𝑛𝑛) 
perpendicular to the collision plane: 

𝐹𝐹𝑛𝑛 = 𝐾𝐾𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛 (5)  

The resulting shear force vector can be calculated from the tangential contact stiffness, the 
tangential velocity (𝑣𝑣𝑠𝑠), and the time step (∆𝑡𝑡) using incremental formulation that takes into 
account the value of one time step earlier: 

𝐹𝐹𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑠𝑠𝑡𝑡−∆𝑡𝑡 + 𝐾𝐾𝑠𝑠𝑣𝑣𝑠𝑠∆𝑡𝑡 (6)  

The maximum shear force can be determined from the normal force, the internal friction angle 
(𝜑𝜑′) and the shear strength of the cohesive bond (𝐹𝐹𝑐𝑐𝑐𝑐ℎ,𝑠𝑠) which is zero if there is no cohesive 
bond between the colliding particles: 
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𝐹𝐹𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 = |𝐹𝐹𝑛𝑛| 𝑡𝑡𝑡𝑡𝑡𝑡(𝜑𝜑′) + 𝐹𝐹𝑐𝑐𝑐𝑐ℎ,𝑠𝑠 (7)  

If the arising shear force during the collision exceeds the maximum allowed for elasticity, ie. 
|𝐹𝐹𝑠𝑠| > 𝐹𝐹𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, the shear force must be limited to meet the elasticity conditions and to slip: 

𝐹𝐹𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐹𝐹𝑠𝑠
𝐹𝐹𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
|𝐹𝐹𝑠𝑠|

(8)  

Based on these, the force vector arising in the contact point during the collision is: 
𝐹𝐹 = 𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑠𝑠 (9)  

The normal (𝐹𝐹𝑐𝑐𝑐𝑐ℎ,𝑛𝑛) and shear force (𝐹𝐹𝑐𝑐𝑐𝑐ℎ,𝑠𝑠) of the cohesive bonds can be calculated from the 
normal (𝜎𝜎𝑐𝑐𝑐𝑐ℎ) and the shear strength (𝜏𝜏𝑐𝑐𝑐𝑐ℎ) using the radiuses of the particles in contact: 

𝐹𝐹𝑐𝑐𝑐𝑐ℎ,𝑛𝑛 = min(𝜎𝜎𝑐𝑐𝑐𝑐ℎ,1;𝜎𝜎𝑐𝑐𝑐𝑐ℎ,2)min(𝑅𝑅1;𝑅𝑅2)2 (10)  

𝐹𝐹𝑐𝑐𝑐𝑐ℎ,𝑠𝑠 = min(𝜏𝜏𝑐𝑐𝑐𝑐ℎ,1; 𝜏𝜏𝑐𝑐𝑐𝑐ℎ,2)min(𝑅𝑅1;𝑅𝑅2)2 (11)  

If the arising normal force exceeds the normal-direction cohesive force, ie. |𝐹𝐹𝑛𝑛| > 𝐹𝐹𝑐𝑐𝑐𝑐ℎ,𝑛𝑛, the 
cohesive bond breaks between the two particles. There are two options for activating the co-
hesive bonds in the software. One is the 'setCohesionNow' command [11], which is used to 
activate the cohesive bonds between the overlapping (𝑢𝑢𝑛𝑛 > 0) particles at the given time step, 
and not after the bond breaking at later time steps. The other command is 'setCohesionOnNew-
Contacts' [11], which, after activation, creates cohesive bond at any later time step in case of 
particle overlapping. In the presence of cohesion bonds, the particles cannot roll freely and 
cannot twist freely, and in reality the shape of the particles is not a perfect sphere. In this way, 
bending and twisting torques have been introduced to adjust the above-mentioned aspects. To 
determine the torques, first, the relative angular velocity vector is required, which can be cal-
culated from the angular velocity vector (𝜔𝜔1;𝜔𝜔2) of the two colliding particles: 

𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙 = 𝜔𝜔2 − 𝜔𝜔1 (12)  

The rolling component of the relative angular velocity vector can be defined as follows: 
𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙,𝑏𝑏 = 𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙 − 𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙,𝑙𝑙𝑡𝑡 (13)  

Twisting component of relative angular velocity vector: 

𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙,𝑙𝑙𝑡𝑡 = (𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙 ∙ 𝑡𝑡)𝑡𝑡 (14)  

The rolling stiffness can be given by a proportionality factor (𝛼𝛼𝑘𝑘𝑟𝑟) relative to the radius of the 
particles and the tangential contact stiffness: 

𝐾𝐾𝑟𝑟 = 𝑅𝑅1𝑅𝑅2𝐾𝐾𝑠𝑠𝛼𝛼𝑘𝑘𝑟𝑟 (15)  

It should be noted that recent literature [12] has shown that the rolling stiffness should be 
compared to normal contact stiffness instead of tangential contact stiffness. Similarly, the 
twisting stiffness can be calculated with another proportionality factor (𝛼𝛼𝑘𝑘𝑙𝑙𝑡𝑡) as the rolling 
stiffness: 

𝐾𝐾𝑙𝑙𝑡𝑡 = 𝑅𝑅1𝑅𝑅2𝐾𝐾𝑠𝑠𝛼𝛼𝑘𝑘𝑙𝑙𝑡𝑡 (16)  
Finally, the bending (𝑀𝑀𝑏𝑏) and the twisting torque (𝑀𝑀𝑙𝑙𝑡𝑡) can be determined using an incremen-
tal formulation that takes into account the previous value of one time step: 

𝑀𝑀𝑏𝑏
𝑙𝑙 = 𝑀𝑀𝑏𝑏

𝑙𝑙−∆𝑙𝑙 − 𝐾𝐾𝑟𝑟𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙,𝑏𝑏∆𝑡𝑡 (17)  

𝑀𝑀𝑙𝑙𝑡𝑡
𝑙𝑙 = 𝑀𝑀𝑙𝑙𝑡𝑡

t−∆𝑙𝑙 − 𝐾𝐾𝑙𝑙𝑡𝑡𝜔𝜔𝑟𝑟𝑙𝑙𝑙𝑙,𝑙𝑙𝑡𝑡∆𝑡𝑡 (18)  
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The maximum allowable bending (𝑀𝑀𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚) and twisting torque (𝑀𝑀𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚), which still satisfy 
the elasticity conditions, can be calculated using the rolling (𝜂𝜂𝑟𝑟) and the twisting resistance 
coefficient (𝜂𝜂𝑡𝑡𝑡𝑡): 
 

𝑀𝑀𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚 = |𝐹𝐹𝑛𝑛|min(𝜂𝜂𝑟𝑟𝑅𝑅1; 𝜂𝜂𝑟𝑟𝑅𝑅2) (19)  

𝑀𝑀𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 = |𝐹𝐹𝑛𝑛|min(𝜂𝜂𝑡𝑡𝑡𝑡𝑅𝑅1; 𝜂𝜂𝑡𝑡𝑡𝑡𝑅𝑅2) (20)  

Similarly to the determination of the rolling stiffness, it is advisable to determine the maximum 
twisting torque with shear force instead of the normal force, based on literature [12]. If the 
resulting bending torque exceeds the maximum value, it must be controlled to meet the elas-
ticity conditions: 

𝑀𝑀𝑏𝑏
𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑏𝑏

𝑀𝑀𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚
|𝑀𝑀𝑏𝑏|

(21)  
Similar to bending torque, the twisting torque must also be limited: 

𝑀𝑀𝑡𝑡𝑡𝑡
𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑡𝑡𝑡𝑡

𝑀𝑀𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚
|𝑀𝑀𝑡𝑡𝑡𝑡|

(22)  
The critical time step calculated by the software is used to select the appropriate time step. 
The critical time step is given by the smallest value calculated from the particle radius, the 
particle density, and the modulus of elasticity, which calculation is done using all (i) particles 
[10], [13]: 

∆𝑡𝑡𝑐𝑐𝑟𝑟𝑙𝑙𝑡𝑡 = min
𝑙𝑙
𝑅𝑅𝑙𝑙√

𝜌𝜌𝑝𝑝,𝑖𝑖
𝐸𝐸𝑖𝑖

(23)  

Since there is no speed-dependent damping in the presented contact model, numerical (artifi-
cial) damping (𝜆𝜆𝑙𝑙) can be used to dissipate the kinetic energy of the particles. This is done by 
reducing the 𝐹𝐹𝑙𝑙 forces which increase the speed of the particles by ∆𝐹𝐹𝑙𝑙 force, taking into ac-
count the speed (𝑣𝑣𝑙𝑙) of the particles and their acceleration (𝑎𝑎𝑙𝑙) [9]: 

∆𝐹𝐹𝑑𝑑
𝐹𝐹𝑖𝑖

= −𝜆𝜆𝑙𝑙sgn𝐹𝐹𝑙𝑙 (𝑣𝑣𝑙𝑙 + 𝑚𝑚𝑖𝑖∆𝑡𝑡
2 ) (24)  

Based on these, the damping mechanism is not a physical but an artificial quantity, because 
the damping is done with a component that is not invariant with respect to the coordinate 
system rotation. The resting state of the examined particle assembly can be measured with the 
unbalanced force ratio during the simulations. This parameter specifies the ratio of the average 
of all forces exerted on the bodies and the magnitude of the average force in the contacts. In 
case of perfect static equilibrium, the total exerted force on the bodies is zero, so the ratio tends 
to zero. Meanwhile, the discrete elements of the simulation are stabilized and thus come to 
resting state. However, the ratio never takes zero value because of the finite precision compu-
tation. 

2.4. Discrete element model 
The DEM model of the direct shear box test was built on 1:1 scale based on the laboratory 
equipment. The two part of the shear box and the load plate were modeled as structure walls. 
The lower box was open at the top and the upper box was open at the top and the bottom side. 
The material parameters of the structure walls were taken from the material properties of steel 
[4]. The steel had a density of 7750 kg/m3, a modulus of elasticity of 200 GPa, a proportional 
parameter between normal and tangential contact stiffness of 0.3, and an internal friction angle 
of 40.1°. To fill the boxes with particles, gravity deposition was used, to which a bottom side 
open box was placed in our model over the upper shear box so that the particles did not fall 
out during the process. Due to the wall thickness of the boxes, square shapes were used in the 
shear direction to prevent the particles from falling out of the boxes during the simulations. In 
order to provide the normal load, an infinitely wide structure wall was used. It did not have a 
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mass, but at a given speed, it moved as a servo drive at the top of the particle set in the same 
or opposite direction as the gravity acceleration. This was necessary because, during the la-
boratory measurements, the load plate moved upwards too in the vertical direction as a result 
of shearing. The appropriate normal load was set by measuring the force exerted by the parti-
cles on the element modeling the load plate. The DEM model of the direct shear box and the 
simulation steps are illustrated in Fig. 4. 

 
Figure 4. DEM model of the direct shear box test and the steps of the simulation 

(1. generating particles; 2. gravity deposition of the particles; 3. activating cohesive bonds; 
4. application of load plate; 5. start of shearing) 

The first step of the simulation was the generation of the particles (Fig. 4/1) followed by the 
gravity deposition (Fig. 4/2). After the stabilization of the particle set, when the unbalanced 
force ratio dropped below 0.001, the cohesive bonds were activated using the 'setCohesion-
Now' command (Fig. 4/3). This was followed by the application of the normal load (𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)  
(Fig. 4/4), then at the speed of 𝑣𝑣𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑒𝑒 = 1 𝑚𝑚𝑚𝑚

𝑠𝑠 , the shearing was started by moving the lower 
shear box (Fig. 4/5). The increase in the shear velocity compared to the laboratory measure-
ments (𝑣𝑣𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑒𝑒 = 0.02 𝑚𝑚𝑚𝑚/𝑠𝑠) was used to reduce the computational time requirement. It was 
assumed that the increase in shear speed does not affect the maximum shear force value but 
only the position of it at the shear length [9]. The resulting shear force was measured on the 
right-hand side of the upper shear box illustrated in Fig. 4/1 at a sampling interval of 0.1 s. 
The hulled millet particles were modeled with spheres with a normal distribution of 𝑑𝑑 = 1.8 ±
0.1 𝑚𝑚𝑚𝑚, The particle density (𝜌𝜌𝑝𝑝) of the hulled millet was chosen based on preliminary air 
pycnometer measurements, the elasticity modulus (𝐸𝐸 = 20 𝑀𝑀𝑀𝑀𝑀𝑀) and the proportional param-
eter between normal and tangential contact stiffness (υ = 0.2) were selected from the literature 
[4] and the internal friction angle (𝜑𝜑′) was set based on previous simulation experience. The 
additional values of the setting parameters are summarized in Table 1. 
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Table 1. DEM material parameters of hulled millet 

No. 
Measured 

x 
[%] 

Selected 
ρp 

[kg/m3] 

Measured 
φ’ 
[°] 

Set 
∆t 

[s∙ 10−6] 

1 11.2 1379 42.2 4.7 
2 16.1 1388 42.1 4.8 
3 18.7 1393 41.6 4.8 
4 23.6 1402 40.5 4.9 
5 24.1 1403 38.7 4.9 
6 28.2 1410 37.5 5 

 
The time steps used in the simulations were set lower than the critical time step obtained by 
Eq. (23). The numerical damping value was 𝜆𝜆𝑑𝑑 = 0.5 and 21000 particles were modeled. The 
normal (𝜎𝜎𝑐𝑐𝑐𝑐ℎ) and shear strengths (𝜏𝜏𝑐𝑐𝑐𝑐ℎ) of the cohesive bonds were determined by simulation 
calibrations, as well as the rolling (𝜂𝜂𝑟𝑟) and twisting resistance coefficients (𝜂𝜂𝑡𝑡𝑡𝑡), which are 
presented in the Results section. 

3. RESULTS 
Fig. 5 illustrates the measurement and simulation results of the direct shear box test where the 
shear force (𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑟𝑟) - shear displacement (ℎ) results can be seen at different normal loads 
(𝜎𝜎𝑙𝑙𝑐𝑐𝑒𝑒𝑑𝑑 = 11.96 𝑘𝑘𝑘𝑘𝑘𝑘; 19.61 𝑘𝑘𝑘𝑘𝑘𝑘; 29.42 𝑘𝑘𝑘𝑘𝑘𝑘) for 𝑥𝑥 = 18.7%  moisture content hulled millet. 

 
Figure 5. The measured (left side) and simulated (right side) shear force as a function of 
shear displacement at different normal loads for x=18.7% moisture content hulled millet 

In the simulation results - compared to the measurements -, the steeper reductions in the forces 
seen after the maximum shear forces were due to the use of artificial damping and higher shear 
speed [9]. However, the results showed a good match as the maximum shear forces occurred 
at almost the same shear displacement for 𝜎𝜎𝑙𝑙𝑐𝑐𝑒𝑒𝑑𝑑 = 19.61 𝑘𝑘𝑘𝑘𝑘𝑘; 29.42 𝑘𝑘𝑘𝑘𝑘𝑘 normal loads. By 
calculating the shear stresses from the maximum shear forces, and illustrating them as a func-
tion of the associated normal loads, the failure envelopes shown in Fig. 6. could be plotted. 
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Figure 6. The failure envelopes in case of x=18.7% moisture content hulled millet, obtained 

by measurements and DEM szimulations 

In the simulation calibrations, the unknown micromechanical cohesive normal and shear 
strengths were set equally for a specific moisture content based on own simulation experience. 
The values of the rolling and twisting resistance coefficients were also treated equally, but 
they gave a value of 𝜂𝜂𝑟𝑟 = 𝜂𝜂𝑡𝑡𝑡𝑡 = 0.05 regardless of the moisture content. In the simulation 
results, the cohesive strengths could be used to change the axis section of the failure envelopes, 
but by changing the resistance coefficients, the slopes of the lines could be influenced. The 
calibrated micromechanical cohesive normal and shear strengths are plotted against the mois-
ture content in Fig. 7. 

 
Figure 7. The micromechanical cohesive strengths of the bonds obtained by DEM 

simulations as a function of the moisture content of the hulled millet for 𝜂𝜂𝑟𝑟 = 𝜂𝜂𝑡𝑡𝑡𝑡 = 0.05 
resistance coefficents 

The function fitted to the data showed a second order polynomial nature, which means that it 
is not enough to specify a domain for each micromechanical parameter, but also to define the 
function nature so that it can be used more accurately for later DEM simulations. The accuracy 
of the simulation results was characterized by the relative errors between the measured 
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(𝜏𝜏𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑒𝑒𝑒𝑒𝑠𝑠𝑚𝑚𝑒𝑒𝑒𝑒𝑚𝑚) and simulated shear strengths (𝜏𝜏𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑚𝑚), which were calculated as 
follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = |𝜏𝜏𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠−𝜏𝜏𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠
𝜏𝜏𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠

| 100% (25)  

The measured and simulated maximum shear strengths for different moisture contents and 
normal loads, and the relative errors are summarized in Table 2. 

Table 2. Measured and simulated maximum shear strengths, moisture contents, normal 
loads and the calculated relative errors 

No. x 
[%] 

𝝈𝝈𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍  

[kPa] 
𝝉𝝉𝒔𝒔𝒔𝒔𝒔𝒔𝒍𝒍𝒔𝒔,𝒎𝒎𝒔𝒔𝒍𝒍𝒔𝒔𝒎𝒎𝒔𝒔𝒔𝒔𝒍𝒍  

[kPa] 
𝝉𝝉𝒔𝒔𝒔𝒔𝒔𝒔𝒍𝒍𝒔𝒔,𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒍𝒍𝒍𝒍𝒔𝒔𝒔𝒔𝒍𝒍 

[kPa] 
Relative error 

[%] 
1 

11.2 
11.96 14.42 13.86 3.9 

2 19.61 17.42 17.92 2.9 
3 29.42 25.47 23.53 7.6 
4 

16.1 
11.96 14.42 13.22 8.3 

5 19.61 18.61 18.69 0.4 
6 29.42 24.86 25.14 1.1 
7 

18.7 
11.96 12.58 13.06 3.8 

8 19.61 17.78 17.83 0.3 
9 29.42 25.06 23.22 7.3 
10 

23.6 
11.96 11.97 12.28 2.6 

11 19.61 17.11 17.08 0.2 
12 29.42 24.11 23.11 4.1 
13 

24.1 
11.96 10.19 11.28 10.6 

14 19.61 16.25 16.14 0.7 
15 29.42 22.89 21.81 4.7 
16 

28.2 
11.96 10.31 10.19 1.1 

17 19.61 15.19 15.06 0.9 
18 29.42 21.97 20.61 6.2 

The highest relative error (10.6%) between the measured and simulated results was at 𝑥𝑥 =
24.1%  moisture content and 11.96 kPa normal load. In other cases, the results of the labora-
tory measurements were modeled with relative error less than 10% using the previously de-
fined DEM micromechanical parameters. 

4. CONCLUSION 
In this research, direct shear box tests were performed using hulled millet in case of different 
moisture contents. The discrete element model of the laboratory equipment was created, using 
a cohesive-frictional particle contact model to model the collisions of the particles and the 
cohesive forces resulting from the surface moisture of the material. The main goal was to 
determine the micromechanical parameters describing the cohesion relationships and their 
moisture-dependent behavior. These were the cohesive normal and shear strengths, and the 
rolling and twisting resistance coefficients that were less dependent of the moisture content. 
By varying the former two parameters equally, the axis section of the failure envelopes - ob-
tained by the direct shear box simulations - could be changed, while the latter two variables 
could be used to influence the slopes. Based on these, it was possible to simulate the measure-
ment results with just one parameter set combination in case of a moisture content. Cohesive 
strengths were determined at moisture content range of 11.2 − 28.2%. The points thus ob-
tained were described by a second-degree polynomial function with good accuracy and can be 
used for future DEM simulations. 
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Abstract. Large-scale natural disasters have occurred frequently in recent years. In such 
disasters, large ground deformation has been a recurring phenomenon. As it directly affects the 
structure, has dureable design is necessitated to minimize the damages. Additionally, the 
fracture process zones are predicted using numerical analysis, and thereafter, the results of the 
analysis are validated after comparison with the experimental ones. In this study, image analysis 
is performed using particle image velocimetry (PIV), and subsequently, the analysis results are 
validated by the comparison. We herein aim to improve the precision of the image-analysis 
results, and examine the experimental or analytical condition of reproducing  the deformation . 

 
 
1 INTRODUCTION 

In the recent years, there are growing concerns about geohazards triggered by earthquakes 
and heavy rainfalls in Japan. Geohazards, such as slope failure and landslide, have caused heavy 
damages to social infrastructures. Taking an example of the 2016 Kumamoto Earthquakes, 
which occurred on 16th April 2016, slope failures, landslides and debris flow occurred mainly 
around the Mt. Aso area. In particular, large-scale (deep) landslides occurred in Minami-Aso 
village Tateno area, and Aso Bridge collapsed completely by this slope failure. In order to 
minimize the risk of such damages, it is desirable to understand the ground collapse process, 
scale and range. However, large deformation problem of ground that ranges more than tens of 
meters has mainly been based on case studies such as literature surveys and ground surveys. 
Along with these investigations, it is necessary to simulate the destruction process by numerical 
analysis, and the analysis should be evaluated by practical engineering or physical evaluation.   

In order to validate the numerical method, the tracking of the deformation of laboratry test 
results is performed. A deformation measurement method based on Particle Image Verocimetry 
(PIV) has been used for a tool to geotechnical testing. In the paper, the deformation of ground 
model with laminated aluminium bars is analyzed with the PIV method. Applying the PIV 
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method to the model tests, the distribution of displacement can be obtained with higher 
resolution than that of the method using target markers. 

By using PIV, accurate results of deformation analysis in model test, that manages the 
bearing capacity of shallow footing or deformation analysis on retaining wall movement tests, 
can be obtained. Also comparing the result of PIV with the numerical analysis, the validity of 
numerical analysis about large deformation problem is evaluated from shear strain and load 
settlement relationship in the ground. Through the examination and comparision of the results 
of both model test analysis and numerical analysis, the study aims to the approximation of 
reproducing the actual phenomena based on numerical analysis such as DEM, FEM or other 
methods. 

2 DEFORMATION ANALYSIS OF MODEL TESTS USING PIV 

2.1 Mechanism of Particle Image Velocimetry 

Particle image velocimetry (PIV), which is an image analysis method used in this experiment, 
is a fluid measurement method that can obtain instantaneous velocity of multiple points in a 
flow field without contact, using two temporally continuous images, the luminance distribution 
in a minute area in the first time image and the luminance in the area in the second time image. 
The fluid displacement is calculated by finding the similarity of the pattern and estimating the 
displacement that is the maximum value as the average displacement vector in the inspection 
area. The similarity between the luminance patterns of the image at t = t and the image at t = t 
+ ∆t is calculated by the following equation ; 

𝑅𝑅(𝜉𝜉, 𝜂𝜂) = ∑ ∑ {𝑓𝑓(𝑚𝑚,𝑛𝑛)−𝑓𝑓𝑎𝑎𝑎𝑎}{𝑔𝑔(𝑚𝑚+𝜉𝜉,𝑛𝑛+𝜂𝜂)−𝑔𝑔𝑎𝑎𝑎𝑎}𝑁𝑁−1
0

𝑀𝑀−1
0

√∑ ∑ {𝑓𝑓(𝑚𝑚,𝑛𝑛)−𝑓𝑓𝑎𝑎𝑎𝑎}𝑁𝑁−1
0

2𝑀𝑀−1
0 √∑ ∑ {𝑔𝑔(𝑚𝑚+𝜉𝜉,𝑛𝑛+𝜂𝜂)−𝑔𝑔𝑎𝑎𝑎𝑎}𝑁𝑁−1

0
2𝑀𝑀−1

0

  (1) 

where f (m, n) and g (m, n) represent the intensity distribution at time t = t and t = t + ∆t, M and 
N are the tracking mesh size, ξ and η are the mesh movement amount. 

In which 

𝑓𝑓𝑎𝑎𝑎𝑎 = ∑ ∑ 𝑓𝑓(𝑚𝑚,𝑛𝑛)𝑁𝑁−1
0

𝑀𝑀−1
0

𝑀𝑀𝑀𝑀         (2) 

𝑔𝑔𝑎𝑎𝑎𝑎 = ∑ ∑ 𝑔𝑔(𝑚𝑚+𝜉𝜉,𝑛𝑛+𝜂𝜂)𝑁𝑁−1
0

𝑀𝑀−1
0

𝑀𝑀𝑀𝑀        (3) 

Equation (2) and (3) are an average value of the luminance inside each tracking meshes. 

From the equation, the displacement of the particle group is determined by (ξ, 𝜂𝜂) where the 
similarity R (ξ, 𝜂𝜂) is the highest. These operations are applied to all meshes to calculate the 
inter-image displacement vector of the whole image. Based on the calculated displacement 
vector, the shape functions are adopted and the strain is determined. 
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2.2 Deformation tests on ground model with aluminum bar laminate 
To conduct deformation tests on the aluminum bar laminate using PIV, sequent pictures of 

the deforming laminate are taken, with the equipment moving in equal intervals. To make the 
particle size distribution as equal as that of Toyoura sand, the aluminum bars are blended with 
radius 1.6 mm and 3.0 mm at a mass ratio of 2:1. Moreover, to give a wide luminance 
distribution on PIV analysis, a side of the aluminum bars is multi-colored. Pictures are taken 
from the side of the aluminum bar laminate in each deformation intervals, and deformation 
analysis based on PIV is conducted. 

In the analysis, analysis mesh is set on the deformation target. The mesh size is 5 mm (to 
give the luminance variation within the mesh squares). 

 

 
 

Figure 1: Viewing of deformation test condition 
 

 
 

Figure 2: Example of analysis mesh arrangement 

2.3.1 Deformation tests on retaining wall movement 
The retaining wall test equipment consists of retaining wall and aluminum bar laminated 

ground that simulates the ground behind the retaining wall. The retaining wall is made by a 
brass rigid material with a height of 200 (mm), a width of 10 (mm) and a depth of 50 (mm), 
which can be controlled by the handle to a horizontal displacement of 95 (mm) in active earth 
pressure direction. 
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The equipment of the wall model is shown in Figure.3, and the dimensions of the retaining 
wall test equipment are as shown in Table 1. The ground is tightly packed, and aluminum bars 
are laid as densely as possible. The test is done with running the wall parallel to the active earth 
pressure direction. The velocity of wall is set as the deformation is regarded as quasi-static state. 
The experimental procedure follows as configuration conditions described in Table 2. To avoid 
the image error due to the setting of camera, filming is done with manual mode, and 
configurations are shown in Table 3. From the captured pictures, PIV analysis is conducted and 
confirming the deformation of laminated ground. 
 

 
 

Figure 3: Arrangement of  retaining wall test equipment 
 

 

Table 1: Dimensions of ground model (retaining wall test) 
 

Height 
(mm) 

Depth 
(mm) 

Width(Wall) 
(mm) 

Width(laminate) 
(mm) 

200 50 10 400 
 

Table 2: Configuration of model test (retaining wall test) 
 

Maximum displacement 
(mm) 

Wall movement speed 
(mm/min) 

Filming interval 
(sec) 

60 2 30 
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Table 3: Configuration of filming condition (retaining wall test) 
 

Pixels ISO sensitivity Camera Height Distance 
Camera-Model 

Shutter speed Diaphragm 
value 

4608×3456 125 855 1370 1/8 F5.3 
 

2.3.2 PIV analysis results (retaining wall test) 
PIV analysis is conducted under the conditions described above, and selection of maximum 

shear strain contour distribution, which displacements are 10mm and 60mm, is shown in Figure 
4. Experimental results are shown with fixed contour, which range is set as 0 to 0.25. 

As shown in Figure 4, strain due to the wall movement is clearly captured consistently. It is 
obvious that there is local large deformation at the bottom of the wall and the contact of slip 
line and ground surface. The deformation analysis results, which use target markers, are also 
shown in Figure 5. 

 

 
Figure 4 : Results of deformation analysis on retaining wall test using PIV (Selection) 
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2.4.1 Deformation tests on shallow foundation loading 
The loading test equipment consists of foundation and aluminum bar laminated ground that 

simulates the ground under the foundation. The foundation is made by a brass rigid material 
with a height of 60 (mm), a width of 80 (mm) and a depth of 50 (mm), which can be controlled 
by the handle to a vertical displacement of 30 (mm) from the top of the ground surface. Through 
experiment, the loading pressure is also measured simultaneously, and obtains a relationship of 
loading versus displacement.  

The equipment of the wall model is shown in Figure.6, and the dimensions of the foundation 
loading test equipment are as shown in Table 4. The ground is tightly packed, and aluminum 
bars are laid as densely as possible. The experimental procedure follows as configuration 
conditions described in Table 5. Filming configurations are also shown in Table 6.  

  
  

10mm 

 
 

60mm 

 
 

Displace-
ment 

PIV 
Max shear strain 

(Fixed scale) 

Target Marker 
Max shear strain 

(Fixed scale) 

Figure 5 : comparisons of results of deformation analysis (Target marker / PIV) 
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Figure 6 : Arrangement of  shallow foundation loading test equipment 
 

Table 4: Dimensions of ground model (foundation loading test) 
 

Height 
(mm) 

Depth 
(mm) 

Width(laminate) 
(mm) 

200 50 523 
 

Table 5: Configuration of model test (foundation loading test) 
 

Maximum displacement 
(mm) 

Foundation loading 
speed 

(mm/min) 

Filming interval 
(sec) 

25 1 30 
 

Table 3: Configuration of filming condition (foundation loading test) 
 

Pixels ISO sensitivity Camera Height Distance 
Camera-Model 

Shutter speed Diaphragm 
value 

6000×4000 200 830 1350 1/8 F8.0 
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2.4.2 PIV analysis results (shallow foundation loading test) 
PIV analysis is conducted under the conditions described above, and selection of maximum 

shear strain contour distribution, in which foundation displacements are 5mm and 22mm, is 
shown in Figure 7. Experimental results are shown with fixed contour, which range is set as 0 
to 0.15. The relationship between loading pressure and displacement of foundation is also 
shown in Figure 8. 
 

 
Figure 7: Results of deformation analysis on foundation loading test using PIV (Selection) 

 
 

 
Figure 8: chart of loading versus displacement in foundation test 
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2.5 Discussions 
The higher-resolution deformation tracking in PIV is used as opposed to target markers 

(Figure 5) since slip surfaces (at 10 mm displacement) are not visible in the latter method. This 
phenomenon is due to the continuous failure and deformation.  Furthermore, the contour range 
in PIV is higher than that of target marker; strain localization is more clear and easier to capture 
(Figure 9).  

In the foundation loading test, the deformation shape resembles the rupture curve based on 
Prandtl’s theory (Figure 10). However, according to the superposition of PIV results and 
theoretical curve, the foundation width that matches the captured deformation is smaller than 
the one derived from Prandtl’s theory. As the stress distribution under the foundation is not 
uniform, it is assumed that the aluminum laminate deforms locally at the edge of foundation. 
Figure 8 shows the plastic state during the displacement 0-5 mm, and load stress gradually rises 
with minor fluctuation during the displacement 5-25 mm). Focusing on the minor fluctuation 
of load with comparing PIV results and chart of loading versus displacement, the deformation 
spread while loading decreases. As shown in Figure 11, the distribution of the value of the 
maximum shear strain exceeding 0.075 is increased as the whole ground as compared with the 
region (a). 
 

 
 
 
 
 
 
 
 
 
 
 
 

60mm 

 

 

Displace-
ment 

PIV 
Max shear strain 

(Auto scale) 

Target Marker 
Max shear strain 

(Auto scale) 

Figure 9: difference of contour range ( PIV / target marker) [From Figure. 5] 
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Figure 10: Superposition of PIV result (d=3.5~4.0mm) and Prandtl mechanism 
 

 
Figure 11: Example of comparison of PIV results and chart of loading versus displacement 

 
  

B=6.0(mm) (derived graphically) 

B=8.0(mm) 

292



K. Sato, H. Akagi and T. Kiriyama, and K. Esaki 

 11 

5 CONCLUSION 
In this paper, the experiments (retaining wall test and foundation loading test) were 

conducted that to observe ground deformation. This study demonstrates that the PIV analysis 
captures the deformation more accurately than target markers. Furthermore, evaluating the 
deformation and experimental values such as loading stress, experimental value is also 
reexamined based on the PIV analysis results. Therefore, it is shown that detailed phenomenon 
in ground model can be grasped by utilizing PIV method. 

The main finding of this study was that utilizing the PIV method shown above, the criteria 
for validity of any numerical deformation analysis are confirmed. Large deformation, such has 
not been explained in formula, is reproduced in numerical analysis, therefore the experimental 
deformation results are needed. Thus the aforementioned method is more efficient and 
numerical analysis can be properly evaluated. 
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ABSTRACT 

In agriculture the analyse of soil compaction in soil-tool interaction has a significant role. The 
equipments of agricultural farms are getting bigger and more complicated and it has huge 
importance to optimize the tillage methods. Two of most frequently investigated factors are the 
tool’s mixing-effect and the draught force on the tool; these results are important for 
agronomical experts to design tillage tools and cultivation processes. Discrete element method 
(DEM) is one of the numerical methods to model soil’s behaviour and soil-tool interaction. Aim 
of this study is to develop a 3D DEM model for clay soil and analyse the behaviour of soil-
model regarding to non-homogeneous soil condition of agricultural fields. Simulation results 
will be compared with field test measurements for cone penetration tests. In this paper effects 
of particle’s shape and micromechanical properties will be investigated and simulations will be 
compared using special particles, so-called clumps in model. Clumps are aggregations that are 
set of spheres. This study investigates the effect of using clumps instead spheres in simulations 
and it will be attempted to model the thixotropic behaviour of soil with special kind of particles. 
Non-homogeneous property and varied compaction of field soil will be modelled with more 
layers, keep to be comparable the simulation results with field tests. Measurements were set for 
more moisture content; study investigates appropriate set of micromechanical parameters to 
simulate the effect of water. 
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1 INTRODUCTION 
In agriculture the role of research about precision plant cultivation is getting bigger and many 
digital technologies have a great importance in this field. A lot of technologies and methods are 
used in agriculture and food industry and have some special fields, such as numerical 
simulations; these used to analyze and improve harvest and food process methods. Another 
frequently researched area is the analyzing of soil-tool interaction with tests and simulations. 
Many papers can be found connected to this research, such as in [1, 2, 3] where the mostly and 
successfully used numerical technique was the discrete element method (DEM). 
The [1] study focused on the dynamical behavior of soil and it was analyzed with measurements 
and simulations. In this research the DEM model included only spherical particles with more 
distributions of radius. In simulations parallel-bond model was applied and the experiments 
were soil-bin tests with a sweep tool. Soil-bin tests appeared in [2], and this paper presented a 
DEM model for soil-tool interaction. This study used only spherical particles with equal radii. 
In soil model were applied 3 layers with different parameters to model inhomogeneous soil 
conditions. For calibration were used cone penetration models and tillage data, the calibrated 
parameters were the particle and bond stiffness. The successful model was used to investigate 
the influence of tillage-depth for draught force and loosening-efficiency. The paper [3] presents 
a study about sensitivity analysis. Research focused on soil-thrown effect and draught force 
while soil-sweep interaction. The influence of micro properties, such particle and bond 
elasticity, damping coefficient, etc. were investigated and DEM simulations with spherical 
particles were compared with soil-bin tests. The most sensitive parameter was the Young’s 
modulus according to results of paper. Similar study can be found in [8], paper investigated the 
role of parallel bond model and viscous damping parameter in a soil-sweep DEM model. 
Conclusion of research showed, the bond radius has an important role in modeling of soil 
moisture content and the viscous damping need to be decreased at higher speeds in model to 
keep it comparable with measurements. 
The most of studies was able to investigate soil-bin tests and publications focused mainly on 
this art of measurements; respectively soil models use always spherical particles. Although, in 
some cases the DEM models were able to simulate complex fluid mechanics behavior of soil 
and the soil-tool mixing-effect. On the other hand, in agriculture it has a high importance to 
make in-situ tests on agricultural fields and develop soil models which can be compared with 
in-situ results. These measurements usually require high costs and the evaluation of test results 
are often difficult due to the inhomogeneous structure of soil. The aim of this study is analyzing 
the results of field tests and improving a 3D DEM model to simulate the heterogeneity of 
agricultural soil and developed model serves a preparation of investigating of soil-tool 
interaction. On the one hand, the motivation of this research is the trying to reduce draught 
force of agricultural processes, because it could require high draught power which means more 
costs for farmers and more load for cultivator machines. On the other hand, this research can 
be useful to investigate the soil-degradation phenomenon. 

295



K. Tamás, M. F. Tóth 

 3 

2 MATERIAL AND METHODS 
2.1 FIELD EXPERIMENTS 
The field tests were set at three different moisture content before tillage in a clay-sandy soil, on 
the placement of Hungarian Institute of Agricultural Engineering (NARIC). First penetrate 
measurements were set at ten randomly chosen points on agricultural field (Fig.1). The second 

cone penetration test series were set on same placement with same experiment’s number, at 
another time. The third test series was set at same place, it included only 3 measurements. For 
measurements was used a penetrometer, this device measures the vertical resistant force and 
the volumetric moisture content of soil. It is available as a complete set suitable for 
measurements up to a depth of 80 cm. The cone penetrometer itself consists of a penetrologger 
housing with GPS and a control panel. The logger is contained in a water-resistant housing with 
electrically insulated grips. Cone is screwed onto the bottom end of a bipartite probing rod. 
Depending on the application and the expected resistance to penetration different cones can be 
attached. The cones supplied have 60º top angle and various projected areas. At field tests was 
used a cone with 60º top angle and 1 cm2 area. The resistant force is divided by projected area 
of conehead and averaging all measurements at each test series, so, can be given a curve that 
express stress values, the Cone Penetration Resistance (CPR) of soil. As could be observed, 
there are large deviations from average but values can define one exact curve. The test results 
are compared at different moisture contents, it shows Fig. 2. The penetrometer recorded the soil 
moisture content at all measurements, at first series was the soil driest, at second series soil 
contained the most moisture and the third test showed a medial moisture content, as can be seen 
in Table 1. 
 

Figure 1: a) Placement of field experiments, b) first series of cone penetration test [10] 

b) 
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Table 1: moisture content at each cone penetration measurement 

 Moisture content, V/V% Mean 
values 

1. Test series: 9 6 5 4 9 7 7 8 4 7 6.6 

2. Test series: 24 21 23 21 20 21 23 22 24 22 22.1 

3. Test series: 13 14 13        13.3 

It can be seen on Fig. 2, drier soils have larger resistance, similar to [4], and the peak at each 
curve is given between 50 and 60 cm deep from the top of soil. Cone resistance depends on soil 
compaction, bulk density, moisture content; and higher resistance is associated with higher bulk 
density [5,6]. Test results will be used for further simulations with soil model and have high 
role in calibration process. After each cone penetration test, began the tillage process with a 
tractor, as can be seen on Fig. 3. For this process was used a cultivator sweep tool, and during 
tillage the draught force was recorded with a 50 Hz sample frequency. The distances of 
measurements were between 60-90 meter, the average velocity was 9.1 km h-1 and the work-

Figure 2: a) complete penetrologger set and cone heads for field tests b) averaged cone penetration resistance of 
soil at different moisture contents with standard deviations 
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depth was at each experiment 10-15 cm. Fig. 4 shows, soil with medium moisture content (13.3 
V/V%) produced the highest draught force, and the smallest mean force was observed by the 
soil with the highest moisture content (22.1 V/V%). Results are similar to cone resistant 
experiments, where the driest and medial moisture content soil produced largest resistant and 
the soil with less wet shows the smallest cone penetration resistance (CPR) until 50 cm depth. 
 

2.2 DISCRETE ELEMENT MODEL 
For the simulation of soil behavior was used DEM and applied YADE DEM software. The 
DEM is able to model some effect of soil-tool interaction but there are some numerical 
parameters which need to calibrate a model. The most frequently used method for that is the 

parameter sensitivity analysis. The most sensitive parameters in soil models usually are the 
Young’s modulus [3], normal and shear cohesion, and the friction. But its notable, many studies 
were developed using only spherical particles and parallel-bond model in simulations. Other 
techniques to find appropriate parameters are systematic methods and optimization processes 
[2,7]. In this paper, the energy dissipation was modeled with particle’s shapes using clumps. 
Three types of clumps were applied in model with different portions, these can be seen on Fig. 
6. Finding appropriate microparameters a sensitivity analysis was applied, based on mentioned 
and similar studies. The 3D discrete element model was set up for conical tests, and it was 
developed with 2 layers. Previous paper [4] used same technique to model soil with different 
layers, but there were 3 layers in one penetrometer. For conical simulations was set up a 
140×140×1000 mm box and the cone model was used with 1.5 cm2 projected area and 60° cone 
angle. Speed of penetrometer was at each case 0.1 m s-1. Other parameters of model are showed 
in Table 2.  
The soil model consisted three types of clumps, as can be seen on Fig.6: so-called dyad by two, 
peanut by three and stick by four spheres. Particle distribution was set with these clumps with 
5-5-90% ratio and the greatest size of these elements was between 13.9- and 24.1-mm. Damping 
between particles was not applied.  
 

Figure 5: the two layers of soil DEM model and the rod with conehead 
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Soil model for cone penetration test included 9700 elements and it reached 0.3 m height. The 
cone moved 0.3 m deep in soil model with the mentioned constant speed and only vertical force 
was recorded during simulation. Regarding to inhomogeneous structure and compaction of field 
soil DEM model was divided along vertical two layers: top layer was set with 0.1 m and the 
bottom layer with 0.2 m. It was possible to set up different soil parameters for each layer and it 
was one device to the effective calibration. The two layers in model and the cone are visualized 
on Fig. 5. 

Table 2: physical properties of soil for cone penetrate model 

Parameters Unit Value 

Particle density, 𝜌𝜌𝑝𝑝 kg m−3 2700 
Young modulus, 𝐸𝐸𝑌𝑌 Pa 5⋅ 106 
Particle friction, 𝜇𝜇𝑝𝑝 - Calibrated 
Wall friction angle, 𝜇𝜇𝑤𝑤 deg 40 
Cohesion, 𝜎𝜎 𝜏𝜏 Pa Calibrated 
Poisson ratio, 𝜈𝜈𝑝𝑝 - 0.4 

3. RESULTS 

As seen the results of cone field tests it would be required to make more soil layers in DEM 
model and add different parameters. At first simulations the cohesion of top and bottom layers 
was modified and the other parameters were still constants. The previous results showed, it is 
considerable to set up higher cohesion at bottom layer, and the cohesion values could be 
selected in range from 103 to 𝟓𝟓 ⋅ 𝟏𝟏𝟏𝟏𝟔𝟔 Pa according to previous simulations and based other 
studies. During simulations normal and shear cohesions were set as equal. Particle friction will 
be usually expressed as friction angle; it was the other varied property. 
At the next parameter sensitivity test the effect of particle friction was investigated. In this 
model both layers had constant 5 ⋅ 104 Pa cohesion and the friction coefficient has varied in 
both layers. It can be observed, with higher friction coefficient the cone resistance profile is 
similar to drier soil, and with low particle friction coefficient the results of simulations are closer 
to higher moisture content, so, the curve of model results is getting steeper. As can be seen on 
Fig. 7. the set #1.3 and #1.4 had the best match with driest soil and #1.1 and #1.2 were the 
closest to the soil with most moisture content. Parameter set #1.3 was closest to soil with 
medium moisture content at top section, and the set #1.5 passed to this soil at deeper section. It 
was observed, friction values had significant influence to cone index and the increasing of CPR 
was almost proportional with increase of friction coeficient. At the next simulation series, the 
cohesion of layers was varied with constant frictions; parameters are showed in Table 4. Best 
matches were achieved due to different cohesion at case of dry soil with set of #2.1 and #2.2. 
It can be seen on Fig. 8., that influence of particle friction is same as in earlier parameter series, 
curves shifted to higher cone resistance while increase friction. Interestingly, with change of 

Figure 6: clumps built by spheres; a) dyad, b) peanut and c) stick elements 

a) b) c) 
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cohesion’s size ratio between layers there was not large deviation between layer’s resistance. It 
is supposed, the influence of larger cohesion at bottom layer appears in top of soil, so cone 
resistance does not decrease instead lower cohesion at top layer. So, with change of cohesion’s 
ratio, CPR profiles shifted almost parallel and profile curves were get steeper and followed 
worse test results than previous parameter set. 

 
Table 3: Parameter set of soil for cone penetrate model at first parameter sensitivity test 

Parameter set Friction angle Cohesion at each layer 
 deg Pa 
#1.1 10  

 
5 ⋅ 104 

#1.2 15 
#1.3 25 
#1.4 30 
#1.5 40 
#1.6 45 

Figure 7: simulation and test results compared at first parameter series 
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Higher cohesion at bottom layer laid to higher cone penetration resistant, as Fig. 8. shows in 
left and middle charts. By parameter set #2.5 and #2.6 results are not totally consistent with 
trend of second parameter series, but the curves shifted next to higher penetration resistance as 
effect of higher friction. 

 

 Table 4: Parameter set of soil for cone penetration model at second parameter sensitivity analises 

 
 
 
 
 
 
 
 
 
At another parameter sensitivity analise at all set of properties was the cohesion at the bottom 
layer higher, regarding to earlier results. The effect of particle friction coefficient was same as 
the other penetration simulations and it could be observed, the lower cohesion at top layer and 
the higher cohesion at bottom layer led to gently sloped curves, when difference was enough 
between cohesions. So some of these results followed better the deeper section of soil’s cone 
resistance, but at most of these simulation results CPR was extremly overestimated along full 
depth instead very low cohesion in top layer and low friction value. At some parameter sets 
could be observed a peak of curve like at set #1.5 and #1.6. These peaks appeared obviously 
only by high friction value and between 15 and 20 cm depth of soil.  

Parameter 
set 

Cohesion  
at top layer 

Cohesion 
at bottom layer 

Friction 
angle 

 Pa Pa deg 
# 2.1 5 ⋅ 105 5 ⋅ 104 20 # 2.2 5 ⋅ 104 5 ⋅ 105 
# 2.3 5 ⋅ 105 5 ⋅ 104 35 # 2.4 5 ⋅ 104 5 ⋅ 105 
# 2.5 5 ⋅ 105 5 ⋅ 104 45 # 2.6 5 ⋅ 104 5 ⋅ 105 

Figure 8: simulation and test results compared at second parameter series 
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Table 5: Parameter set of soil for cone penetration model at third parameter sensitivity analises 
 
 
 
 
 
 
 
Fig. 9. shows the results of simulations with third parameter series. As can be seen in Table 5., 
the friction was a constant and low value at top layer, but friction in bottom layer was increased, 
while constant and equal cohesions were applied at each layer. The profiles and behavior of 
cone resistance were similar to first series, but the match at deeper soil’layers was better with 
these parameters. As can be seen set #3.3 it follows only deep section of soil CPR with medium 
moisture content and instead low friction it exceeds the CPR of top layer. One simulation was 
set over and above with medial top layer friction (25°) and higher friction coefficient (40°) at 
the bottom layer. 
The resulted curve with these properties was very similar to set of #3.3 but it overestimated the 
deeper section of CPR too. To compare objectively the model and test penetrate results, it was 
considerable to calculate relative error (RE) between simulated and test values [9]. Its 
calculation form was given as: 

RE = 1
𝑛𝑛 ⋅ ∑ 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐶𝐶𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐶𝐶𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑛𝑛

1
⋅ 100 (%) (1) 

RE was calculated with use of trend-line values by model results and it was averaged at top and 
bottom layer and along full depth. Mean values are represented in Table 6. 
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Figure 9: simulation and test results compared at third parameter series 
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Table 6: parameter set with the least mean relative errors between model and test results 
 
 
 
 
 
 
 
 
4. CONCLUSIONS 
 
The 3D DEM model for cone penetration tests was successfully developed and with the 
variation of parameters were given several cone penetration test results. The comparation of 
simulations and test results were successful and some of these parameter sets were able to model 
the soil behavior. According to mentioned results of simulations, the range of friction 
coefficient and cohesion values is compliance to investigate appropriate model for the analyzed 
agriculture soil. In some cases, the mean problem was generally the overestimation by top layer 
and underestimation by bottom layer between test and model values. At first parameter series 
it succeeds to adjust the steep of curves respectively by dry and mostly wet soil using friction 
coefficient value as variable. At second series it was concluded, using different cohesion at each 
layer resulted very steep CPR curves, because bottom layer with higher cohesion influences top 
layer, so, it seemed difficult to calibrate appropriately using different cohesion. At third 
parameter series friction value was varied at each layer and these sets resulted also good 
matches but it was failed to follow the soil with medial moisture content and relative error by 
soil with most wet content stayed relatively high. It could be observed; the relative errors were 
highest always at top layer and the largest error appeared by soil with most moisture content. 
By driest soil least RE was for full depth 23%, by 13.3 V/V% moisture content it was 50% and 
by 22.1% it reached 163%. For calibration of models using cohesion as variable was one 
opportunity but friction coefficient seemed more effective to get an appropriate soil model, and 
it seemed not necessary to apply more layers at each case. Although, in favor to get better 
matches its considerable to set up simulations with another thick of layers. The analyzed soil 
model can be a good preparation of further simulations of soil-tool interaction. 
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Moisture 
content 

Parameter 
set 

Mean RE 
at top layer 

Mean RE 
at bottom layer 

Mean RE 
at full layer 

V/V%  % % % 

6.6 
# 1.4 59.1 9,4 27.0 
# 2.2 46.8 9.9 22.9 
# 3.2 57.5 30.9 40.3 

13.3 
# 1.2 34.1 62.8 52.7 
# 2.1 64.4 40.4 49.9 
# 3.2 115.9 28.6 59.6 

22.1 # 1.1 394.2 71.1 163.4 
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Abstract. Debris flows are one of the most important hazards in mountainous areas because of 
their paroxysmal nature, the high velocities, and energy carried by the transported material. The 
monitoring of these phenomena plays a relevant role in the prevention of the effects of these 
events. Among different possibilities, fiber optical sensors appear well-suited for this purpose 
thanks to their fair cheapness (with the exception of the interrogator), the robustness to 
electromagnetic interferences, the adaptability in extreme harsh conditions (no power supply is 
required), the possibility of locating the interrogator many kilometers far away from the 
monitored site, and the unique feature to provide very-dense multipoint distributed 
measurements along long distances. In this work, the vibro-acoustics signal produced by these 
phenomena has been focused as a possible source of information for the prediction of incipient 
movement, and the tracking of their path, velocity and thickness. Few literature works 
investigate these aspects, and for this reason, a preliminary laboratory and numerical campaign 
have been carried out with dry granular flume tests on an inclined chute. The discrete element 
method has been used to simulate the tests and to synthesize the signal measured on an 
instrumented mat along the channel. The grain shapes of the granular material used in 
simulations have been obtained by a photogrammetric tridimensional reconstruction. The force-
time signal has been also analyzed in time-frequency domain in order to infer the features of 
the flow. The numerical activity has been preparatory for the experiments carried out by 
instrumenting the flume with an optical fiber distributed vibration sensing system. 
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1 INTRODUCTION 
Debris flows are particularly hazardous slope instability phenomena due to the high speeds 

and high amount of energy that the transported material carries [1, 2]. Structures such as weirs 
and deposit areas are solutions that sometimes do not provide precautionary values of the safety 
factor. Therefore, monitoring plays a fundamental role in the prevention and mitigation of the 
effects produced by these flows. In addition to traditional methods (echometers, geophones, 
estensimeters), recent studies suggested the possibility of using distributed fiber optic sensors 
(DFOS) to monitor the flows [3, 4]. 

The DFOS technology employed in this study is the so-called distributed acoustic sensor 
(DAS), that is a promising sensing platform for many different applications in structural health 
monitoring, leak detection in pipelines, seismic wave detection, and many more geophysical 
applications. 

With this technology, the fiber is probed by a coherent laser pulse and the DAS interrogator 
tracks the changes in the phase of the optical backscattered signal in time. The longitudinal 
strain exerted to the fiber is proportional to the recorded optical phase shifts between pulses and 
therefore, that shift can be mapped into the dynamic distributed strain field across a given fiber 
segment by integration. 

In regard to the specific application addressed here by DAS technology, the optical fibre 
behaves as an equivalent array of many concatenated geophones (hundreds per kilometre of 
fibre length) capable of detecting acoustic perturbations and vibration in real time, over a 
frequency range up to a few kilohertz. As in other DFOS, the optical fibre acts here as both the 
communication channel and the sensing element. This unique feature of DOFS enables the 
reduction of the system complexity in particular for those applications requiring many hundreds 
of sensing points. 

Furthermore, the DAS used in this study implements a novel interrogation scheme based on 
highly chirped probe pulses [5]. This technique is more robust than conventional DAS scheme, 
as it offers localised detection of the perturbation with the same spatial resolution and 
acoustic/vibration bandwidth of traditional implementation, where instead the perturbation 
effects cumulate along the fibre. 

In this work, first step of a wider study, some tests on a channel with granular material were 
simulated using the discrete elements method (DEM). From the simulations the seismic signal 
produced by the passage of the material above a control plate placed on the bottom of the 
channel was obtained. Considering a priori significant the shape of the grains on the signal 
produced, this has been reproduced through rigid aggregates of spheres (clumps). The shape of 
an individual clump derives from a previous tridimensional scanning phase of some sample 
grains taken from the material used in the laboratory tests. 

The goal of this study is to obtain preliminary information (numerically and experimentally) 
about the signal produced by a granular flow, in terms of vibrations, number of interactions, 
force and strain vs time and of their frequency content. 
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2 NUMERICAL SIMULATIONS 

2.1 The geometry of the model 
The simulated geometry is the same used in the subsequent laboratory tests but, in order to 

reduce the computational time and the amount of data storage (which has been collected for 
more than 350000 timesteps), the informations about the flow were collected only along one 
section along the channel, just above a measurement plate (Figure 1). The channel is 1.55 m 
long, 0.30 m large and inclined of 38° with respect to the horizontal plane. The measurement 
plate is 20 cm long and located 64.5 cm far away from the gate of the upper tank. 

Initially the release mass is poured in the upper tank; then the lateral wall of the tank is 
removed and the granular material strats to flow. A larger box is used as deposit base as 
presented in Figure 1. 

 
Figure 1: Geometry used for the numerical simulation of the dry granular flow. 

A fixed granular volume of 0.027 m3 is used in each test; the initial porosity is 0.45 for ~ 40 
kg of mass. All simulations are performed using the open-source code Yade [6]. 

2.2  The granular material 
Clumps of 4, 8, 16 spheres have been used in order to better mimic the real shape of the 

grains used in the experimental tests. For this purpose, 16 samples of grains were scanned 
through a stereo-photogrammetrical method based on the “Structure from motion” (SfM) ([7, 
8]), the Meshlab software [9], and using a rotating platform. 

The discretization of the mesh via polar spheres was performed with Power Crust [10] which 
implements the median axis approach. In Figure 2 an example of a reconstructed grain, 
discretized with a different number of spheres, is reported. 

 
Figure 1: Example of clump generation: from (a) the surface mesh reconstruction, to a (b) 395 spheres and 

(c) 16 spheres representation. 

Measurement plate 

(a) (b) (c) 
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The contact model was Hertz-Mindlin in normal direction, while the Mindlin theory was 
adopted in the tangential one [11]. The rolling and twisting resistance were neglected since their 
effect has been substituted by the better description of the grain shapes. 

The Young modulus and the Poisson’s ratio at the contact were set E=108 Pa, 𝜈𝜈=0.2 for both 
the clumps and the walls. The contact friction angle was 40° while the normal and tangential 
restitution coefficient of the contact sphere-sphere and wall-sphere were 0.8 and 0.4 
respectively. 

 2.3  Numerical results 

The registration of the data started at time t0 when one particle crossed the control volume 
above the measurement plate. 

After that, at each time step, impact force components along the three axes have been 
recorded, as well as the number of clump-plate interactions. Moreover, every 0.025 s the 
coordinates of the centers of each sphere in the volume above the plate, and their linear (𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 
𝑣𝑣𝑧𝑧) and angular velocities (𝜔𝜔𝑥𝑥, 𝜔𝜔𝑦𝑦, 𝜔𝜔𝑧𝑧), have been stored. 

 
Figure 3: (a) Trends of normal and tangential forces and (b) of the mass and translational kinetic energy 

above the measurement plate. 

From the collected data it is possible to obtain the seismic signal transmitted from the dry 
granular flow, its spectrogram, together with kinetic energies obtained from the velocities. 

For the sake of brevity we refer here only to the results of the simulation obtained with the 
smooth pebbles of 11.2-16 mm diameter, and represented with 16 spheres per clump. 

The trend of the normal force 𝐹𝐹𝑛𝑛 and the tangential force 𝐹𝐹𝑡𝑡 with the time is reported in 
Figure 3(a), while the mass and the translational kinetic energy on the control volume above 
the plate, are showed in Figure 3(b). 

The high variability of the force signals is due to the continuous creations and destructions 
of contact force chains [12] between the particles and the measurement plate. The mean force 
signal presents a peak at 0.5 seconds while the peak of kinetic energy precedes the peak of 
mass: it occurs at 𝑡𝑡 − 𝑡𝑡0=0.25 s and in correspondence of the maximum variability of the forces. 

(a) (b) 
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Figure 4: (a) Spectrogram obtained from the normal impact forces Fn and (b) PSD spectrogram of the same 

force, limited to the frequency of 1.4 kHz. 

In Figure 4(a) and (b) the spectrograms of the signal generated by 𝐹𝐹𝑛𝑛 are reported. The 
maximum frequency detected is almost 70 kHz. But, if a narrower frequency range is 
investigated (up to 1.4 kHz), it can be observed that the higher power of the signal is 
concentrated within this range (see Figure 4(b)). These numerical results have been used to set 
the spatial and temporal resolution of the DAS system used in the experimental tests. 

 

3 EXPERIMENTAL TESTS 
The laboratory setup consists of a chute of the same dimensions of the one used for the 

numerical simulations (the geometry is reported in §2.1). An engineered mat, embedding the 
optical fiber, has been opportunely designed and placed at the bottom of the flume: the mat is 
constituted by high-density polyethylene foam and embeds 20 PVC mandrels (diameter 5 cm, 
height 2 cm) – each coiled with approximately 40 m of optical fiber and the surface of the mat, 
exposed to the debris, is protected by a 3 mm rubber sheet. Overall, approximately 800 m of 
fiber are embedded in the mat. 

The 20 mandrels are arranged in two sets of 10, at the right and left side of the flume, at 8 
cm from the lateral walls. Along the flume, from bottom to the top, the coils of the two sets are 
at 15, 27.5, 40, 57.5, 75, 91.6, 108.2, 125, 145 and 165 cm.  

Having a spatial sampling of 2 meters, 20 sampling points per each coils are measured. 
Please note that the DAS spatial resolution is 4 m, and correspondingly, each coil corresponds 
to an equivalent array of 10 geophones, while the signals collected in the entire mat correspond 
to an equivalent array of 200 geophones. The signal collected by the DAS, is expressed as the 
variation of axial strain inside the optical fiber with respect to the time, given the sampling 
frequency 𝑓𝑓𝑠𝑠 of 1 kHz. The amount of data collected per each experiments is very huge and it 
is still under analysis: here, some preliminary results will be presented, mainly to show the 
feasibility of the approach and the great potential of the DAS technology. 

For example, Figure 5 shows the signals collected at the coil on the right side, 75 cm from 
the bottom of the flume, during the flow test with sharp-edges grains of dimensions 11.2-16 
mm. Such coil is situated approximately in the same position of the measurement plate in the 
numerical simulations. 

(a) (b) 
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Figure 5: Strain in the 20 sampling points of one coil during the test with angular grains and grain size 11.2-

16mm. 

In order to measure the velocity of the flow, the energy carried by the signal has been 
considered. The energy of the debris obtained from a coil has been considered as the average 
of the energies detected by every single sampling point. 

In Figure 6 the mean energy of the debris in correspondence of each coil with respect to the 
time is reported. By analyzing its evolution, it is possible to identify the instant at which the 
front of the flow reaches each coil: the black spots in Figure 6(b) report the instants in which 
the energy of the signal is considered to be representative of the front of the flow of the material. 
Finally, in Figure 7 the instants in which every coil is reached by the front of the flow are 
reported. The data shows a position-time trend, with a quite constant front velocity in the 
considered section. 

 
Figure 6: Mean energy measured by each coil on the right side along the chute with respect to the whole 

acquisition time, (b) with respect to the flow event. 

(b) (a) 
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Figure 7: Instants in which the front reaches the left and the right sides coils along the flume. 

 

4 CONCLUSIONS 
From the preliminary numerical results highlighted in this work, it was shown that the signal 

generated by a granular flow is given by two contributions: one is related to the mass of the 
flow and one is related to its kinetic energy. The two contributions do not present simultaneous 
peaks in a given section: in our test, the first is the peak of kinetic energy which corresponds to 
the peak of force fluctuation. The peak of the mass instead is related to the thickness of the flow 
and it arrives after the front. 

Moreover, observing the spectrograms, two different behaviours in terms of power emitted 
at different frequencies can be seen: a high power concentrated within a narrow frequency 
range; a low power spread in a wide frequency range. This means that the seismic signal is 
given by a sum of a low frequency signal – due to the mass of the material, that can be expressed 
as the thickness of the flow on the recording plate – and a high frequency signal, which is 
generated by the collisions. This preliminary analysis made it possible to reconstruct, although 
in a simplified manner, the signal produced by a granular flow. 

This information has been used for the parameters used in the fiber optic measurement tool, 
based on Distributed Acoustic Sensing technology. 

By the analysis of the signal recorded by the DAS, some preliminary results were obtained: 
in particular, evaluating the mean debris energy on each coil, it was possible to detect the 
kinematic of the front flow. 
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Abstract. In this work, we explore the effect of the grain size distribution (gsd) on the
packing of 3D granular materials composed of spheres, and find the optimal packing with
the highest density as a function of the gsd parameters.

1 INTRODUCTION

Granular media are materials composed of interacting bodies with many types of pos-
sible microscopic parameters that impact the global response of the system under given
external conditions. In particular, poly-dispersity, which characterizes the differences in
size for the constituent grains and can be described by the grain size distribution (gsd),
has been shown to strongly influence the packing properties of the system.

In this work, the gsd is modeled as a truncated power law that can be characterized by
its shape (exponent, η) and its size span (ratio of the larger to the smaller particle size,
λ), and is defined as

ρ =

(
d− dmin

dmax − dmin

)η

=

(
d

dmin
− 1

λ− 1

)η

, (1)

where dmin (dmax) is the minimum (maximum) diameter in the sample, and ρ is the fraction
of volume occupied by particles of diameter d. This distribution arises as a result of the
previous works of Fuller, Thompson, and Talbot [1, 2, 3] (experimental) and those by
Furnas [4, 5] (theoretical) between 1907 and 1931.

One common and important question is if there is an optimal gsd that generates the
best packing measured in terms of some packing variables such us the packing fraction
(or density), the local connectivity [6, 7] and anisotropy [8, 9, 10], the force distributions
and so on. For instance, Fuller and Thomson found [1], more than a century ago, than an

1
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optimal packing with the densest state could be obtained with an exponent of η � 0.5.
This has been verified [11, 12] in 2D simulations comprising systems with large size spans,
up to λ = 32 .

Large size spans in three dimensions are hard to simulate due, in part, to the large
computational resources involved. Previous work had focused in 2D [13, 14] (λ � 8), [15]
(λ = 3), and with special mention to the works of Voivret where really large size spans
where explored for discs (λ � 20) [16, 17] and polygonal particles [18, 19], and recent
works with larger λ [11, 12, 20] and in 3D [21].

In this work we explore very large three-dimensional samples composed of frictionless
spheres under isotropic compression and with different gsd. The shape of the distri-
bution was in the range η ∈ [0.1, 0.2, . . . , 0.9, 1.0], while the size span was changed as
λ ∈ [2, 4, 8, 12, 16, 24, 32]. These values include common distributions and explore some
regions not commonly simulated. For instance, η = 1.0 corresponds to a uniform by
volume distribution. For large λ and small η, the systems were composed of up to 400000
particles to represent the gsd accurately (maximum difference less than 5%). Some of
those systems, when compressed, also generated more than one million contacts. Simula-
tions were performed using the LIGGGHTS [22] package on a multicore server. Figure 1
shows snapshots of the 3D systems for fixed η = 0.5 and λ = [4, 32]. Only the particles
away from the walls by 1.5�d� were used for processing.

Figure 1: Screenshot for η = 0.5, and (left) λ = 4 and (right) λ = 32. The systems were cut in half
to show the inner particles. Color represents the number of contacts. For the λ = 32 system, the larger
particles could have more than 1000 contacts.

We found that values around η = 0.5 produce packings with the highest densities, which
is in agreement with the century-old Fuller-Thomson distribution. Also, the proportion of
floating particles could reach values as high as 90% for large λ, while the mean coordination
number decreases drastically. These results allows, for instance, to design packings which
could be better densified and connected just by controlling its generating gsd. Finally, the
very high number of floating particles, or, equivalently, the very low mean coordination
number, means that some systems could fracture under some mechanical conditions since
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the forces will be focused on a small number of particles.
The paper is structured as follows: in section 2, we describe the numerical method and

the sample setup. In section 3, we show the main results for the density and the local
ordering as functions of the gsd. Finally, in section 4, we present some conclusions and
suggestions for future work.

2 Numerical method

Simulations were carried out by using the soft-particle discrete element method. Here
the particles are modeled as bodies that deform a little (given the Young modulus) when
touching each other, and the repulsion force is proportional to a power of that deformation.
In particular, we used the so called Hertz model [22, 23, 24, 25]. The particles were
spherical, without friction, and compressed isotropically on a cubic domain.

0.0 0.5 1.0 1.5 2.0

d/�d� [−]

0.0

0.2

0.4

0.6

0.8

1.0

ρ
[−

]

Increasing η

λ = 2

λ = 8

λ = 32

Figure 2: Grain size distribution (1) for some values of λ and all η. In all cases, the average diameter
�d� = 0.5(dmin + dmax) was fixed to the same value.

We randomly generated radius according to the gsd (1) and accepted configurations
only when the maximum difference between the numerical and the theoretical gsd was
smaller than 5%. The generated sample was equilibrated inside a cubic box and then
compressed isotropically, slowly, until reaching mechanical equilibrium. The simulation
was stopped when the cundal parameter, defined as the sum of the net force per par-
ticle over the sum of the net force per contact was smaller than 0.001, which indicated
mechanical equilibrium. Data processed to extract the results shown below was filtered
to be one mean diameter away from the walls and, when needed, excluding the floating
particles, defined as particles with only 0 or 1 contact.
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Figure 3: Packing fraction ν for several λ and η, after an isotropic compression.

3 Density and connectivity

Figure 3 shows the packing fraction ν (volume of particles over volume of the packing)

ν =
Vp

V
, (2)

as a function of both λ and η. We can see that for all λ, there is always and optimal
η � 0.5 where the packing fraction is the largest, and this is more notorious for larger
λ. This result agrees with the Fuller and Thomson finding, giving it support now for 3D.
This shows that, to maximize the density it is not enough to have a large λ, but also and
intermediate value of η. Allowing to increase the proportion of small particles helps filling
the voids left but the larger particles, but when η is too large then the space filling is not
optimal again.

One measure of the connectivity of the system corresponds to the proportion of floating
particles, or, equivalently, the mean coordination number, which is the mean number of
contacts per particle. Both of them give a first order idea on how well connected is the
system to distribute the external forces among the particles.

The proportion of floating particles, κ, is defined as

κ =
Nf

Np

, (3)

where Nf is the number of floating particles and Np is the total number of particles. A
particle is defined as a floating particle if its number of contacts is 0 or 1, so it cannot be
a part of a force bearing chain inside the sample.

Figure 4 shows the percentage of floating particles as a function of both λ and η. This
proportion can reach values of up to 90%, which in turns decreases the mean coordination
number to values around 0.5, when all particles are included in the computation. In fact,
when the floating particles are excluded, the mean coordination fluctuates around 6,
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Figure 4: Proportion of floating particles, κ, for several λ and η, after an isotropic compression.

as expected for the isostatic condition. This high percentage of floating particles looks
surprising, and has some mechanical implications. For instance, it implies that the forces
inside the packing are distributed among a small subset of the particles. This makes this
kind of systems more likely to fracture.

4 Summary and conclusions

We have studied three-dimensional frictionless systems with very large polydispersities
characterized by the grain size distribution (1) with shape η = [0.1, 0.2, . . . , 1.0], and
size span λ = [2, 4, 8, 12, 16, 24, 32]. The systems were compressed isotropically until
mechanical equilibrium was reached.

We found an optimal packing where the density is maximum and correspond to eta =
0.5, which is Fuller and Thomson.

The density of the system, measured by the packing fraction ν, depends strongly on
λ and η. In particular, we found that for almost all system, specially large λ, there is
always an optimal packing with the largest density around η � 0.5−0.6, which is close to
the Fuller-Thomson distribution and confirms that this shape parameters generates the
densest packing.

Furthermore, after these optimal η values, the proportion of floating particles κ in-
creases strongly, reaching values of up to 90%. This implies that η � 0.5−0.6 corresponds
not only to the densest packing but also marks the transition from a well connected pack-
ing to a packing where a small subset of particles participate on the force bearing networks.
The high percentage of floating particles make the systems more fragile since they might
be more likely to fracture the grains.

The present results support the design of granular packings from the actual gsd, choos-
ing λ and η to reach a target density and connectivity. This can be extended to systems
with friction, or with different mechanical solicitations, like simple shear or triaxial tests.
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Abstract. Vertical filling of granular media is influenced by resistance of the surrounding
medium, especially in the case of a dilute process with relatively large distances between
particles and relatively low particle densities. Discrete Element simulations were carried
out to calibrate models of such a filling process for two granular food goods. The aim was
to perform bulk calibration in-situ, meaning in the process of interest itself, rather than
a second setup. To account for the air drag but keep computational cost practical, the
computationally cheap free fall was modeled with the Schiller-Naumann correlation for
drag force. The predictions where compared to simulations without fluid influence. The
results show that the predictive quality of the models was increased with the simple drag
model. It is shown that with the expanded model, calibration can be performed in the
filling process itself, which might be useful especially for industry application.

1 INTRODUCTION

Vertical filling is a staple in the industrial packaging of granular foods, such as candy,
cereal, nuts and pasta. The most common example is the vertical form, fill and sealing
process (VFFS), which is capable of producing and filling over a hundred bags per minute.
The process is shown schematically in figure 1a.

After a dosing unit has filled the collection bucket with a defined amount of good, the
particles are released and fall through the forming tube. The latter is surrounded by a
downwards moving film tube. As the sealing jaws close, they seal both the bottom of the
current bag as well as the top of the last bag. The bag production rate is often limited
by the falling behavior of the bulk good. This is due to the fact that in each cycle, all
particles must entirely fall past the sealing jaws which are only open for a limited amount
of time between sealing events. The maximum time allowed for filling tfill, must thus
be longer than the time between the first and the last particle to leave the tube at the
bottom. The relationship between the events of each bag production cycle are shown in
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(a) Schematic filling in a vertical tubular
bagger (VFFS). Adapted from[1].

(b) Events in each cycle of bag filling.
The dashed lines represent indicate variable
buffer times which are necessary to accomo-
date random variation. From [2].

Figure 1: Overview of the vertical filling process.

figure 1b. The time allowed for filling tfill must be longer than the range of the particle
residence time R(tres), i.e. the residence time of the last particle to leave the tube tltl
minus the residence time of the first particle to leave the tube tftl.

tfill
!
> R(tres) = tltl − tfte (1)

To accommodate random variation in the falling behavior of the particles, the sealing
jaws must be kept open at least for the mean of R(tres) plus a certain buffer time. In each
cycle, if one or more particles are delayed more than that buffer time, there is a risk of the
particle getting caught by the sealing jaws, which is often detrimental to the quality of
the seam. Choosing overly long buffer times however, increases cycle time and therefore
reduces bag output. In order to achieve optimal profitability, it is therefore crucial to
accurately estimate the residence time range R(tres) and its variation between cycles.

The falling behavior of the bulk material largely depends on the kinetics of contacts
between particle-particle and particle-wall contacts [3]. Furthermore, the particles experi-
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ence air resistance during the fall. Frank et al. showed that the vertical filling process can
be described numerically with the Discrete Element Method (DEM) [4]. However, their
model did not consider air resistance and required a separate test for model calibration.
Kirsch showed that model calibration can be performed in the filling process itself but he
also did not include air resistance. [1]

Coupling the DEM with computational fluid dynamics (CFD) is a widely used tech-
nique to account for the interaction between fluid and particles [5]. However, sophisticated
CFD methods significantly increase computational cost compared to the DEM alone [6].
The aim of this study was to evaluate, if a much simpler formulation for drag can im-
prove the DEM model enough to accurately describe the filling process. For this purpose,
experiments and simulations were conducted for two different granular foods. Firstly,
we obtained parameters from bulk calibration according to the state of the art, using a
funnel discharge test, where the air influence was assumed to be negligible. The obtained
parameters were validated in three different scenarios of a vertical drop, which revealed
notable deviation from the experimental references, especially for the good with lower
particle density.

In order to improve the physical accuracy of the model, a simple relation for air drag
was introduced characterizing the free fall of a single particle. While this method fails to
capture swarm effects, it is computationally cheap. In order to account for the slipstream
effect of particles behind the bulk front, the drag correlation was turned off after the bulk
front left the bottom of the tube. The model validation was repeated with he air drag
model. While with high solid density, the simulations showed good agreement with the
experimental references, the prediction was poorer for lower solid density. Finally, the cal-
ibration was repeated in the drop process itself (in-situ calibration) with the drag model.
The predictions from the re-calibrated models are in good agreement with the experiment
with a maximum of 5% deviation of the average and median of R(tres). This indicates
the validity of the chosen drag model for the presented cases, despite its simplicity.

2 DISCRETE ELEMENT SIMULATION

2.1 Contact formulation

Granular dynamics are largely determined by contacts between the particles. Particle
contacts cause fairly complex elastic and plastic deformations, which are impractical to
describe in full detail if a large quantity of particles is to be included in a simulation.
The Discrete Element Method simplifies contacts to save numerical cost. Since the defor-
mations are often much smaller than the particles’ dimensions, they are neglected with
regard to particle shape. The particles are thus considered as rigid bodies, often spheres.
However, the particles are allowed to overlap upon contact. The normal and tangential
forces resulting from contact are then described by empirical relations between overlap
and force magnitude and direction. For the present study, the elastic-plastic linear hys-
teresis model was used [8], which follows Hooke’s spring law but uses a higher spring
constant for the relaxation after contact, to account for the energy dissipation due to
plastic deformation.
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2.2 Contact parameter identification

DEM simulations require a series of contact parameters, such as friction and restitution
coefficients. These parameters are difficult to determine experimentally, since no standard
tests are available. Furthermore, due to the empirical nature of the DEM contact laws,
the physically accurate parameters may fail to compensate model errors, which often
makes it necessary to use nonphysical "effective" parameter values. [9, 10] In practice,
the contact parameters are thus often not measured but "calibrated" by iteratively tuning
their values so that the DEM simulation reproduces a certain outcome of an experiment
with the bulk good [7, 9, 11, 12, 10].

For model calibration, most studies rely on a dedicated lab-scale calibration test, which
allows quick tests and is usually simpler to reproduce in the simulation than the actual
process. However, only parameters that play a significant role in determining the calibra-
tion trials outcome can be determined this way [13]. The actual process however might
be sensitive to additional parameters. A way to achieve identical parameter sensitivity in
the calibration test and the actual process, is to perform the calibration in-situ, i.e. in
the process of interest itself. Kirsch compared in-situ calibration in the drop process to
calibration in a separate trial and showed both methods provided good model fidelity [1].

2.3 Effects of model shortcomings

Model calibration is an example for inverse approach and as such is sensitive to incom-
plete physics in the simulations [14]. In the case of vertical filling, DEM-only simulations
neglect the influence of air drag on the particles. If the influence of drag is significant, this
will introduce a bias to the solver. The parameter set with the lowest error is then only
apparently optimal, and will, to some degree, differ from the actual optimal parameter
set. Thus, the question is, if the influence of air significantly affects the falling behavior
of the bulk. It has been shown that the speed of particle clusters falling in a vertical tube
exceed the terminal velocity of a single particle [15]. This is an indication that a clustered
drop resembles more a fall in vacuum. However the authors stated, that this is only to
be assumed for drops with a low void fraction.

3 PARAMETER IDENTIFICATION

3.1 Experimental setups

The experiments were performed with two sample goods: near spherical bite-size choco-
late candy and puffed rice. Their dimensions, bulk densities and sample masses used are
noted in table 1.

Two different experimental setups were used in this study: a funnel discharge test with
a dense particle flow [1] and a dilute drop test mimicking the industrial filling process
[16]. The funnel setup was constructed from transparent polycarbonate. This allowed
tracking the bulk’s motion over time upon release. The experiments were filmed with a
high speed camera at 100 frames/second. The videos were processed with the Matlab R©

Image Processing ToolboxTM, so that the visible area of particles was extracted (figure
2). The experiments were each repeated five times and the resulting time signals were
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Table 1: Set bulk good parameters.

Material Parameter Value Sample masses

Chocolate Candy
Young’s Modulus 107 m

2000 g∇, 300 g, 500 g, 700 g*Bulk density 662 kg/m3

Particle diameter d 11.2mm

Puffed Rice

Young’s Modulus 107 m

230 g∇, 50 g*, 100 g, 200 gBulk density 129 kg/m3

Particle diameter d 4.8mm
Particle length l 9.0mm

Polycarbonate Young’s Modulus 107 m –

∇ Funnel discharge calibration
* Drop test calibration

averaged.

(a) Original frame. (b) Result of binarization.

Figure 2: Experimental funnel discharge test and image processing to obtain visible par-
ticle surface.

The drop test setup is shown schematically in figure 3a. Before each experiment, the
sample bulk was placed in the sample bucket. The drop was then initiated by opening the
motor-driven flaps. The drop experiments were filmed with a high-speed camera at 1024
frames/second. The videos were then processed using the Matlab R© Image Processing
ToolboxTM similar to the funnel test, so that the 2-dimensiona particle area could be
extracted (figure 3b). This allowed calculating and tracking the virtual center of mass
of the 2-dimensional projection over time [2]. Additionally, the time stamps tftl and tltl
of the first and last particle to leave the tube at the bottom were extracted. Each test
was conducted at least seven times and the resulting curves and the time stamps were
averaged.

The experimental setup and the operation conditions were transferred into the DEM
environment Rocky DEM. From every simulation run, a video mimicking the experimental
videos was exported and analyzed analogously.
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(a) Drop setup, measures in mm. The bulk
sample can be released with motor-driven
flaps. Adapted from [16].

(b) Original and processed example video
frames of the drop process. The asterisk
shows the location of the 2D center of mass.
From [2].

Figure 3: Experimental drop setup and image processing.

3.2 Parameter variation and regression of solver response

The aim of the calibration is to find the parameter set �xopt where the error between
simulation and experimental reference becomes minimal. The error function E(�x) varied
between calibration scenarios (see 3.3). Iterative calibration is numerically expensive,
since every parameter combination tested requires one solver run. The development of
efficient and reliable calibration procedure has gained the attention of several groups
[1, 17, 13, 18]. Rackl et al. and Kirsch performed the calibration on a meta model, which
was constructed from the responses of a predetermined number of solver calls at different
parameter sets which were obtained from Latin Hypercube sampling (LHC) [1, 13, 19, 20].
The benefit of the meta model is, that it is much cheaper to evaluate than the DEM
solver and thus allows for faster search of an optimal parameter set. Additionally, the
regression is capable of smoothing out some random variation (solver noise), which makes
optimization more efficient [21].

The parameter variation and optimization scheme is shown in figure 4 [1]. It was
implemented using the optimization software package Optislang R©. The scheme features
an iterative adaptive approach where samples are added in the regions where the error
function is low, to increase local resolution. Optislang R© offers a measure for the fidelity

6

325



Stefan Kirsch

of the regression in the coefficient of prognosis [22]. The process was stopped if the
coefficient of prognosis did not further increase. In all cases, a minimum of six iterations
were performed. After the last sampling iteration, the parameter set with the lowest
error between simulation and reference was identified. The resulting parameter set �xopt

was then used for validation.

Figure 4: Workflow for DEM input contact parameter calibration (Adapted from [1]).

3.3 Calibration scenarios

The scheme described in section 3.2 was performed for two calibration scenarios and
for both sample goods. The first scenario was the funnel discharge test as described
above. The error function E(�x) was defined as the averaged absolute point-wise deviation
between reference and simulation. Secondly, the drop test as described above was used
for calibration. The error function E(�x) was the root mean square error (RMSE) of the
virtual center of mass in longitudinal direction between reference and simulation [2]. For
the second calibration, a CFD model was used to account for air drag.

Accurate descriptions of air resistance, for example FEM methods, describe the element-
wise interaction between particles and the surrounding medium. This makes calculations
significantly more expensive and would lead to impractical run times for model calibra-
tion. In order to avoid this issue, a much simpler approach for air drag was attempted for
this study. It was reasoned that due to the dilute nature of the drop process, the air drag
could be approximated by the case of a single particle falling through an unconstrained
fluid domain (free fall). The drag force FD in this case follows the relationship

FD =
1

2
ρv2CDAp (2)

where ρ is the particle density, v the particle’s velocity, and Ap it’s cross sectional area.
The drag coefficient CD depends on the particle shape and on the Reynold’s number.
Many empirical relations for CD can be found in literature. A commonly used relation
for CD based on the original formulation of Schiller and Naumann is given by [23, 24]:

CD = max

[
24

Re

(
1 + 0.15Re0.687

)
, 0.44

]
(3)
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With this simple relationship for air drag, the effect of particle velocity is incorporated
in the model, while the local particle concentration and the history of air displacement by
leading particles is neglected. The latter slipstream effect results in particles behind the
leading front to experience less air drag. In order to include this into the model, the air
drag model was only used in the first half of every simulation until the particle front left
the tube at the bottom. After this, the drag model was switched off, assuming a fall in
vacuum. Due to the simplicity of the model, the air drag introduced should not be viewed
as an expansion of the physics model, but rather as an empirical correction factor for the
DEM simulations. Such an approach is only considered viable, as long as the influence of
air drag is overall low compared to the influence of the particle contacts, which was first
to be tested on the DEM models calibrated to the funnel experiment.

4 RESULTS AND DISCUSSION

4.1 Calibration to funnel test

The predictions of the DEM models calibrated to the funnel discharge test are shown
in a box plot in figure 5. On the ordinate, the mass of the bulk sample and the source
of the data are given (experimental reference, simulation in vacuum or simulation with
CFD). The vertical line in the box plot marks the median and the box edges indicate the
first and third quartile. The whiskers indicate the most extreme observations that still
fall within 1.5 times the interquartile range. All other observations are marked with a
plus sign and indicate outliers.
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Figure 5: Validation of the models calibrated in the funnel discharge test.

We find a notable deviation between the experimental data and the simulations, which
varies from case to case. Furthermore, we find that the drag model has little impact for the
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chocolate candy, but notably influences the simulations with puffed rice. In the latter, the
drag model improves the prediction of the simulation, by reducing the underestimation
of the residence time range. These results give an indication that the chosen CFD model
is a viable correction factor for air drag.

4.2 Calibration to drop test with drag model

Based on the previous findings, a new set of two calibration runs with the drag model
was performed in the drop test with the bulk masses indicated in table 1. The results of
the validation of the calibrated models are shown in figure 6.

0.25 0.3 0.35 0.4 0.45

Time [s]

  m = 0.70 kg

  m = 0.70 kg

  m = 0.50 kg

  m = 0.50 kg

  m = 0.30 kg

  m = 0.30 kg

Sim CFD

Ref

Sim CFD

Ref

Sim CFD

Ref

(a) Residence time range R(tres)
of chocolate candy.

0.3 0.35 0.4 0.45 0.5 0.55 0.6

Time [s]

  m = 0.20 kg

  m = 0.20 kg

  m = 0.10 kg

  m = 0.10 kg

  m = 0.05 kg

  m = 0.05 kg

Sim CFD

Ref

Sim CFD

Ref

Sim CFD

Ref

(b) Residence time range R(tres)
of Puffed rice.

Figure 6: Validation of the models calibrated in the drop test with CFD model.

For the chocolate candy, we find a better agreement between reference and simulation
(figure 6a) than in the validation of the model calibrated to the funnel test before. (figure
5a). More specifically, the prediction of the median is more accurate and more consistent
over the sample mass. Secondly, the location and distance of the first and third quartile
show a much better agreement between reference and simulation than in figure 5a. This
is an indication, that the model could also be used to make statistical predictions. This
would be of especially high importance for industry application, since the filling process is
intrinsically random. Thus, if a model is capable of predicting "worst cases", i.e. abnor-
mally long R(tres), and their likelihood, one could infer economically beneficial settings of
the filling process, considering earnings for bags output versus cost for possible machine
downtime when a particle was caught between the sealing jaws.

For the DEM-CFD for puffed rice (figure 6b), we find a comparable prediction accuracy
as in the model calibrated to the funnel test (figure 5b). We find notable deviation in
the median of a maximum up to 5% for the cases with lower sample mass, which could
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still be considered acceptable for practical use. The predictions for statistical spread now
also show notable deviation. This would make the model for puffed rice less reliable for
predictions in an industrial context. A reason for the deviation is that the impact of air
resistance seems to be larger than for the chocolate candy (figure 5). This is explainable by
the lower density of the puffed rice particles, which could mean that the real air flow plays
a larger role. Thus, these simulations might require a more sophisticated drag model.

5 CONCLUSION

The aim of this study was to find a computationally cheap CFD model, capable of
correcting the DEM model’s shortcomings regarding air drag for the simulation of the
industrial vertical filling process. We showed in a simplified drop setup that a fairly
simple relationship for air drag was capable of providing a plausible correction to DEM
models so that their predictive capability was improved. Furthermore, the CFD model was
implemented in an in-situ calibration approach, meaning that the DEM parameters were
calibrated in the process of interest itself. The calibrated models show good agreement
with the median observation from the measurements and even predict the statistical
spread fairly reliably for denser particles. Both are important for industrially relevant
choices regarding machine operation.
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Abstract. The Discrete Element Method (DEM) is well-established and widely used in
soil-tool interaction related applications. As for all simulation tools, a proper calibration
of the model parameters is crucial. In this contribution, we present the parametrization
procedure of the DEM software GRAnular Physics Engine (GRAPE), developed and
implemented at Fraunhofer ITWM, and attempt to use two parametrized soil samples
for the simulation of small scale shallow penetration tests. The results are compared to
laboratory measurements.

1 Introduction

In recent years, the Fraunhofer ITWM has developed and implemented a software so-
lution entitled GRAnular Physics Engine (GRAPE) for modeling and simulating soil and
soil-tool interaction based on investigations in [1, 2, 3]. GRAPE is based on the Discrete
Element Method (DEM) with a focus on the accurate prediction of draft forces with heavy
construction equipment. The particles are represented by three-dimensional rigid spheres
with three translational degrees of freedom and scale-invariant linear particle interaction
forces in which the corresponding parametrization is based on a triaxial compression test,
see Section 2 and 3. In particular, GRAPE is validated in real application scenarios
among others in cooperation with Volvo Construction Equipment, cf. [4, 5].
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The parametrization process for soil simulation is a challenging task. Cone penetrom-
eter tests in the context of vehicle engineering have been studied in [6] using Smoothed
Particle Hydrodynamics. Shallow hemiball and toroid penetrometers have been simulated
using a Large Deformation Finite Element Method in [7] to find fitting equations for in
situ evaluation and soil identification. Cone penetrometer tests, together with plate sink-
age and shear tests have been used in an optimization routine to estimate DEM model
parameters [8]. It was found that the combination of several in situ tests is sufficient for
the calibration of their model. Small scale shallow penetration experiments using different
materials have been conducted and evaluated in [9].

In this contribution, we illustrate the parameter identification process for two types
of soil, namely a poorly graded sand (A) and a well graded sand-silt mixture (B) with
mean grain diameter d50(A) = 0.290 mm and d50(B) = 0.036 mm, respectively. In
Section 2 we describe the Discrete Element Method and explicate the specifics of our
model. Thereafter, the experimental procedure on triaxial compression and shallow cone
pentration test is shortly presented in Section 3. We determine the respective soil and
particle interaction parameter sets P(A) and P(B) to match the observed strain-stress
behavior in the corresponding triaxial compression tests, see Section 4. Subsequently,
we discuss the applicability of these identified parameter sets – that reflect the triaxial
test – to reproduce small scale shallow penetration tests performed in the soil mechanics
laboratory, see Section 5. Finally, we summarize our results in Section 6.

2 Fundamentals of the DEM model

In this section, we briefly describe the Discrete Element Method in general and our
efficient and soil-specific model in more detail [1, 10, 4, 11]. The DEM dates back to the
1970s [12] and with the rise of computing power as predicted by Moore’s law, the method
gained practical relevance in the 1990s until today. Zhu et al. [13] present a still ongoing
boom referring to the number of particle simulation related publications. The main idea of
the DEM is to consider soft-sphere particles and their interaction leading to granular bulk
behavior. The decision on the shape of the particles and on how to model the inter particle
contact law has to be taken with care. The physically most accurate contact law seems to
be the Hertzian contact model with additions due to Mindlin and Deresievicz to account
for cohesion [14]. Much more efficient but less physical is a linear-elastic Hookean model.
However, when it comes to soil and granular matter with complex shapes, the error due
to regularized geometries is much more relevant than the error owing to the linear contact
law [15]. Due to the fact, that we are interested in the soil-tool interaction forces and
usually do not focus on the micro-mechanical behavior of particle interaction, we choose
the simplest geometry, namely spheres and a linear contact law. In our model, we neglect
the rotational degrees of freedom, and solely rely upon an accurate parametrization in
order to obtain physical bulk behavior, e.g. a realistic strain stress behaviour and angle
of friction.
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2.1 Normal interaction

The particle dynamics relies upon Newton’s second law

miẍi = fi. (1)

Here mi denotes the mass of the i-th particle, xi its position, ẋi its velocity and ẍi its
acceleration vector. If two particles interact, that is the overlap δij = ri + rj − ‖xi − xj‖
is non-negative, ri denoting the radius of the i-th particle, a linear damped spring

FN
ij = kN

ij δij + dNij δ̇ij and fNij = FN
ij nij, (2)

is activated. Here, the normal unit vector at the contact point is defined by

nij =
xi − xj

‖xi − xj‖
.

The stiffness and damping coefficients kN
ij and dNij depend upon the particle radius.

Scale invariance and normal stiffness The terminology of scale-invariant contact
laws is due to Feng [16]. Let us consider physical grains with radius rP and larger model
particles with radius rM .

Definition 1 We say that a model is scale-invariant, if and only if for radii rP and rM
it holds σP = σM for εP = εM .

Lemma 1 An n-dimensional contact law of the form F = crαδβ is scale-invariant if and
only if α + β = n− 1.

This result is shown in [16]. Considering two particles as a stiff beam, with mean radius
rij = 1

2
(ri + rj) and mean area Aij = πr2ij. The length of the beam corresponds to

Lij = 2rij. Considerung the normal stress σ and strain ε

σ =
Fij

Aij

=
kN
ij δij

πr2ij
and ε =

δij
2rij

, (3)

we obtain for the Young modulus

EN =
σ

ε
=

kN
ij · 2rij
πr2ij

thus kN
ij =

ENπrij
2

(4)

Hence the presented model, neglecting the damping term, describing a 3-dimensional
contact law with n = 3 and α = β = 1, is scale-invariant.

Normal Damping Furthermore, we set the inter-particle damping

dNij = DN · 2 ·
√
kN
ijmij, where mij =

mi ·mj

mi +mj

. (5)

The effective mass mij stems from the consideration of two particles as one damped
oscillator. The parameter DN controls the desired percentage of the critical damping.

3
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2.2 Tangential interaction

If two particles overlap, the initial contact points ci = cj coincide and are saved in local
coordinates of particle i and j. If the particles translate with respect to each other, the
local contact points differ. We project them into the tangential contact plane and consider
the resulting vector ξij as tangential elongation. The tangential spring then reads

fTij = −kT
ijξij − dTij ξ̇ij and F T

ij = ‖fTij‖. (6)

The parameters kT
ij and dTij are defined similarly to the normal interaction.

2.3 Coulomb friction

If the tangential elongation becomes large, we need to account for friction. We don’t
distinguish sticking and sliding friction and use the Coulomb friction model. We restrict
the absolute value of the tangential force with respect to the normal force introducing the
local stiffness parameter µ, that is F T

ij ≤ µFN
ij . Otherwise slipping friction occurs and we

reset the tangential elongation to

ξ′ij =
µFN

ij

kT
ij‖ξij‖

ξij. (7)

3 Relevant experiments

We shortly describe the experimental setup of the triaxial compression test, needed for
parameter identification. Thereafter, we focus on the small scale shallow penetration test.

3.1 Triaxial compression test

The triaxial compression test is a well-established laboratory test which has been de-
veloped in the first half of the 20th century. It serves as a method to quantify a material’s
strain-stress characteristic. For this study, displacement-controlled triaxial tests are car-
ried out according to the specifications of DIN 18137. Dry samples of 100 mm in diameter
and 120 mm in height are prepared using a standardized procedure. Confining pressure in
the triaxial cell is applied using water in order to allow measurement of specimen volume
change. Axial load is measured outside the cell. Piston friction is assessed by a calibration
procedure. Volumetric strain is determined by measuring the volume change of the water
in the triaxial cell from the differential movement of a piston. Strains are defined positive
in compression. Loading of the sample is applied at a constant displacement rate of 0.1
mm/min. The variation of the axial load and of the volumetric strain are recorded at
gradually increasing axial strain. Assuming a linear Mohr–Coulomb failure criterion, the
shear strength parameters of the soil, i.e. angle of internal friction φ and cohesion c, are
determined from the peak values of the strain-stress curves at three distinct levels of the
cell pressure.

Two materials (A) and (B) are tested. They are classified as sand and sandy-silt,
respectively. The porosity of the samples amounts to nA = 0.34 − 0.48 for (A) and
nB = 0.45 − 0.60 for (B). The shear strength parameters, namely the angle of friction φ
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and the amount of cohesion c for sand (A) and silt (B) as determined from the tests amount
to φA = 39.5◦, cA = 2.1 kPa and φB = 42.5◦, cB = 0.5 kPa. For the parametrization we
use the entire stress vs. strain and volume change vs. strain curves obtained from the
tests as depicted in Figure 4.

σ1

σ2σ2

Figure 1: Visualization of the Triaxial Compression Laboratory Test (left) and the respective simulation

at the beginning (middle) and in the end (right)

3.2 Shallow penetration test

The tests are carried out in a cylindrical container of a diameter of 290 mm and a
height of 200 mm with a steel rod penetrometer of 10 mm diameter with a flat base.
During the test, the penetration force and the corresponding displacement are measured
for a total depth of 30 mm. The shallow penetration test is performed under a constant
displacement rate of 1.2 mm/min. The force needed to penetrate the bar is continuously
recorded by an appropriate load cell.

v1

Figure 2: Visualization of the shallow cone penetration experiment and the respective simulation
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Parameter Symbol Unit sand P(A) silt P(B)

Sample generation

radii ri [mm] 2 0.5-2.5

porosity n [-] 0.34-0.53 0.37-0.54

density ρ [kg/m
3
] 2650 2700

Triaxial compression test

Young modulus EN [N/m
2
] 1.2e8 1.2e7

tangential stiffness parameter ET [N/m
2
] 1e8 1e7

local friction coefficient µ [-] 0.2 0.25

Table 1: Parameters P(A) and P(B) as determined for the two materials

4 Parametrization via triaxial compression test

In this section, we describe the calibration procedure of our DEM model, as developed
in [1, 10]. The parametrization of a GRAPE model is based on a triaxial test, see also Sec-
tion 3, and implies the appropriate choice of the most influencing simulation parameters.
First of all, we decide for the particle size distribution ri that may represent a scaling of
the real grain-size distribution due to the scale-invariant force law, see Section 2.1. The
model parameters are the porosity n, the normal stiffness EN and damping DN , the tan-
gential stiffness ET and damping DT and the local friction coefficient µ. The parameters
of the virtual experiment are determined to reflect the soil’s characteristic strain-stress
behavior in the corresponding real experiment performed in the soil mechanics laboratory.

4.1 Sample generation

In a first step, we study the grain-size distribution and decide for suitable particle
radii. Due to the scale-invariance, it is possible to use larger particles which reduces the
simulation time, but limits the micro-mechanical modeling fidelity. The first choice is
a monodisperse particle sample, which also simplifies the numerical calculation, because
the particle stiffness and damping remain constant for all particles. The porosity of the
material has to be estimated from the experimental minimal and maximal values. The
particle density, corresponding to the mass equals to the density of the soil grain and
can be measured in laboratory experiments. A list of all relevant parameters with the
determined parameters for sand and silt is given in Table 1.

According to the desired grain-size distribution, the particles are loosely assembled on
a regular lattice and slightly disturbed in a random direction. Thereafter, outer sidewalls
compress the particles until the desired porosity is reached. This basic sample can then
be replicated and cut in order to obtain a desired particle pile. For our study, we use
mono-disperse particles of radius 2 mm for the poorly graded material (A). For the sandy-
silt (B), we try to approximate the grain-size distribution using seven different particle
radii between 0.5 and 2.5 mm, see Figure 3. The porosity of the material’s basic sample
corresponds to nA = 0.34 and nB = 0.37 for the triaxial compression test. The porosity for
silt is underestimated with respect to the measurements. We focussed on reproducing the
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Figure 3: (left) Grain size distribution for two different materials: poorly graded sand (black) and

well-graded sand-silt mixture (blue), which we denote by silt; (right) Particle size distribution within the

simulation.

grain size distribution, which leads to a denser particle pile density. But when generating
the cylindrical sample, we replicate the basic sample and consolidate it under the influence
of gravity. The porosity then corresponds to nA = 0.53 for material (A) and nB = 0.54
for material (B).

4.2 Triaxial test simulations

The basic sample obtained in Section 4.1 is loaded in a triaxial test simulation. In-
stead of using a cylinder-shaped geometry, we use a cube, see Figure 1. The side-walls
in horizontal and lateral direction are pressure-controlled. The bottom wall remains con-
stant. The top wall is moved downwards at constant velocity, then the side-walls displace
until an equilibrium between the desired side-wall pressure and the particles pressure is
reached. The axial displacements ε1, in vertical direction and ε2 and ε3 in horizontal and
lateral direction, the volumetric strain εv and the top wall pressure σ1 in vertical direction
are recorded. Graphically, this leads to a strain-stress curve and a volumetric strain, axial
strain curve, see Figure 4 and 5. The axial stress versus strain behavior demonstrates
good accordance. The volumetric strain of silt behaves slightly different with respect to
the simulation. The damping constants DN and DT are chosen as 0.1.

In this step, the stiffness and friction parameters are estimated. A useful concept is the
stiffness number, which gives a rough estimate for the inter-particle stiffness [1]. Different
authors have reported a connection between normal and tangential stiffness [17]. As
discussed by Obermayr [10], we assume the ratio of EN/ET = 1.2. If a reasonable particle-
particle stiffness yields good results within the triaxial compression test simulation, in
terms of fitting the measured strain-stress relation for a specific side-wall pressure, we
fine tune the strain-stress curves with the local stiffness constant µ. The parametrization
may not be unique and is only valid in a certain pressure range.

5 Numerical results of shallow penetration test

First, we summarize the procedure to optimize the total time for the penetration
simulation. The laboratory experiments are performed in a total time frame of about 25
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Figure 4: Simulation results of triaxial compression test and comparison to measurement for sand P(A),
the side-wall pressure corresponds to σ2 = σ3 = 50 kPa.
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Figure 5: Simulation results of triaxial compression test and comparison to measurement for silt P(B),
the side-wall pressure corresponds to σ2 = σ3 = 80 kPa.

minutes. This is not feasible in the simulation. We started with a simulation time of 30
to 60 seconds. As an estimate for the total time, we use the concept of the inertia number
as introduced by [14] and [10]. More specifically, we consider the dimensionless number

I = 2γ̇r

√
ρg
p
, (8)

where γ̇ denotes the shear velocity, in our case we assume it to account for the amount
of penetration distance per time, r the particle radius, ρg the density of the granular
material and p the typical pressure. Da Cruz et al. [10, 18] report that the inertia number
should not exceed 10−2 in order to remain in the quasi-static regime. The inertia number
for our shallow penetration simulations suggest, that also smaller total time intervals lead
to quasi-static simulations. The experimental time is in the range of 25 minutes, whereas
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for the total simulation time we chose t = 1 s. Internal studies have shown that the
simulation time does not seem to have a big influence on the total force output in vertical
z-direction, working with quasi-static loads. Here, we simulate soil sample geometries of
the same size as in the experiment, that is of height 200 mm and diameter of 290 mm.
To save computation time it might be sufficient to have at least ten particles in each
direction in order to obtain a good approximation of the bulk behavior. It should thus
suffice to shrink the container, depending on the particle radius. We consider virtual
soil samples for (A) and (B) with interaction parameters P(A) and P(B), simulate the
corresponding penetration tests and compare the resulting particle reaction forces on the
penetrator with the measured reaction forces in the experiment. The results show that
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Figure 6: Force results with respect to the penetratration depth s of the shallow small scale penetration

test; we obtain the penetration depth of 30 mm in a total simulation time of 1 second.

the reproduction of the observed behavior for the penetration in sand is satisfactory, see
Figure 6 (left). In contrast, the simulated values for the indentation resistance in the
silt-sand mixture are considerably lower than those observed in the tests. The latter show
a sudden increase immediately after the start of the test, followed by a plateau and a
monotonic increase in resistance. It seems that for this type of fine-grained material the
DEM modeling is not capable in accurately reproducing both the triaxial compression
test and the penetration test. Bear in mind that the shallow penetration of the flat-ended
rod induces stress-singularity along the edge of the base contact area that considerably
complicates matters. The unsteady nature of the simulated force reaction curve may arise
because of the enlarged particle radii. The flat surface of the rod tip gives room for a
limited number of particles. Each particle-tool interaction leads to a force jump. For large
tool geometries such as plates and excavation tools, we expect some averaging effect, but
for the small area of the rod, these impacts clearly influence the force output.

6 Discussion and conclusion

The procedure outlined in this presentation delivers a calibrated set of parameters
that is validated on a boundary value problem. The force amplitude matches the result
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obtained from the measurement on sand. The oscillations in the simulation results as
shown in Figure 6, may be due to the larger particle radii. Thus only few particles collide
with the tool which leads to unsteady force output.

The simulation underestimates the force response of the finer material. Here, our DEM
model seems to have reached its limitations. Mainly three difficulties come into play. First,
the fine-grained nature of silt is difficult to reproduce with the DEM. Scaling the grain-
size distribution is challenging. Second, although the measured cohesion of cB = 0.5 kPa
is relatively low, it still maybe inaccurate to ignore it. And third, the surface effects of
the shallow cone penetration test seem very difficult to model and the Discrete Element
Method may not be able to capture this behavior.

The parametrization procedure relies upon simulation and careful selection of the in-
teraction parameters. An automated procedure would be favorable. The collected data,
generated during the simulation process may be used to find a good initial guess regarding
future soil parametrizations.
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K.-U. Bletzinger5

1 Technical University of Munich (TUM)

Arcisstr. 21

80333 Munich, Germany

tobias.teschemacher@tum.de
4wuechner@tum.de

5kub@tum.de

2 International Centre for Numerical Methods in Engineering (CIMNE)

CIMNE - Edifici C1

Campus Nord UPC C/

Gran Capità, S/N
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Abstract. The procedure and the properties with the use of NURBS-described CAD
models in particle-structure interaction are presented within this contribution. This im-
plies the needed entities of those models and the description of trimmed multipatches to
discretize analysis suitable numerical models. Finally, the properties will be shown with
some test cases in comparison to analytical benchmarks and simulations with FEM as
boundary description.

1 INTRODUCTION

The integration of design in the simulation process became progressively important
to allow more advanced monitoring, designing and modeling processes and higher qual-
ities in solutions. Thus, the development of so called isogeometric methods raised and
gained significance in science and industry. Those methods allow to bridge the gap be-
tween computer aided design (CAD) and numerical simulation without meshing or surface
tesselation. Thus, no additional model error is introduced and the solution quality and
convergence rate can be increased.

The given properties of the so called isogeometric B-Rep Analysis (IBRA) [1] can
additionally be taken into account for different numerical methods in multiphysic simu-
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(a) Rendered perspective view of CAD

model.

(b) Untrimmed patches

in transparent.

(c) Exploded

view of multi-

patches.

Figure 1: NURBS-based B-Rep CAD model of a soil driller. The hat of the driller is
displayed once with the untrimmed patch descriptions and once with the exploded view
of the trimmed patches of the structure.

lations. In those coupled approaches, the isogeometric description can be used as spatial
delineation of boundaries but the structure can also interact and move with the exter-
nal impacts. This means that using isogeometrically described structures in interaction
with discrete particles, can provide more accurate results and allows to use the modeling
advantages given due to the CAD integration.

2 ISOGEOMETRIC B-REP ANALYSIS (IBRA)

The Isogeometric B-Rep Analysis [1] can be seen as an extension to the Isogeometric
Analysis (IGA) [3]. It enhances the approach with the spacial delineation of the NURBS-
described geometry objects. IGA focuses on the use of surfaces (called patches) and
curves, whereas IBRA allows to use cut, trimmed and coupled entities.

2.1 CAD model and Boundary Representation (B-Rep)

In Computer Aided Design, B-Rep is an approach to describe physical objects using
their boundaries. It is containing to parts:

• geometry - defines the shape and the spatial position, curvature, ...

• topology - allows to link between geometrical entities and to enhance additional
geometrical and physical information.

The three main topology entities are the faces, edges and vertices. That means, solids
are described by a set of enclosing surfaces, faces by a surface and a set of underlying
curves and edges by a curve and the boundary points. With this data type complex
shapes can be described efficiently. In figure 1 is shown a advanced CAD-model which
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(a) One surface (b) Trimmed surface

boundary edge

(c) Multiple

projections

(d) Multiple

surfaces

(e) One surface and one

boundary

Figure 2: Different cases with multiple intersections for the projection towards B-Rep
described NURBS-surfaces.

its respective components. Further information about how CAD-integrated simulations
can be performed for structural analysis can be found in [1, 2]. Here are shown the
requirements for analysis suitable CAD models.

2.2 Intersection with DEM-particles

Considering the high complexity of CAD models, many possible scenarios need to be
considered. The most important cases are shown in figure 2.

(a) shows the standard case, of an interface within the middle of a surface.

(b) shows that the case not the closest point towards the surface is relevant because
with trimmed patches, the closest point could be cut off.

(c-e) show special cases with multiple intersections. Here, more contact projections need
to be performed.

With those intersections the needed interfaces can be formulated. Those need to trans-
fer forces from the DEM particles to the IBRA geometries and obtain in return the dis-
tance, the relative displacement of the contact point within the last time step and the
velocity of it. In IBRA one can not obtain the interface values directly on the degree of
freedoms, thus, those have to be applied related to the shape functions of the location.
The displacement and velocity at the interface point are computed as following. Those
values are mapped to the discrete elements:

uj =

ncp∑

i=0

N i · ui
cp; u̇j =

ncp∑

i=0

N i · u̇i
cp (1)
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3 ANALYTICAL BENCHMARKS

In the following some benchmarks shall be described, to see, that with the use of the
continuous NURBS-background the solution quality can be improved significantly. First,
an example on a flat surface will be compared to the analytical solution and to a FEM
simulation within the same solver framework. Second, an example on a curved shape
will be either simulated on the exact geometry of the background and on a linearized
discretization.

3.1 Sliding and Rolling Sphere

The following example has a particle rolling and sliding with an initial velocity over
a flat plate. After a certain time the ball will slow down and keeps on rolling. The
description of this problem is shown in figure 3. The simulation results are shown in
figure 4. The comparison between IBRA, FEM and anyltical solution is described in
table 1. The properties and the analytical solution of this simulation are adapted from [5].
With decreasing the time step, especially in the critical point, when the sliding stops and
only rolling occurs, the results can be improved significantly.

To prove the generality of this approach different surface discretizations are tested with
the same example. The surfaces were varied with a distortion of the control points and
with multiple overlapping, coupled and trimmed patches. Some of the tested cases are
shown in figure 5. It was possible to prove that the solution is not dependent on the
modeling, as it is with finite elements, check table 1. As the solutions are identical, the
results are not displayed separately.

FN

FT

v

ω

r

mg

Physical Properties:
- Initial velocity: 5

m
s

- Radius r: 0.3m

- Friction coefficient: 0.3

- Young’s modulus: 1e10

- Poisson’s Ratio: 0.0

- Gravitiy: [0.0, 0.0, -9.81]

Solver Properties:
- Time step: 1e-5 s

- Neighbour search freq.: 1

ξ
η

x

Figure 3: Description with physical and solver properties of ball rolling and sliding on
plate.

3.2 Sphere Rolling on Brachistochrone

The Brachistochrone is one of the oldest optimization problems. It optimizes the shape
of a surface on which a ball rolls the fastest from a higher point to lower one. The outcome
is a curved surface with a new lowest point. For the chosen problem, the shape of the
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Figure 4: Comparison of analytical solution with coupled IBRA simulation.

distance [m] velocity [m
s
]

Analytical solution 3.9182 3.5714
Quadrilateral mesh [5] 3.9021 3.5410

Triangle mesh [5] 3.9022 3.5410
IBRA 3.9173 3.5697

Table 1: Comparison of IBRA, 2 FEM discretizations and the analytical solution for
sliding and rolling sphere on plate.

Figure 5: Different surface discretizations with same shape.

5

347



T. Teschemacher, M. A. Celigueta, G. Casas Gonzalez, R. Wüchner and K.-U. Bletzinger

FN

vr
mg

ξ
η s

Physical Properties:
- Initial velocity: 0

m
s

- Radius r: 0.01m

- Youngs modulus:

1e10

- Friction coefficient:

0.0
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- Time step: 1e-5 s
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Figure 6: Description with physical properties and chosen parameters and shape of
Brachistochrone.
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Figure 7: Comparison of displacement and velocity between the two discreizations: linear
(gray) and high order (blue).

surface is described by:

x(s) = r(s− sin s) (2)

y(s) = r(1− cos s)

In figure 6 is shown the surface and all the chosen parameters for the simulation. This
example is adapted from [5]. This example is an ideal showcase to see that with a linearized
surface, as a mesh, the solution weakens significantly in comparison to the exact geometry
of the NURBS-surface.

In figure 7 is shown the comparison of the two different boundary walls. It can be
seen that the sphere is jumping away after each section, within the linearized shape. This
error can be reduced, by reducing the youngs modulus, however, this is not preferred in
this case as then, the model would be modified. In this case one can see the advantages
of using the exact surface as boundary delineation.
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4 CONCLUSIONS

In this contribution the IBRA part was used as fixed boundary, however, it can also
be extended in a multiphysics environment with a physical counter part on the IBRA
surfaces, as for examples in [4]. Further, the complexity of the CAD models can also be
improved, which was already tested and will be shown in upcoming publications.

The displayed approach, to use IBRA as boundary walls for DEM, eases the simulation
process, the modeling procedure and can increase the solution quality and the stability
of the simulation. The advantages of using IBRA are summarized as following:

- No additional model, as linearized FEM-meshes need to be introduced. This allows
a direct cast from CAD to the solver.

- Keeping the geometry description and the high-order shape avoids to introduce
modeling errors. This is essential for simulations, where a high accuracy is needed.
The advantages of NURBS can be seen especially with e.g. bearings, curve shapes
as cones, ...

- The continuous shape needs less contact interfaces and thus less evaluation of in-
terface areas. At the mesh boundaries special treatment need to be done to keep
physical correctness. IBRA keeps the full patches which are generally bigger and
thus, not that many cell jumps are occurring. For some simulation this can lead to
a higher stability and a better quality.

Disadvantages with the use of CAD models:

- Higher complexity of CAD model in comparison to linearized meshes. Models need
to be included with the entire CAD topology and have to be treated accordingly.
However, this additional information can also be advantageous in certain parts of
the simulation.

- CAD models which are used for design can come with a not sufficient quality for
numerical analyses. The same problem occurs if those need to be meshed, however,
sometimes mesh cleaning can be simpler than CAD model cleaning.

- Depending on the model, higher computational costs for projections, including spe-
cial treatment of the contact interface points (see figure 2). Need of considering
multiple local optima in one boundary object for the contact to the DEM-particles.
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REFERENCES

[1] Breitenberger, M.; Apostolatos, A.; Philipp B.; Wüchner R. and Bletzinger K.-
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Abstract. Digital analysation method for the characterisation of rebound effects of
non-spherical DEM-particles:

For the modelling of bulk material in DEM-simulations spherical particles are usually
used. Due to their simple form and regarding the computational effort, such spherical par-
ticles offer an efficient modelling of bulk material with sufficient accuracy. However, spher-
ical particles may lead to falsified results, especially in the case of highly non-spherical
bulk materials (e.g. cylindrical pellets) or when certain effects are analysed in detail (e.g.
rebound directions of particles). In general, the contact behaviour of complex particles is
very different from the behaviour of idealised, spherical shaped particles. In this project
a method was developed to analyse and compare the diverging rebound behaviours of dif-
ferent particle shapes: Particles with complex geometry are moved against a plane surface
and the resulting rebound directions are detected. These directions are processed and the
distinct rebound direction distribution characterises the analysed particle geometry. This
method allows the analysation of rebound characteristics of bulk material concerning the
scattering effects of the bulk. Subsequently, this allows a particle geometry definition
in DEM-simulations in such a way, that a simple geometry (e.g. ellipsoids or cylinders)
depicts the real bulk material (e.g. grain, hot briquetted iron etc.) in terms of rebound
behaviour with high accuracy. Another approach is the modification of spherical particles
by repositioning their centre of mass or by adjustment of their mass moment of inertia,
so that the modified particle behaves like a particle with a more complex geometry. This
method enables the analysation of rebound characteristics due to the particles’ geometry
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and allows the modelling of complex bulk materials with simplified digital geometries.
Efficient simulations with complex particle behaviour are thus made possible.

1 INTRODUCTION

Nowadays the Discrete Element Method (DEM) has a wide area of application ranging
from mining industry over agriculture all the way up to pharmaceutical industry. In all
those fields the DEM can be used to predict the possible outcome of conveying systems
or filling procedures. For simplicity and speed of the simulation a common approach is to
use spherical particles. The choice is obvious as the sphere is a natural geometry that can
be easily described in terms of contact detection and force calculation. However, there
are aspects that could lead to falsified results as real bulk material will almost never have
a perfectly spherical shape. [1]

Therefore, the usage of complex shaped particles was needed and became more popular
or rather possible. There are four ways to form a complex particle in DEM simulations:

1. Multi-spheres: In this method many spheres with different sizes are stuck together
to form a complex shape. The more spheres are used, the more accurate the real
shape of the material can be represented as seen below in Figure 1 [2].

Figure 1: Multispherical Particles [3]

2. Primitive forms: Calculation-optimised common geometries (ellipsoids, cylinders,
cubes etc.) offer an easy way to simulate material behaviour that is different to
spheres. Some examples can be seen in Figure 2.

Figure 2: Primitive Forms [4]

2

352



Paul Pircher and Eric Fimbinger

3. Complex hybrid: Even more complex shapes can be realised if spheres and primitive
shapes are combined to a new geometry. In Figure 3, a complex hybrid particle is
shown. To achieve the geometry of a nail for example, a combination of two cylinders
can be used.

Figure 3: Compound/Complex-Hybrid Particle [4]

4. Fully complex particles: 3D-scanned particles or geometries designed in CAD-
software can be implemented and used for simulation. In Figure 4, a designed
flange can be seen that was imported and recalculated as a triangle mesh.

Figure 4: A flange as a DEM particle [4].

The calculation time and the computational power required to simulate more complex
shapes rises significantly with the complexity of the particles.

There are a lot of differences how the particles behave if they are built up differently
in the simulation [5]. For instance, if complex shaped particles are moved against a plane
surface in a DEM simulation, they will rebound in a certain direction. This is due to
the contact model for movement calculation that represents real particle behaviour. In
the Hertz-Mindlin contact model it is built with a spring-damper system for each particle
connected via a friction model [6]. As an example, the spring-damper-friction contact-
system for an ellipsoid is shown in Figure 5 [7].

In Figure 6, the exact moment of contact of a particle with a part is shown for a
sphere and an ellipsoid. For a sphere, the reaction force F will always be in a line with
the gravitational force G. For ellipsoids this is not always the case. Depending on the
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Figure 5: Mechanical contact system of two interacting ellipsoids [7]

distance r between the reaction force F and the gravitational force G of the particle, a
torque momentum is initiated. Among other factors this leads to a change of rebound
direction. This generated momentum of the particle has a strong influence on it’s rebound
behaviour. Friction between particle and surface is mandatory here (just as a tire of a
car needs friction to move the car forward). That is why a strong deviation compared to
spheres is expected for different geometries.

Figure 6: Generated momentum by the distance between centre of gravity and point of contact

2 Approach

The idea of this research project was to spotlight primitive forms and to determine how
differently they behave compared to spheres by using the software ThreeParticle/CAE
[4]. The focus in this project lies in the particle’s rebound characteristics. As mentioned
before, the entry angle of the falling particles is different to the exit angle after the
rebound. To compare primitive forms to each other, shapes, that are similar to a sphere,
were taken into consideration. The decision was made to examine cylinders and boxes
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with rounded edges as well as ellipsoids. Spheres with a dislocated centre of mass were also
studied. To actually compare those shapes, they need to have the same size. Therefore,
the volume of a sphere with a certain diameter was calculated and the other shapes were
then formed with the same volume.

2.1 The Parameters

To compare different particle geometries, it is required, that all simulation parameters
are identical for all analysed shapes. In order to achieve this, it is mandatory to find the
right value for those parameters as several of them have a strong impact on the outcome.

The general material parameters (density, shear modulus and poisson’s ratio) are all
attributes that need to be set to a certain value for the simulation to work. It is common
to set the value for the shear modulus smaller than the real material value. This enhances
the simulation speed and still provides the needed accuracy, but in this case, it should
not be too small. The reason: It strongly affects the rebound angle. If the value is too
small, it becomes hard to distinguish a different rebound angle as almost all particles will
rebound straight up again. One can imagine this behaviour by thinking about dropping
a sharp-edged cube in the middle of a trampoline. No matter how different the cube is
shaped compared to a sphere, it will not affect the rebound angle significantly.

For our research the Hertz-Mindlin contact model was chosen. In ThreeParticle/CAE
[4] three parameters can be set for this model: Restitution, static friction and rolling
friction. Restitution normally has a value between zero and one and it describes the
energy that is conserved after a collision of a particle with a part or another particle. It is
important that it is not equal to zero as a fully elastic impact is required. For friction this
works the same way. The value for static friction needs to be above zero, otherwise the
momentum generated by the impact of non-spherical particles will not lead to a change
of the rebound direction. As for the shear modulus mentioned above static friction has a
strong influence on the rebound angle and should be chosen wisely. Rolling friction plays
a minor role and can be neglected in this test. If all other parameters in DEM simulations
are the same for each analysed particle, the resulting rebound direction distribution of
the test characterises those analysed shapes, which can be compared to others.

2.2 The Test

To test the rebound behaviour and to receive the final rebound direction distribution, a
method was developed where the difference of the rebound can be seen directly. The test
consists of a generation plane, a rebound plane and a half dome as visualised in Figure 7.
The generation plane of the simulation was modelled as small as possible, but still large
enough so every particle can be created, in order to minimise inaccuracy. Below this plane,
one particle after another is created and given an initial speed. This way the particles
are moved against the rebound plane with which they interact. After their contacty they
move in a certain direction in a straight line as shown in Figure 8, as gravity is disabled
in this simulation. For measuring, the half dome is made up by small cone shells. Each
cone shell represents a one degree interval. Each particle will touch one cone shells of

5
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the half dome after their rebound. Here, every contact is counted for the corresponding
cone shell. If the number of particles is high enough this leads to a rebound direction
distribution for each analysed complex particle.

Figure 7: The test setup

3 CONCLUSION

A method was developed to receive characteristic rebound direction distributions for
primitive forms of particles in DEM simulations. This way the deviation of the rebound
direction compared to a spherical shaped particle can be analysed. After multiple different
primitive forms have been examined, it is made possible to analyse differences in the
rebound behaviour of various particle shapes. As primitive forms are relatively new to be
used in common DEM software, this will be useful for the simulation of bulk material. A
lot of minerals are nowadays pressed into cylindrical shapes also known as pellets or in
pharmaceutical industries the ellipsoid or capsule shape are found all over the market. If
precise results are required in DEM simulations it is needed to design complex particles
and it is good to know in advance how they will influence the computed simulation results.

Another idea is to compare spheres with a dislocated centre of mass to primitive forms.
The distance between the centre of volume and the centre of mass of a sphere can be
adjusted to result in a distribution that is similar to the distribution of a complex shaped
particle. The complex particle can then be exchanged in the simulation for a modified
sphere. This will lead to faster simulations without neglecting complex particle behaviour.

6
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Figure 8: The streamlines of the particles

For future research, a more precise analysis method with the help of the built-in API
(application programming interface) of ThreeParticle/CAE [4] will be developed to min-
imise inaccuracy as far as possible. It will then be possible to receive precise distributions
for each particle and further influences of complex shaped particles in DEM simulations
can be researched.
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Abstract. The Kumamoto earthquakes, which occurred on April 16, 2016, included deep large-
scale landslides in the Minami-Aso village / Tateno area; the Aso Bridge collapsed completely 
because of this slope failure. Aso Bridge is considered to have collapsed for various reasons, 
e.g., fault displacements, earthquake accelerations, and landslide sediment depositions on the 
bridge. In this study, the possibility of landslide-sediment depositions on the bridge was 
assessed as a reason for the bridge collapse using the discrete element method (DEM), and the 
landslides at Aso Bridge were reproduced. An experiment and analysis were conducted on the 
large deformation of aluminum-bar laminated ground with wall movement, to confirm the 
applicability of DEM to large ground-deformation problems. Next, the Aso Bridge slope-failure 
analysis was carried out, based on different analysis conditions, and the sediment distribution 
was compared with field observation results from qualitative and quantitative viewpoints. It 
was concluded that sediment deposition on the bridge was not a cause of the Aso Bridge failure.  

 
 
1 INTRODUCTION 

In recent years, concerns have been growing about geohazards triggered by earthquakes and 
heavy rainfall in Japan. Geohazards, e.g., slope failures and landslides, have caused heavy 
damage to social infrastructures. For example, the 2016 Kumamoto earthquakes that occurred 
on April 16, 2016, caused slope failures, landslides, and debris flow, mainly around the Aso 
area, and did considerable damage. Particularly, deep large-scale landslides occurred in the 
Minami-Aso village / Tateno area, and the Aso Bridge collapsed completely by this slope 
failure.  

To minimize the risk of such damage, it is desirable to understand the ground-collapse 
process, scale, and range. However, large ground-deformation problems that range more than 
tens of meters have mainly been based on case studies, e.g., literature surveys and ground 
surveys. Along with these investigations, it is necessary to simulate the destruction process 
using numerical analyses, and the analyses should be evaluated using practical engineering or 
a physical evaluation. 
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The Aso Bridge might have collapsed for various reasons, e.g., fault displacements, 
earthquake accelerations, and landslide sediment depositions on the bridge. The definitive 
causes of the bridge collapse have not been determined. In this study, the possibility of 
landslide-sediment depositions on the bridge is assessed as a cause of the bridge collapse, using 
numerical analyses and reproducing the landslides at the Aso Bridge. 

Finite element methods are used in engineering to evaluate the mechanical behavior of 
continua. However, in these methods, the mesh collapses when the ground deforms intensively 
in landslide simulations. Therefore, in this research, the discrete element method (DEM), which 
is a numerical analysis method of discrete bodies, is adopted as an analysis method. DEM was 
developed by Cundall [6] as a method of analyzing ground discontinuities. The applicability of 
the numerical analysis was evaluated from the viewpoint of large geomaterial deformations. 

In this paper, an Aso Bridge slope-failure analysis is conducted. Based on Geographical 
Survey Institute (GSI) reports and elevation data, a 2D slope model was created of the area 
before the earthquake occurred. The collapse analysis was based on different analysis 
conditions, and the sediment distribution was compared from the qualitative and quantitative 
viewpoints. 

2 KUMAMOTO EARTHQUAKES AND ASO BRIDGE SLOPE FAILURE 

2.1 Kumamoto earthquakes in 2016 
A 6.5-magnitude earthquake occurred at 9:26 pm on April 14, 2016, at a depth of about 10 

km, with the Kumamoto area as the hypocenter. A seismic intensity of 7 was recorded in 
Mashikimachi town, Kumamoto. Then, at 1:25 am on April 16, a 7.3-magnitude earthquake 
occurred at a depth of about 10 km, again with the Kumamoto area as the epicenter. A seismic 
intensity of 7 was recorded in Mashikimachi town. The Japan Meteorological Agency identified 
the first as a foreshock and the second as the main earthquake.  

In the foreshock on April 14, the Takano-Shirahata section of the Hinagu fault zone moved. 
The focal mechanism was a lateral-slip fault type with a tension axis in the north-northwest–
south-southeast direction. The hypocenter fault, estimated from the aftershock distribution and 
focal mechanism of the earthquake, was a right-lateral slip fault extending in the north-
northeast–south-southwest directions.  

In the main shock on April 16, the Futagawa fault in the Futagawa fault zone moved, and 
the focal mechanism was a lateral-slip fault type with a tension axis in the north–south direction. 
The hypocenter fault estimated from the aftershock distribution and the focal mechanism of the 
earthquake was a right-lateral slip fault extending in the northeast–southwest direction, which 
included normal fault components. This Kumamoto earthquake caused construction-site runoff, 
river-embankment settlements, ground settlements in Aso Caldera, etc. In addition, many slope 
failures occurred in the Kumamoto area, including a major landslide that caused the Aso Bridge 
to collapse. 

2.2 Slope failure of Minami Aso Tateno area 
The Minami-Aso / Tateno area is located at the outer edge of the Aso Caldera, which is at 

the northeast end of the Futagawa fault. The eastern slope of the mountain collapsed (755.8 (m) 
above sea level); it is part of the Aso Caldera outer-ring mountain near Minami-Aso / Tateno. 
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The slope collapsed from near the top; National Road No. 57 and the main JR Hohi railway line 
were buried, and soil flowed into the Kurokawa River. The scale of the landslides in the 
Minami-Aso / Tateno area, shown in Figure 1, is estimated to be about 700 (m) in length, 200 
(m) in width, 25 (m) in maximum depth, and about 500,000 (m3) in landslide material. 

The collapse range includes the JR Hohi main line, Route 57, and Route 325, which crosses 
the Aso Bridge over the Kurokawa River. The center of the sediment-inflow range to the river 
section was slightly offset from the Aso Bridge, and sediment flowed into the upper stream of 
the Kurokawa River. Geologically, the surface material is volcanic-ash clay (black and red) and 
the bedrock consists of hard andesite and semi-soft pyroclastic rock, belonging to the pre-Aso 
volcanic rocks. In addition, the hard andesite was confirmed to have developed fractures. The 
upper end of the slope was about 35 degrees steep, and the lower part was a low-gradient slope, 
around 15 degrees, and used as a field. 
 

 

Figure 1: Slope failure of Minami Aso Tateno area [1] 

3 LARGE DEFORMATION OF ALUMINUM- BAR LAMINATED GROUND WITH 
WALL MOVEMENT 

The Aso Bridge slope was a large-scale slope failure. Thus, in this paper, the authors adopt 
a discrete element method (DEM) suitable for large ground-deformation analyses as a 
numerical analysis method. It was necessary to confirm the applicability of the DEM coded by 
the authors to large deformation problems. The applicability was shown by carrying out 
deformation experiments on aluminum-bar laminated ground with wall movement—which is a 
large ground-deformation problem—and comparing the experimental results with the analysis 
results. 

3.1 Experimental apparatus and procedure 
The retaining-wall test setup consists of a retaining wall and aluminum-bar laminated ground, 

which simulates the ground behind the retaining wall. The retaining wall is made of a rigid 
brass material with a height of 200 (mm), a width of 10 (mm) and a depth of 50 (mm); it can 

Route 325 

Route 57 

JR Hohi 
main line 
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be controlled by a handle to a horizontal displacement of 95 (mm) in the active-earth-pressure 
direction.  

The experimental procedure is as follows. First, 200 (mm) × 50 (mm) aluminum bars are 
stacked. During the ground preparation, mark points for evaluating the deformation shapes are 
installed in the ground at 10 (mm) intervals in length and width. The ground is tightly packed, 
and the aluminum bars are laid as densely as possible. The aluminum bar is 50 (mm) in length, 
1.6 (mm) in diameter, and 3 (mm) in circular cross section. The aluminum bars were prepared 
by mixing aluminum bars at a mass ratio of 2:1.  

Figure 2 shows the arrangement of the retaining wall and the aluminum-bar laminated 
ground before the experiment. After the model ground was prepared, the retaining wall was 
horizontally displaced to 95 (mm) at a speed of 2 (mm/min) in the active-earth-pressure 
direction. The state of the experiment at that time was shot by a camera from the front of the 
device. From the captured video, the mark points were connected to confirm the deformation 
shape of the aluminum-bar laminated ground. 

 

Figure 2: Retaining wall and aluminum- bar laminated ground before deformation 

3.2 Analysis conditions and procedure 
The DEM numerical analysis was conducted under the conditions shown in Table 1. The 

normal stiffness, viscous damping constant, local damping constant, and constant by which the 
rotational stiffness was multiplied were determined by trial calculation, considering the 
calculation stability. The shear stiffness was determined by introducing a reduction rate of 0.25 
to the normal stiffness. The friction angle between aluminum-bar particles was shown to be 16 
(°) by Matsuoka [2]. The internal friction angle was 23.5 (°) when the direct-shear test of the 
aluminum-bar laminated ground was conducted in previous studies [3]. 

In this experiment, it can be expected that the friction angle between particles will be 16 (°) 
or more because the friction angle between the particles changes as the granular soil changes, 
depending on the particles' stress state. Considering the above, the friction angle between the 
particles under analysis was set to 20 (°) (coefficient of friction μ = 0.36). To prepare the ground 
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for analysis, the particles were filled using a gravity-packing method. After filling, the retaining 
wall was displaced at a speed of 5 (mm/s) in the active-earth-pressure direction to a 
displacement of 95 (mm) on analysis. The behavior of the granular material was then confirmed 
by visualizing. As in the experiment, mark points were installed in the ground at 10 (mm) 
intervals in length and width, and connected to confirm the deformation shape of the aluminum-
bar laminate ground. 

 
Table 1: Physical property values in DEM 

 

Variable Unit Value 

Integration time interval Δt s 0.000002 

Particle density d g/cm3 2.7 

Normal stiffness kn N/m 20000000 

Shear stiffness ks N/m 5000000 

Viscous damping constant h - 0.05 

Local dumping constant α - 0.12 

Coefficient of friction μ - 0.36 

Constant- kr by which the rotational stiffness is multiplied - 300000 

3.3 Experimental and analysis results 
The analysis results were compared with experimental results. The red frame in Figure 3 is 

the outline of the aluminum-bar laminated ground. From the deformed figure in Figure 3, it is 
clear that the experimental and the analytical results correspond well at displacements of 65 
(mm), 80 (mm), and 95 (mm). On the other hand, at displacements from 5 (mm) to 35 (mm), it 
is clear that the outline of the granular soils in the analysis result is smaller than the outline of 
the experimental result. This is due to the use of gravity packing to prepare the ground for 
analysis.  

When the ground was prepared for the experiment, the aluminum bars were laid as densely 
as possible; however, in the gravity-packing method, the particles were not packed as densely 
as in the experiment. With the movement of the retaining wall, the ground volume tended to 
expand in the experiment and contract in the analysis. The effects of the volume expansion and 
contraction decreased with the movement of the retaining wall, and the outline of the 
experimental results and the analytical results were gradually approximated for displacements 
of 80 (mm) and 95 (mm), whose deformations were large. 

From these results, the authors qualitatively evaluated and demonstrated the applicability of 
DEM to large deformation problems. 
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Figure 3: Comparison of deformation between analysis and experiment 

4 NUMERICAL ANALYSIS OF ASO BRIDGE SLOPE FAILURE 

4.1 Creation of analysis model 
The field-survey report about the slope failure that occurred in the Minami-Aso / Tateno area 

[1] confirmed that part of the soil that collapsed on the west side of the Aso Caldera wall, which 
is at the top of the slope, was deposited in the middle of the slope, and most of the remainder 
flowed into the Kurokawa River. The scale of the collapse was about 700 (m) in length, 200 
(m) in maximum width, 25 (m) in maximum depth, and 500,000 (m3) in landslide material.  

Based on the report and elevation data from the Geographical Survey Institute (GSI), a 3D 
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CAD model of before the earthquake occurred was created, and the flow range was estimated 
by comparing aerial photographs from after the earthquake with the 3D CAD model (Figure 4). 
Under this condition, a two-dimensional cross section in the longitudinal direction was 
extracted. In this section, based on the report data [3], the slope width and depth were set to 200 
(m) and 25 (m), respectively (Figure 5), and the ground-surface shape was estimated, assuming 
the arc slip surface. A two-dimensional slope was determined (Figure 6), which approximated 
the estimated soil volume of 500,000 (m3) by calculating the total soil volume on the arc-slip 
surface by adding the area of the small trapezoid from the slope coordinates and the coordinates 
of the set arc lower limit. This is the surface shape of the 2D slope-failure model used for the 
DEM analysis. 

 

 

Figure 4: 3D CAD before the Kumamoto earthquake and Estimation of flow range 
 

 

Figure 5: Estimation of slope shape by arc slip Figure 6: Surface shape in analysis model 

4.2 Determination of parameters and case studies 
First, 0.25 (m)-diameter particles were packed using gravity packing into the collapse area 

in the determined ground-surface shape. A slope-failure analysis was performed, on the 
assumption that the filled particles reached downstream in 100 (s) by their own weight.  

The physical properties used for the DEM analysis are shown in Table 2. The viscosity 
coefficient and the local damping constant were determined by parametric studies, considering 
the stability of the calculation. In this paper, the deposition shapes and flow tendency are 
compared for three cases by considering the cohesion force and coefficient of friction during 
the slope failure. The DEM analysis was performed for large (Case 1), intermediate (Case 2), 
and small values (Case 3). Table 3 shows the physical property values of the three cases. The 
analysis results were compared, and the influence of the physical property values during the 
slope failure in the DEM analysis was investigated. 
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Table 2: Physical property values used for DEM analysis 
 

Variablle Unit Value 
Integration time interval Δt s 0.00002 

Particle density d g/cm3 1.6 
Normal stiffness (between particles)kn N/m 1.0 × 107 

Shear stiffness (between particles) ks N/m 2.5 × 106 

Normal stiffness (between particle walls)k’n N/m 1.0 × 108 

Shear stiffness (between particle walls) k’s N/m 2.5 × 107 

Viscosity coefficient h N・s/m 1.0 

Local dumping constant α - 0.05 
 

Table 3: Physical property values of three cases 
 

Variable Unit Case1 Case2 Case3 
Coefficient of friction μ - 0.58 0.27 0.18 

Cohesive force kr kPa 10 5 2 

4.3 Discussions 
The analysis results of Cases 1 through 3 are compared. Figure 7 shows the initial deposition 

shape of the particles in the DEM analysis. The particles placed at the upper part of the slope 
flow onto the slope with the passage of time, are deposited on the middle part of the slope, and 
flow into the river. The DEM simulation results confirmed that the flow tendency, e.g., the 
speed in reaching the river area, and the shape of the deposition differ depending on the 
coefficient of friction and the cohesive force. Particularly, the greater the cohesion force and 
coefficient of friction, the lower the flowability, and the particles tend to stay upstream of the 
slope. 

This tendency is evaluated by the difference in sediment distribution. As shown in Figure 8, 
the slope was divided into four areas (upper section, middle section 1, middle section 2, and 
river section), and Figure 9 shows the sediment distribution in each case. It was confirmed that 
the sediment distribution on the slope is different in each case.  

In Case 1, the sediment flowed slowly, and most of it was deposited in the upper section and 
middle section 1. At 100 (s), 270,000 (m3) were deposited in the upper section, 220,000 (m3) in 
middle section 1, and 996 (m3) flowed into the river section.  

In Case 2, the sediment passed through the upper section by 40 (s), and then was gradually 
deposited in the middle section. At 100 (s), about 350,000 (m3) were deposited in the upper 
section, 290,000 (m3) in middle section 1, 170,000 (m3) in middle section 2, and 3,675 (m3) 
flowed into the river section.  

In Case 3, the sediment flowed quickly, and most sediment passed through the upper section 
by 20 (s) and converged to the final sediment-deposition state by 50 (s). About 113,000 (m3) of 
sediment was deposited in middle section 2, and the rest of the sediment, 380,000 (m3), flowed 
into the river section. 
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From these results, it was confirmed that the speed of the sediment arriving in the river and 
the deposition shape differed, depending on the coefficient of friction and the cohesion force. 
The disaster report [1] confirmed that, in the actual slope failure in the Minami-Aso / Tateno 
area, the majority (about 500,000 m3) of the sediment that collapsed in the upper section was 
deposited in middle section 2 and flowed into the river section. Therefore, the authors judged 
Case 3 to be an appropriate analysis result, considering the sediment distribution.  

Regarding the inflow sediment around the Aso Bridge, it was confirmed that the majority of 
the inflow sediment flowed into the upstream side of the Kurokawa River. Therefore, in Case 
3, not all of the 380,000 (m3) of sediment that flowed into the river section was deposited on 
the Aso Bridge. In other words, the sediment deposition on the Aso Bridge was relatively 
modest. Estimating from the analysis results, it was concluded that sediment deposition was 
unlikely to be the main reason for the collapse of the Aso Bridge. 

 

 

Figure 7: Initial deposition shape of DEM analysis Figure 8: Division of slope area 
 

 

Figure 9: Sediment volume change over time at each section 
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5 CONCLUSION 
In this paper, the slope failure in the Minami-Aso / Tateno area during the 2016 Kumamoto 

earthquakes was analyzed using DEM. The deposition shape and flow tendency, due to the 
difference in the coefficient of friction and the adhesion force failure, were confirmed, and these 
tendencies were quantitatively compared and considered, regarding the difference in sediment 
distribution. From the final sediment deposition on the slope and the inflow to the river, Case 
3, with a relatively low coefficient of friction and cohesion force, was judged to be a highly 
reproducible analysis result. From the estimated sediment distribution amount, the authors 
concluded that sediment deposition on the bridge was not a cause of the Aso Bridge failure.  

A future issue is the re-examination of the sediment arrival speed in Case 3. Case 3 converges 
to the final deposition shape at 50 (s); however, in the actual slope failure, the sediment-flow 
velocity was slow. It is necessary to reexamine the viscosity coefficient and the local damping 
constant related to the analytical stability calculation. 
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Summary. It is widely recognised that particle shape influences the mechanical response of 
granular materials [1-2]. Rolling resistance elasto-plastic contact models are frequently used 
to approximate particle shape effects in simulations using the Discrete Element Method 
(DEM) [3-4]. Such contact models require calibration of several micro-parameters, most 
importantly a rolling resistance coefficient. In this work, the rolling resistance has been 
calibrated to reproduce the triaxial tests – in terms of mechanical and kinematic responses – 
of two different sands: Hostun and Caicos sands. The value of rolling resistance is directly 
linked to true sphericity, a basic measure of grain shape, as originally proposed in Rorato et 
al. (2018) [5]. When shape measurements are performed [6], this link enables independent 
evaluation of the rolling resistance coefficient for each particle. It does also allow the 
characteristic shape variability of natural soils to be easily taken into account. 

 
 
1 INTRODUCTION 

Much work has been done to characterise granular shape and to understand its influence on 
overall soil behavior. Thus, Wadell (1932) [7] introduced the concept of “sphericity” that 
quantifies how a particle differs from a sphere, in terms of surface area. Krumbein (1941) [8] 
presents the first chart to visually estimate shape from the grain lengths ratios. 
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There is much evidence showing that particle shape is relevant for mechanical responses of 
soils. Andò (2013, 2012) [1], [9] tested in triaxial conditions different sands with shape 
ranging from very angular to rounded. Using Digital Image Correlation, he showed that 
angular sands exhibited a larger shear band thickness compared to rounded sands. Rorato et 
al. (2019) [10] demonstrated that a rounded sand (Caicos ooids) exhibits higher grains 
rotations compared to an angular sand (Hostun sand). 

In this work, we propose a new procedure for an optimal calibration of the DEM contact 
model parameters that is able to mimic the effect of particle shape without dramatically 
increase the computational time. In particular, our approach aims to (1) limit the number of 
free parameters requested, (2) respect the mechanical and kinematic triaxial responses of the 
sheared granular materials and (3) maintain low the computational time. The Particle Flow 
Code (PFC5) developed by Itasca Inc. has been used. 

2 DESIGN AND ANALYSIS 
The most widely used shape used in DEM is the sphere, because it allows straightforward 

and computationally efficient contact detection. Unfortunately, soil particles are not spheres. 
Some researchers has tried to tackle this challenge by introducing non-spherical elements, 
like clumps (e.g., [11], [12]), polyhedrons (e.g., [13], [14]) or grain-shape-inspired particles 
(e.g., [15], [16]), at the price of increasing dramatically the complexity of the contact 
detection and computational time. Other researchers (e.g., [3], [4], [17]) have proposed the 
introduction of a resisting moment (i.e., rolling resistance) into the contact law, beside normal 
and shear forces, in order to consider the influence of flat (i.e., not punctual) contacts between 
real grains. 

In this work, a simplified version - as implemented in the PFC5 software - of the Iwashita 
& Oda contact model [3] has been used under the following assumptions: 
(1) The rolling stiffness (kr) is defined as the Iwashita & Oda’s original contact model: 

kr=ks𝑅𝑅𝑟𝑟
2 (1) 

where ks is the contact shear stiffness and 𝑅𝑅𝑟𝑟 the effective radius defined as 

𝑅𝑅𝑟𝑟=
1
R1

+ 1
R2

(2) 

being R1 and R2 the radii of the two particles in contact. 
(2) The moment-rotational contact law is implemented as an elastic-perfectly plastic model 
with the yielding moment (M*) defined as: 

M* = μrFn𝑅𝑅𝑟𝑟 (3) 
where μr is defined as rolling friction coefficient and Fn is the normal contact force. 

This paper exploits a novel approach to relate the particle shape with the rolling resistance 
applied at the contacts, extending the model that was originally proposed in Rorato et al. 
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(2018) [5]. In particular, it is hypothesized that the degree of true sphericity 1(ψ), of one 
particle is univocally related with its coefficient of rolling friction, through a relation 

μr = 𝐹𝐹(ψ) = 𝐹𝐹 (𝑆𝑆𝑛𝑛𝑆𝑆 ) (4) 

valid for all the spherical particles participating in the DEM simulation. Therefore, if the 
statistical distribution of sphericity is known for one particular sand, it is possible to extract 
infinite values so that one measure of ψ can be assigned to each sphere of the numerical 
specimen, and therefore the rolling friction coefficients can distributed through all the discrete 
elements. The histograms of true sphericity for three different sands (Hostun, Caicos and 
Ticino sands), computed as in Rorato et al. (2019) [6], are showed in Figure 1. 

 
Figure 1: Statistical distributions of 3D true sphericity for Hostun, Caicos and Ticino sands. 

The question then is what shape function 𝐹𝐹(ψ) might take. We tried to find the equation of 
𝐹𝐹(ψ) that could best match the experimental triaxial tests performed on Hostun sand 
(specimen “HNEA01”) and Caicos ooids (specimen “COEA01”). The calibration procedure 
here proposed aims to fit the conventional macro-mechanical responses together with 
kinematic measures. In particular, the histories of the cumulated grain rotations are known for 
each grain from the experiments have been measured and the particles rolling frictions have 
been adjusted to reproduce similar kinematic responses inside the shear bands of the 
numerical specimens. It is indeed well known from past DEM studies [18]–[21] that the same 
macroscopic friction angle can be obtained from several couples of sliding friction coefficient 
(𝜇𝜇) and rolling friction coefficient (μr). Both parameters contribute to the shear resistance of 
the numerical sample, and their influence is coupled. However, the rotational information - 
from the experimental measures of grains rotations - provides a unique numerical solution.  

                                                 
1 Defined by Wadell (1932) [7] as the ratio between the surface area (Sn) of the equivalent sphere (i.e., same 
volume as the grain) and the surface area (S) of the particle. 
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3 RESULTS AND DISCUSSION 

The equation of 𝐹𝐹(ψ) has been finally chosen, after an iterative procedure, according to a 
power law written as 

μr = 0.1963(ψ)−8.982 (5) 
with an upper bound fixed at ψ = 1 (perfect sphere).  

This relationship allows a good fit of the macro-mechanical responses (i.e., stress-
volumetric-strain) of HNEA01 and COEA04 sand specimens and the mean rotations inside 
the shear bands (i.e., the kinematics at failure) throughout the execution of the triaxial test. 

Particles belonging to the shear bands, in both the physical and numerical specimens, have 
been identified according to a procedure originally proposed by Catalano [22] and detailed in 
Rorato et al. (2019) [10] for the two sand considered in this study.  

The proposed approach has been then tested for validation in three different situations, 
achieving successful results, (1) at higher confining pressures, (2) testing a third type of sand 
(Ottawa sand) for which the statistical distribution of 3D sphericity was known and (3) testing 
a fourth type of sand (Ticino sand) for which the distribution of 3D sphericity was not known. 
Regarding the third case, an innovative method is exploited to determine the statistical 
distribution of the degree of true sphericity (3D shape parameter) from 2D measures, as 
originally proposed by Rorato et al. (2019) [6]. In particular, a table scanner has been used to 
obtain an “oriented” projection of thousands of sand grains laying on their plane of greatest 
stability. The 2D outlines of all the particles thus obtained, can be then studies by image 
analysis techniques in order to extrapolate2 the statistical distribution of ψ, and therefore of μr, 
according to Eq. 5. 

The values of rolling frictions obtained from Eq. (5) have been compared to the ones 
computed using a completely different -geometrical- approach originally proposed by 
Wensrich & Katterfeld (2012) [20] and then improved in [21]. In particular, they claimed that 
rolling resistance is originated at the micro-scale level by the eccentricity of the contact, as 
shown in Figure 3. 

 

Figure 3: Contact of un-spherical particles producing a torque (𝑇𝑇) due to the eccentricity (e) of the normal 
contact force (Fn) [20] 

                                                 
2 It is known from [6] that the degree of true sphericity (ψ) is highly correlated with the perimeter sphericity, 2D 
shape parameter, after “oriented” particle projection (i.e., perpendicularly to the minor particle length). 
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Assuming the magnitude of the torque 𝑇𝑇 at the contact equal to 
|𝑇𝑇| = 𝑒𝑒|𝐹𝐹𝑛𝑛| 

and being M* the limiting value of  from the contact model (Eq. 3), Wensrich & Katterfeld 
supposed that a good estimation of the rolling friction is obtained imposing |𝑇𝑇| =  M*, that 
leads to 

𝜇𝜇𝑟𝑟 =
〈𝑒𝑒〉
𝑅𝑅𝑟𝑟

 

where 〈𝑒𝑒〉 is the average eccentricity of contact over all possible contacts and 𝑅𝑅𝑟𝑟 is the 
rolling radius.  

In this work, we compute the values of 𝜇𝜇𝑟𝑟 using this approach for all the grains of 
HNEA01 and COEA04, and we compare them with the values obtained from Eq. 5. The 
average eccentricity and the rolling radius of each grain are computed numerically exploiting 
the vertices of the surface mesh created by the Marching Cubes algorithm implemented in the 
Scikit-image python library [23]. The comparison between the two approaches is shown in 
Figure 4. 

 
Figure 4: Rolling frictions of all particles involved in the simulation obtained from both eccentricity calculation 
and Equation 5. For high values of particle sphericity (i.e., ψ>0.90) the two approaches provide similar values. 

It is evident from Figure 4 that both approaches provide values of rolling frictions that 
decrease with particle sphericity, as expected. It is somehow surprising that the two 
approaches, although conceptually completely different, provide similar rolling frictions 
values, especially at higher values of particle sphericity (i.e., ψ>0.90). Both approaches 
suggest that even for very spherical grains, a coefficient of rolling friction of about 0.20 
should be assigned. However, the results start diverging when the grains become more 
angular. It worth reminding that Eq. (5) has been design to match the experimental material 
responses. Therefore, if the rolling frictions from the eccentricity calculations were assigned 
in the DEM simulation, the numerical response would be weaker compared to the 
experiments, especially for specimen HNEA01. It means that the geometrical description of 
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particle shape is not sufficient to capture all of the contributions provided by shape to the 
shearing material resistance. However, some other contributions (e.g., grain interlocking, 
adhesion), which are not directly related to shape as a geometric property of one single 
particle, are somehow included in the proposed relationship described by Eq. (5). 

4 CONCLUSIONS 
This paper presents an innovative technique to relate univocally the degree of true 

sphericity of each grain contained in a sand sample with the coefficient of rolling friction to 
apply to its numerical avatar of spherical shape. The main advantage of the proposed model is 
that it reduces the number of free parameters to set by trial-and-error procedures when 
performing DEM simulations, albeit respecting the grains kinematics at failure. Indeed, if the 
statistical distribution of sphericity is known, either from experiments either from the 
literature, the resisting rolling moment is entirely determined since all the parameters involved 
in the contact model are known or predictable.  

The contact detection remains economical and advanced algorithms are not required, 
maintaining low the computational time. This will open new frontiers to the use DEM for 
studying engineering applications at larger scales, especially in geotechnical problems in 
which the particulate nature of the soil cannot be ignored. 
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Abstract Following the occurrence of extremely large earthquakes, such as the Great East Japan 
Earthquake, the level of design for earthquake ground motion in nuclear power plants has been 
enhanced. Additionally, the quantitative evaluation of the seismic performance of critical facilities, 
such as nuclear power plants, and earthquake-induced failure of surrounding slopes are becoming 
increasingly important as deterministic approaches in regulation. However, evaluation of other aspects 
besides the design for earthquake ground motion in probabilistic risk assessment (PRA) needs to be 
conducted voluntarily by the corporation. 
For the earthquake response analysis, including the seamless transition of the slope from continuum to 
dis-continuum, the extended distinct element method (EDEM) is an effective approach; however, 
EDEM is characterised by initial particle arrangement uncertainty. Therefore, we investigated the 
uncertainty in the EDEM results with respect to failure timing and region. Although essential in the 
evaluation of impact force in the PRA framework, there are few researches regarding the uncertainty 
of impact force on the wall of the reactor building after slope failure caused by numerous initial 
particle arrangements. Furthermore, reducing the computational time is crucial in PRA. Hence, the 
parameters that do not have an influence on the EDEM results can be omitted, resulting in their 
dispersion and a reduction in the computational time. 
This research aims to investigate the impact force uncertainty caused by initial particle arrangements 
and the influence of cohesion uncertainty. For the former, we conducted 50 numerical simulations for 
the uncertainty of EDEM results caused by the initial particle arrangements. For the latter, we 
conducted 50 numerical simulations with two uncertainty factors, namely, cohesion and initial particle 
arrangement.  
The simulation results revealed that the largest and second largest loads on the wall occurred in two 
cases, namely, when there were single particles impacting the wall and when there were group 
particles impacting the wall. Additionally, the uncertainty caused by cohesion was less than that 
caused by the initial particle arrangement when the coefficient of variation was 0.1. Thus, the cohesion 
uncertainty can be ignored if it is somewhat small.  
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1 INTRODUCTION 
Following the occurrence of extremely large earthquakes, such as the Great East Japan 
Earthquake, the level of design for earthquake ground motion in nuclear power plants has 
been enhanced. Additionally, the quantitative evaluation for the seismic performance of 
critical facilities, such as nuclear power plants, and earthquake-induced failure of surrounding 
slopes are becoming increasingly important as deterministic approaches in regulation. 
However, the evaluation of other aspects besides the design for earthquake ground motion in 
probabilistic risk assessment (PRA) needs to be voluntarily conducted by the corporation. 
 
The seismic stability of the surrounding slopes on the basis of ground displacement is often 
determined using the finite element method (FEM). For example, the Central Research 
Institute of Electric Power Industry (CRIEPI) recommends a time history nonlinear analysis 
for evaluating the stability of slopes, including post-earthquake residual displacement, and 
predicting a failure range when large deformations and displacements occur [1]. 
 
For the evaluation of rock mass displacement, once the failure of the slope model has been 
confirmed by FEM, the distinct element method (DEM) is often used. This is a discontinuous 
analysis method [2], which can easily evaluate large deformations or failures in comparison 
with FEM. 
 
Moreover, the earthquake response analysis of the slope, including its seamless transition 
from continuum to dis-continuum can be better than the method, which is divided into two 
steps which are the stability evaluation by FEM and the one of rock mass displacement by 
DEM.  
 
The extended distinct element method (EDEM) may be effective for developing such a 
seamless analytical approach [3]. In the EDEM, a pore spring exists among the soil pores for 
cohesion between particles. By setting the tensile strength and shear strength between 
particles and turning off the pore spring when the pore force exceeds the tensile and shear 
strengths, the progressive failure of the slopes can be modelled.  
 
EDEM is characterised by the initial particle arrangement uncertainty. Therefore, we 
investigated the uncertainty in EDEM results with respect to failure timing and region [4,5]. 
The probability distribution of the inclination angle was similar to the normal distribution 
when a slope fails and most of the slip lines defined in the analysis were near the slip lines in 
the experiment. Yoshida et al. investigated the influence of initial particle arrangements using 
the moving particle simulation (MPS) [6]. 
Although essential in the evaluation of impact force in the PRA framework, there are few 
studies on the uncertainty of impact force on the wall of a reactor building after slope failure 
caused by several initial particle arrangements. Furthermore, reducing the computational time 
is critical in PRA. Thus, the parameters that do not have any influence on the EDEM results 
can be omitted, resulting in their dispersion and a reduction in the computational time.  
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This research has two purposes, which are to investigate the impact force uncertainty caused 
by initial particle arrangements and the influence of cohesion uncertainty. For the former, we 
conducted 50 numerical simulations for the uncertainty of EDEM results caused by initial 
particle arrangements. Additionally, for the latter, we conducted 50 numerical simulations 
with two uncertainty factors, namely, cohesion and initial particle arrangement. 
 
2 SHAKING TABLE MODEL TEST 
The geo-materials used to construct the slope model comprised stainless particles, iron sand, 
and water, which were mixed in the ratio of 40:30:1. The physical parameters were obtained 
from laboratory results of a plane strain compression test, cyclic tri-axial test, and uniaxial 
tension test, as presented in Table 1 (σ indicates the confining pressure). 
 

Table 1: Physical properties of geo-materials 
 

 
The scale of the slope model, with a slope gradient of 1:0.5, is illustrated in Figure 1. 
 

 
 

Figure 1: Scale of slope model 

 
The model was shaken in 16 stages at input accelerations. The input acceleration was a 
sinusoidal waveform, with the main section consisting of 20 waves at a frequency of 20 Hz. 
The horizontal acceleration waveform measured at the bottom of the soil bin in this test is 
illustrated as an example in Figure 2. 

Physical property Value 
Wet unit weight [kg/m3] 4.20 × 103 

Poisson ratio [-] 9.00 × 10-2 
Static elastic modulus [MPa] 1.36・σ1.03 

Initial shear elastic modulus [MPa] 34.44・σ0.32 
Tensile strength [kPa] 0.5 

Peak shear strength [kPa] 7.0 + σ・tan 40.9° 
 Residual shear strength [kPa] 2.05・σ0.69 
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Figure 2: Horizontal acceleration measured at the bottom of the soil bin during the third stage of the shaking 

table model test  

3 DISTINCT ELEMENT METHOD (DEM) FOR SOFT ROCK 
For the numerical simulation, we used Itasca PFC3D code and constrained particles that were 
moving out from the plane direction to model the granular materials as a 2D analysis. When 
calculating the force between the particles, a spring coefficient was used to obtain the contact 
force, a viscous damping coefficient was used to determine the energy attenuation, a divider 
was used to ignore the tensile force, and a slider was used to determine the dynamic frictional 
force. The initial particle cohesion was modelled as a parallel bond, and the motion of each 
particle is expressed as follows: 
 
 

                                                              
𝑑𝑑𝑷𝑷
𝑑𝑑𝑑𝑑 = ∑𝑭𝑭                                                                      (1)                                                         

 
 

𝑑𝑑𝑳𝑳
𝑑𝑑𝑑𝑑 = ∑𝑵𝑵                                       (2) 

 
 
 
Here, P represents the linear momentum, F represents the force acting on the soil element, L 
is the angular momentum, and N is the torque acting on the soil element. 
 
To classify the material properties depending on confining pressure, we divided the slope 
model vertically into three layers, as depicted in Figure 4, where the red area represents 1.78 
kPa, the blue area represents 5.35 kPa, and the green area represents 8.92 kPa in terms of 
confining pressure. 
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Figure 3: Example of analytical model of slope 

 
For the boundary condition, the front and back of the slope were modelled as a rigid wall and 
the particles at the bottom of the soil bin, indicated in purple in Figure 3, were fixed. 
 
Fifty models with varying initial particle arrangements were prepared. Each model was 
composed of particle whose diameter were 15 mm. 
 
The DEM parameters for the contact force are listed in Table 2. The spring coefficient, pore 
spring coefficient, and shear strength were determined using the plane strain compression test, 
whereas the dynamic friction coefficients were determined using the cyclic tri-axial test. The 
tensile strength was obtained by the uniaxial tension test.  
 

Table 2: DEM parameters for contact force 

 
Inertial force was added to the centre of the particles using horizontal acceleration waveforms 
measured at the bottom of the soil bin in the shaking table model test. The shaking started 
only from the third stage in the numerical simulation because there was white noise excitation 
and a low response from the slope in the first two stages. 
 
 
 

Layer number First Second Third 
Wet unit weight [kg/m3] 4.20 × 103 

Normal spring coefficient [N/m] 4.25 × 107 5.51 × 107 6.51 × 107 
Tangential spring coefficient [N/m] 1.92 × 107 2.48 × 107 2.93 × 107 

Normal pore spring coefficient [N/m] 1.28 × 105 1.65 × 107 1.95 × 107 
Tangential pore spring coefficient [N/m] 5.76 × 104 7.44 × 104 8.79 × 104 

Normal damping ratio [%] 3 
Tangential damping ratio [%] 3 
Inter-particle friction angle [°] 34 
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4 RESULTS AND DISCUSSION 

4.1 Impact force 
The impact force P can be calculated based on the elastic contact theory in EDEM analysis as 
follows: 
 

P = 𝜅𝜅𝛿𝛿𝑛𝑛 (3) 

 

𝜅𝜅 = 43𝐸𝐸0√𝑅𝑅0 (4) 

 

𝐸𝐸0 = 1
1−𝜈𝜈12
𝐸𝐸1

+1−𝜈𝜈2
2

𝐸𝐸2

 (5) 

 

𝑅𝑅0 = 𝑅𝑅 (6) 

 
Here, P represents the impact force, κ represents the force acting on the soil element, δ is the 
amount of overlap, n is 1.5, E0 is defined in equation (5), ν1 is the Poisson’s ratio of the wall, 
E1 is the elastic modulus of the wall, ν2 is the Poisson’s ratio of the rock mass, E2 is the elastic 
modulus of the rock mass, R0 is defined in equation (6), and R is the particle radius depicted 
in Figure 4. 
 
 

 
 

Figure 4: Parameters for impact force 

 

R： Particle radius P: Impact force

δ: Amount of overlap

Wall
Rock mass

E2 : Elastic modulus of rock mass
ν2 : Poisson's ratio of rock mass E1 : Elastic modulus of wall

ν1 : Poisson's ratio of wall
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The virtual rigid wall is located 3 cm away from the foot of the slope, as illustrated in Figure 
3. Fifty numerical simulations were conducted with varying initial particle arrangements. 
Figure 5 illustrates the histogram of the maximum load on the wall.  
 

 
Figure 5: Histogram of maximum load on the wall 

It can be observed from Figure 5 that the largest load is approximately 125 N in case 44 and 
the second largest load is approximately 117 N in case 22. It is important to clarify how 
features there are when the impact force is so large from these analytical results. 
 
Figure 6 depicts the timing when the maximum load on the wall occurs in case 44, in which a 
single particle impacts the wall. 
 

 
Figure 6: Timing of maximum load on the wall in case 44 
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On the other hand, Figure 7 depicts the timing when the maximum load on the wall occurs in 
case 22, in which a particle group impacts the wall. 
 

 
Figure 7: Timing of maximum load on the wall in case 22 

According to the theoretical consideration, the impact force depends on the kinematic energy 
of the rock masses, as expressed in equation (5). 
 

E = 12𝑀𝑀𝑉𝑉
2 (5) 

 
Here, M represents the mass of the rock and V represents the velocity of the rock. 
 
In cases when the kinematic energy is high, there are two possibilities: the mass M can be 
extremely large or the velocity V is extremely high. Case 44 is interpreted as the former, and 
case 22 is interpreted as the latter. 
 

4.2 Influence of initial particle arrangement on uncertainty 
The frequency line graph of the numerical simulation results are depicted in Figure 8. In this 
analysis, failure timing is defined as the time when the average movement of particles near 
the top of the slope exceeds the threshold set for particle displacement. 
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Figure 8: Frequency line graph of numerical simulation result 

Based on the χ−square test, the theoretical probability distribution is determined as a normal 
distribution. The average value of input seismic ground motion acceleration is approximately 
902 gal and the coefficient of variation is 0.22.  

4.3 Influence of cohesion and initial particle arrangement on uncertainty 
Fifty numerical simulations were conducted with both cohesion parameters and initial particle 
arrangements. The purpose was to investigate the influence of the cohesion parameters on the 
uncertainty by comparing the results of only the initial particle arrangements with those of the 
cohesion parameters and initial particle arrangements. 

 
Figure 9: Frequency line graphs of two numerical simulation results from 50 cohesion parameters, whose 

coefficient of variation is 0.1, and initial particle arrangements 
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Figure 10: Frequency line graphs of two numerical simulation results from 50 cohesion parameters, whose 

coefficient of variation of 1.0, and initial particle arrangements 

Figure 9 illustrates the frequency line graphs of the numerical simulation results with a 
coefficient of variation of 0.1. The average value of the input seismic ground motion 
acceleration is approximately 899 gal and the coefficient of variation from numerical 
simulations is 0.20. 
 
On the other hand, Figure 10 depicts the frequency graph of the numerical simulation results 
with a coefficient of variation of 1.0. The average value of the input seismic ground motion 
acceleration is approximately 858 gal and the coefficient of variation from numerical 
simulations is 0.33. 
 
In comparison with the results in Figure 9, the coefficient of variation is larger in Figure 10. It 
is also clarified that the coefficient of variation from the numerical simulations of the 
cohesion parameters and initial particle arrangements in Figure 9 is less than that of only the 
initial particle arrangements in Figure 8. 
 
Based on these results, it can be concluded that the uncertainty of cohesion can be ignored if 
the coefficient of variation is somewhat small. 
 

12 CONCLUSIONS 
This research clarified two cases when the impact force is large. It is concluded that there are 
two possibilities: the mass M can be extremely large or the velocity V is extremely high. 
Additionally, the cohesion uncertainty was investigated. The results confirm that the influence 
of cohesion uncertainty can be ignored when its coefficient of variation is somewhat small. 
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In the future, we aim to clarify the range of the coefficient of variation, in which the influence 
of cohesion uncertainty can be ignored, and conduct the same investigation using other 
parameters. 
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Abstract. The inter-particle friction is known to be an important contributor to the strength 
and deformation characteristics in granular materials. The mechanism of inter-particle friction 
to the macroscopic responses can be explained by microscopic investigations. Based on the 
discrete element method (DEM), a series of true triaxial tests for the cubic granular assembly 
are carried out and the effects of inter-particle friction coefficient (μ) on the evolutions of 
macro- and micromechanical parameters of granular materials are studied. The macroscopic 
stress, the distribution of coordination numbers and contact force with regard to strong and 
weak contact networks are concerned, as well as the corresponding fabric tensor and 
anisotropies. Findings indicate that increasing inter-particle friction sharpens the peak value 
of deviatoric stress and enhances the degree of dilatancy of the granular assembly at the 
macroscopic level. From the microscopic perspective, the distribution of the coordination 
number of the weak contact system varies dramatically, while the number of particles with 
smaller coordination number in the strong contact system changes little with different μ. 
Besides, the difference between strong and weak contact networks is enlarged, and anisotropy 
indicators are significantly enhanced, which strengthen the bearing ability of anisotropic 
stresses in granular materials.  

 
 
1 INTRODUCTION 

Granular materials are closely linked to our daily life. Many important infrastructures 
concerning the quality and safety of our everyday life, such as rockfill dams, dikes and 
foundations, are built with geotechnical friction-dissipative granular materials. The 
performance of granular materials under external loads directly affects the design, 
construction and operation of these structures [1]. Under shear, granular materials exhibit 
extremely complex mechanical behaviors at the macroscopic level while the typical multi-
scale features contribute a lot to the overall complexity [2]. The granular materials are 
composed of discrete particles whose macroscopic responses are vitally interrelated to their 
interaction. Inter-particle friction as one of the key factors affecting the interplay between 
particles, may significantly contribute to the macro- and micro-responses of granular 
materials. 

DEM (Discrete Element Method) has demonstrated its ability in reproducing the 
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macroscopic responses and exploring the microscopic mechanism of granular materials [3]. 
Based on DEM simulations of granular assemblies, contact orientation [4, 5], force transmission 
[6, 7], contact networks [14] are regarded as the important characterization of the microstructure. 
Besides, the fabric tensor [9, 10, 11, 12] has been defined to measure the intensity and orientation 
of the contact texture anisotropy.  

 The interplay between particles is the intrinsic factor that causes the macroscopic 
responses of granular materials. To figure out the effects of inter-particle friction on granular 
materials, Rothenburg et al. [13] observed the relationship between void ratio and coordination 
number along different inter-particle friction by biaxial tests. Huang et al. [14] evaluated the 
sensitivity of critical state behaviors to inter-particle friction. Maya et al. [15]  identified that 
increasing inter-particle friction promotes the formation of straighter chains and a greater 
degree of branching in the force chain network by two-dimensional simulations. Antoy et al. 
[16] investigated how particle-scale friction affect the mechanism of mobilization of 
macroscopic shear strength by conventional triaxial tests. However, true triaxial tests are 
rarely used in these simulations, which can reflect the real situation in nature or engineering. 

The main purpose of this paper is to investigate the effects of inter-particle friction on the 
characteristic behaviors of granular materials under true triaxial tests. The stress–strain 
relationships and peak state of deviatoric stress are presented. From the view of strong-weak 
contact network, the micro-responses are explored, including the coordination number, the 
contact force, the fabric tensors and the anisotropies. The contribution of micro-investigations 
to macro-mechanical properties is further discussed.  

2 DEM SIMULATIONS OF TRUE TRIAXIAL TESTS 

2.1 Stress-strain invariants 

The stress invariants describing true triaxial stress state are generalized shear stress q, 
average hydrostatic pressure p and Lode angle θσ: 
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                                                             （3） 
The intermediate principal stress ratio b responses the relative magnitude of the 

intermediate principal stress σ2 between the minor principal stress σ3 and the major principal 
stress σ1. The range of b is 0≤b≤1. The Lode angle θσ defines the angle between the major 
principal stress and the deviatoric part of stress in the principal stress space. The true triaxial 
test with b = 0.0 represents the triaxial compression test (σ2 = σ3, θσ=0) and b = 1.0 indicates 
the traxial extension test (σ1 = σ2, θσ = π/3).  

2.2 Sample preparation and loading paths 
The numerical sample is composed of 31 253 non-contacting spherical particles with 

Gaussian distribution in a 400mm×400mm×400mm cube. The minimum and maximum 
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particle sizes are 2 and 8.5 mm, respectively. Fig.1 shows the particle size distribution (PSD). 
In order to generate isotropic samples in the initial fabrics, we use the displacement control to 
compress the samples with a constant-speed in all directions until the target size. After that, 
isotropic consolidation is carried out and three-dimensional isobaric stress is applied to the 
specimen until the desired confining pressure 0.5 MPa is reached. Finally, the initial void 
ratio of the specimen is 0.582. The Hertz–Mindlin contact model is adopted. The inter-particle 
friction coefficient μ during loading process is set as 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, 
respectively, and other numerical parameters are shown in Table 1. 

 
     Fig.1 Radius distribution                          Fig.2 Stress path under true triaxial tests 

Table1: Microscopic parameters of numerical simulation 

Parameters Value 
Density ρ/(kg/m3) 2600 

Particle radius d/mm 2-8.5 
Young’s modulus E/GPa 65.0 

Poisson’s ratio ν 0.4 
coefficient of restitution e 0.95 

sliding friction coefficient μ 0.05,0.1,0.2,0.3,0.4,0.5 
 
In this paper, a series of true triaxial tests are under the constant-p and constant-b loading 

condition, and the stress paths are shown in Fig.2. In order to eliminate the boundary 
influence and avoid the occurrence of strain localization, these tests are carried out with 
periodic boundary. The stress in each direction of the specimen is controlled by the migration 
rate of periodic boundary. The intermediate principal stress σ2   and minor principal stress σ3 
can be estimated from Eq. (4) and Eq. (5) respectively: 
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3 MACRO-SCALE RESPONSES 
For various inter-particle friction, the evolution curves of generalized shear stress q and 

volumetric strain εv along deviatoric strain εd are shown in Fig. 3 (the positive volumetric 
strain represents contraction, negative value represents dilation). Increase in inter-particle 
friction μ steadily raises the shear strength of a granular assembly (the peak deviatoric stress) 
while the peak value occurs at a similar strain level (about 6%) irrespective of various μ. The 
deviatoric stress changes to a downward trend after reaching the peak value, which means 
strain softening. The larger inter-particle friction can enhance the strain softening behavior. In 
addition, diverse μ values lead to different volume responses of a granular assembly. 
Specifically, after a small compression deformation, the specimens are all in the dilatation 
condition. The particle assembly with large inter-particle friction starts the dilatation state 
earlier and shows a more evident dilatation degree at later stage of loading. 

 
Fig.3 Macroscopic response of granular assemblies with different inter-particle friction: evolution of deviatoric 
stress (a) and volumetric strain (b) versus deviatoric strain εd 

 

Fig.4 Peak state of deviatoric stress along different friction coefficients 
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Corresponding to different inter-particle friction, the three-dimensional stress surfcae in π 
plane is plotted in Fig. 4. For each given μ, the curve presents similar shape like triangular 
cone but differs from one another in size. The stress evolution in π plane reflects the peak 
deviatoric stress of the granular assmebly at different b and μ values. It can be seen that, the 
peak deviatoric stress decreases with the increase of b but improves with the increase of μ. 
Moreover, the sensitivity of the specimen to inter-particle friction debases along with μ, for 
the smaller increaseing extent of deviator stress. The stress characteristics shown in Fig. 4 
conform to the general rule of true triaxial test and are also consistent with the conclusions of 
other numerical tests [16, 17, 18]. 

4 COORDINATION NUMBER  
The geometric stability of a granular assembly under mechanical loading is generally 

studied in the matter of its apparent coordination number Z (i.e., average number contacts of 
per particle) at a given stage of loading. As a mesoscopic scalar index of granular materials, 
average coordination number Zt is given by 2Nc/Np where Nc and Np are the total number of 
contacts and particles in the specimen respectively. It can also reflect the overall volume 
change of a granular assembly. In generally, higher average coordination number is 
corresponding to smaller porosity, closer interaction between particles, and more 
stable/isotropic internal structure. On the contrary, the degree of anisotropy increases.  

Radjai et al. [5] divided the whole contact network into two complementary sub-contact 
nectworks, a strong contact subnetwork and a weak contact network that carry normal contact 
forces larger and less than the average. The two contact networks have different mechanisms 
for the geometric stability of granular materials. In presenting the results, we have hereby 
separated the contributions of the weak contact network from the strong contact network, 
along with the total value. The strong contact network is denoted by Γstrong, the part from the 
weak contact network by Γweak, and the entire contact network by Γtotal. Fig. 5 shows 
difference performance among the three contact networks in terms of the relationship between 
the average coordination number and the inter-particle friction in the triaxial compression 
condition. Under the given loading path, each contact network presents a law that Zt decreases 
with the increase of μ, which confirms the macroscopic phenomenon that the dilatation degree 
of the specimen is more obvious with large μ. Besides, average coordination number in Γweak 
is larger than that of Γstrong, reflecting stronger internal stability and higher isotropy of Γweak. 
Considering the relationship between the average coordination number and the volume 
deformation of granular materials, it indirectly shows that the weak contact network 
contributes greater to the deformation of a granular assembly.  

In a granular media, the coordination number Zt indicates an average over particles within 
contact networks while the number of contacts neighbors n varies from particle to particle. 
Bratberg et al. [19] recognized that the connectivity of a granular assembly should be given by 
the fraction Pn, defined by particles having n contact neighbors. From the study of Liu et al. 
[20], particles with fewer coordination numbers are in lower degree of restraint condition, 
corresponding to higher anisotropy. Conversely, particles are more stable and show isotropy 
feature.  

From the distribution of coordination number at stress peak state in Fig. 6, the coordination 
number Z in accordance with the abscissa denotes Pn,  and the corresponding ordinate refers to 
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the number of n adjacent particles in contact with a single particle. In the total contact 
network (Fig.6a), the maximum particle content changes from P5 to P4, meanwhile, all 
distribution curves seem to move left entirely with the increase of μ value. Evidently, some 
particles with n≥5 contacts lose neighbor contacts, causing the number of particles with n≤4 
contacts increase. The distribution of coordination number within weak contact network 
(Fig.6b) is similar to that of the total contact network, while the maximum particle content 
moves from P4 to P3. From that, the anisotropy feature of Γweak is stronger than that of Γtotal 
and both of them diminish owing to the increase of μ.  

It is interesting to take a quantitative look at the strong contact network (Fig.6c) whose 
distribution of coordination number is quite different from that of the total contact network. 
Thanks to the increase of μ value, the number of particles (Pn≥P3) decreases. However, μ 
value appears to have little effect on the number of particles whose coordination number is 1 
and 2, whereas P1 and P2 constitute the end and main body of the force chain in the contact 
network. It shows that the number of particles forming the force chain accounts for 1/3 of the 
total number and does not fluctuate with the change of μ value, as if satisfying the most 
advantageous condition of particulate distribution. This demonstrates that  the shear resistance 
of granular assembly can be mobilized by selecting relatively few benificial orientated 
contacts to transmit the greater than average contact force.  

Compared with strong, weak and total contact network (Fig.6d), the three curves can be 
roughly considered as the left translation of the total contact network curve. For the total 
contact network, the weak contact network makes more contribution to the coordination 
number distribution than the strong contact network. The influence of inter-particle friction on 
coordination number distribution of Γweak is greater than that of Γstrong. The weak contact 
network tends to be isotropic, balancing hydrostatic pressure of the granular media, 
dominating overall volume deformation; while the strong contact network has obvious 
anisotropic feature, and bear most of the deviatoric stress of the granular assembly (shown in 
next chapter). 

 
Fig.5 The relationship between the average coordination number and the inter-particle friction 
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Fig.6 The distribution of coordination number at stress peak state: Number distribution of coordination number 
Z in the total contact network (a) the weak contact network (b) the strong contact network (c) and the 
comparison (d) while μ=0.2 

5 FABRIC TENSOR AND ANISTROPY 

5.1 Contact force 
Radjai et al. [6] pointed out that the strong and weak contact network in a granular media 

have different mechanical mechanisms. Strong contacts have a decisive influence on the 
contribution of macro-mechanics. Fig. 7 shows the evolution of the average normal contact 
force and tangential contact force in the strong, weak and total contact network during true 
triaxial loading. The average normal contact force is much larger than the tangential contact 
force, indicating it’s leading position. There is great disparity between the average normal 
contact force of strong and weak contact network, and the numerical relationship between 
them is about 4 times. For the total contact network, the evolution contribution of the average 
normal contact force is dominated by the strong contact network. With the increase of μ value, 
the normal contact force and tangential contact force in each contact network increase 
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obviously, while the average coordination number of them decreases. This reasonably 
explains the increase in the mechanic anisotropy feature of the granular assmebly (see Fig. 8), 
and highlights the supporting effect of the strong contact network on balancing external load. 

  
Fig.7 The relationship between contact force and inter-particle friction (a) Normal contact force (b) Tangential 

contact force 

5.2 Definition of Contact Fabric Tensor 
Based on the work of Yimsiri et al. [21] in quantitatively analyzing the anisotropy of a 

particle assembly, two classes of anisotropy with different mechanisms are differentiated: 
geometric anisotropy and mechanical anisotropy. The geometrical anisotropy is defined by 
the local orientation of contact plane which can be expressed by the distribution of contact 
normals and branch vectors. The mechanical anisotropy, however, is mainly created by the 
external forces and can be splited into normal force anisotropy (caused by normal contact 
forces) and tangential force anisotropy (induced by tangential contact forces). This paper 
adopts the following expression of fabric tensor proposed by Satake [22] and Oda [23]: 

( )ij i jE n n d


                                                                （6） 

where n is the unit vector along the normal direction of the contact surface. Θ characterizes 
the orientation of n relative to the global coordination system. E(Θ) is the distribution 
probability density function, which can be expressed in terms of the second-order Fourier 
expansion: 

1( ) (1 a )
4

c
ij i jE n n


                                                       （7） 

where the second-order anisotropy tensor a c
ij is deviatoric and symmetric, which 

characterizes the geometrical anisotropy induced by normal contact.  
'a 15 / 2c

ij ij                                                                  （8） 
where '

ij is the deviatoric part of the fabric tensor ij . 
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Only when the particle system is composed of non-spherical particles, the branch vector 
contributes greater to geometric anisotropy. The distribution of branch vectors can be 
expressed in the way similar to formula (7) and formula (8):  

1 ( )
4ij i jd d n n d
 

                                                  （9a） 

0
( ) (1 a )l

ij i jd d n n                                                    （9b） 

where 0'a =15/2 /l
ij ijd d（ ） is the contribution value of branch vectors to the geometric 

anisotropic tensor. 0
= iid d   is the average length of branch vectors in the domain Θ and '

ijd  is 

the deviatoric part of ijd    . 
The distribution function of normal contact force and tangential contact force are expressed 

respectively as (10b) and (11b). Correspondingly, the normal contact force tensor and the 
tangential contact force tensor are defined by equation (10a) and (11a). 
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iif   is the average normal force in the domain Θ. The second-order anisotropy tensors  

, , ,
ij ij ij ij

c l n ta a a a  are deviatoric and symmetric, then, the degree of anisotropy can be quantified by 
using the second invariants of the three anisotropy tensors defined above:  

* *
*

3
2 ij ija a a                                                                   （12） 

where the sub/super-script * stands for contact normal, c, branch vector, l, normal contact 
force, n, and tangential contact force, t, respectively.   

5.3 Characteristics and Evolution of Anisotropy 
The characteristics of anisotropy and its evolution during the loading process are depicted 

in Fig.8. Owing to the use of spherical particles with a relatively narrow size distribution, the 
branch vector is almost in the same direction as contact normal vector and contributes so little 
to the total strength that can be ignored. The anisotropic coefficient of the initial specimen 
increases rapidly with the increase of the deviation strain, and the increase rate becomes more 
sharply with larger inter-particle friction. It can be seen evidently that the peak value of the 
normal contact force anisotropy an (about 3% of the deviatoric strain) comes earlier than that 
of the contact normal anisotropy ac (about 6% of the deviatoric strain), and the peak value is 
higher than the latter. With the increase of μ value, the difference is more obvious. 
Interestingly, the contact tangential force anisotropy at reaches its peak within 1% of the 
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deviatoric strain, then decreases slightly and remains stable. Compared with the two 
mechanical anisotropy coefficients, the contribution of the tangential contact force anisotropy 
at to the anisotropy of the whole system is significantly less than that of the normal contact 
force anisotropy an. 

 
Fig.8 Anisotropy coefficient evolution curve (a) geometric anisotropy (b) mechanical anisotropy 

The initial state, loading path and final size of the granular assembly are all the same under 
the true triaxial tests. Because of different inter-particle friction, great changes happen in the 
contact structure of the granular assembly. The average coordination number Zt decreases, 
while the contact force enlarges, and the degree of anisotropy increases. The stark contrast 
between strong and weak contact forces is more striking, which effectively stimulates the 
anistropy of strong contact network and mobilizes shear strength to banlance external loads. 
Meanwhile, larger inter-particle friction makes the tangential contact point more difficult to 
destroy, which is conducive to the formation of the strong normal support to ensure that the 
granular assembly has a close contact state and maintain stability. 

6 CONCLUSIONS 
This paper has made a contribution to advance fundamental understanding of granular 

material response by considering the effects of inter-particle friction on the material response. 
Using DEM simulations of true triaxial tests, we have presented alternative ways to link the 
evolution of micro-mechanical parameters to the macro-scale behaviour of granular materials. 
The primary findings drawn from this qualitative study are the followings: 

- In the constant-p and constant-b true triaxial tests, the macro stress-strain relationship 
of the granular assembly conforms to the existing physical and numerical results. 
With the increase of inter-particle friction, the peak deviatoric stress increases, the 
dilatancy state comes more rapidly, and the degree of dilatancy is more obvious. 

- The influence of inter-particle friction on the coordination number of the strong and 
weak contact networks varies greatly. In the peak deviatoric stress state, the 
coordination number distribution of the weak contact network is similar to that of the 
total contact network and greatly affected by μ, while the number of particles forming 
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the force chain in the strong contact network does not fluctuate. The average 
coordination number of Γweak is larger than that of Γstrong, with different inter-particle 
friction. It can be deduced that the weak contact network contributes greatly to the 
deformation of granular materials.  

- The inter-particle friction has a significant effect on the micro-mechanical properties 
of the granular assembly, enhancing the contact force between particles and the 
overall stability. The increase in inter-particle friction results in the decrease of the 
relative slip behavior between particles, the increasing difference of contact forces 
between strong and weak contact networks, and the enchanced anisotropy feature of 
the total network. These phenomena stimulate the strong contact network to 
strengthen the shear strength to balance the external loads and enhance the ability of 
the granular assembly to bear macro-stress anisotropy. 
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Abstract. We present an algorithm for simulation of the Earth’s crust tectonic move-
ments and formation of the geological faults and near-fault damage zones. The algo-
rithms are based on the Discrete Elements Method, and it is implemented using CUDA
technology. We used to simulate faults formation due to different scenarios of tectonic
movements. We considered the displacements with dipping angles varied from 30 to 90
degrees; i.e., up to vertical throw. For each scenario, we performed simulations for some
statistical realizations. To characterize the simulated faults and damage zones, we con-
sider the strains distribution and apply data clustering and Karhunen-Loeve analysis to
distinguish between different forms of the fault zones. In particular, clustering analysis
shows that displacements with high and low dip angles form completely different geo-
logical structures. Nearly vertical displacements, high dip angles, form wide V-shaped
deformation zones, whereas the at displacements cause narrow fault-cores with rapidly
decreasing strains apart from the fault core. Results of the presented simulations can
be used to estimate mechanical and seismic properties of rocks in the vicinity of the
faults and applied further to construct models for seismic modeling and interpretation,
hydrodynamical simulations, history of matching simulation, etc.

1 INTRODUCTION

A typical interpretation of geological faults from seismic data is a planar surface where
the signal phase is discontinuous. Further on this representation of the faults is used in
geological modeling to construct a model of the Earth’s crust. As the result, faults are
considered as a structural discontinuities in a model, whereas studies of the outcrops show
that the faults and near-fault damage zones have more complex structure [1], [2]. In par-
ticular, damage zone may be highly fractured, thus, permeable especially for carbonates
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[3], or it can be an impermeable due to the presence of deformation bonds which is typical
for the sandstones [4]. Such differences of the local permeability near faults may strongly
affect the reservoir performance. Thus a detailed representation of the fault and damage
zone is required for efficient oil and gas exploration.

To study the fault formation due to tectonic motions, we suggest using numerical sim-
ulation. Simulation of finite deformations in solids and, in particular, in the geomaterials,
geostructures, core samples, and Earth’s crust can be done by either grid-based methods
such as finite differences [5], finite elements [6], boundary elements [7] or by meshless
approaches also known as discrete elements method (DEM) [8], [9]. The letter is pre-
ferred because no predefined crack or fault geometry is needed for simulation. However,
particle-based methods are more computationally intense and require calibration of the
particle properties to match the mechanics of the whole body [9], [10]. Despite this, the
particle-based methods are incredibly flexible and can be used to generate multiple statis-
tical realizations of the fault zones and study statistical features of the strongly deformed
and highly-distorted zones. This opens a possibility to analyze the correlations between
the peculiarities in the fault structure and their responses to the seismic waves. Moreover,
use of the graphical processor units (GPU) significantly reduces the computational time
making the DEM simulations an efficient and flexible tool.

In our opinion, meshless methods of geological faults formation simulations can be used
to generate faults geometries in realistic environments. After that simulated faults can
be introduced in geological models which are used for seismic modeling and imaging [11],
[12], [13], moreover use advanced simulation techniques such as local mesh refinement [14],
[15] allow studying seismic responses of the fine structure of near-fault damage zones.

The paper has the following structure. In the section 2, we describe the discrete
element method, discuss its features, and present the algorithm for fault formation simu-
lation by DEM. Description of the numerical experiments, cluster analysis, and statistical
Karhunen–Loeve analysis is provided in section 3.

2 DISCRETE ELEMENT FORMULATION

To simulate the tectonic movements causing finite deformations and geological fault
formation in the Earth’s crust we use the discrete element method, following [16], [17],
[18]. In this approach, the media is represented as an assembly of individual particles
with a particular geometry and physical properties. Each particle is characterized by the
coordinate of its center �xj, radius Rj, repulsion and attraction bulk moduli K+

r and K−
r

respectively, tangential sliding stiffness Ks, and two friction coefficients µs is the static
one and µd is the dynamic friction coefficient. Having set these parameters, one may
define the interaction forces between two adjoint particles.

2
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2.1 Computation of forces

Consider two particles with the numbers i and j, with the coordinates �xi and �xj and
radii Ri and Rj respectively. Particle j acts on particle i with the normal elastic forces:

�F ji
n =





K−
r (R

i +Rj − ‖ �Xji‖)�nji, Ri +Rj − ‖ �Xji‖ > 0, repulsion,

K+
r (R

i +Rj − ‖ �Xji‖)�nji, 0 ≤ Ri +Rj − ‖ �Xji‖ ≤ r0, active bond,

0, Ri +Rj − ‖ �Xji‖ > r0, no bond,

(1)

where r0 is the bond length, typically chosen equal to 0.05(Ri+Rj), vector �Xji = �xi− �xj

connects the centers of the particles and directed from particle j to particle i, vector
�nji = �Xji/‖ �Xji‖ is the unit vector directed from the centers of particle j to the center
of particle i or normal vector, because it is normal to the contact plane. Note, that we
use the model of linear elastic particles interaction and assume that the repulsion and
attraction bulk moduli coincide, which is mainly valid for geomaterials across a wide
range of scales.

Additionally frictional forces are taken into account if two particles are in a contact
[18]:

�F ji
t =

{
−Ksδt�t

ji, Ksδt ≤ µs‖�F ji
n ‖, static friction,

−µd‖�F ji
n ‖�tji, Ksδt > µs‖�F ji

n ‖, dynamic friction,
(2)

whereKs is the tangential sliding stiffness, usually considered to be equal to bulk modulus;
i.e., Ks = Kr, vector �t

ji is the unitary tangential vector directed along the projection of
the relative velocity onto the contact plane of two particles; i.e.,

�tji = �vji−(�vji,�nji)�nji

‖�vji−(�vji,�nji)�nji‖ , �vji = �vi − �vj. (3)

In this notations �vji is the relative velocity of the particle i with respect to particle j.
Parameter δji denotes the tangential displacement of the contact point from its initial
position. Tangential forces provided by formula (2) satisfy the Coulombs law; i.e., the
static friction governs the particles interaction if the forces as below a critical value. If
the tangential forces exceed the critical dynamical friction proportional to normal force
is applied. Typically the static friction is much higher than the dynamical one.

Additionally, an artificial dissipation is introduced in the system to prevent elastic
waves from propagating through the model and ensuring the media to remain stable at
infinite instants:

�F i
d = −ν�vi, (4)

where ν is an artificial viscosity.
The Earth’s crust also remains under gravitational forces which are accounted as

�F i
g = Mig�e3, (5)

where g = 9.8 m/s is the gravitational constant, �e3 = (0, 0, 1)T , and Mi is the mass of the
considered particle.
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To compute the total forces acting at a particle one need to account the forces due to
interactions with all the neighbors, plus artificial dissipation, plus gravitational forces, as
a result, one gets:

�F i =
∑

j∈J(i)

[
�F ji
n + �F ji

t

]
+ �F i

d + �F i
g , (6)

where J(i) is the set of indexes of the neighbors of i-th particle.

2.2 Time integration

Having computed all external forces acting at j-th particle one may recompute its
position using classical mechanics principles:

M id
2�xi

dt2
= �F i

(
t, �xi, �xj,

d�xi

dt
,
d�xj

dt

)
, (7)

where dissipative �F i
d and frictional forces �F ji

t explicitly depend on the particles velocities

�vi = d�xi

dt
.

To numerically resolve system of equations (7) we use the Verlet-like scheme with the
velocity half-step [17], [19]. Assume coordinates, velocities, and thus forces of all particles
are known at instant t = tn = τ · n, then they can be updated to the instant tn+1 by the
rule:

(�vi)n+1/2−(�vi)n

τ/2
= 1

M i
�F i (tn, (�xi)n, (�xj)n, (�vi)n, (�vj)n) ,

(�xi)n+1−(�xi)n

τ
= (�vi)n+1/2,

(�vi)n+1−(�vi)n+1/2

τ/2
= 1

M i
�F i

(
tn+1, (�xi)n+1, (�xj)n+1, (�vi)n+1/2, (�vj)n+1/2

)
,

j ∈ J(i).

(8)

In case of no explicit dependence of forces on the velocities the scheme is the second order
accurate, however if applied to the equation of motion for DEM, this scheme possesses
only the first order of approximation.

To ensure the stability of the finite-difference scheme we use the time step as suggested
in [17], [19]

τ ≤ 0.2
Dmin

Vmax

, (9)

where Rmin is the minimum diameter of the particles, and Vmax is the maximal velocity of
perturbation propagation in the system. In the case on no artificial viscosity, the maximal
velocity is the wave-speed of the longitudinal wave in the media, where the normal stresses
and strains are related as σnn = Krεnn, where Kr is exactly the attractions/repulsion bulk
modulus used in the simulation. If there is a nontrivial artificial viscosity, the velocity
will increase, however, this effect is compensated by the constant 0.2. The discussion can
be found in [18].

Note, that the implementation of the algorithm is based on the use of Graphic Proces-
sor Units with the help of domain decomposition to band limit the dependency matrix.
Discussion of the implementation can be found in [20].
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2.3 Boundary conditions

Proper implementation of the boundary conditions is a challenging task for the particles-
based methods. In our research, we deal with two types of boundary conditions. First,
we impose the rigid boundary condition; i.e., the surface Γs is fixed, or its movement
is prescribed. Moreover, it is stiff; thus the particles cannot penetrate through it. For-
mally, this type of boundary condition can be stated as follows. Assume a boundary
Γs = {�x|x2 = xB

2 }. If a particle is close enough to the boundary; i.e., if for the j-th
particle |xj

2 − xb
2| ≤ Rj, then F jB

2 = K−
r (R

j − |xj
2 − xb

2|).
However, numerical implementation of this condition requires extra conditional oper-

ators. Thus it is worth implementing stiff-boundary as a series of particles, to make the
simulation uniform either in the interior of the domain or near the boundary. To do so,
we introduced the ”boundary” particles with the same physical properties as those of
the interior particles. However, we do not compute the forces acting on the ”boundary”
particles but allow the ”boundary” particles to move according to a prescribed law. We
specify the particular movement laws in the section 3.

The second type of the boundary conditions is Pover = const. This condition ensures
the constant overburden pressure. Note that, condition Pover assumes that external forces
act at the upper boundary of the domain Γp(t) along the normal direction to the boundary.
This boundary is flexible, and it evolves in time; thus, to impose the boundary condition
we need to follow the elements which form the upper boundary. This can be done, for
example, by computing Voronoi diagrams for upper elements. However, such procedures
are computationally intense. To overcome this difficulty, we suggest using the flexible
membrane at the upper boundary [21], [22]. The idea of the approach is to introduce a
layer of discrete elements so that the membrane elements are affected only by the normal
forces.

If two adjoint membrane elements are interacting

�Fm,m±1
n = Kr(R

m±1 +Rm − ‖ �Xm,m±1‖)�nm,m±1, (10)

if membrane element interacts with other elements

�Fmi
n = Kr(R

i +Rm − ‖ �Xmi‖)�nmi, Ri +Rm − ‖ �Xmi‖ > 0. (11)

It means that the adjoint membrane elements are bonded, and these bonds never bake,
however no bonds of friction are considered when membrane elements interact with ele-
ments of other types. The membrane elements are ordered; thus it is easy to approximate
constant pressure condition. If a membrane element with number m is considered then
additional force, due to the pressure is

�Fm
p = 2PRm�n, (12)

where �n is the vector normal to the boundary, which can be computed as:

�n = (xm−1
2 − xm+1

2 , xm−1
1 − xm+1

1 )T ,

the direction of the normal vector is defined uniquely due to the ordering of the membrane
elements.
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2.4 Output parameters

Numerous parameters can be obtained as a result of discrete elements simulations.
If rock properties are studied using uniaxial and triaxial stress tests, then the primary
attention is paid to the distribution of the braked bonds [23], [24], stresses, and normal
forces distribution [25] However, at the scale of the geological bodies a reliable param-
eter to determine fault zones is the strains distribution [26], [16], [17], [27], [11]. These
strains can be further translated to the changes of physical parameters of rocks using the
experimental laboratory measurements.

To estimate the strains distribution one may compute the relative displacements element-
wise, after that the strain tensor components can be computed and interpolated to a
regular grid. A detailed discussion of the strains estimation can be found in [26].

3 NUMERICAL EXPERIMENTS

In this paper, we focus our attention on the effect of the direction and amplitude of
tectonic movement on the geometry of the fault and damage zone. DEM-based simulations
include uncertainties due to the particle’s positions and radii distributions. It means that
for each scenario of the tectonic movements we need to perform a series of numerical
simulations for different statistical realizations of the particles geometry distribution.

In all the experiments presented below, we use the following set of parameters. The size
of the computational domain is 4000 m in horizontal and 500 m in the vertical direction.
The repulsion/attraction modulus is 16 GPa, and same value is used for the tangential
sliding stiffness. The coefficient of static friction is 0.8, which is typical for the majority
of geomaterials, whereas the dynamic friction coefficient is 0.3, which is close to that of
sandstone and limestone. We consider the bonds length proportional to the radii of the
adjoint particles; i.e., r0 = 0.05(Rj + Ri). We assume that the formation is buried at
3000 m; thus the overburden pressure of 107 Pa is applied at the top boundary of the
model. The particles radii are homogeneously distributed from 1.25 to 2.5 m. So, the
total number of elements is 390000.

We consider several scenarios of dipping normal tectonic movements with the dip angles
equal to 90◦, 75◦, 60◦, 45◦, 30◦. Maximal vertical displacement is 100 m.

For each tectonic movement we simulate ten statistical realizations of the particles
distributions; thus, 10 simulations are performed for each scenario. Also, we computed
extra 20 realizations for the most common movement scenario with the dip angle equal
to 60◦. Each simulation consists of two stages. First, the elements should be compacted
under the overburden pressure and gravitational forces. This step takes about 60 % of the
computational time. Second, the tectonic movements are applied. The total simulation
time for one experiment (one realization) is about 8.7 hours by a single GPU (NVIDIA
Tesla M 2090).

We provide the strains distribution for displacement with dip angle equal to 30◦, 60◦,
90◦ in figures 1-3. The main trend observed from the presented figures is that for big
dip angles; i.e., for nearly vertical displacements no narrow fault cores are formed. When
the dip angle gets smaller fault cores are formed (figure 1) and they are located within
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Figure 1: A single realizaton of hydrostatic (top) and shear (bottom) strains distribution in the fault

zone for the displacement dip equal to 30◦.

a narrow zone. Moreover, for low dip angles the form of the fault and its inclination is
similar, thus might depend mainly on the medium properties rather than on the direction
of tectonic movements. To verify this assumption, we perform clustering of the results
and their statistical analysis in the following section.

3.1 Clustering of the results

According to the figures 1-3 fault zones formed after tectonic movements with low
dip angles are similar. To quantify this observation, we applied k-means clustering of
the computed strains distribution. Before processing to the formal analysis, we need to
point out, that we performed two additional series of simulations (9 realizations in each
series) corresponding to the tectonic movement dip angle equal to 60◦. In total we have
27 statistical realizations corresponding to this scenario; however, we will still consider
them as three independent series in our statistical analysis.

We start with the determination of the optimal number of clusters in which the data
can be partitioned. To do so, we use the Calinski-Harabasz Index [28] which measures
the ratio of the total inter-clusters variance to total within-cluster variance for all possible
data subdivision. According to this criterion the optimal number of clusters is two. Then
we applied k-means clustering technique to our data. We constructed clusters for each
component of the strain tensor separately, as well as for all of them together. The panels
in figure 4 represents the clustering results in two clusters. In these experiments we
applied clustering to the all components of the strain tensor. One may note that the
displacement scenarios with dip angles equal to 75◦ and 90◦ form one cluster, whereas all
others form the second cluster. We consider the within-cluster sum of squares (WCSS);
i.e., the functional which is minimized by the k-means algorithm:

D =
k∑

i=1

∑

e∈Si

‖e− < e >i ‖,

where k is a number of clusters, Si is the i-th cluster, a subset of the considered dataset,
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Figure 2: A single realizaton of hydrostatic (top) and shear (bottom) strains distribution in the fault

zone for the displacement dip equal to 60◦.
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Figure 3: A single realizaton of hydrostatic (top) and shear (bottom) strains distribution in the fault

zone for the displacement dip equal to 90◦.
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Figure 4: Panels representing data clustering (two clusters) for all components of strain tensor. Left

panel (A) corresponds to the optimal clustering with minimal distance, right panel (B) represents a case

of local minimum of k-means functional. Different colors correspond to different clusters.

< e >i is the mean value of the elements from i-th set Si. There are different options
to define the norm; however, in this work, we deal with the L2 norm of vectors. So,
the optimal clustering delivers Dall = 3692 respectively. However, there is another local
minimum of the WCSS functional which leads to the clustering where strains for the
tectonic displacements with dip angles equal to 30◦ and 45◦ form one cluster, whereas
solutions corresponding to the subvertical movements go to the other cluster (figure 4 B).
In the second case, the WCSS isDall = 3753. The difference in the within-cluster distances
between the two scenarios is less than 1%, and these two cases are hardly distinguishable.
It means that the displacements with dipping angle equal to 60◦ can either form a wide
deformation zone, same as subvertical displacements, or narrow inclined fault cores, same
as in case of flat tectonic movements.

4 CONCLUSIONS

We presented an algorithm for simulation of the Earth’s crust tectonic movements
and formation of the geological faults and near-fault damage zones. The algorithms are
based on the Discrete Elements Method, and it is implemented using CUDA technology.
We used to simulate faults formation due to different scenarios of tectonic movements.
We considered the displacements with dipping angles varied from 30 to 90 degrees; i.e.,
up to vertical throw. For each scenario, we performed simulations for some statistical
realizations. To characterize the simulated faults and damage zones, we considered the
strains distribution and applied data clustering to distinguish between different forms of
the fault zones. In particular, clustering analysis shows that displacements with high (75◦

and 90◦) and low (30◦ and 45◦) dip angles form completely different geological structures.
Nearly vertical displacements, high dip angles, form wide V-shaped deformation zones,
whereas the flat displacements cause narrow fault-cores with rapidly decreasing strains
apart from the fault core. Results of the presented simulations can be used to estimate
mechanical and seismic properties of rocks in the vicinity of the faults and applied further
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to construct models for seismic modeling and interpretation, hydrodynamical simulations,
history of matching simulation, etc.
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Abstract. This research deals with the solution of geotechnical problems on interme-
diate length scales, i.e. when the length scale of interest is larger than the size of the
grains of the soil (or rockfill) but the medium cannot be considered as a continuous body.
This is because on such scales, despite the large number of involved grains, the volumetric
average stress fluctuates around the mean value and the fluctuation is due to the truly
discrete nature of the soil. Then, the smooth stress field that would be predicted by
continuum mechanics approaches is replaced by a stochastic system of interparticle forces
forming force chains. The forces can be transformed into equivalent stresses by means of
homogenization techniques, but the obtained fields are again non-smooth and stochastic.
A classical statistical mechanics framework is followed to anticipate the probability dis-
tribution functions of equivalent (extensive) stresses according to the macroscopic con-
straints of the problem. In particular, we get stochastic models for two seminal problems
in geotechnics: the at rest lateral earth pressure acting on a retaining wall and the vertical
stress at a given point in the soil that is caused by a vertical surface load. The theory is
validated through massive numerical simulation with the Discrete Element Method.
Mesoscale geotechnical analysis can find its main applications in the case of rockfill or
other very coarse granular materials. However, it could be useful as well for laboratory,
numerical and theoretical researches that are approached on small length scales. This
theoretical framework contributes to fill the gap between micro and macro geotechnics
and the resulting stochastic models may be useful for reliability analyses.

1 INTRODUCTION

There is a class of problems in soil mechanics that deals with the estimation of the
stress field caused by the application of a certain load on the soil. The stress field is
needed to verify whether these stresses can be withstood by the soil or to determine the
deformations of the soil, which must usually remain limited.
In many seminal problems in soil mechanics the stress field was computed in the frame-
work of the theory of elasticity [1]. For example, for the case of a vertical surface load,
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(a) The solution in a continuous, homogeneous,

isotropic and lineal elastic half-space obtained

from continuum mechanics.

(b) A solution in a half-space made of discrete

and elastic particles obtained from DEM simu-

lation.

Figure 1: Flamant’s problem (with uniform load of magnitude p on a strip of width 2a).

Boussinesq [2], Flamant [3], Newark, etc. provided solutions by the end of the XIXth

century. In all these cases the soil is supposed to be a half-space that is continuous,
homogeneous, isotropic and linear elastic. Although this behavior may be a quite se-
vere approximation, it can be sometimes useful as it gives reasonably accurate solutions.
When this is not possible, rather complicated constitutive relationships are needed. Many
constitutive models have been proposed to capture the inhomogeneous, anisotropic, non-
linear or non-elastic behavior of soils [4]. These phenomenological laws are calibrated
from laboratory experiments and, as common numerical methods are capable for using
them, many geotechnical problems can be solved with noteworthy success. However it is
not yet clear how geotechnical problems can be solved when the truly discrete nature of
the soils cannot be ignored. Although such situation is not very common (since most of
the time the length scale of interest is much larger than the typical size of soil particles
and it behaves as a continuous body) there is no clear procedure to estimate the stresses
(and their variability) in such circumstances. This could be the case of large particles (e.g.
rockfill, rock blocks) or micromechanical approaches in which both length and grain scales
come together and the particulated nature of soil has consequences. The most direct one
is the existence of fluctuations of stresses (or forces [5]), with local values that may be
much higher than the average.
Stress fluctuations are possible because the voids interrupt the continuity of the stress

field from particle to particle. The support of the own weight or of any external load is
provided by a system of interparticle forces, which form force chains [6, 7, 8, 9, 10, 11,
12, 13, 14]. The next two significant features invalidate continuum based approaches:

1. the stress field may sharply change from a particle to its immediate neighbors,

2. the problem is stochastic: if particles are packed in a different way, a new equilibrium
is reached with a completely different system of interparticle forces.
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This is the reason why the equivalent stress field of a particle can only be anticipated with
some uncertainty. This work aims at establishing the statistical distribution of stress
values expected at a given position, what will make it possible to get expected values
with uncertainty intervals. This is done by following a statistical mechanics approach
that is presented in section 2. Then this approach is applied to two seminal problems in
geotechnics and verified trough numerical simulation (section 3). Results are shown in
section 4 and discussed in section 5.

2 STATISTICAL MECHANICS

Statistical mechanics is the branch of physics that deals with systems made of a large
number of constituents [15]. Although it was originally developed for thermal systems,
several applications for granular media have been sought for [16, 17, 18, 19, 20, 21],
starting from first Edward’s model in 1989. Some of these approaches have been set up
by considering the role played by the extensive stress (i.e. the product of the volumetric
average of the stress within a region by the volume of that region) [19, 20, 21]. Following
these ideas, a theoretical model for geotechnical applications has been set up [22]. This
model is outlined in the following paragraphs:

1. There is vast number of ways of packing a granular system in static equilibrium ob-
jected to some body forces and boundary conditions. Each new random realization
of an experiment will end up with one of these solutions. In the absence of any
further information all the solutions are supposed to be equally likely.

2. Each packing can be partitioned into domains according to a Voronoi diagram. Each
cell includes the space occupied by the particle and an associated part of void space.

3. The volumetric average of the stress field within a cell can be obtained from the
interparticle forces that keep the corresponding particle in static equilibrium [23]:

〈
σm
ij

〉
=

1

V m

∫
σm
ij dV

m =
1

V m

∑

l

xmn
i Fmn

j , (1)

where V m is the volume of the cell associated to particle m, Fmn
j is the j-component

of the interaction force between particles m and n and xmn
i is the i-component of

the point of application of the force. The tensor product of forces by positions is the
so-called extensive stress Σm

ij =
∑

l x
mn
i Fmn

j . This tensor is equal to the volumetric

average of the stress field multiplied by the volume of the cell, Σm
ij =

〈
σm
ij

〉
V m. The

extensive stress is expressed in energy units and is additive (the extensive stress of
a composite body is equal to the sum of the extensive stress of its components).

4. The volumetric average of the stress field within a control volume V c (< V m) located
at xc, in the cell of particle m is supposed to be equal to the volumetric average of
the stress of the cell. This assumption becomes true as V c approximates V m.
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5. A statistical ensemble is an idealization consisting of a large number of virtual copies
of the system randomly generated and driven according to the same procedure.
Statistical samples can be generated by gathering the values of the extensive stress
Σij of a control volume V c that is located at xc.

6. Normal extensive stresses (Σxx,Σyy,Σzz) are supposed to take any positive value
provided that the average value over an ensemble is finite and corresponds to the
solution of the equivalent boundary value problem (this is the value of the corre-
sponding stress multiplied by the control volume: µΣii = σiiV

c). Values obtained
from different packings are uncorrelated and the three normal and shear compo-
nents are uncorrelated from each other. Shear extensive stresses take any positive
or negative value, provided that the distribution has a specified variance.

7. Under these constraints, the most probable statistical distribution of extensive nor-
mal components is an exponential distribution (similar to that of the Maxwell-
Boltzmann statistics but with the extensive stress playing the role of energy):

f(Σii) =
1

µΣii

e−Σii/µΣii . (2)

For shear stresses, this model is incomplete. If either positive or negative values were
possible and the variance was defined, then a normal distribution N(µΣij ,σΣij) would

be expected, because this is the PDF of maximum entropy under such constraints.
However a procedure to anticipate of such variance in a given problem is still missing.

3 METHODOLOGY

3.1 Estimation of the expected probability distribution function in two geotech-
nical problems

Two seminal problems in geotechnics have been analyzed in 2D, x-z plane, for the lack
of simplicity: a half-space made of almost equal sized disks under its own weight and the
same space supporting a vertical finite surface load.

Gravity: The gravity causes a stress field that at any point can be determined from
the weight of the overlying material:

σzz,g = γz, (3)

where γ is the unitary weight (in kN/m3) and z is the depth. γ = (1− n) ρsg, ρs is the
density of the material of the particles, g is the gravitational acceleration and n is the
average porosity of the overlying packing.
The horizontal stress also increases with depth, but it does at a rate given the at-rest
coefficient of lateral earth pressure:

σxx,g = K0σzz,g. (4)
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Just by the action of the gravity, vertical and horizontal stresses are aligned with principal
stresses,

σxz,g = 0.0. (5)

Vertical surface load: The stress field caused by a vertical surface load is obtained
from classical solutions (e.g. Boussinesq and Flamant problems, explained in [1]). In both
cases the stresses depend not only on the depth but also on the horizontal distance to the
applied load. In 2D, the stresses caused by a surface load p are given by:

σzz,p =
p

π
[(θ1 − θ2) + sin θ1 cos θ1 − sin θ2 cos θ2] , (6)

σxx,p =
p

π
[(θ1 − θ2)− sin θ1 cos θ1 + sin θ2 cos θ2] , (7)

and
σxz,p =

p

π

[
cos θ2

2 + cos θ1
2
]
, (8)

with θ1 = arctan (x−X1)/z and θ2 = arctan (x−X2)/z and X1, X2 the left and right
limits of the surface load.

Gravity + Vertical surface load: As the material is supposed to be elastic, both
solutions can be superposed in such a way that σij = σij,g + σij,p. For any stress state,
a shear indicator can be defined as the ratio of the maximum shear stress to the mean
stress s = (σ1 − σ3) / (σ1 + σ3).

Once the expected values of stresses are known, the PDFs of extensive stresses can
be established. The mean values at any control volume are given by µΣij = σijV

c. For
normal components, these values set the scale of the exponential distributions. Regarding
extensive shear stresses, the PDF remains unknown.

Finally, when only the gravity acts, the at-rest coefficient of lateral pressure would
follow the next ratio distribution:

f(K0) =
µK0

(µK0 +K0)
2 , (9)

whose expected value would be µK0 = µΣxx/µΣzz.

3.2 Numerical validation

A series of numerical experiments were performed with the discrete element method [24],
implemented in YADE-DEM [25]1. A common frictional-Hookean DEM approach was fol-
lowed. Two types of numerical experiments were performed: Case 1 (gravity) and Case 2
(gravity + surface load). The parameters used in the simulations are included in Table 1.

1https://yade-dem.org/.
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Table 1: Parameters used in the DEM numerical simulations to generate ensemble sam-
ples.

Parameter Case1 Case2 Units

Number of particles N 5000 -

Number of experiments # 1812 5324 -

Simulation width L 1.0 1.0 m

Mean diameter D 0.01 m

Diameter dispersion
∆D
D 0.05 -

Young’s modulus E 1.0 · 107 kPa

Material density ρs 2.6 · 103 kg.m−3

Interparticle friction Φ π/6 0 rad

Loading width 2a - 0.045 m

Surface load p - 44.4 kPa

Control point O (xO, zO) (0.00, 0.29) (0.00, 0.10) m

Control point A (xA, zA) - (0.08, 0.10) m

Control point B (xB, zB) - (0.15, 0.10) m

Packings were generated by randomly pouring 5000 particles within a 1.0 m wide domain
and waiting for an almost complete dissipation of the kinetic energy. The diameters of
disks uniformly laid within the interval D±∆D. Gravity acted downwards with g = 9.81
m/s2. Surface loads were applied by gently and vertically (downwards) moving a rigid
body of length 2a and centered at x = 0.0. The simulation was stoped when the vertical
reaction of the soil on the rigid element was equal to 2ap.
A statistical sample of extensive stress values was measured at different control positions
(see 1). In Case 1 the control point was located in the middle of the simulation box
at a depth zc ± ∆zc from the surface. In Case 2, three control points were considered:
point O -right below the center of the surface load- and points A and B -located at the
same depth than O but horizontally shifted (leftwards and rightwards) a certain distance-.
These points were selected because the total stress induced there by the surface load σzz,p

is noticeable, with respective ratios σzz,p/σzz,g of 4.59, 2.15 and 0.65. The simulation box
was large enough to ensure that the stress field caused by the surface loading p is below
0.05p at the boundaries. The control volume was V c = 2.5 · 10−5 m2 � D2/4.
As the average height of the half-space H (and hence the porosity n) as well as the final
position of the footing Hf slightly changed with the realization of the experiment, there
are some uncertainties in the measurement. H±∆H and n±∆n were computed after per-
forming a linear regression of the vertical stress with the depth (Eq. 3, with z = H − hi).
The final position of the footing and the actual surface load, with their variation inter-
vals, are directly measured during the numerical experiments. An additional source of
uncertainty is caused by the fact that the position of the control point may separate up
to a distance � D/2 from the center of the particle used to compute the extensive stress
of the cell.
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(a) Normal extensive stresses. (b) Shear extensive stress.

Figure 2: Expected and measured statistical distribution of extensive stresses in Case 1.

4 RESULTS

The obtained height of the half-space after pouring the particles under the action of
gravity was H = 0.49 ± 0.01 (average porosity n = 0.22 ± 0.01) for interparticle friction
angle φ = π/6 and H = 0.46±0.02 m (n = 0.15±0.03) for frictionless particles. In Case 1,
the measured at-rest coefficient of lateral earth pressure (sample mean) was 〈K0〉 = 0.83.
The expected vertical extensive stress was Σzz = (19.68 ± 0.42) · 10−2 Jul and the mea-
sured sample mean was 〈Σzz〉 = 19.42 · 10−2 Jul, perfectly lying within the incertitude
interval. In Fig 2 the statistical distribution of vertical and horizontal extensive stresses
of the ensemble are compared to the expected exponential distributions.

In Case 2, 〈K0〉 = 0.95 after the gravity deposition. The action of the surface load
increased shear ratios from sO = sA = sB = 0.023 to sO = 0.693, sA = 0.614 and sB =
0.466 and rotated the principal stressess 33.9◦ and 51.6◦ in points A and B, respectively,
and did not rotate them in point O. The expected vertical extensive stress at points O,
A and B were ΣO

zz = (33.17± 1.00) · 10−2 Jul, ΣA
zz = (18.73± 1.40) · 10−2 Jul and ΣB

zz =
(9.81± 1.01) · 10−2 Jul. The sample mean at the control points were

〈
ΣO

zz

〉
= 32.6 · 10−2

Jul,
〈
ΣO

zz

〉
= 17.8 · 10−2 Jul and

〈
ΣB

zz

〉
= 8.9 · 10−2, lying within the interval in all the

cases. In Fig. 4 the PDFs are plotted. In the three cases, the distributions seem to
follow the exponential distribution predicted by the proposed model. The fitting with
the exponential distribution is better in Case 2 than in Case 1, something that could be
related to the higher shear ratios and the stress rotation.

5 DISCUSSION

The statistical distributions of extensive stress measured with DEM fit quite well those
that were predicted under certain hypotheses: exponential distributions for extensive
normal stresses and normal distribution for extensive shear stresses. The fitting is better
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(a) Normal extensive stresses. The dotted

line corresponds to the mean K0 value.

(b) At-rest coefficient of earth trust. The

doted line is the expected ratio distribution

resulting from two independiently exponen-

tially distributed normal stresses

Figure 3: Measured normal extensive stresses and K0 in Case 1.

Figure 4: Expected and measured statistical distribution of vertical extensive stress in
Case 2.
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when a vertical surface load is acting after the deposition by gravity than in the the case
that there is no such load. This could have to do with the fact that the stresses obtained
after the gravity deposition were asymmetrically increased and modified during the ap-
plication of the surface load. This higher level of shear and the stress rotation could have
driven the distribution of forces and stresses towards the expected PDFs.
These result are interesting for geotechnical applications since they provide a way to solve
geotechnical problems when particle and length scale of interest are close. For example,
let be a rigid rectangular framework of width L covered with a layer of coarse granular fill
(of depth H). Continuum based approaches would predict2 that the total load on the top
of the framework would correspond to the weight of the overlaying material γHL, being
γ the unitary weight of the fill. However if the discrete nature of the filling is considered,
the total load will fluctuate around the mean, especially when the number of particles
interacting with the framework (N = L/D) is small. The model here presented would
anticipate that, with 100 particles interacting with the top of the framework, in 5% of
cases the total pressure would be 20% higher than the mean value. Another example of
interest could be the estimation of the total horizontal force acting on a block of an earth
retaining wall that is supporting a rockfill.

6 CONCLUSIONS

- The solution of geotechnical problems in truly discrete media needs a stochastic
model that provides interval estimations of the stress at a given point, rather than
a point estimation.

- A simplistic model based on classical statistical mechanics has been set up to an-
ticipate the probability distribution function of the extensive stresses (this is the
average vertical stress field of a domain multiplied by its volume).

- This approach has been used to determine the PDFs of extensive stresses in two
cases: an elastic half-space under its own weight and the same case with a vertical
finite surface load. The mean value of the stresses is got from classical solutions.

- The model predicts that the PDF of normal components is an exponential distribu-
tion, while that of the shear extensive stresses could be normally distributed.

- Massive DEM simulation have been used to generate statistical samples of values
of extensive stresses at several control points. The matching between expected and
obtained PDFs is good, especially for practical purposes.

- Anticipating the PDF of extensive stresses can be very useful when the size of the
discrete particles and the length scale of the problem come close. For example,
this approach could provide the probability of finding stresses that double the value
obtained from the corresponding continuum approach.

2Provided that the stiffness of the fill and framework are the same.)
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- This research fills a gap between discrete and continuum geotechnical models and
opens a way to treat other seminal problems in geotechnics.
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Abstract. The performance of discrete element method (DEM) simulations is highly dependent 
on the requirements of the associated algorithms in terms of computer memory usage and CPU 
time. In particular, computer CPU time heavily depends on the identification of neighbor 
particles and the computation of particle-particle interactions. Over the years several neighbor 
particles searching methods have been developed. Accordingly, in this work the performance 
of two of well-known searching methods, linked cell and Verlet tables algorithms, are assessed 
in the context of the development of a new DEM-based tool. More specifically, the neighbor 
searching methods performance and related computational costs are parametrically analyzed 
and an assessment of their suitability for carrying the intended numerical simulations is 
provided. The referred numerical simulations are performed accounting for a canonical 
configuration used for the verification of the algorithms included in the new computational tool 
under development. The referred tool incorporating state of the art physical and numerical 
models will be used for modelling following a CFD-DEM approach mineral transport and 
grinding processes present in concentrator plants. 

 

 

 

423



Luis Angeles, Cesar Celis 

 2 

1 INTRODUCTION 
Particulate flows (two-phase liquid-solid flows) known as pulp or slurry are common in both 

industry and nature. The pulp transport and wet milling processes present in the mining industry 
are difficult to characterize experimentally. Numerical models based on computational fluid 
dynamics (CFD) for instance allows getting a better understanding of the associated phenomena 
occurring in such flows. There are two main approaches commonly used for the modeling of 
particulate flows, Eulerian-Eulerian and Eulerian-Lagrangian. The approaches focused on the 
modeling of the referred flows can be also divided according to the treatment of the particulate’s 
phase, continuous and discrete [1]. The continuous approach models large amounts of particles 
as an artificial continuous medium. One disadvantage of this approach is that the local behavior 
of individual particles is not accounted for. This modeling approach is closely related to the 
Eulerian-Eulerian one since usually the continuous approach relies on Eulerian treatments. The 
discrete approach in turn describes the movement and contact of each particle individually. The 
discrete element method (DEM) is one of the most important methodologies relying on a 
discrete approach. Compared to the continuous approach, the main disadvantage of the discrete 
one relates to its relatively high computational cost. The use of Lagrangian based techniques 
for tracking the transport and contact of the particles present in the flow is the main responsible 
for such high costs. 

In the past pulps have been mainly simulated using Eulerian approaches [2] for both the solid 
phase and the transporting fluid. Eulerian methods are indeed able to accurately reproduce the 
particle concentration and velocity profiles, as well as they are capable of handling a large 
number of particles with a relatively low computational cost [3]. The main disadvantage of such 
approaches is that the detailed information at the macroscale and mesoscale is compromised by 
the approximations used. Contrarily, Lagrangian methods [4] are able to provide detailed 
information on the interactions between particle-particle, particle-fluid and particle-solid, but 
their computational costs are high. The referred costs are highly dependent on the number of 
Lagrangian particles being transported. Numerical simulations involving large numbers of 
particles generally requires the use of high performance computing (HPC). 

The discrete element method (DEM) is one of the most important particle-based simulation 
methods that has been used for applications in several fields including chemical engineering, 
pharmaceutics, agriculture, energy, mining, environment and geological engineering [1]. The 
performance of DEM simulations is highly dependent on computer memory usage and CPU 
time [5]. The computer memory requirements come usually from the memory size used for 
storing both the mesh and the particle neighbor related information. Computer CPU time 
heavily depends in turn on the identification of neighbor particles and the computation of 
particle-particle interactions. Selecting the adequate neighbor particles searching methods and 
adjusting their associated parameters is thus criterial for the performance of DEM simulations.  

There are several neighbor searching methods that have been tried in the past. They include 
for instance the linked cell [6] and the Verlet tables [7] ones. This work assesses the 
performance of these two searching methods in the context of the development of a new DEM-
based tool. In particular, the neighbor searching methods performance and related 
computational costs are parametrically analyzed, and an assessment of their suitability for 
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carrying the intended numerical simulations is provided. The referred numerical simulations 
are performed accounting for a canonical configuration used for the verification of the 
algorithms included in the new computational tool under development. Accordingly, Section 2 
briefly describes the general context in which this work has been carried out. Some specifics 
about the two several neighbor searching methods studied here are highlighted in Section 3. 
Finally, Sections 4 and 5 discuss, respectively, the main results obtained from the parametric 
assessments carried out and the main conclusions drawn from them. Notice that the DEM-based 
tool under development incorporating state of the art physical and numerical models will be 
used for modelling following a CFD-DEM approach mineral transport and grinding processes 
present in concentrator plants. 

2 WORK CONTEXT 
The neighbor particles searching methods assessed in this work constitutes one set of 

algorithms of the several ones composing a new DEM-based tool, the so-called CFLOWSS 
(Complex FLOWS Solver), currently under development. The development of this tool for the 
modeling of inert and reactive complex flows is continuous. Its modules, models and numerical 
algorithms are constantly updated in order to improve the accuracy of the flow modeling 
processes undertaken with its aid. The referred DEM-based tool (CFLOWSS) incorporating 
state of the art physical and numerical models will be used for modelling complex flows such 
as those involving mineral transport and grinding processes present in concentrator plants. 

3 NEIGHBOR SEARCHING METHODS 
The interaction between pairs of particles has to be evaluated during DEM-based 

simulations. A general algorithm accounting for all 𝑁𝑁(𝑁𝑁 − 1)/2 interactions between the 𝑁𝑁 
particles involved in a given simulation constitutes the most basic particles searching method. 
In terms of computational effort, this base algorithm has an overall order of O(N2). There are 
of course other more time-efficient particles searching methods. Two of these methods, the 
linked cell algorithm (neighborhood tables) [6] and the Verlet tables [7], are studied here. 

3.1 Linked cell algorithm 
The linked cell algorithm [6], also called the neighborhood tables one, is based on the 

creation of a “mesh” of cells, where the cell size is a function of the particles sizes. The potential 
interacting pairs of a particle belonging to a given particular cell are determined from those 
ones belonging to the surrounding cells. Briefly, following this particles searching method, the 
algorithm first creates a mesh of a specified cell size and assigns each particle to its 
corresponding cell. The algorithm searches next the interacting pairs for a particle located at a 
given cell by analyzing the particles located in the surrounding cells. In order to avoid counting 
twice a given particle pair, the particle search processes are carried out from left to right and 
from bottom to top as shown in Figure 1. As highlighted in this figure, more than one line of 
neighbor cells around a given cell can also be accounted for during the neighbor particles 
searching processes.  
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(a)                                                                (b) 

Figure 1: Linked cell algorithm with a uniform grid. The cell under analysis is shown in yellow, the neighbor 
cells considered for determining the interacting pairs are shown in strong orange, and the cells disregarded 

during the analyses are shown in light orange. Systems of monodisperse particles accounting for (a) one (1) line 
and (b) two (2) lines of neighbor cells around cell 𝑖𝑖. 

3.2 Verlet tables algorithm  
The Verlet tables algorithm is based on the original Verlet method [7]. This algorithm 

considers an imaginary sphere of radius 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 around a particle 𝑖𝑖, which contains the potential 
interacting particles. A pair of the round particles 𝑖𝑖 and 𝑗𝑗 is added to the neighborhood list of 
particle 𝑖𝑖 if [1], 

‖�̅�𝑋𝑖𝑖 − �̅�𝑋𝑗𝑗‖ < 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑠𝑠 + 𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑗𝑗 , (1) 

where �̅�𝑋 is the particles position vector, 𝑠𝑠 is the Verlet or skin parameter, and 𝑟𝑟 is the particle 
radius. For a constant time step ∆𝑡𝑡 and a maximum particle velocity 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, the number of time 
steps in which the Verlet table is valid is computed from, 

𝑁𝑁𝑣𝑣𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑠𝑠
2 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  . 

(2) 

Following this algorithm thus, a Verlet table is initially created, which is used for 𝑁𝑁𝑣𝑣𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 
time steps. After this time has elapsed, the Verlet table is updated and a new 𝑁𝑁𝑣𝑣𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 is 
computed. This process is repeated until reaching the end time. 

4 RESULTS AND DISCUSSIONS 
The numerical modeling of multiple packs of particles is useful for studying some of the 

physical phenomena characterizing mineral grinding processes and transport of dense slurries. 
In this work thus, numerical simulations of a dam break-like configuration are carried out in 
order to compare the performance of two different neighbor particles searching methods used 
in DEM-based approaches. 
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4.1 General description 
As highlighted in Section 3, in addition to the general one, two neighbor particles searching 

methods, the linked cell algorithm (neighborhood tables) [6] and the Verlet tables [7], have 
been analyzed here. These algorithms have been implemented in the DEM-based tool under 
development (CFLOWSS) using C++ as the main programing language. In order to reduce the 
associated computational cost and to carry out several parametric studies, only two-dimensional 
simulations of a dam break-like configuration have been performed. For particle-particle and 
particle-wall interactions, normal elastic forces without damping (no tangential forces) were 
accounted for only. Three particle arrangements were tested varying the number of particles 
along the horizontal and vertical directions, 10 x 10, 16 x 16 and 22 x 22. The simulations were 
run on a single computer core of an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz processor. 

Five dam-break related cases have been simulated considering a time step equal to 1E-6 s, 
from a physical time between 0 and 1 s. The particle governing equations are integrated using 
SUNDIALS/CVODE and the Adams scheme [8]. Two lines around a cell have been considered 
for the linked cell method (Figure 1b), and a skin factor equal to four (4) times the radius for 
the Verlet tables one. Elastic constants equal to 4000 and 40000 have been considered for the 
particle-particle and particle-wall contacts, respectively. The radius of the particles is equal to 
0.5. For particular cases assessed here, some of the parameters highlighted before have been 
modified. The first case was simulated using the parameter values as just described. The 
CVODE solver based on Backward Differentiation Formulas (BDF) was used in the second 
case. Time steps equal to 2E-6 and 4E-6 are analyzed in the third and fourth cases, respectively. 
Finally, the skin factor used in the Verlet tables method has been varied in the fifth case. The 
skin factor variations ranged from 1 to 64 times the particles radius. The main results obtained 
from the simulations of the five cases highlighted above are discussed in the following section. 

4.2 Results 
Figure 2 shows as a function of the number of particles the CPU time associated with the 

general search algorithm and the two studied neighbor searching methods. As noticed from this 
figure, the CPU time is significantly reduced when neighbor searching algorithms are utilized. 
In addition, when compared each other the linked cell and the Verlet tables algorithms, the 
former is slightly less time consuming. This particular outcome has been observed in all results 
obtained in this work. 

The results associated with the use of two different numerical schemes present in the 
CVODE solver utilized here are highlighted in Figure 3. It is noticed in particular from these 
results that for relative small time steps the Adams scheme is slightly more time efficient than 
the BDF one. The referred differences in CPU time increase with the increase in the number of 
particles accounted for in the numerical simulations. 

In Figure 4, the CPU times as a function of the number of particles characterizing the first, 
third and fourth cases are shown. These results indicate that the CPU time is proportionally 
reduced when the time step is doubled. It is worth noticing that, as shown in Figure 7, the results 
do not differ when increasing the time step size. This means that the impact of the numerical 
errors associated with the use of these bigger time steps on the particles transport is negligible. 
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Figure 2: CPU time comparison between neighborhood searching methods for Case 1 (ADAMS, dt=1E-06). 

 
Figure 3: CPU time comparison between Case 1 (ADAMS, dt=1E-06) and Case 2 (BDF, dt=1E-06). 

 
The influence of the skin factor 𝑠𝑠 on the CPU time (Case 5) is highlighted in Figure 5. As 

noticed on this figure, the CPU time is the lowest when the skin factor takes a value equal to 
one (1), i.e., equal to the particle radius. In addition, the CPU time increases with the increase 
in the skin factor values. The highest CPU time that can be obtained by increasing the skin 
factor is theoretically equal to that characterizing the general algorithm (15114 𝑠𝑠). This last 
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aspect is reflected in the essentially constant CPU time values obtained for skin factors higher 
than 32 times the particle radius. Finally, Figure 8 compares the results obtained with a 𝑠𝑠 = 4𝑟𝑟 
(Case 1) and 𝑠𝑠 = 𝑟𝑟 (Case 5). The similarity of the results shown in this figure indicates that the 
implemented algorithms work without any detection problems with the skin factor 
modifications analyzed here. 

 
Figure 4: CPU time comparison between Case 1 (ADAMS, dt=1E-06), Case 3 (ADAMS, dt=2E-06) and Case 4 

(ADAMS, dt=4E-06). 

 
Figure 5: CPU time as a function of the ratio between skin factor and particles radius (Case 5). 
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                                       𝑡𝑡 = 0.01 𝑠𝑠        𝑡𝑡 = 0.01 𝑠𝑠 

 
                                       𝑡𝑡 = 0.50 𝑠𝑠        𝑡𝑡 = 0.05 𝑠𝑠 

  
                                       𝑡𝑡 = 1.0 𝑠𝑠      𝑡𝑡 = 1.0 𝑠𝑠 

 
(a)                                                                                  (b) 

Figure 6: (a) Time evolution comparison between (a) Case 1 (ADAMS, dt=1E-06) and (b) Case 2 (BDF, dt=1E-
06) using the Verlet tables algorithm for a dambreak having an initial 16 x 16 (256 particles) arrangement.  
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                                       𝑡𝑡 = 0.01 𝑠𝑠        𝑡𝑡 = 0.01 𝑠𝑠 

 
                                       𝑡𝑡 = 0.50 𝑠𝑠        𝑡𝑡 = 0.05 𝑠𝑠 

 
                                       𝑡𝑡 = 1.0 𝑠𝑠      𝑡𝑡 = 1.0 𝑠𝑠 

 
(a)                                                                                  (b) 

Figure 7: Time evolution comparison between (a) Case 1 (ADAMS, dt=1E-06) and (b) Case 4 (ADAMS, 
dt=4E-06) using the Linked cell algorithm for a dambreak having an initial 32 x 32 (1024 particles) arrangement.  
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                                       𝑡𝑡 = 1.0 𝑠𝑠      𝑡𝑡 = 1.0 𝑠𝑠 

 
(a)                                                                                  (b) 

Figure 8: Time evolution comparison between (a) Case 1 (ADAMS, dt=1E-06) with 𝑠𝑠 = 4𝑟𝑟 and (b) Case 4 
(ADAMS, dt=4E-06) with 𝑠𝑠 = 𝑟𝑟 using Verlet tables for a dambreak having an initial 16 x 16 (256 particles) 

arrangement.  

5 CONCLUSIONS 
Two classical neighbor particles searching methods, Linked cell algorithms and Verlet 

tables, have been implemented in a new DEM-based tool, the so-called CFLOWSS. A two-
dimensional dam break-like configuration has been numerically simulated using the referred 
two algorithms and the general searching method. Different number of particles and skin factors 
for the Verlet tables have been studied. The main results indicate that the Linked cell algorithms 
and Verlet tables present as expected lower CPU times compared to the general searching 
method. In addition, there are no significant differences in terms of CPU time when using 
Adams or BDF solver schemes. Increasing the time step from 1E-06 to 2E-06 and 4E-06 leads 
to savings in CPU time and there are no noticeable differences in the associated numerical 
results. Finally, the Verlet tables show great dependence on the skin factor and a value for this 
parameter equal to the particle radius do not result in particle pair detection problems. 
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Abstract. Particle-based numerical methods enable different process simulations for powder 
bed additive manufacturing. Two examples are the simulation of powder spreading and the 
simulation of melting and re-solidification. From these simulations, several material 
properties can be extracted such as packing density after spreading, porosity and surface 
properties after re-solidification and, ultimately, indicators for the strength of the component.
In this work simulations of powder spreading using the Discrete Element Method (DEM) as 
well as simulations of the melt pool dynamics by means of Smoothed Particle Hydrodynamics 
(SPH) are presented. Surface tension material properties are varied and the influence on the 
resulting surface shape is discussed. The occurrence of different surface roughness patterns 
can be addressed to certain dimensionless numbers, namely the Capillary number, the 
Marangoni number and the ratio of the laser scan speed to a characteristic Marangoni current 
surface velocity.

1 INTRODUCTION
Simulations of the powder spreading process were reported by Parteli et al. [1]. They 

carried out DEM simulations of the application of a new layer of powder with a counter-
rotating roller. The grain shape is modelled by a multi-sphere approach. The key finding of 
this work is an increase of the roughness of the surface with the square of the translation 
speed of the roller. Interestingly, a powder without fines shows less roughness.

Continuum mechanical modeling studies of the melting and re-solidification process, 
which take into account the heat input by the laser, the heat transfer and the phase 
transformation of the bulk material, were carried out using the finite element method (FEM) 
as well as the lattice Boltzmann method (LBM). The studies can be distinguished based on 
whether the powder was considered explicitly as individual particles or in a homogenized 
bulk representation. A brief survey is given below.

1.1 Homogenized models without explicit representation of the powder
Gusarov et al. present a model describing laser absorption and heat transport for laser 

powder bed fusion (L-PBF) in combination with the thermodynamics during melting and re-
solidification [2]. The occurrence of so-called balling, i.e., the formation of spherical 
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structures in the melt pool, was described in this model by a Plateau-Rayleigh instability 
which can be avoided by low scanning speeds. Hodge et al. present a thermomechanical 
continuum model for the L-PBF process [3]. They demonstrate that the energy input in a new 
layer leads to renewed heating and associated expansions in deeper layers. Riedlbauer et al. 
use FEM simulations and experiments to study the electron beam melting (EBM) process [4].
They find very good agreement for the dependencies of melt pool lifetime on line energy and 
on scan speed as well as of melt pool width on scan speed.

1.2 Models with explicit representation of the powder
Körner et al. describe the simulation of the energy absorption, the heat transfer and the 

melting and re-solidification of a powder bed in 2D using the LBM, taking into account the 
size distribution of the particles [5]. A key result of this work is that the powder volume 
fraction has a strong influence on the homogeneity of the melt pool. A high volume fraction 
supports the formation of a well-defined half-circle shaped pool while for a low volume 
fraction the pool geometry becomes sensitive to the local powder arrangement. Furthermore, 
the authors could derive a process diagram relating the melt track appearance to the 
parameters beam power and scan speed based on simulations and complementary
experiments.  This work was continued in Körner et al. [6] and Bauereiß et al. [7] by 
simulating the subsequent melting and re-solidification of several layers. The particles of a 
new layer are applied by a trickling algorithm rather than by a powder spreading process 
simulation. A key message of these works is that the stochastic properties of the powder bed 
in combination with wetting and capillary effects have a strong influence on defect formation 
during the building process.

Gürtler et al. developed a 3D continuum mechanical model for the L-PBF process [8]. By 
means of the volume of fluid approach, individual particles of the powder bed were 
represented. In comparison with experiments, basic phenomena such as porosity formation 
under unfavorable process conditions could be reproduced. Khairallah et al. also use a FEM 
continuum mechanical description of the L-PBF process in 3D [9]. By using free surfaces, 
individual particles in the powder bed and their distribution could be modeled. Furthermore, 
irregular solidification patterns could be predicted by the model. In a subsequent study, 
Khairallah et al. include a temperature-dependent surface tension which causes Marangoni 
currents as well as recoil pressure during vaporization [10]. This model allows for analyses of 
the complex dynamics of the melt pool with emphasis on pore formation mechanisms.

2 NUMERICAL METHODS
DEM simulations are used to study the powder spreading process. The powder particles are 

modeled as spheres with a finite size distribution. The particles interact through Hertzian 
repulsion, viscous damping, cohesion, sliding friction and rolling friction. Details of the
simulation method are given in [11].

The main focus of this study is melt pool dynamics which is simulated using the SPH 
method. To do so, the continuity equation,

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −𝐷𝐷 𝛁𝛁 ⋅ 𝒖𝒖 , (1)

as well as the Navier-Stokes momentum equation,

435



Claas Bierwisch

3

𝐷𝐷
𝐷𝐷𝒖𝒖
𝐷𝐷𝐷𝐷

= −𝛁𝛁𝑝𝑝 + 𝜇𝜇 𝛁𝛁2𝒖𝒖 + 𝒇𝒇Σ + 𝐷𝐷 𝒈𝒈 , (2)

are solved. Here, 𝒖𝒖 is the velocity, 𝐷𝐷 is the mass density, 𝑝𝑝 is the hydrostatic pressure, 𝜇𝜇 is the
dynamic viscosity, 𝒇𝒇Σ is the volumetric surface tension force and 𝒈𝒈 is the acceleration due to 
gravity. Bold face symbols denote vector quantities.

The hydrostatic pressure is given by an equation of state,

𝑝𝑝 =
𝐷𝐷0 𝑠𝑠2

𝛾𝛾
��
𝐷𝐷
𝐷𝐷0
�
𝛾𝛾
− 1� ,

(3)

where 𝐷𝐷0 is the equilibrium density, 𝑠𝑠 is the speed of sound and 𝛾𝛾 is the isentropic exponent.
The melt rheology is modeled by means of a temperature-dependent viscosity. The 

viscosity changes depending on the state of matter of the material. Here, we differentiate three 
states: fully solid (𝑆𝑆) below the solidus temperature 𝑇𝑇𝑆𝑆, fully liquid (𝐿𝐿) above the liquidus 
temperature 𝑇𝑇𝐿𝐿 and an intermediate state in between,

𝜇𝜇(𝑇𝑇) = �

𝜇𝜇𝐿𝐿 ,  𝑇𝑇 ≥ 𝑇𝑇𝐿𝐿 ,

𝜇𝜇𝑆𝑆 + (𝜇𝜇𝐿𝐿 − 𝜇𝜇𝑆𝑆)
𝑇𝑇 − 𝑇𝑇𝑆𝑆
𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑆𝑆

 , 𝑇𝑇𝑆𝑆 < 𝑇𝑇 < 𝑇𝑇𝐿𝐿  ,

∞ , 𝑇𝑇 ≤ 𝑇𝑇𝑆𝑆 .

(4)

The surface tension force,
𝒇𝒇Σ = (−𝜎𝜎𝑁𝑁  𝜅𝜅 𝒏𝒏 + 𝜎𝜎𝑇𝑇 𝛁𝛁Σ𝑇𝑇) 𝛿𝛿Σ , (5)

is composed of a contribution normal to and a contribution tangential to the local surface. 
Here, 𝜎𝜎𝑁𝑁 is the surface tension, 𝜅𝜅 the surface curvature and 𝒏𝒏 the surface unit normal vector.
𝜎𝜎𝑇𝑇 is the Marangoni coefficient describing the variation of surface tension with temperature 
and 𝛁𝛁Σ𝑇𝑇 is the gradient of the surface temperature field. 𝛿𝛿Σ is a delta function marking the 
location of the surface in space. Details of the SPH surface tension model are given in [12].

The balance equation for the thermal energy per unit mass 𝑒𝑒,

𝐷𝐷
𝐷𝐷𝑒𝑒
𝐷𝐷𝐷𝐷

= 𝑘𝑘 𝛁𝛁2𝑇𝑇 − 𝜀𝜀 𝜎𝜎𝐵𝐵(𝑇𝑇4 − 𝑇𝑇04) 𝛿𝛿Σ +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(6)

is composed of contributions from heat conduction, Stefan-Boltzmann radiation and absorbed
laser energy. Here, 𝑘𝑘 is the thermal conductivity, 𝜀𝜀 is the emissivity, 𝜎𝜎𝐵𝐵 is the Stefan-
Boltzmann constant, 𝑇𝑇0 is the ambient temperature and 𝑑𝑑 is the local intensity of the laser 
radiation.

The absorption of the laser radiation along the vertical coordinate 𝑑𝑑 is described by the 
Lambert-Beer law with an attenuation coefficient 𝑎𝑎,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎 𝑑𝑑 .
(7)

The relation between temperature 𝑇𝑇 and thermal energy per unit mass 𝑒𝑒 is given by the 
following expression which takes into account the specific heat capacity 𝑐𝑐 and the latent heat 
of melting 𝐻𝐻,
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𝑇𝑇(𝑒𝑒) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑇𝑇𝐿𝐿 +

𝑒𝑒 − 𝑒𝑒𝐿𝐿
𝑐𝑐

 ,  𝑒𝑒 ≥ 𝑒𝑒𝐿𝐿 ,

𝑇𝑇𝑆𝑆 +
𝑒𝑒 − 𝑒𝑒𝑆𝑆

𝑐𝑐 +  𝐻𝐻
𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑆𝑆

 , 𝑒𝑒𝑆𝑆 < 𝑒𝑒 < 𝑒𝑒𝐿𝐿 ,

𝑒𝑒
𝑐𝑐

 , 𝑒𝑒 ≤ 𝑒𝑒𝑆𝑆 .

(8)

Here, 𝑒𝑒𝑆𝑆 = 𝑐𝑐 𝑇𝑇𝑆𝑆 is the solidus thermal energy per unit mass and 𝑒𝑒𝐿𝐿 = 𝑐𝑐 𝑇𝑇𝐿𝐿 + 𝐻𝐻 is the 
liquidus thermal energy per unit mass.

The laser radiation is described by a Gaussian intensity profile in 2D,

𝑑𝑑(𝑥𝑥) =
𝑃𝑃

√2𝜋𝜋 6 𝑤𝑤2
exp �−

(𝑥𝑥 − 𝑥𝑥0)2

2𝑤𝑤2 � ,
(9)

or in 3D,

𝑑𝑑(𝑥𝑥, 𝑦𝑦) =
𝑃𝑃

2𝜋𝜋 𝑤𝑤2 exp �−
(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2

2𝑤𝑤2 � ,
(10)

with the power 𝑃𝑃, the characteristic width 𝑤𝑤 and the laser spot center coordinates 𝑥𝑥0 and 𝑦𝑦0.

3 RESULTS
The systems simulated in this study are represented by the capillary number,

Ca =
𝜇𝜇 𝑢𝑢
𝜎𝜎𝑁𝑁 

 , (11)

which describes the ratio of viscosity and surface tension and the Marangoni number,

Ma = −  
𝜎𝜎𝑇𝑇 ∆𝑇𝑇 𝑙𝑙 𝐷𝐷0 𝑐𝑐

𝜇𝜇 𝑘𝑘
 ,

(12)

which quantifies the strength of the thermal convection at the surface. Here, 𝑢𝑢 is a 
characteristic fluid velocity in the melt pool, 𝑙𝑙 is a characteristic melt pool diameter and ∆𝑇𝑇 is 
a characteristic temperature difference along the melt pool.

3.1 Two-dimensional simulations
First, we study the two-dimensional simulation of a simple lattice of three layers of powder

particles which is traversed by a laser producing heat. Selected snapshots of the temperature 
field are shown in Figure 1 for three test cases: No surface tension, surface tension and 
Marangoni convection. In the case without surface tension (left column), a largely 
homogenous surface sets after re-solidification, which still reveals the positions of the original 
powder particles. With surface tension (middle column), the surface is better smoothed. On 
the other hand, Marangoni convection currents at the surface caused by a temperature-
dependent surface tension (right column) lead to a very irregular surface, which is 
significantly rougher than the original particle distribution.
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Figure 1: 2D SPH simulation of melting and re-solidification. The laser moves to the right at constant speed. 
The temperature field in Kelvin is color-coded. The rows represent different points in time.

Left column: without surface tension (Ca =  ∞, Ma = 0); middle column: with surface tension
(Ca =  1, Ma = 0); right column: with Marangoni currents (Ca =  1, Ma = 150).

Figure 2: Like Figure 1, however, the laser remains for a certain time at one position and then changes to the 
next position. As a result, laser tracks into the plane of observation are approximated.
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Complementary to the previous situation, laser motion into the plane of observation is now 
simulated. For this purpose, the position of the laser source remains constant for a certain time 
in the 2D simulation and then changes abruptly. The results are summarized in Figure 2.
Again, in the case without surface tension (left), the initial arrangement of the powder 
particles is still easily recognizable. The surface tension leads to a smoothing of the surface, 
while still a slight ripple with a wavelength which corresponds approximately to the distance 
of the laser positions remains (middle). The Marangoni currents lead again to the most 
irregular surface (right).

3.2 Three-dimensional simulations
To create a realistic spatial powder arrangement prior to melting, a DEM simulation is 

performed in which a new powder layer is applied by spreading with a counter-rotating roller 
moving at a constant speed (see Figure 3). A section of the powder bed is then prepared using 
a finer spatial discretization for the following melt pool simulation (see Figure 4).

Figure 3: 3D DEM simulation of the spreading process with a counter-rotating roller.

Figure 4: Particle distribution after the spreading simulation in two magnifications.
Shown in light gray is the region used for the following melt pool simulation.

Three-dimensional simulations of melting and re-solidification are again performed using 
the SPH method. The laser beam traverses three adjacent tracks. Figure 5 summarizes the 
results. For all parameter variations, the powder particles are melted along the laser tracks.
Differences can be found in the occurring maximum temperatures. Without surface tension 
(left), the temperature is highest, while it is lowest in the case of temperature-dependent 
surface tension (right). This observation can be explained by the fact that without surface 
tension the convective heat transport is the lowest and the introduced heat is almost only 
removed by conduction and radiation. Surface tension enhances convective transport and 
Marangoni currents maximize it.
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Figure 5: 3D SPH simulation of the melting and re-solidification of the arrangement of particles from the 
spreading simulation. The laser moves at constant speed along three equidistant tracks.

The temperature field in Kelvin is color-coded. The rows represent different points in time.
Left column: without surface tension (Ca =  ∞, Ma = 0); middle column: with surface tension

(Ca =  0.1, Ma = 0); right column: with Marangoni currents (Ca =  0.1, Ma = 15).

To analyze the resulting surface after re-solidification, Figure 6 shows the corresponding 
color-coded height profiles. In all profiles, the laser tracks are still visible. In the case without 
surface tension (left), the profile has the greatest depression approximately at the end of the 
first third of each track. With surface tension (center), additional scale-like structuring occurs 
along the laser tracks. These scale structures are most pronounced in the case of the 
Marangoni currents (right). Also, the height differences in the profile are the largest in that 
case.

The Marangoni currents in the case of a temperature-dependent surface tension are further
studied by means of the surface velocity profiles in the melt pool. Figure 7 shows the velocity 
components along and perpendicular to the laser scan direction in addition to the height 
profile. For better visibility of each scan track the hatch spacing between the tracks in 
increased compared to the simulations shown before and, thus, only two tracks are included in 
the simulation.
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Figure 6: Color-coded height profiles in meters (red: bottom, white: top) of the simulations from Figure 5.

Figure 7: Height profile (left) and velocity components parallel (middle) and perpendicular (right) to the laser 
scan track during a simulation with a ratio of laser scan speed to Marangoni current surface velocity of 1.
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It is found in both 2D and 3D simulations that the maximum Marangoni current surface 
velocity in the melt pool can be expressed as

𝑢𝑢𝑆𝑆 ≈ −  
𝜎𝜎𝑇𝑇 ∆𝑇𝑇
20 𝜇𝜇

 . (13)

In order to investigate the formation of the scale structures in more detail further 
simulations with variations of the laser scan speed 𝑐𝑐𝐿𝐿 are carried out. In particular, the ratio of 
the scan speed and the surface velocity of the Marangoni current in the melt pool is analyzed.
Figure 8 shows simulated height profiles using velocity ratios 𝑐𝑐𝐿𝐿 𝑢𝑢𝑆𝑆⁄ between 1 and 10. In the 
case of a velocity ratio of 1 the scale pattern is clearly pronounced and rather regular. For a 
ratio of 3 the pattern in still discernible but less pronounced. For a ratio of 10 the scale pattern 
does not appear any more. This observation hints that an upper bound for the laser scan speed 
above which scale patterns do not occur can be expressed as

𝑐𝑐𝐿𝐿,max ≈ −  
𝜎𝜎𝑇𝑇 ∆𝑇𝑇

2 𝜇𝜇
 . (14)

Figure 8: Color-coded height profiles of simulations with different ratios of laser scan speed to Marangoni
current surface velocity. Left: 𝑐𝑐𝐿𝐿 𝑢𝑢𝑆𝑆⁄ ≈ 1; middle: 𝑐𝑐𝐿𝐿 𝑢𝑢𝑆𝑆⁄ ≈ 3; right: 𝑐𝑐𝐿𝐿 𝑢𝑢𝑆𝑆⁄ ≈ 10.

4 CONCLUSIONS
Particle-based simulations provide detailed insights into melt pool dynamics and are 

particularly suitable for the systematic investigation of the influence of process and material 
parameters on the process result. In this work, relations between surface tension effects and 
the resulting surface profile in 2D and 3D simulations are investigated as examples. It is
shown that, on the one hand, surface tension can have a smoothing effect. On the other hand, 
especially Marangoni currents can cause a pronounced surface roughness. Dimensionless 
numbers allow for characterization of the emerging surface profiles based on material
properties and process parameters.
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Abstract. Roller compaction refers to a dry granulation process where fine particulate feed is 
fed to the counter rotating rolls of a roller compactor to form ribbons which are further milled 
to produce free flowing agglomerates. For the continuous production of ribbons, there needs to 
be an adequate supply of powder by the screw to the rolls without any interruptions. In general, 
screws used in roller compactors are designed to convey powders of all types (cohesive, bulky, 
compressible, etc.), whereby usage of different screw designs for different powder types may 
be avoided. However, using such single screw type roller compactors for poor flowing powders 
may be challenging. On the other hand, the selection of the right screw for a given powder can 
only be done based on a combination of prior experience and trial-and-error experimentation. 
Empirical correlations exist to predict the draw down rate of screw feeders depending on their 
design, however, these correlations assume that there is continuous supply of powder by the 
screw, which limits its application to free-flowing powders only. To address this, in this study 
numerical simulations are performed based on discrete element method (DEM) to investigate 
the impact of screw design on the powder supply to rolls for cohesive and poorly flowing 
powders.  

The geometry considered includes a hopper, horizontal feeding screw below the hopper, and 
two counter-rotating rolls at the end of the screw. Two different screw designs are investigated 
where the main difference between them is the pitch length. The influence of scraper speed is 
investigated. Additionally, the influence of material attribute such as cohesion is studied. For 
both designs, the simulation results calculated include the rate of powder supply by the screw, 
velocity of particles in the screw etc. The simulation results of powder supply rate are also 
compared with results obtained based on empirical correlation. Overall, this simulation 
approach helps in selecting appropriate screw design for the given cohesive powder.     

1    INTRODUCTION 
Roller compaction is a dry granulation process designed to compact fine powders i.e. 

densifying the powder blend by application of pressure, to produce ribbons which are further 
processed to yield granules and pertains to continuous manufacturing procedure [1]. Roller 

444



K. S. Awasthi, S. R. Gopireddy, R. Scherließ & N. A. Urbanetz 

 

2 
 

compaction process has significant effect on flowability, homogeneity, compressibility of 
active pharmaceutical ingredients and excipients and thus can affect post compression 
parameters of tablet [2]. Therefore, it is necessary to optimize the process parameters to obtain 
good quality granules. 

A typical roll compactor consists of a hopper connected to a single rotating screw, which 
feeds the material into the gap between two counter-rotating rolls and cheek plates on the sides 
to avoid leakage which is represented in Figure 1. Experimental studies on screws have been 
conducted by Bates [3] to match different screws and material in hopper in order to investigate 
flow pattern. 

It is frequently found that a mechanical discharging apparatus in a roll compactor is virtually 
essential for handling cohesive powder. One such method is the screw feeder which comprises 
a helical screw blade or "flight" on a horizontal shaft (Figure 2). The construction of the screw 
may be of uniform or varied geometry [3]. 

Theoretical models have also been proposed by Yu and Arnold [4] for a uniform flow pattern 
based on the pitch characteristic of screws, and Roberts [5] for uniform drawdown used to 
predict the flow patterns generated in hoppers for a given screw. However, screw shear and 
power draw can be affected by the forces acting on the screw which varies along the screw 
length [6]. 

Moysey and Thompson developed a new 3-D model for solids conveying in a single screw 
extruder using DEM. The model has been shown to be an excellent tool for studying solids flow 
within the screw channel [7][8]. Further, Fernandez et al. studied the influence of screw design 
on the particle mass flow rate, evenness of particle drawdown from the hopper and power 
consumption [6]. However, in all these studies, the hopper used did not had any scraper or 
impeller attached to it and it is one of the useful process attribute for handling cohesive material. 

In this study, the impact of screw shape on the discharge from hopper on cohesive material 
is explored. Also, DEM is used to investigate the effect on total mass flow rate out of the screw, 
mass holdup, velocity of particles inside screw zone. Finally, the results are compared for 
different cohesion case. The screws in this study is one of commonly found designs having 
variation in screw pitch spacing. Also, the study aims to evaluate the relative performance of 
screws and to establish the accuracy of the continuum based analytic model. Further, prediction 
from this study is compared to theoretical study of discharge prediction from Roberts [5][9].  

2    MATERIAL AND METHODS 

2.1   Discrete Element Method (DEM) 
The DEM is a numerical method based on Newton’s laws of motion and was introduced by 

Cundall and Strack (1979) [10]. It is a Lagrangian method i.e. all particles in the computational 
domain are tracked by explicitly solving their trajectories [11]. The details of modeling using 
DEM can be found in [12]  and various industrial application of DEM in [13].  

In this work all the computations were performed using the open source DEM software 
known as LIGGGHTS [17]. LIGGGHTS stands for LAMMPS improved for general granular 
and granular heat transfer simulations. It is a parallel C++ DEM code based on the Molecular 
Dynamics (MD) code LAMMPS [14] distributed by the developers via the GNU public license 
[11] and in this study LIGGGHTS version 3.7 is used. The models chosen in this study include 
Hertz and Mindlin & Deresiewicz theories for the calculation of normal and tangential forces, 
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respectively [15]. The cohesion is included through the simplified Johnson-Kendall-Roberts 
model [16] which adds an additional normal force contribution and this is successfully 
implemented in our previous study [17]. The other non-contact force considered includes 
gravity.  

The current study aims at using the well-developed models of DEM to capture the particle 
flow in the hopper of a roller compactor under different material and process attributes. 

2.2   Geometry 
The hopper design including scraper, screw and rolls are shown in Figure 1. Two different 

geometries of same design are used in this paper for performing simulations. Figure 1a shows 
the complete roll compactor geometry , Figure 1b shows the same geometry but only half of the 
screw is considered for simulations (to optimize simulation time and discharge behavior of the 
particles) and Figure 1c is the x-z plane view of the same geometry as shown in Figure 1b.  

 
Figure 1 Roll compactor geometry (a) including rolls (b) no rolls included, y-z plane view and (c) no rolls 

included, x-z plane view 

 

Figure 2 Screw designs 

The hopper is marked as 1 in the Figure 1. Here, the hopper is selected such that the walls 
are steep enough and have friction low enough to let the material slide in a mass flow manner 
to the screw zone. Location 2 is the scraper used inside the hopper, one of the reason is to handle 
cohesive powder so that the powder is continuously fed to the screw zone. Location 3 is the 
screw, 4 and 5 are the upper roll and lower roll respectively. The roll gap can be adjusted 
according to required final ribbon density in addition to the force applied by the rolls on the 
material and screw speed. 

The screws are one of the basic types of feeders used in roller compaction process. They 
play an important role in particle feeding to the rollers. With different screw types, the 
consolidation of particles in the compaction zone might differ. The main difference between 
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the two screws is the pitch. Screw 1 has lower pitch with 24.38 mm as compared to screw 2 
with 35.63 mm.  

2.3   Particle size selection 
Three-dimensional simulations done with DEM are recognized to be extremely CPU-

intensive, requiring from a few hours to several days in the case of systems involving a large 
number of particles. The current hopper system has a volume of about 3000 cm3. In this volume, 
a typical pharmaceutical dry granulation blend having about 200 µm particle diameter, could 
contain about 3 x 109 particles. To address this, typical procedure is to consider enlarged particle 
size in simulation but keeping the bulk behavior of powder closer to reality. In this study, 
particles with radius of 2.0 mm were selected and considered for simulations which has in total 
particles of about 170,000 within the hopper. 

2.4   Material property calibration 

 
Figure 3 Calibration screenshots (1) Angle of repose at filled state (2) Angle of repose at final state (3) Bulk 
density for particles filled inside the cylinder (4) Angle to start flow filled state (only 5 particles are used) (5) 

Angle to start flow final state i.e. angle at which the particles start to roll from the surface. 

After the particle size is selected, different microscopic particle properties which enter as 
input parameters in DEM simulations are calibrated based on bulk properties available through 
experimental data. This results in increased accuracy and validity of the discrete element 
modeling work. The different material properties calibrated include cohesion energy density, 
rolling friction and particle density using the angle of repose, initiation of flow over an inclined 
plate and bulk density, respectively. The standard calibration procedure is followed as described 
e.g. by Jensen et al. [18] and by Coetzee and Els [19], which is also depicted in Figure 3. 

The rationale for calibrating the particle density, rolling friction and cohesion energy density 
is due to the observation that these properties influence the powder flow behavior in hoppers 
[20], [21]. The measured data of bulk density, angle of repose and initiation angle of particles 
to slide on inclined plate for the considered powder blend are 0.24 g/mL, 57° and 30°, 
respectively. The final calibrated values of particle density, cohesion energy density and rolling 
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friction for particle size 2 mm is given in Table 1. The other microscopic particle properties 
which are not calibrated, however taken from literature [17].  

Table 1 Final values of particle properties after calibration 

Property (DEM input parameter) Particle radius 
of 2.0 mm 

Property used for 
calibration 

Particle density / g/mL 0.613 Bulk density 

Cohesion (particle-particle) / J/m3 90000 Angle of repose 

Cohesion (particle-wall) / J/m3 6000 Angle of repose 

Rolling friction (particle-wall) / - 0.54 Angle to start flow 

 

2.5   Initialization of simulations 
With the finalized values of DEM input parameters after calibration, simulation of hopper 

with screw conveying is performed with the selected particle sizes of 2 mm. The typical 
simulation procedure is that for the selected particle size, using the particle properties defined 
in Table 1, the particles are filled into the hopper during which the scraper and the screw is idle. 
Once complete filling of particles and their subsequent settling is achieved, which is observed 
through the total particle kinetic energy and rotational kinetic energy, the filling is said to be 
complete. With this filled state, the process parameters such as screw speed and scraper speed 
are set and simulations as per the plan given in Table 2 is started.  

3.   RESULTS AND DISCUSSION 
At first, a base case is considered to define basic result that are studied in this paper to 

evaluate the differences. The results are then organized at first to find the differences in screw 
type considering different process parameter such as scraper speed. Following which the impact 
of cohesion on the discharge rate is studied.  

3.1   Base case 
 The calibrated value of material properties for 2 mm particle size is taken to describe the 

basic results extracted from the details generated by the DEM simulation for all the particles at 
every time step.  

The particle size of 2.0 mm is filled inside the hopper every 0.5 second till 20 s to achieve 
uniform filling. Appropriate time is allotted to particles after insertion so that the particles are 
settled inside the hopper aptly. During the filling, scraper, screw and rolls are idle. Once the 
filling is done, the particles are colored in the direction of positive y axis as can be seen in 
Figure 4. 
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Table 2 Simulation details including process parameters 

  

 

 
Figure 4 Geometry of screenshot at filling state and 80 s of discharge 

After filling is complete, the scraper, screw and rolls are rotated at the speed of 15 rpm, 90 
rpm and 10 rpm respectively. Figure 4 shows the flow state at filling and 80 s of discharge. The 
mixing of particles in the scraper zone can be seen at 80 s. Also, the particles are seen to be 

Run. 

 

Geometry Screw 
type 

Particle 
radius 

Cohesion (J/m3) 
Scraper 
Speed 
(rpm) 

Screw 
Speed 
(rpm) Particle -

particle 
Particle-

wall 

1 Full Screw 2 2.0 mm 90000 6000 15 90 

2 Half  Screw 2 2.0  mm 120000 1200 5  90  

3 Half Screw 1 2.0  mm 120000 1200 5  90  

4 Half Screw 2 2.0  mm 120000 1200 20  90  

5 Half Screw 1 2.0  mm 120000 1200 20  90  

6  Half Screw 2 2.0  mm 120000 1200 15  90  

7 Half Screw 1 2.0  mm 120000 1200 15 90 
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completely filled in the screw zone as the rolls rotate and discharge takes place. However, mass 
flow behavior is observed i.e. the powder seems to discharge smoothly without any obstruction 
in flow. Following this, various aspects such as mass holdup, throughput and velocity of 
particles in screw zone is studied to observe the particles behavior.   

3.1.1   Mass holdup in screw zone 
Mass holdup refers to the weight of particles in kilograms inside the screw zone. The 

achievement of steady state is explained through the mass holdup inside the screw zone. As the 
screw rotates, the particles are drawn from the hopper, inside the screw zone and is conveyed 
through the screw towards the rolls. 

 
Figure 5 Mass holdup inside the screw zone 

Figure 5 shows the escalation of mass of powder inside the screw zone. It can be seen from 
Figure 4, filling state that there is already presence of some particles inside the screw zone, 
therefore, the ordinate in Figure 5 starts from value other than 0 at 20 seconds. As the time 
progresses, the mass holdup inside the screw zone increases and reaches a constantly fluctuating 
value signifying the steady state achievement and the average mass holdup inside the screw 
zone is 0.027 kg. However, the mass holdup might vary if the screw speed is changed from 90 
rpm to other value. 

3.1.2   Discharge behavior study 
To study the discharge behavior of particles, factors such as throughput and velocity acting 

on particles in the screw zone are studied. 

Throughput  
Throughput is defined as the mass of powder coming out of the system considered per unit 

time. Figure 6 represents the throughput of the system. While looking at the abscissa, it can be 
observed that initially, the mass discharge is almost zero. This is the time frame that particles 
took to travel from outlet of the hopper to the point where particles come out of the system. 
After which, the graph follows linearly increasing trend which represents achievement of 
constant throughput. Here, the slope of the graph represents the throughput which is around 
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0.0026 kg/s and 9.35 kg/h corresponds to packing fraction of 0.26 in screw zone (explained in 
next section based on calculation from equation 1 from Roberts [5]). 

 
Figure 6 Throughput of the process 

Velocity of particles inside screw zone 

 
Figure 7 Velocity of particles inside the screw zone 

Velocity of particles inside the screw zone is shown in Figure 7 will help to analyze the 
cohesive behavior of powder particles inside the screw zone. A cuboidal box is considered to 
mark the x, y and z bound in the region belonging to screw zone and velocity of particles at 
every 0.05 seconds is calculated. For the particle size of 2 mm, the average velocity of particles 
inside the screw zone is 0.058 m/s. The rotational speed of screw is 90 rpm, which is 0.137 in 
linear velocity. The velocity of particles is lower than the tip speed of screw which can be 
attributed to the presence of a lot of particles inside the screw zone, where only limited number 
of particles near to the screw surface are in contact with the screw. This result would help to 
compare the behavior of cohesive particles in different process conditions and material 
properties. 

3.2   Comparison of screw design  
For comparing screw designs, the half geometry as shown in Figure 1b and 1c is considered 

in order to reduce the overall simulation time. The two screw geometries considered are shown 
in Figure 2. The particle size of 2 mm with higher particle-particle cohesion and lower particle 
wall cohesion is considered to observe how the cohesive blend would behave to the change in 
process parameter such as scraper speed (5 rpm, 15 rpm and 20 rpm). Also, the mass discharged 
from the screw is calculated over time.  
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Table 3 shows the respective throughput and mass holdup data in the screw zone for different 
screw type and scraper speed. The throughput for comparing the two screw designs with scraper 
speed of 5 rpm, 15 rpm and 20 rpm are as shown below in Table 3: 

Table 3 Study of screw 1 and screw 2 design on mass discharge and mass holdup in screw zone 

Run Screw 
type 

Scraper 
speed (rpm) 

Throughput 
(kg/h) 

Mass holdup in 
screw ( kg) 

2 2 5 11.5 0.012 

3 1 5 10.5 0.013 

4 2 15 12.6 0.014 

5 1 15 11.2 0.015 

6 2 20 12.6 0.014 

7 1 20 11.1 0.015 

 
It is interesting to observe that the mass discharge rate out of the hopper is higher for the 

cases with screw 2 as compared to screw 1. This observation can also be compared to the 
theoretically calculated throughput from the equation 1 from Roberts [5], [9] as following: 

𝑚𝑚 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋(𝐷𝐷𝑏𝑏2 − 𝐷𝐷𝑠𝑠2)/4         (1) 

Where, m is the throughput in kg/s, 𝜋𝜋 is the bulk density in kg/m3, 𝜋𝜋 is the packing density 
in screw, 𝜋𝜋 is the screw speed in round per second (rps), L is the screw pitch in meter, Db

 is the 
blade diameter in meter and Ds

 is the shaft diameter in meter.  
The Figure 8 is prepared from equation 1 for the two different screws 1 and 2 respectively 

differing in screw pitch. It can be perceived that with changing packing density of particles 
inside the screw zone, the flow rate increases and is higher for screw 2 as compared to screw 1. 
This observation is well in agreement with the DEM simulation observation where screw 2 
shows higher discharge in all the coupled cases of different scraper speed. 

Mass holdup in screw zone 
The packing fraction of particles inside the screw zone is 0.24 and the volume of empty 

space to be filled with particle inside the screw zone is 83 ml which gives the volume of particles 
inside the screw zone to be ~ 20 ml. The maximum consolidation inside the screw should be 60 
% of available empty space which is ~50 ml (packing fraction is 0.6). Therefore, the particles 
inside the screw zone is in safe operation mode to move freely and interact with the surrounding 
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particles and wall. The mass holdup in screw column of Table 3 shows the respective mass 
holdup in the screw zone for respective cases. 

 
Figure 8 Mass discharged vs time based on correlation proposed by Robert 

It is interesting to observe that the mass holdup in case of screw 2 is lower as compared to 
the screw 1. This effect can be attributed to the smaller pitch in screw 1 which can consolidate 
higher number of particles therefore, larger mass. Furthermore, the effect of scraper speed can 
also be observed in mass holdup inside the screw zone. It can be compared that the higher 
scraper speed of 15 rpm and 20 rpm shows higher mass holdup in the screw zone as compared 
to lower scraper speed of 5 rpm. The same mass holdup in screw zone for 15 rpm and 20 rpm 
scraper speed can be another reason for the similar discharge rate out of the screw. The mass 
holdup during the discharge time zone is constant all over for all the cases but differs in 
magnitude which can be attributed to scraper speed.  

Velocity of particles in screw zone 

The average velocity of particles for the case of screw 2 is 0.049 m/s in the screw zone and 
that for screw 1 is 0.039 m/s. The speed of screw is 90 rpm in both the screw geometries which 
is 0.137 m/s when converted to linear velocity. Higher velocity of particles in screw 2 case can 
be attributed to lower mass holdup in screw 2 as compared to screw 1.  

Comparison of scraper speed 
When the scraper speed is kept constant, the discharge is merely dependent on the screw 

shape (or pitch) see Table 3. The reason being the similar supply of powder from the scraper 
zone to the screw zone in both the cases i.e. different screw shape. However, as the scraper 
speed is increased, the flow rate is also seen to increase. This could happen because more 
number of particles per unit time are loosened with the scraper and are forced towards the screw 
zone. Further, when the scraper speed is increased from 15 rpm to 20 rpm, almost no increase 
in mass discharge rate is observed for both the screw cases. One reason could be the threshold 
of powder loosening is achieved in the scraper zone o that there is no further increase in powder 
mass flow rate from scraper zone to the screw zone. The other reason is the screw speed which 
is constant at 90 rpm, which would impact the throughput if changed. 
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Figure 8 Velocity of particles in scraper zone 

Figure 8 shows the velocity of particles in the scraper zone. The velocity of scraper is 5 and 
20 rpm for cases 1, 2 and 3, 4 respectively. It can be observed in the Figure 8 that the average 
velocity of particles is 0.007 m/s for the case 1 ad 2 (there is only difference in screw type and 
the scraper speed is kept at 5 rpm). Similarly, the average velocity of particles for case 3, 4 in 
the scraper zone are also same at 0.029 m/s. The velocity of particles in scraper zone are not 
influenced by the change in screw type. Also, with four times increase in scraper speed, average 
velocity in scraper zone is also increased by four times for both the screws signifying similar 
loosening of blend. 

3.3   Impact of cohesion on flow pattern  
This simulation was performed with screw 2. The cohesion energy density (reflecting 

cohesion in J/m3) value of particle-particle interaction is increased from 90000 (case 1) to 
120000 (case 6) and particle-wall interaction is decreased from 6000 (case 1) to 1200 (case 6). 
The influence is the change in average particle velocity in the screw zone i.e. from 0.058 m/s to 
0.066 m/s (see Figure 12). There is a little but not significant change in particle velocity in this 
zone, as on one side, the particle-particle cohesion increase restricts the particles to move freely 
with respect to each other whereas, decrease of particle wall cohesion tends the particles to 
move freely and not stick to the wall. 

Mass discharge out of the hopper 
The mass discharge rate for case 6 and case 1 are compared and it is observed that the mass 

discharge for case 6 is 8.02 kg/h and for case 1 is 9.35 kg/h which is expected as the particle -
particle cohesion is lower in case 1 as compared to case 6 which leads to lower interaction in 
between particles and hence higher discharge rate out of the screw. 

4.   CONCLUSION 
A comparison of flow from two different type of screws are performed with DEM 

simulations. The mass discharge rate calculated from theoretical equations are compared to the 
simulations and are found to be well in agreement suggesting screw 2 to be better than screw 1. 
Further, impact of scraper speed is also investigated for the throughput. Overall, a vision is 
emerged to investigate different screw designs. Further, the impact of particle size, particle 
shape and process parameters change can be applied in order to evaluate its influence on the 
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flow. The findings are useful for comparing the screw designs and operation of screw feeders 
for handling cohesive powder. 
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Abstract. We present a new method for coupling fluid and particle systems that works by 
directly manipulating the flow field variables, mimicking the presence of solid particles rather 
than adding additional force terms in the governing equations as, e.g., in the traditional 
immersed boundary method (IBM). We demonstrate an implementation based on the open 
source OpenFOAM [2] package. The OpenFOAM-Interactive (OFI) presented here gives 
access to all internal field variables of the governing equations. This ease and facilitates 
complex computational and seamless data exchange and manipulation of the field variable. OFI 
contributes to reducing the time needed in creating the initial geometry and enables readily re-
creating the geometry for the basic computational fluid dynamics (CFD) simulation steps. The 
presented methodology is verified for a reference simple problem (i) obstruction to flow with 
bluff bodies. The verified methodology is then applied as an example to demonstrate a realistic 
problem of heat transfer to a gas through particle bed [1]. The particle bed is created “on the 
fly” with OFI, this will facilitate studying fluid behavior over different particle configurations 
in particle beds (i.e. porosity variation) more efficiently in future.  
 
1 INTRODUCTION 

Computation fluid dynamics (CFD) is applied in various applications ranging from 
environmental studies to design the functionality of heat exchangers to aerodynamics 
applications and so on [1]–[3]. CFD works on the basic principle of dividing the entire system 
domain into several grids or cells and solving the governing equations of flow by numerically 
discretizing the partial differential equations (PDE) of the fluid phase in these small grid 
elements [4], [5]. The development in computational resources CFD simulations have gained 
quite a limelight, even simulations at resolved scales are possible today [6], [7]. Many 
commercial packages (like Fluent [8], Star CCM+ [9]) and open source package (like 
OpenFOAM [10], CFDEM Coupling [11]) exists in the current scenario.  

 
Open Source Field Operation and Manipulation (OpenFOAM) [10], [12] is the most used 

open source  suite of C++ libraries to CFD problems. It was first released in 1980, since then it 
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has grown more mature to handle different complexities in physics (from macroscopic level to 
microscopic level). The best feature being the accessibility to the flexible framework to build 
your own applications as required. Different methods and algorithms are being added in every 
release with the help of a big community of users using OpenFOAM to back the continuous 
growth. These are being shared on online Git version controlled repositories (like GitHub [13], 
GitLab [14], etc.).  

 
The flexibility in the OpenFOAM framework has led to many developments/improvements 

in solving CFD problems by developing new solvers pertaining to the specific industrial or 
academic question by improving the previous numerical schemes [15]–[18] or by adding 
features to solve addition problem domain[19]–[23].   

 
The recent demands from industries to parametrize studies in order to optimize product and 

system geometries, requiring the intrinsic approach has led towards efficient automatization 
mechanisms. In a typical CFD case, mostly a small change in the geometry requires careful and 
intricate re-meshing. This limits the automation specifically and especially due to the lack of 
existing meshing tools in open source world. 

 
There have been developments in the field of automating the whole procedure of running a 

case with OpenFOAM through python scripts which are used to serve as interface to pre and 
post process OpenFOAM (specifically, pyFoam and pyFlu)[24], [25]. These packages demand 
too many changes deep in the code to create a library interface for OpenFOAM. They offer 
excellent automation schemes for the cases which do not require re-creation and re-meshing of 
the geometry.  
 

In this work we develop the access to OpenFOAM field variables i.e. volume scalar and 
volume vector fields using the client server architecture along with complete access to the 
OpenFOAM objects of mesh and runtime. Thus, this enables us to control and manipulate 
OpenFOAM operations such as Run, Edit, Print, Search, and Rerun with static meshing i.e. 
create objects, run and edit the cases rapidly.  

 
In general, any OpenFOAM or any CFD associated problem consists of three stages (i) pre-

processing (ii) solver and (iii) post-processing, the purpose of the work is to reduce the 
dependability or efforts towards pre-processing as much as possible with minimal change or 
duplicity required to the original OpenFOAM solvers. The aim is to introduce dynamic features 
to reduce the dependence on complex re-meshing and expensive dynamic meshing to work with 
the server client architecture in order to create, mesh and manipulate the domain variable easily. 
At this stage, this paper is the benchmark in this direction for our future works, where a more 
detailed numerical scheme behind the functionality of the OFI will be presented and applied to 
more physical problems.  

 
The paper has been structured as follows, we first introduce the literature in Section 1, and 

we lay down the methodology implied to OpenFOAM-Interactive (OFI) in Section 2, we then 
add on to present the verification and results in Section 3 and in the end, we conclude with 
possible future outcomes from the work in Section 4. 
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2 METHODOLOGY 
   To give an idea of the overall methodology that we employ to render OpenFOAM-

Interactive (OFI) to control OpenFOAM (v2.4.0 to v5.0.x tested in this paper, though we 
already have implementation supporting OF up to version 6.0) solvers through an interface 
wrapper is presented. The aim is to introduce minimal changes to the source code of 
OpenFOAM solver and make use of already well-established suite of the OpenFOAM 
framework. A schematic of representation of the workflow is shown in Fig. 1. This paper 
explains SimPhony OpenFoam Wrapper from Fig 1.  

   The main concept is shown schematically in Figure 3. OpenFOAM consists of a main loop 
over time or solver iterations. After each such iteration a condition is evaluated to determine 
whether convergence is achieved. OFI intercepts these calls and replaces them with additional 
machinery allowing changing the internal state of the case while it is running. Client-server 
architecture is designed and implemented to allow the user to send arbitrary commands to 
OpenFoam that are to be performed in these intercepts. These changes include: read and write 
cell value for scalar/vector volume fields, set up and fix a value at every time step, run for 
specific time, finding cells etc. While this may seem not very useful initially, an adept user can 
change the field values in order to exert or mimic various complex conditions e.g., simulating 
the presence of a rigid or flexible solid object within fluids, multiphase dynamics, chemical 
reactions, and arbitrary geometrical objects, to name but a few.  

   Key to the success of this method is the physical and mathematical soundness of the 
commands and variations induced by the user. The kind of changes and how to employ them is 
indeed not trivial and is the subject of a follow up publication. Here we demonstrate the method 
and some of its possibilities focusing on the software engineering aspects. 
 
2.1 Approach and Implementation Detail 

 As shown in Fig. 1 any solver and any version of OpenFOAM package can be made to work 
with OFI. In this verification study, we consider as an example a case of incompressible 
Newtonian fluid in laminar flow regime for demonstrating the proposed method. The 
straightforward way to solve the problem of an incompressible Newtonian fluid in laminar 
regime with SimpleFoam solver given in Fig. 2 (a) includes, (i) creating a geometry, (ii), 
solution to the problem, followed by, (iii) visualizing the results. The complexity of each of 
these steps depends on the actual problem, and may range from being as trivial as shown in Fig. 
2(b), or as complex as shown in Fig. 2(c).  

If the problem is extended to behave as shown in Fig.2 (b), i.e. an obstacle to the flow has to 
be created (considering No-slip conditions); all the above-mentioned steps would have to be 
redone. This is due to the need to re-create and re-mesh of the geometry. The intention behind 
OFI is to reduce the efforts in doing so, i.e. to enable directly encoding the obstacle in the mesh 
without directly re-creating and re-meshing the whole geometry all over again.  In fact, using 
OFI both cases in Fig. 2(a), Fig. 2(b) or Fig. 2(c) become equally easy.  
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Figure 1: A schematic representation of the OFI architecture.   A think controller layer is embedded in the 
main loop of the OF solver which intercepts the execution of OF and alters the state seamlessly. The controller 
communicates through a pipe socket to the Parser which parses commands from the client. The parser in turn 

communicates through a socket with the client part where currently the user can make changes and issue 
commands. The Controller converts these commands into actions.  There is python interface to this 

SimPhonyServer which makes the descrition of the use case in Python.  

2.2 Treatment of obstacle in a flow with OFI 

   The obstruction to flow as shown in Fig. 2(b) is directly emulated by making the velocity of 
the cells in the region (i.e. the obstacle zone) fixed to zero in each iteration of the solver. In 
pictorial terms it is explained in Fig. 3, the case following the boundary conditions and initial 
conditions is prepared in OFI. In a typical SIMPLE algorithm, the previous iteration values in 
the cells provide as the initial values for the next iteration or current iteration. In OFI, the solver 
is forced to stop at each iteration and is reset (or re-initialized) with the constant value (in this 
case zero velocity) in cells (emulated as an obstacle). This makes the cells (in an emulated zone) 
behave as on obstruction zone. 
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Figure 2: 2D schematic flow diagram of the problem solved in this work with OpenFOAM-Interactive (OFI) 
(bottom) and without OpenFOAM-Interactive, but with basic steps of any CFD setup (top). The square obstacle 
is created with OpenFOAM-Interactive and also with the basic step of re-creating the geometry and re-meshing 

for OpenFOAM-2.4.0. 

 

Figure 3: Pictorial representation of the re-Initializing steps for the cells in region* (obstruction) required to act 
as obstruction. OF-Engine represents the complete OpenFOAM-Interactive suite. 

3 RESULTS 
   In this section, the proposed methodology of OpenFOAM Interactive (OFI) is applied to a 

case with SimpleFoam solver i.e. a 2D channel flow with two square obstacles disarranged to 
the flow. The fluid is considered to be of steady incompressible Newtonian in nature and within 
laminar regime (Reynolds number Re 100 and Re 50). The description of the geometry and 
flow parameters is listed in Table 1. The purpose of the comparison of the OFI SimpleFoam 
with OF-2.4.0 SimpleFoam solver is based on boundary resistance and velocity structure 
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representation of the flow. Hence the sole criterion for comparison is velocity magnitude (in 
m/s).  

   This study is a one to one comparison between a case solved by OFI using the SimpleFoam 
solver and one solved entirely with the native OF SimpleFoam solver. That is, we compare the 
solution of an obstacle using the built in OpenFOAM methodology and compare it to a solution 
where in effect OpenFOAM is ran on a system without any obstacles internally (simple uniform 
mesh) but the obstacle is emulated by an external manipulation of cells directly using OFI.  This 
is done to validate both the approach and the implementation.  The goal is to demonstrate the 
capability of OFI solver to predict basic flow behavior with precision. Moreover, we consider 
only the hydrodynamics entrance region in this work to create the geometry; the fully developed 
region was not considered significant in this comparison. 

   The complexity used for comparison in this section is simulated with similar solver setting 
and geometry as previously explained in Table 1. Also, note that neither the numerical 
sensitivity analysis (like, grid independence) nor the solver sensitivity analyses are considered 
here, for a full validation there will be a follow up publication. The focus of this work is to 
demonstrate the capability of OFI solver to give corresponding results with similar flow and 
solver parameters as would be the case with the OpenFOAM-2.4.0 solver. 

3.1 Results for Two square obstructions disoriented in arrangements 

    As an example, disoriented square obstacles to the flow were considered. This is quite a 
challenging problem in literature, and it is influenced by different numerical and solver 
accuracy parametrizations. This is because of the flow from the first obstacle creating a wake 
region with vortexes which hinders the inflow for the second obstacle and so on.  

For similar numerical accuracy, solver parameters and Reynolds numbers (Re 100 and Re 
50), the contour plots for velocity magnitude (in m/s; in Fig. 4) shows the ability of OFI to 
capture the flow behavior with much accuracy compared with OF-2.4.0. To have a thorough 
comparison of the flow profiles obtained from both approaches, 3 different regions (i.e. Lines 
L1, L2, L3) in the simulated geometry (all in different flow regimes) were analyzed as shown 
in Fig. 5. The results obtained for velocity magnitude fluctuations are within the acceptable 
error margin (within 5% difference margin).  

3.2 Result of flow over a 2D representation of packed particle bed 

   In the previous section obstacles to flow is emulated to see the velocity fluctuation to the 
flow. A more complex case with simulation parameters from Table 2 and having a real 
application with multiple blocked cells portrayed as a packing of a packed bed is simulated in 
this section to extract the temperature profile. This happens without re-meshing for the particles 
and by recalibrating the values of temperature in the cells to behave as the particles of constant 
heat source. We emphasize that this is a first step towards a more detailed analysis of particle-
fluid and solid-fluid interaction based on OpenFOAM-Interactive (OFI). 

   It is shown in Figure 6 that the 2D representation of the cells behaving as the constant heat 
source (573K) is heating the fluid (at 473K) till they reach an equilibrium temperature. 
 

461



A. Singhal, R. Schubert and A. Hashibon 

 7 

 

Figure 4: Velocity contour graphs for disoriented square obstruction to flow from OpenFOAM-Interactive (OFI) 
(right) and OpenFOAM-2.4.0 (OF) (left); SimpleFoam solver for a flow at Re100 and Re50 

[NOTE: the scale is in (m/s); also, the dimensions of the square obstacles are 0.141m2]. 

Table 1. Details of the parameters used in simulation. *The OFI is compatible with all versions of 
OpenFOAM 

Parameter Value 
Length of the 2D channel (m) 5 
Width of the 2D channel (m) 1 
Mesh resolution 40x40 
Number of mesh elements 1600 
Reynolds number (Re) 100; 50 
Solver used SimpleFoam 
OpenFOAM version* 5.0.x 

 

Table 2. Details of the parameters used in simulation. *The OFI is compatible with all versions of 
OpenFOAM 

Parameter Value 
Length of the 2D channel (m) 2 
Width of the 2D channel (m) 5 
Mesh resolution 40x100 
Number of mesh elements 4000 
Reynolds number (Re) 10 
Solver used byoyantBoussinesqSimpleFoam 
OpenFOAM version* 5.0.x 
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Figure 5: The comparison of velocity magnitude (m/s) profiles obtained for Re100, Re50 between OpenFOAM-
Interactive (OFI) and OpenFOAM-2.4.0 (OF) for double disoriented square obstruction of similar sizes. The 
velocity data profiles are plotted over lines (L1, L2 and L3) from bottom wall of the channel to the top wall). 

 

 

Figure 6: Temperature contour plots for 2D particle bed generated with OFI as cells of constant heat source. 
[left] is the profile at the first iteration showing the temperature in the cells manipulated to behave at 573K. 

[right] shows the evolution of the temperature profile in the geometry domain after the temperature has reached 
an equilibrium. 

4 CONCLUSIONS 
We present an innovative simple yet efficient means to control OpenFOAM with minimal 

changes to the code by manipulating directly the control flow.  The proposed method allows 
enhanced automation and provides new means of performing complex CFD modelling, in 
particular it enables alteration of the numerical domain without re-meshing. 

The concept introduced in this paper laid a path forward to utilizing server client architecture 
to completely control OpenFOAM and similar tools. This will form an integral part of an open 
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simulation platform and is planned to be offered as a service and APP on the upcoming 
Materials Modelling MarketPlace (https://www.the-marketplace-project.eu/), which is a 
framework of integrating simulation frameworks in a semantic and interoperable environment 
facilitated by the common universal data structure (CUDS). The unique feature of the presented 
methodology i.e. OpenFOAM-Interactive (OFI) is the adaptability to the change in OpenFOAM 
versions. It is flexible to plug-in it to any OpenFOAM versions.  

The presented package OFI has been applied to solve an interesting problem from literature 
i.e. bluff bodies to the flow. Our presented methodology helps scale the steps of re-creating and 
re-meshing the geometry when and if required according to the change in the simulated 
problem. The results obtained were within the error margin of 5% which demonstrates that our 
developed OFI suite works well.  

Following that the methodology is applied to imitate a particle packing simulation. The 
validation and verification of the detailed heat transfer analysis resulting from the change in 
porosities and validation from the literature pertaining to more real-time engineering problems 
with packed beds will be a part of the future studies.  
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Abstract. The main task of this paper is improved of modeling accuracy and understanding of 
the physical process which arises in complex industrial tasks using Euler-Lagrange approach. 
There were two cases under the study. The first one was aimed to study the dynamics of self-
organized turbulent structures. A first qualitative insight into the entrainment process in wind 
farm is obtained through particle tracking. The second case is focusing on developing the Euler-
Lagrange approach for the understanding of the physical processes occurring the water droplets 
injection into a jet. The water droplets, coming out of the special sockets, are simulated by 
packages (parcels) of particles of a certain mass and size according to the specified flow rate. 
Parcels moving in the flow, breakup at high speeds, heating and evaporation are investigated. 

1 INTRODUCTION 
Currently, many of the known basic models (including implemented in commercial foreign 

packages) use assumptions and methods based on the transfer of single particles or multi-liquid 
approaches that are convenient for modeling some phenomena but not suitable for describing 
complex transient processes. Also, the investigations are underway to combine different 
approaches for expanding the use of models that describe the multiphase flow — for example, 
models that include the transfer of the interphase boundary and transfer of individual droplets. 
However natural and experimental estimation, usually, represent significant difficulties and a 
quite high cost in the case of study of complex physical phenomena. As a result, there is a need 
for the use of numerical modeling tools and the development of hybrid models of solvers that 
combine continuum (Euler) and discrete (described in Lagrange variables) systems. This 
approach provides additional information about the flow pattern and structure and in many 
cases serves as confirmation or refutation of the hypothesis describing a physical phenomenon. 

In this paper, we consider the use of hybrid (Euler-Lagrange) approach for solving two 
industrial problems. The open source package OpenFOAM has been chosen as the main 
platform. The first task is devoted to the dynamics of self-organized turbulent structures around 
wind turbines, where the use of this approach allows conducting research of the phenomenon 
of ejection. The second is the development and implementation of a hybrid (Euler-Lagrange) 
approach for modeling the process of interaction water droplets and a high-temperature gas jet. 
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2 WATER DROPLETS INJECTION INTO A JET 
Currently, one of the critical tasks in the rocket and space field is to reduce the acoustic noise 

from the working engines jets. Various passive and active methods are used to solve this 
problem at present. One of these methods is the water jets supply in the area of the hot gas 
propulsion jet. This approach has been the subject of research, which is reflected in a number 
of papers by various authors [1-5]. A detailed study of gas-dynamic and acoustic processes 
arising from the use of this technology in real conditions is a significantly complex and 
expensive task. The heterogeneity of the region in terms of Mach number, multiphase, splashing 
of water jets, the presence of physical and chemical processes, the possible interaction and 
reflection of shock waves, etc. - all these features necessitate the use of numerical modeling 
tools and the development of a hybrid model of the solver capable of correctly reproducing and 
predicting the phenomena described above. 

The solution of such a problem requires an accounting of the droplet propagation in the 
supersonic flow. To do this, it is necessary to divide the description of the gas-droplet flow into 
two systems: continuous (Euler) and discrete (Lagrangian).  

2.1 Government equations 
Taking into account the currently accepted assumptions, the mathematical model consists of 

three-dimensional Navier-Stokes equations for turbulent super -, trans- and subsonic flows of a 
compressible gas-droplet mixture, including the mass, momentum and energy conservation 
equations; turbulent transfer equation, components of the mixture transfer equations, droplets 
transfer equation, description of the mechanisms of interaction of water and gas flows 
(evaporation, momentum exchange). The basis for the continuum system was the 
pimpleCentralFoam solver [6], which is based on a hybrid method of approximation of 
convective terms and the Kurganov-Tadmor Scheme. 

For the Lagrangian (droplet) part as a base was used an OpenFOAM cloud model 
sprayCloud. This model used a for representation of a gathering of real particles. This 
construction is plainly made because that it is almost always too computational demanding to 
simulate all the real particles. 

A sphere particle defined by its position 𝑥𝑥𝑝𝑝, diameter 𝐷𝐷𝑝𝑝, velocity 𝑈𝑈𝑝𝑝 and density 𝜌𝜌𝑝𝑝. The 
mass of the particle 𝑚𝑚𝑝𝑝 =

1
6 𝜌𝜌𝑝𝑝𝜋𝜋𝐷𝐷𝑝𝑝

3. The particle motion is solved by integrating the force 
balance. The force represents the sum of all relevant forces: drag force from the fluid phase 
(𝐹𝐹𝐷𝐷) and gravity force (𝐹𝐹𝐺𝐺). 

𝑑𝑑𝑥𝑥𝑝𝑝
𝑑𝑑𝑑𝑑 = 𝑈𝑈𝑝𝑝 (1) 

𝑚𝑚𝑝𝑝
𝑑𝑑𝑈𝑈𝑝𝑝
𝑑𝑑𝑑𝑑 = ∑𝐹𝐹𝑖𝑖 = 𝐹𝐹𝐷𝐷 + 𝐹𝐹𝐺𝐺 = 𝑚𝑚𝑝𝑝

𝑈𝑈 − 𝑈𝑈𝑝𝑝
𝜏𝜏𝑝𝑝

+ 𝑚𝑚𝑝𝑝𝑔𝑔 (2) 

The relaxation time of the particles (the time it takes for a particle to respond to changes in 
the local flow velocity): 

𝜏𝜏𝑝𝑝 =
4
3

𝜌𝜌𝑝𝑝𝐷𝐷𝑝𝑝
𝜌𝜌 ∗ 𝐶𝐶𝐷𝐷 ∗ |𝑈𝑈 − 𝑈𝑈𝑝𝑝|

 (3) 
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The drag coefficient 𝐶𝐶𝐷𝐷 calculated via function in the dependency of the particle Reynolds 
number (Re): 

𝐶𝐶𝐷𝐷 = {
0.424 ∗ 𝑅𝑅𝑅𝑅, 𝑅𝑅𝑅𝑅 > 1000

24 ∗ (1 + 𝑅𝑅𝑅𝑅2/3/6), 𝑅𝑅𝑅𝑅 ≤ 1000 
Below are the basic equations, special models modifications (injection and phase change  

models) and its investigation (heat transfer model, breakup model) to create a hybrid Euler-
Lagrange approach for simulating the interaction of gas jets with water are proposed. 

2.2 Injection Models 
In OpenFOAM, there are several diff erent tools for introducing particles in the fluid flow, 

according to settings specified by the user. These tools are properly called injectors. Several 
injection models already exist in OpenFOAM, such as cone nozzle, manual injection, patch 
injection, and others, but water spray socket may have a different shape. Most often, the holes 
for the flow of water drops represent a slit and there is a hole with a rotating screw at the end 
of the socket. Two own models of particle injection have been developed: cone nozzle curling 
injection model and slit injection model. 

Cone Nozzle Curling Injection. Model of cone nozzle injection with curling set by next 
parameters: time start of injection; total mass of parcels for duration of injection; type of initial 
velocity; injection number of parcels per second; position, radius 𝑹𝑹𝒑𝒑 and direction of the nozzle 
injection, angle of injection, rotation frequency 𝛚𝛚 and direction (clockwise, counterclockwise) 
and parcels size distribution type. 

The full initial parcel injection velocity: 
𝑈𝑈 = 𝜔𝜔 ∗ 𝑅𝑅𝑝𝑝 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑑𝑑𝑐𝑐𝑐𝑐̅̅ ̅̅  (4) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅  – the velocity tangential direction vector; 𝑑𝑑𝑐𝑐𝑐𝑐̅̅ ̅̅  – the velocity direction vector. 
The normal parcel velocity depending from the setting type: 
- constantVelocity  

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (5) 

- flowRateAndDischarge 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = �̇�𝑚
𝜌𝜌𝑝𝑝 ∗ 𝐴𝐴 (6) 

- pressureDrivenVelocity 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = √
𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑝𝑝

𝜌𝜌𝑝𝑝
 

(7) 

�̇�𝑚 – mass flow rate of water, kg/s;  𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖- injection pressure, Pa.; 𝐴𝐴 = 𝜋𝜋 ∗ 𝑅𝑅2  - area of the outlet, m2. 
On Figure 1 the water particles injection with the next parameters: mass flow rate  �̇�𝑚 = 0.2 

kg/s, injection parcels per second – 105, clockwise curling, angle of injection – 30 degrees, outer 
diameter – 1 mm, omega – 1000 rad/s, particles size from 0.1 to 0.15 mm -  in air with pressure 
p = 101325 Pa and temperature T = 293 K. is shown.  
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Figure 1: Particles and it’s velocity during cone nozzle curling injection 

Slit Injection. As the initial parameters for slit injection, besides total mass of parcels, 
duration, flow type and number  parcels per second parameters, using two vectors 
(limitDirection 1 and 2) that determines the spray direction, position of the slit center, slit width 
(sW) and height (sH). 

The full initial parcels velocity calculated by equation: 
𝑈𝑈 = 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑̅̅ ̅̅  (8) 

𝑑𝑑𝑑𝑑𝑑𝑑̅̅ ̅̅  randomly choose between vectors limitDirection1 and limitDirection2, 𝐴𝐴 = 𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠. 
The particle injection with the next parameters: mass flow rate �̇�𝑚 = 1.0 kg/s, parcels per 

second – 105, sW = 140  mm, sH = 1 mm, particles size from 0.1 to 0.15 mm – in environment 
with pressure p = 101325 Pa and temperature 293 K is shown on Figure 2. 

 
 

Figure 2: Particles and it’s velocity during slit injection. 
 

2.3 Heat Transfer Model 
For the calculation of heat transfer from a spherical particle to the surrounding gas, the Ranz 

Marshall model [7] is used. The Nusselt number can be written: 
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𝑁𝑁𝑁𝑁 = 2 + 0.6 ∗ √𝑅𝑅𝑅𝑅 ∗ √𝑃𝑃𝑃𝑃3  (9) 

The test case was made with water parcel with particles 100 µm diameter, mass – 5.2*10-9 
kg and initial temperature 293 K situated in air with the temperature 380 K and 101325 Pa 
pressure. Gravitational and drag force off. Two variants with motion and steady parcels were 
considered. The graph on Figure 3 shows that in both cases the system comes to thermodynamic 
equilibrium, the temperature of the parcels reaches the 373 K and stops. Mass of the parcel, the 
number of particles and its diameter did not change. When the particles have an initial velocity 
(Up=1 m/s), its heating occurs faster. 

 
Figure 3: Temperature dependence during time. 

 

2.4 Phase Change Model 
The phase change model responds for the evaporation of the droplet. Two models were 

investigated during simulation. One of them liquidEvaporation model already implemented in 
OpenFOAM and another one – Spalding model, described in [8], was integrated. Below you 
can see the verification tests for these models. 

Spalding model. The Spalding model realization compared with [8]. According to analytical 
solution the time of droplet vaporization directly proportional the square of the droplet radius 
(d2 law): 

𝑅𝑅𝑝𝑝 = √𝑅𝑅𝑝𝑝0 − 𝑘𝑘𝑘𝑘 (10) 

𝑘𝑘 = 2 ∗
𝜌𝜌𝑝𝑝
𝜌𝜌 ∗ 𝐷𝐷𝑎𝑎𝑎𝑎 ∗ 𝑙𝑙𝑙𝑙 (1 + 𝐵𝐵𝑚𝑚) (11) 

𝑅𝑅𝑝𝑝0 – initial particle radius, m; t – time, s; 𝜌𝜌 - gas density, kg/m3; 𝐷𝐷𝑎𝑎𝑎𝑎  - vapor diffusivity, m2/s; 𝐵𝐵𝑚𝑚 - Spalding 
mass transfer coefficient. 

The following case was made to confirm it. The unmoved water droplet (diameter - 0.0017 
m, mass – 2571*10-9 kg) evaporates with constant environment temperature 293 K and pressure 
101300 Pa. The result is presented at Figure 4. 

The changes of the one water droplet temperature in time were compared with simulation 
and experimental results in [8] (Figure 5). The water droplet with the temperature 301.45 K free 
fall. The environment temperature is 301.45 K and pressure is 101300 Pa with air relative 
humidity 0.22. Two variants of saturated pressure calculation were considered: by OpenFOAM 
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library and by Clausius-Clapeyron equation: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝 ∗ 𝐸𝐸𝐸𝐸𝑝𝑝[−𝐻𝐻
𝑅𝑅 ∗ ( 1𝑇𝑇𝑝𝑝

− 1
𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝)] 

(12) 

𝐻𝐻 - enthalpy of evaporation, 40.7*106 Дж/(моль*К); 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝 - temperature of vaporization, 373 K; 𝑇𝑇𝑝𝑝 – particle 
temperature, K; p – environment pressure, Pa. 

  
Figure 4: Particle size dependence during time Figure 5: Temperature dependence during time (test 

2) 
red line – simulation in [2], black dots – experiment 

[2], green line – simulation (saturated pressure 
calculated by Clausius-Clapeyron equation), blue line 

– simulation (saturated pressure calculated in 
OpenFOAM library) 

OpenFOAM liquidEvaporation model. Liquid evaporation model - uses ideal gas 
assumption. As the test case was chosen the evaporation of the one water parcel with the 
dimension 100 µm, mass - 5.2*10-9 kg and temperature 293 K. The environment temperature – 
10000 K and pressure 101325 Pa. Two variants were considered when the particle is unmoved 
and moving with the velocity 1 m/s. The gravitational and drag forces off. 

The graphs on Figure 6 show that the particle heats to the evaporation temperature, particle 
mass and diameter decrease during time. When the particle have the initial velocity (Up = 1 
m/s), it heating and respectively evaporation occurs faster. 
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Figure 6: Water mass and maximum particle temperature dependence during time 

2.5 Breakup Model 
Also, the breakup model was investigated. In our simulations we used a Taylor Analogy 

Breakup (TAB) Model [9]. This method is based upon Taylor’s analogy between an oscillating 
and distorting droplet and a spring mass system. With the increasing speed of the parcel, the 
number of droplets should become more, but drops should be a smaller diameter, and 
respectively evaporates faster. The number by which the drop is divided depends on the Number 
of Weber.  

From the Figure 7 you can see that with the increase of the critical Weber number the mass 
of the evaporated gas is reduced, a large critical Weber number is similar to disabling a model 
of the drops breakup. 

 

Figure 7: Water and steam phase change in the system with different critical Weber number 

3 DYNAMICS OF SELF-ORGANIZED TURBULENT STRUCTURES AROUND 
WIND TURBINES 

Wind energy is an important part of renewable energy sources in many countries. The 
development of the wind energy industry in Russian Federation (RF) involves the design and 
operation of new wind power plants and turbines. Wind farms can operate in various climate 
conditions on the vast territory of RF (Ulyanovsk Oblast, Republic of Adygea, Taman 
Peninsula, Arctic Region). The first one with 28 wind turbines was constructed in 2017-2018 
in Ulyanovsk Oblast. The second one with 3 wind turbines was built in Tiksi in 2018. The new 
wind farms are building now in Republic of Adygea and in Azov area, and are planned to be 
built in Krasnodar, Rostov, Stavropol Regions, Republic of Kalmykia till 2022. 

The community of researches is normally focused on studying behavior and performance of 
wind farms, spectral contents of the power fluctuations, different methods of quantifying effects 
of turbulence-generated loads on wind turbine blade, influence of atmospheric turbulence on 
the fatigue loads. The turbulent wakes dynamics and wind turbines performance in wind farms 
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are the questions of the great interest now for the scientific community [10]. Large-eddy 
simulation (LES) has recently been well applied in the context of numerical simulation of a 
flow over wind turbines on flat and complex terrains. 

The phenomenon of ejection plays a positive role and allows to restore the velocity’s deficit 
in the wake of the wind turbine, therefore, affect the wind capacity of wind farm. The 
phenomenon of ejection can be studied using the motion of solid particles. 

3.1 Computation setup 
The open source library SOWFA (Simulator for On/Offshore Wind Farm Application) based 

on the OpenFOAM is used in this research work. SOWFA includes several incompressible 
solvers and utilities, being now used actively by the research community, and applies the Large-
Eddy Simulation (LES) approach using the finite volume method to solve the governing 
equations, with different sub-grid-scale (SGS) models relevant for Atmospheric Boundary 
Layer (ABL) [11]. For instance, the Lagrangian dynamic Smagorinsky model for SGS viscosity 
can be applied, with an extra constraint on the dynamic Smagorinsky constant CS used to avoid 
its negative values which may occur in calculations. The buoyancy effect is inserted by the 
separate term in the momentum equation in Boussinesq approximation. Effects of topography, 
environment stratification, Earth rotation, thermal flux changes are all taken into account to 
compute flow parameters.  

The terms in the governing equations, for quantities defined in the mesh cell center, are 
approximated with the first and second order of accuracy on time and space. The improved 
iterative PISO algorithm is implemented to solve the system of discretized algebraic equations, 
using the predictor-corrector procedure and the iterative method of conjugate gradients with a 
preconditioner for velocity, pressure, potential temperature, stress tensor, and SGS model 
parameters. 

LES with finite volume method for the solution of the main equations reflecting conservation 
laws was used. The following equations are considered: the continuity equation, the momentum 
equation, the transport of scalar value - potential temperature equation and other equations for 
the SGS stress tensor, turbulent viscosity.  

The subgrid-scale models are an important part of LES [12]. The SGS stress tensor was 
raised from the filtering of the Navier-Stokes equations. The Boussinesq approximation for 
buoyancy force is included with the separate term in the momentum equation. 

The Gauss linear Scheme was used for approximation of the convective terms, the Gauss 
linear corrected scheme was used for approximation of laplacian terms. To solve linear system 
equations the PBiCG method with DILU preconditioner was used for velocity, temperature and 
the GAMG method was used for pressure. 

The main idea of new solver with the Euler-Lagrange approach, developed in ISPRAS, is 
based on adding a new KinematicCloud class to the ABLSolver LES solver, which describes a 
kinematic cloud of particles with equations (1)-(3).  

An example of solving an applied wind energy problem for a model wind farms with 12 or 
14 wind turbines will be investigated. To determine the initial distribution of parameters, we 
used the neutral atmospheric boundary layer approximation, calculated using the method 
Precursor, implemented in the ABLSolver solver. The mathematical modeling of the flow 
parameters in the wind farm was done using the pisoFoamTurbine solver and the Actuator Line 
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Model. 

3.2 Definition of the problem 
The 12 wind turbines in model wind farm were considered in case with SOWFA library. The 

diameter of rotor for wind turbine was equal to D = 0.416 m. The reference velocity was set to 
Uref = 1.5 m/s. Atmospheric Boundary Layer model was introduced to represent experimental 
conditions. The parameters of Neutral ABL, used in our simulation, are listed in Table 1 of 
work [13].  

Each of the prototype wind turbines had 3 blades with constant cross section.  The blade was 
made of carbon fibre with a shape of a twisted thin flat plate of 0.8 mm thickness, without using 
any aerofoil cross-section [14]. Operating tip-speed ratio (TSR) was set to 6. 

The value of numBladePoints for the case with 12 wind turbines was set to 40, the epsilon 
value was set to 5.0. The data on velocity profile and wind direction were taken from the 
weather station and the free report in Internet. 

The domain with following dimensions was selected: 6.5 m x 5.5 m x 1 m in width (x-), 
transverse (y-), and height (z-) directions. The resulting unstructured mesh for the test with 12 
wind turbines counted 2, 4, 6 millions of cells. After constructing the primary mesh with 
blockMesh tool the central zone with the turbines array inside was refined twice and an 
additional refinement was done around each turbine. The final mesh had 6 millions of cells. 
The pisoTurbineFoam solver was tested on famous Blind-test tutorial with 2 model wind 
turbines [15] and 12 wind model turbines in climatic tunnel [13, 16]. 

3.3 Results of simulations 
Figure 8 shows distribution of the vorticity field. Propagation of the velocity along the 

sequence of wind turbines is illustrate in Figure 9. Figure 10 shows normalized mean velocity 
in different sections of the computation domain.  

 
Figure 8: Vorticity field at Tend = 20 seconds 

 

474



Kraposhin M., Epikhin A., Melnikova V. and Strijhak S. 

 10 

 
Figure 9: Propagation of the velocity along the sequence of wind turbines 

 
 

 
Figure 10: Normalized mean velocity profile 

 

Particles application. The standard injection models in OpenFOAM, such a manual 
injection, and patch injection were used at the inlet. Solid parcel with the dimension 1*10-5 m, 
mass - 1*10-8 kg and temperature 285 K. The environment temperature – 285 K and pressure 
98000 Pa. A first qualitative insight into the entrainment process in wind farm is obtained 
through particle tracking, where passive particles are released into the flow for every 200th time 
step. The particles are advected according to the local velocity at each time step. It was defined 
that there was a high degree of mixing and the initial colour partitioning was broken after 
turbines 1–2 for both seeding positions. There were also areas, where the particles have 
essentially been flushed away by the turbulent fluctuations, e.g. between turbines 7–12. The 
distribution of particles changes significantly over time as they are advected through the wind 
farm. The distribution of particles from each seeding height is counted within ‘imaginary’ 
cylindrical tubes between the turbines. 

4 CONCLUSIONS 
A study of two developed solvers based on the OpenFOAM package and using the Euler-

Lagrange approach was conducted.  Validation of the proposed models was carried out with 
analytical and experimental data. A particle of spherical shape and various models of their 
injections to the computational domain were considered. 

 
The reported study was funded by RFBR, project number 17-07-01391. 
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E. Oñate, M. Bischoff, D.R.J. Owen, P. Wriggers & T. Zohdi (Eds)

A LATTICE BOLTZMANN METHOD IN GENERALIZED
CURVILINEAR COORDINATES

J. A. Reyes Barraza1 and R. Deiterding2

1 Aerodynamics and Fluid Mechanics Research Group

Engineering and Physical Sciences Faculty

University of Southampton

Highfield Campus, Southampton SO17 1BJ, UK

Email: j.a.reyes@soton.ac.uk

2 Aerodynamics and Fluid Mechanics Research Group

Engineering and Physical Sciences Faculty

University of Southampton

Highfield Campus, Southampton SO17 1BJ, UK

Email R.Deiterding@soton.ac.uk, Web page: http://rdeiterding.website/

Key words: LBM, Generalized Curvilinear Coordinates, Finite Difference

Abstract. A second-order central time-explicit method is implemented to solve the
Lattice Boltzmann Equation in generalized curvilinear coordinates in order to simulate
fluid flows with non-uniform grids and curved boundaries. Several test cases are used for
verification, including the Taylor-Green vortex in two-dimensions, the square lid-driven
cavity and the 2D circular cylinder. The Taylor-Green vortex is a classical benchmark
test that is compared with the analytical solution using a non-uniform grid. The 2D
lid-driven cavity is solved for moderate Reynolds numbers, where a clustering function
is employed to stretch the mesh and increase the resolution in the cavity corners. The
boundary conditions for these two test-cases are relatively straightforward to implement
since there are no curved walls. Therefore, the 2D circular cylinder is used to demonstrate
the capacity of the present method to perform steady and unsteady simulations with
curved boundaries. Our results have been compared with the literature available, and
the outcomes of this method are consistent with other results, confirming the feasibility
of the implemented scheme. In addition, the present method has been compared to our
own standard Cartesian lattice Boltzmann solver with adaptive mesh refinement for the
2D circular cylinder problem.
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1 INTRODUCTION

The lattice Boltzmann method (LBM) is a relatively new development, that has emerged
as a powerful computational method for the study of fluid dynamic problems. Instead of
approximating the Navier-Stokes equations, the approach is based on solving a simplified
version of the Boltzmann equation in a specific discrete space. It can be shown via the
Chapman-Enskog expansion that the LBM recovers the Navier-Stokes equations in the
nearly incompressible flow limit [1]. The simplicity of the lattice Boltzmann algorithm
can lead to dramatic reductions in computational time compared to traditional compu-
tational fluid dynamics (CFD) solvers. On uniform grids and unsteady flow simulations,
it can easily show performance gains up to two orders of magnitude [2], which has made
the approach certainly popular in recent years.

In the standard LBM, the discretisation of the physical space is coupled with the dis-
cretisation of momentum space [3]. The advantage of this scheme is the exact treatment
of the advection term, therefore it does not have any numerical diffusion. On the other
hand, this condition results in a numerical method that is restricted to Cartesian grids.
This aspect of the standard LBM limits its application and solving problems with curved
geometries and thin boundary layers become troublesome. For realistic geometries and
aerodynamic investigations, the usage of uniform Cartesian meshes is impractical, since
the boundary layer flow needs to be adequately resolved for a good representation of
the physics. It is somewhat straightforward to apply isotropic mesh adaptation to the
standard LBM, and thereby resolving laminar boundary layers is relatively easy [4]. How-
ever, this approach can become remarkably expensive for capturing boundary layers of
turbulent flows, and therefore it is impractical for most technically relevant problems in
aerodynamics.

The discretisation of the physical space does not necessarily require to be coupled with
the moment space [5]. Therefore, it is possible to implement standard numerical tech-
niques on the LBM to use non-uniform and body-fitted meshes. In recent years, several
efforts have been made to overcome this shortcoming in order to make LBM a practical
computational fluid dynamics tool. Some authors have taken different approaches toward
the same issue. Some of them have used interpolation schemes [6] and others have applied
traditional numerical methods used in CFD mainly, finite differences [7] and finite volume
[8]. Therefore, we propose an implementation of the LBM in generalized curvilinear coor-
dinates, so the LBE can be solved with non-Cartesian grids. Various test cases were used
for verification, including the Taylor green vortex, the 2D lid-driven cavity and the 2D
circular cylinder. Clustering functions are employed on all test-cases to stretch the mesh
and increase resolution on certain regions of the domains. This study shows that this
implementation deals with curved boundary walls more accurately and efficiently than
the Cartesian method.

2
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2 METHODOLOGY

In this paper, the implementation is done on the classical D2Q9 LBM-BGK model [1].
Hence, the LBE with a simplified collision operator can be written as

∂fα
∂t

+ eα · ∇fα = −1

τ
(fα − f eq

α ) . (1)

The latter can be transformed into a generalized curvilinear coordinate system, in which
the physical and computational planes are represented by (x, y) and (ξ, η), respectively,

ξ = ξ(x, y),

η = η(x, y).
(2)

To transform the LBE from the physical plane (x, y) to the computational plane (ξ, η)
we must apply

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
,

∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂η

∂η

∂y
.

(3)

The physical domain is related to the computational domain by the following condition
[
ξx ξy
ηx ηy

]
=

1

J

[
yη −xη

−yξ xξ

]
, (4)

where J is the Jacobian of the transformation defined as

J = xξyη − xηyξ. (5)

The convection term in Eq. (1) can be rewritten as

eα · ∇fα = eαx
∂fα
∂x

+ eαy
∂fα
∂y

= eαx

(
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∂ξ

∂x
+

∂fα
∂η

∂η

∂x

)
+ eαy

(
∂fα
∂ξ

∂ξ

∂y
+

∂fα
∂η

∂η

∂y

)

=

(
eαx

∂ξ

∂x
+ eαy
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)
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∂ξ

+
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eαx

∂η

∂x
+ eαy

∂η

∂y

)
∂fα
∂η

= ẽαξ
∂fα
∂ξ

+ ẽαη
∂fα
∂η

,

(6)

where
ẽα = (ẽαξ, ẽαη) = (eαxξx + eαyξy, eαxηx + eαyηy). (7)

Therefore, the LBE in the computational domain can be written as

∂f

∂t
+ ẽαξ

∂fα
∂ξ

+ ẽαη
∂fα
∂η

= −1

τ
(fα − f eq

α ) . (8)
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Equation (8) can be solved using any appropriate numerical procedure. The spatial
derivatives are discretised by the second-order central difference and the temporal term
is integrated by the explicit multistage Runge-Kutta. The right hand side of Eq. (8) can
be rewritten as

Rα(i,j)
= −

(
ẽαξ(i,j)

fα(i+1,j)
− fα(i−1,j)

2∆ξ
+ ẽαη(i,j)

fα(i,j+1)
− fα(i,j−1)

2∆η

)
− 1

τ

(
fα(i,j)

− f eq
α(i,j)

)
.

(9)
Now, the solution is advanced in the time by using the standard fourth-stage Runge-Kutta
scheme as follows,

f 1
α = f t

α,

f 2
α = f 1

α +
∆t

4
R1

α,

f 3
α = f 1

α +
∆t

3
R2

α,

f 4
α = f 1

α +
∆t

2
R3

α,

f t+∆t
α = f 1

α +∆tR4
α.

(10)

Central schemes can be unstable when non-linearities are present. Therefore a fourth-
order artificial dissipation is added in Eq. (9) as

D = −ε

(
(∆ξ)4

∂4fα
∂ξ4

+ (∆η)4
∂4fα
∂η4

)
, (11)

in order to stabilize the solution [9]. The order of the numerical scheme does not change
since the artificial dissipation has a higher order than the formal scheme.

3 COMPUTATIONAL RESULTS

Numerical computations are carried out to show that the second-order central time-
explicit method implemented is an accurate, stable and reliable option to solve the LBE
in curvilinear coordinates. Also, to demonstrate its superior capabilities to resolve the
flow in the vicinity of the wall when using curved geometries.

3.1 Taylor-Green vortex

The Taylor-Green vortex decay problem has been widely used for the verification of
incompressible flow solvers. This problem has an exact solution of the incompressible
Navier-Stokes equations and the set-up is straightforward, since it only has a set of initial
conditions and periodic boundaries. This benchmark test is done to demonstrate the
accuracy of the scheme, and the capacity of the present methodology to use non-uniform
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grids. The exact solution of this unsteady problem is given by

u(x, y, t) = −uo cos(kxx) sin(kyy)e
−k2νt,

v(x, y, t) =
kx
ky

uo sin(kxx) cos(kyy)e
−k2νt,

P (x, y, t) = P0 − 0.25ρ0u
2
o

[
cos(2kxx) +

(
kx
ky

)2

cos(2kyy)

]
e−2k2νt,

(12)

where uo is the initial velocity magnitude, ν is the kinematic viscosity of the fluid, kx =
2π/Lx and ky = 2π/Ly are the wave numbers in x and y directions, k =

√
k2
x + k2

y , The
initial conditions for the velocity and pressure fields are obtained by setting t = 0.

A clustering function has been selected to stretch the mesh in both directions, x and
y. The stretched grid can be obtained with:

x = H
(2α + β)[(β + 1)/(β − 1)](ξ−α)/(1−α) + 2α− β

(2α + 1) (1 + [(β + 1)/(β − 1)](ξ−α)/(1−α))
, (13)

y = H
(2α + β)[(β + 1)/(β − 1)](η−α)/(1−α) + 2α− β

(2α + 1) (1 + [(β + 1)/(β − 1)](η−α)/(1−α))
, (14)

where β is the clustering parameter, α defines where the clustering takes place, and H is
the length. If α = 0.5, the clustering is distributed equally, and if α = 0 the clustering
takes place at H. Herein, all the computations are performed with α = 0.5 and β = 1.2.

Figure 1: Left: Non-uniform mesh. Right: Streamlines for the Taylor-Green Vortex at the initial

conditions.

Figure (1) shows the non-uniform grid, namely (65 × 65), that can be obtained by
applying the clustering functions described, and the initial flow field shown by streamlines.
The present methodology is compared with the analytical solution and shown in Figure (2)
at a dimensionless time of 0.2. For this simulation a grid of (128 × 128) was used, the
reference velocity uo is 0.02 and a Reynolds number of 100 was selected.
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Figure 2: Left: u-velocity along the vertical centreline. Right: v-velocity along the horizontal centreline.

3.2 2D lid-driven cavity

The 2D lid-driven cavity is a classical benchmark test, thanks to its simple geometry
and complex flow physics [10]. It consists of the movement of the top-lid at a constant
velocity (uo) and three stationary walls (u = v = 0). The geometry normally is a square of
aspect ratio one, but this may be different. The same grid (cf. Fig. 1) used for the Taylor-
Green vortex is also used for this test case. The numerical computations are carried out
with uo = 0.1 and the results are shown for two different Reynolds numbers, Re = 1000
and Re = 3200. The grid sizes used are (257× 257) and (513× 513) respectively.

Figure 3: Re = 1000. Left: u-velocity along the vertical centreline and v-velocity along the horizontal

centreline. Right: Flow field exhibited by streamlines.

There is no exact solution for the 2D cavity flow, because of this we need to compare
our results with a comprehensive study, such as the one done by Ghia et al. [10]. The

6
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Figure 4: Re = 3200. Left: u-velocity along the vertical centreline, v-velocity along the horizontal

centreline. Right: Flow field exhibited by streamlines.

u-velocity profile along the vertical centre line, the v-velocity profile along the horizontal
centre line and the streamlines for the two different Reynolds numbers are shown in Figures
3 and 4. This shows that our results have an excellent agreement with the reference [10],
and the streamlines show a correct flow behaviour in the entire domain. It is known that
the corners are singularity points, and our results do not exhibit any issue in this regions,
demonstrating the capability of the current methodology and the proper application of
the stretching function on the grid.

3.3 2D circular cylinder

The wall-boundary treatment of the previous test cases is relatively straightforward
since there are no curved walls. Therefore, the 2D circular cylinder is used to demon-
strate the capacity of the present method to perform steady and unsteady simulations
with curved surfaces. In addition, proper stretching functions have been implemented
to increase the resolution in the proximity of the wall and in the wake region. Our re-
sults have been compared with the literature available, and the outcomes of the present
method are consistent with other results, supporting the proposed scheme. In addition,
the present method is compared to our own standard Cartesian LBM solver [2], AMROC
(Adaptive Mesh Refinement in Object-oriented C++).

The following function is used for the stretching in the wall normal direction

yn = δ
(1− β)

(
β+1
β−1

)1−ξ

+ (β + 1)
(

β+1
β−1

)1−ξ

+ 1
+ r, 0 ≤ ξ ≤ 1, (15)

where δ is the radial distance between the body and the outer boundary, β is the clustering
parameter which has been set to 1.007 for these simulations and r is the radius of the
cylinder. The grid clustering function shown in Eq.(14) was used to increase the resolution

7
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behind the cylinder. The clustering parameter used for the wake is 1.045.

Figure 5: O-Grid for the 2D cylinder mesh. Overlaid on the upper-right is a close-up of the body-

conforming mesh around the cylinder.

All the computations for the cylinder test-case using the proposed methodology were
carried out on a grid size of (257 × 257) with an outer diameter 30 times bigger than
the inner diameter (cf. Fig. 5). The simulations carried out using the Cartesian LBM
with adaptive mesh refinement were performed on a domain size of [−16D × 48D] ×
[−16D× 16D] with the axis located at (x, y) = (0, 0) and using a grid size of (640× 320)
at its coarsest level (for the steady-state cases). The adaptive mesh refinement is set to 3
additional levels with a refinement factor of 4.

Two Reynolds number were selected for the steady-state simulations, 20 and 40. At this
flow regime a stationary recirculation region appears for both cases behind the cylinder,
and the wake increases in length as the Reynolds number increases, as it can be seen in
Figure 6. The literature shows that the recirculating regions appear around 5 < Re < 47.
Anything under Reynolds number 5 the flow will remain attached and above the critical
Reynolds, which is 47, the solution produced will be unsteady.

The comparison of the steady-state results are shown in Table 1. The references used
are quite vast and they include the numerical solutions of the Navier-Stokes equations from

8

484



J. A. Reyes Barraza and R. Deiterding

Table 1: Effects of the Reynolds number on steady flow over the circular cylinder

Re Author(s) Cd Cp(0) Cp(180) 2L/D

20 Tritton [11] 2.10 - - -
Henderson [12] 2.06 - -0.60 -
Dennis and Chang [13] 2.05 1.27 -0.58 1.88
Hejranfar and Ezzatneshan [5] 2.02 1.25 -0.59 1.84
AMROC-LBM 1.98 1.26 -0.59 1.85
Present 2.02 1.31 -0.55 1.85

40 Tritton [11] 1.59 - - -
Henderson [12] 1.55 - -0.53 -
Dennis and Chang [13] 1.52 1.14 -0.50 4.69
Hejranfar and Ezzatneshan [5] 1.51 1.15 -0.48 4.51
AMROC-LBM 1.45 1.19 -0.49 4.66
Present 1.51 1.19 -0.46 4.60

Figure 6: Flowfield for steady flow over the 2D circular cylinder shown by streamlines using the imple-

mented methodology. Left: Re = 20. Right: Re = 40.

Henderson [12], Dennis and Chang [13], compact-finite difference LBM from Hejranfar and
Ezzatneshan [5] and the experimental data from Tritton [11]. The variables presented are
drag coefficient Cd, the pressure coefficient at the stagnation point Cp(0) and at the rear-
point Cp(180), the normalized length of the wake 2L/D, where L is the actual length of
the wake and D is the diameter of the cylinder. Table 1 shows that our results exhibit
good agreement with diverse references.

For the unsteady test-case, two laminar flows at 100 and 200 Reynolds number were se-
lected. These simulations demonstrate the capacity of the presented method to simulate
time-dependent flows around geometries with curved boundaries. At these flow condi-
tions, the recirculation bubbles behind the cylinders become unstable, and time-periodic
vortex-shedding solutions appear. The dimensionless number used to characterize this
phenomenon is the Strouhal number that is defined as St = fqD/uo, where fq is the
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shedding frequency. The Strouhal number can also be written as St = D/uoTp, where Tp

is the peak-to-peak period of the lift coefficient.

Figure 7: Drag and lift coefficient trends for the time periodic flow over the circular cylinder at Re =

100.

Figure 8: Drag and lift coefficient trends for the time periodic flow over the circular cylinder at Re =

200.

The lift and drag coefficient with respect to the non-dimensional time are shown in
Figures 7 and 8, after the simulations have reached a stable periodic solution. These
plots show the capacity of the central-scheme implemented to predict correctly the vortex-
shedding phenomenon within these Reynolds numbers. Table 2 compares the present time-
depended solutions with the reference selected and as well as with the results obtained
using AMROC-LBM. The Navier-Stokes solutions from Chiu et al. [14] are used as a
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Table 2: Strouhal number for different authors

Re Author(s) St Cd C ′
l

100 Chiu et al. [14] 0.167 1.35 0.30
AMROC-LBM 0.165 1.25 0.30

Present 0.165 1.36 0.35

200 Chiu et al. [14] 0.198 1.37 0.71
Present 0.196 1.37 0.73

reference. The variables compared are the Strouhal number, the average drag coefficient
Cd and the lift coefficient amplitude C ′

l . The results produced by the LBM in generalized
curvilinear coordinates have an excellent agreement with the references for all the variables
compared. The results obtained by AMROC-LBM also have a good agreement with the
variables compared. However, in this case it was necessary to increase the resolution to
(960× 480) at its coarsest level, the domain and the mesh adaptation settings remained
the same, in order to get convergence.

4 CONCLUSIONS

It is noticeable that the Cartesian solver requires a significantly higher number of grid
points in order to obtain a converged solution, given its inability to represent curved
geometries accurately and its lack of flexibility to have meshes of diverse sizes. On the
other hand, it is possible to apply isotropic mesh adaptation and to benefit from it. In
this study, it has been shown that the second-order scheme implemented is accurate,
stable and capable of solving the LBE in generalized curvilinear coordinates. The results
obtained by the present methodology and AMROC-LBM exhibit good agreement with all
references. However, the current implementation deals with curved boundary walls more
accurately and efficiently than the Cartesian method.

The test cases in this paper are relevant to the literature and serve well to validate
the current implementation. However, it is within our scope to solve more technically
challenging problems. Hence as a next step, it is planned to solve the flows around
aerofoils, which require a high-level of mesh stretching for properly resolving the boundary
layer.
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ABSTRACT 

A new method called simplified and highly stable lattice Boltzmann method 

(SHSLBM) was used to simulate the hybrid nanofluid natural convection and heat 

transfer in a square enclosure with a heating obstacle at high Rayleigh numbers. There 

are four fins on the heating obstacle to affect the flow pattern and heat transfer 

performance. SHSLBM is based on the lattice Boltzmann framework. The effects of 

Rayleigh number (106 ≤ Ra ≤ 109), nanoparticle volume fraction (0 ≤ ϕ ≤ 0.05) and 

length of fin (0.1 ≤ h ≤ 0.3) on the flow pattern, temperature distribution and heat 

transfer characteristics were illustrated and analyzed. The benchmark simulation results 

were performed to the method of validation. Three kinds of flow patterns (steady 

symmetry, unsteady symmetry and unsteady asymmetry) can be observed at various 

Rayleigh number. At ϕ = 0.01, when the Ra increases from 1×106 to 1×109, the 

transitions of flow regime from steady symmetry state to unsteady asymmetry state 

occur. The ϕ and h also affects the flow pattern significantly. At higher ϕ, the flow inside 

the enclosure is steadier and the effect of h on the flow pattern varies at different Ra. 

 

Keywords: SHSLBM; High Ra; Nanofluid; Fin; Natural convection; Heat transfer 
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1. Introduction 

Thermal convection in an enclosure has been a significant subject of numerical 

simulations in the past several decades. 1 , 2 , 3  The flow pattern and heat transfer 

characteristics have comprehensive application in the engineering applications such as 

electronic equipment systems, heat exchangers, solar energy systems and chemical 

reaction systems.4 Bhardwaj et al.5 analyzed the natural convection and heat transfer 

in a porous two-dimensional right-angled triangular cavity with undulatoy walls. It has 

been observed that the maximum Nusselt number of the left wall increases 53% at Ra 

= 106 comparing with the no-undulation case. Esfe et al.6 numerically investigated the 

natural convection in a trapezoidal cavity. They found that the average Nusselt number 

(Nu) increases by decreasing the inclination angle (γ) at low Rayleigh numbers (Ra ≤ 

104). However, at Ra = 106, the average Nu increases firstly and then decreases and 

obtains the maximum value at γ = 30. 

Ma et al.7 studied the effects of nanofluid and aspect ratio (AR) on the flow pattern 

and heat transfer characteristics in a baffled U-shaped enclosure in the presence of a 

magnetic field. It can be obtained that the change of AR cannot affect the flow pattern 

and the average Nu increases by increasing AR. Haghighi et al.8 experimentally studied 

the natural convection in plate-fin based heat sinks. Six different types of fins are 

conducted in their study. They found that the thermal resistance increases as decreasing 

the gap between the fins. Besides, the plate cubic pin-fin heat sinks have a better heat 

transfer performance. 

Recently, nanofluid has been studied to enhance the rate of heat transfer due to its 

high heat transfer performance.9,10 Ma et al.11 numerically studied the Ag-MgO/water 

hybrid nanofluid convection and heat transfer in a channel with active heaters and 

coolers in the presence of magnetic field. They found that the average Nusselt number 

is increasing function of nanoparticle volume fraction and Reynolds number, but a 

decreasing function of Hartmann number. Hatami and Safari12 performed a numerical 

simulation to investigate the nanofluid natural convection and heat transfer in an 

enclosure with wavy walls and an inside heating cylinder. The results showed that the 

heat transfer performance is best when the obstacle is located on the center for all the 

490



volume fraction of nanoparticles. 

Lattice Boltzmann method has been widely used to simulate the problem of fluid 

flow and heat transfer due to its advantages such as easy to implement, natural parallel 

and easy to deal with the complex boundaries. Recently, many new methods based on 

the LBM have been developed. Chikatamarla and Karlin13  proposed a new model 

named entropic lattice Boltzmann method (ELBM) to simulate the multiphase flows. 

They found that the ELBM is suitable for the high Reynolds number and high Weber 

numbers for two-phase flows. A high-order simplified thermal lattice Boltzmann 

method (HSTLBM) is developed by Chen et al.14 to study the incompressible thermal 

flows accurately and efficiently. After the validation of benchmark simulations, 

HSTLBM is treated as an efficient method to solve the thermal convection at high 

Rayleigh numbers. Jami et al.15 developed a new thermal MRT-LBM for simulating 

the convection. They examined the different convection cases when the Rayleigh 

number is less than 108. After the comparison and validation, the method is proved to 

solve the similar problems. Chen et al.16 developed a new method named simplified 

and highly stable lattice Boltzmann method (SHSLBM) to solve the fluid flow 

problems. The method showed a very nice stability characteristic in high Reynolds 

number. 

The literature shows that the nanofluid flow and heat transfer at high Rayleigh 

numbers did not get enough attention. Thus, the first objective of the present work is to 

study the flow pattern and heat transfer characteristics of nanofluid natural convection 

at high Rayleigh numbers. Four fins are mounted on the heating obstacle in the storage 

unit to enhance the heat transfer rate and the effects of fins on the flow regime and heat 

transfer are investigated, which is the second objective of the work. Moreover, in the 

present work, the SHSLBM is developed into the thermal filed and used to solve the 

governing equations of the present simulations. The effects of Rayleigh number (106 ≤ 

Ra ≤ 109), nanoparticle volume fraction (0 ≤ ϕ ≤ 0.05) and length of fin (0.1 ≤ h ≤ 0.3) 

on the flow pattern, temperature distribution and Nusselt number are investigated.  

 

2. Mathematical formulation 
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2.1. Problem definition 

The Ag-TiO2/water hybrid nanofluid flow and heat transfer in a thermal energy 

storage with four fins are considered in Fig. 1. Table 1 illustrates the thermophysical 

properties of pure water and nanoparticles. In this finned heat storage unit, the four fins 

are mounted on the four walls of the square obstacle and their temperature is fixed at 

Th = 1. The four walls of the heat storage unit have a constant temperature (Tc) which 

is lower than Th. P1 and P2 are two monitoring points inside the finned heat storage unit. 

 

(a) (b) 

  

Fig. 1 3D and 2D schematic diagram under consideration in the present work. 

 

Table 1. Thermophysical properties of pure water and nanoparticles at 25° C. 
Property Pure water Ag (nanoparticles) TiO2 (nanoparticles) 

Cp (J/kg K) 4179 235 686.2 

ρ (kg/m3) 997.1 10500 4250 

K (W/m k) 0.623 429 8.9538 

β×105 (K-1) 21 1.89 0.9 

μ× 104 (kg/m s) 8.55 - - 

 

2.2. Standard LBM 

The standard thermal LBM of D2Q9 model17 is firstly introduced in this section. 
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For the flow field: 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑒𝑒𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) +
𝛿𝛿𝑡𝑡
𝜏𝜏𝑣𝑣
[𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡)] + ∆𝑡𝑡𝒆𝒆𝑖𝑖𝐹𝐹𝑖𝑖 (1) 

For the thermal field: 

𝑔𝑔𝑖𝑖(𝑥𝑥 + 𝑒𝑒𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝑔𝑔𝑖𝑖(𝑥𝑥, 𝑡𝑡) +
∆𝑡𝑡
𝜏𝜏𝑐𝑐
[𝑔𝑔𝑖𝑖

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝑥𝑥, 𝑡𝑡)] (2) 

fi
eq and gi

eq denotes the equilibrium distribution function.  

𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑖𝑖𝜌𝜌[1 +

𝒆𝒆𝑖𝑖𝒖𝒖
𝑐𝑐𝑠𝑠2

+ 1
2
(𝒆𝒆𝑖𝑖𝒖𝒖)2
𝑐𝑐𝑠𝑠4

− 1
2
𝒖𝒖2
𝑐𝑐𝑠𝑠2
]  (3) 

𝑔𝑔𝑖𝑖
𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑖𝑖𝑇𝑇[1 +

𝒆𝒆𝑖𝑖𝒖𝒖
𝑐𝑐𝑠𝑠2
]  (4) 

where ρ is the lattice fluid density, T is the lattice fluid temperature and the weight 

function wi has the value of 𝑤𝑤0 = 4 9⁄ , 𝑤𝑤1−4 = 1 9⁄ , 𝑤𝑤5−8 = 1 36⁄ . The force term 

in Eq. (1) is: 

𝐹𝐹𝑖𝑖 = 3𝑤𝑤𝑖𝑖𝜌𝜌𝑔𝑔𝑦𝑦𝛽𝛽(𝑇𝑇 − 𝑇𝑇𝑚𝑚)  (5) 

where ρ, gy, β , T, Tm stand for local density, gravitational acceleration vector, thermal 

expansion coefficient, local temperature and the average temperature 𝑇𝑇𝑚𝑚 =

(𝑇𝑇ℎ + 𝑇𝑇𝑐𝑐) 2⁄ , respectively. 

v and α are kinetic viscosity and thermal diffusivity, respectively. The relaxation time 

for the flow and temperature fields, τv and τc, can be defined as 

𝜏𝜏𝑣𝑣 = 0.5 + 𝑣𝑣 1
𝛿𝛿𝑡𝑡𝑐𝑐𝑠𝑠2

  (6) 

𝜏𝜏𝑐𝑐 = 0.5 + 𝛼𝛼 1
𝛿𝛿𝑡𝑡𝑐𝑐𝑠𝑠2

  (7) 

where 𝑐𝑐𝑠𝑠 = 𝑐𝑐 √3⁄  is the speed of sound.  

  The macroscopic variables (density, momentum and temperature) can be calculated 

with the following formula: 

𝜌𝜌 = ∑ 𝑓𝑓𝑖𝑖𝑖𝑖 , 𝜌𝜌𝒖𝒖 = ∑ 𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 , 𝑇𝑇 = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖   (8) 

 

2.2. SHSLBM 

Based on the thermal LBM above, thermal SHSLBM was reported and used in the 

current research. Formulations of thermal SHSLBM includes two steps, which are as 

follows: 
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Predictor step: 

𝜌𝜌∗ = ∑ 𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒𝑖𝑖 (𝒓𝒓 − 𝒆𝒆𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡 − 𝛿𝛿𝑡𝑡)  (9) 

𝜌𝜌∗𝒖𝒖∗ = ∑ 𝒆𝒆𝑖𝑖𝛼𝛼 𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝒓𝒓 − 𝒆𝒆𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡 − 𝛿𝛿𝑡𝑡)  (10) 

𝜌𝜌∗𝑒𝑒∗ = ∑ 𝑔𝑔𝑖𝑖
𝑒𝑒𝑒𝑒(𝒓𝒓 − 𝒆𝒆𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡 − 𝛿𝛿𝑡𝑡)𝑖𝑖   (11) 

Corrector step: 

𝜌𝜌(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌∗  (12) 

𝜌𝜌(𝒓𝒓, 𝑡𝑡)𝒖𝒖(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌∗𝒖𝒖∗ + (𝜏𝜏𝑣𝑣 − 1)∑ 𝒆𝒆𝑖𝑖𝑖𝑖 𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒(𝒓𝒓 + 𝒆𝒆𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡) − (𝜏𝜏𝑣𝑣 − 1)𝜌𝜌(𝒓𝒓, 𝑡𝑡 −
𝛿𝛿𝑡𝑡)𝒖𝒖(𝒓𝒓, 𝑡𝑡 − 𝛿𝛿𝑡𝑡) + 𝐹𝐹𝐸𝐸𝛿𝛿𝑡𝑡  (13) 

𝜌𝜌(𝒓𝒓, 𝑡𝑡)𝑒𝑒(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌∗𝑒𝑒∗ + (𝜏𝜏𝑐𝑐 − 1)∑ 𝑔𝑔𝑖𝑖
𝑒𝑒𝑒𝑒(𝒓𝒓 + 𝒆𝒆𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡) − (𝜏𝜏𝑐𝑐 − 1)𝜌𝜌(𝒓𝒓, 𝑡𝑡 − 𝛿𝛿𝑡𝑡)𝑒𝑒(𝒓𝒓, 𝑡𝑡 −𝑖𝑖

𝛿𝛿𝑡𝑡)  (14) 

𝐹𝐹𝐸𝐸 = 𝜌𝜌𝑔𝑔𝑦𝑦𝛽𝛽(𝑇𝑇 − 𝑇𝑇𝑚𝑚)  (15) 

 

2.4. Nanofluid thermo-physical properties 
The density, specific heat capacity at constant pressure and thermal expansion 

coefficient of the hybrid nanofluid are calculated as follows: 

𝜌𝜌𝑛𝑛𝑛𝑛 = 𝜙𝜙1𝜌𝜌𝑠𝑠1 + 𝜙𝜙2𝜌𝜌𝑠𝑠2 + (1 − 𝜙𝜙)𝜌𝜌𝑛𝑛   (16) 

(𝜌𝜌𝑐𝑐𝑝𝑝)𝑛𝑛𝑛𝑛 = 𝜙𝜙1(𝜌𝜌𝑐𝑐𝑝𝑝)𝑠𝑠1 + 𝜙𝜙2(𝜌𝜌𝑐𝑐𝑝𝑝)𝑠𝑠2 + (1 − 𝜙𝜙)(𝜌𝜌𝑐𝑐𝑝𝑝)𝑛𝑛  (17) 

(𝜌𝜌𝛽𝛽)𝑛𝑛𝑛𝑛 = 𝜙𝜙1(𝜌𝜌𝛽𝛽)𝑠𝑠1 + 𝜙𝜙2(𝜌𝜌𝛽𝛽)𝑠𝑠2 + (1 − 𝜙𝜙)(𝜌𝜌𝛽𝛽)𝑛𝑛  (18) 

where ϕ1, ϕ2, ρs1, ρs2, (cp)s1, (cp)s2, (β)s1, (β)s2 are the volume fraction, density, specific 

heat capacity at constant pressure and thermal expansion coefficient of the two different 

nanoparticles, respectively. Also, ϕ is the overall volume fraction of two types of 

nanoparticles in hybrid nanofluid and is determined by 

𝜙𝜙 = 𝜙𝜙1 + 𝜙𝜙2  (19) 

  The effective thermal conductivity and effective viscosity of nanofluid are obtained 

by: 

𝑘𝑘𝑛𝑛𝑛𝑛 =
(𝑘𝑘ℎ𝑠𝑠+2𝑘𝑘𝑓𝑓)−2𝜙𝜙(𝑘𝑘𝑓𝑓−𝑘𝑘ℎ𝑠𝑠)
(𝑘𝑘ℎ𝑠𝑠+2𝑘𝑘𝑓𝑓)+𝜙𝜙(𝑘𝑘𝑓𝑓−𝑘𝑘ℎ𝑠𝑠)

𝑘𝑘𝑛𝑛   (20) 

with 

𝑘𝑘ℎ𝑠𝑠 =
𝜙𝜙1𝑘𝑘𝑠𝑠1+𝜙𝜙2𝑘𝑘𝑠𝑠2

𝜙𝜙   (21) 

The viscosity of nanofluid can be calculated as: 
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𝜇𝜇𝑛𝑛𝑛𝑛 =
𝜇𝜇𝑓𝑓

(1−𝜙𝜙)2.5   (22) 

The nanofluid thermal diffusivity and Prandtl number are determined as 

𝛼𝛼𝑛𝑛𝑛𝑛 =
𝑘𝑘𝑛𝑛𝑓𝑓

(𝜌𝜌𝑐𝑐𝑝𝑝)𝑛𝑛𝑓𝑓
   (23) 

Pr𝑛𝑛𝑛𝑛 =
(𝜇𝜇𝑐𝑐𝑝𝑝)𝑛𝑛𝑓𝑓
𝑘𝑘𝑛𝑛𝑓𝑓

   (24) 

The local Nusselt number of the horizontal boundary can be calculated by 

𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑐𝑐 = −(𝑘𝑘𝑛𝑛𝑓𝑓𝑘𝑘𝑓𝑓
)(𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕)   (25) 

  Finally, the average Nusselt number can be calculated by the integrating of the local 

Nusselt number along the heater and the cooler. 

 

3. Verification of the simulation 

In this section, the SHSLBM results are verified by well-know cases in the literature. 

Fig. 2 shows the streamlines and isotherms inside a square enclosure at different 

Rayleigh numbers. The temperature of the left wall of the enclosure is fixed as Th = 1 

and the right wall is set as a low temperature Tc = 0. The top and bottom walls of the 

enclosure are adiabatic. It can be seen that the obtained results from the present code 

are in good agreement with those in the previous papers18,19.  

 

Ra = 106 Ra = 107 Ra = 108 
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Fig. 2 The streamlines (top) and isotherms (bottom) of two-dimensional natural 

convection at Ra = 106, 107 and 108. 
 
4. Results and discussion 
4.1. Bifurcation map 

Fig. 3 shows the bifurcation map for different Rayleigh number and the length of fins. 

There are three different types of flow patterns (steady symmetry, unsteady symmetry 

and unsteady asymmetry) can be observed in the figure. At relatively low Rayleigh 

number (106), the fluid inside the enclosure keeps the flow regime of steady symmetry 

and dose not vary with the increase of h. As for relatively high Rayleigh numbers (108-

109), the unsteady asymmetry can be always observed regardless of the fin length. 

When the Rayleigh number increases from 2.5×106 to 1.0×107, the transitions of three 

different flow regimes occur for different Ra and h. For a certain h, as increasing the 

Rayleigh number from 106 to 109, the fluid flow changes from steady and symmetry to 

unsteady and symmetry firstly, and then changes to unsteady asymmetry flow regime. 

We focus on the nanofluid flow and heat transfer characteristics in these flow pattern. 

Therefore, the streamlines, temperature distribution and Nusselt number are illustrated 

in the following sections.  
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Fig. 3 Bifurcation map for different Rayleigh numbers and h at ϕ = 0.01. 

 

4.2. Steady symmetry 

  Fig. 4 shows the comparison of streamlines and isotherms between the pure water 

and nanofluid in the steady symmetry flow regime. As seen in Fig. 4(a), at Ra = 2.5×106 

and h = 0.1, two vortices can be found inside the enclosure which are in clockwise and 

anticlockwise directions, respectively. The magnitude of fluid flow increases by adding 

the nanoparticles into the pure water which strengthens the transport energy of the fluid. 

As a result, the absolute value of maximum of stream function increases with increasing 

the solid volume fraction. Moreover, it can be observed in Fig. 4(b) that the isothermal 

lines adjacent to the heating obstacle and four fins cover the shape of them. One thermal 

plume can be clearly observed above the heat source. The addition of nanoparticles into 

the base fluid leads to the thickness of thermal boundary layer increases, which causes 

the decrease of temperature gradient.  

 

(a) (b) 
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|Ψmax|f = 0.00048, |Ψmax|nf = 0.00071 

 
 

Fig. 4 Comparison of streamlines and isotherms at Ra = 2.5×106 and h = 0.1 between 

the pure water (dashed lines) and nanofluid (solid lines). 

 

The Streamlines in the steady symmetry flow pattern at ϕ = 0.01 for different 

Rayleigh number and length of fins. In this pattern, the flow is steady and the 

streamlines are symmetrical about the central line. The fluid around the hot source is 

heated and goes up due to the buoyancy force. For Ra = 106, at h = 0.1, two recirculation 

cells form on the left and right sides inside the enclosure, respectively. The clockwise 

vortex is on the right of the anticlockwise vortex. When the length of fins increases to 

0.2, the streamlines are squeezed by the longer fins, and this effect is more significant 

in the horizontal direction. Still, the pattern of streamlines inside the enclosure does not 

change as increasing the h from 0.1 to 0.2. However, when the h increases to 0.3, the 

pattern of streamlines changes significantly. Two primary vortices can be observed 

inside the cavity and each vortex occupies half of the zone. Two secondary vortices are 

established in one primary vortex due to the small gap between the horizontal fin and 

the side wall. The directions of two secondary vortices are same to their primary vortex, 

respectively. Hence the existence of fins impedes and controls fluid flow motion. When 

the Rayleigh number increases to 2.5×106 and at h = 0.1, the flow pattern is also steady 

symmetry. Comparing with the pattern of streamlines at Ra = 106 and h = 0.1, it changes 

distinctly. The two primary vortices at Ra = 2.5×106 and h = 0.1 are similar to that at 
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Ra = 106 and h = 0.1. However, two small secondary vortices form inside each primary 

vortex at Ra = 2.5×106 and h = 0.1. This is because the increase of Rayleigh number 

leads to the enhancement of natural convection. 

 

(a) (b) 

  

(c) (d) 

  

Fig. 5 Streamlines at ϕ = 0.01 for (a) Ra = 106, h = 0.1; (b) Ra = 106, h = 0.2; (c) Ra = 

106, h = 0.3; (d) Ra = 2.5×106, h = 0.1. 

 

Fig. 6 despites the temperature distribution of nanofluid inside the enclosure at 

different Rayleigh number and h. The isothermal lines below the hot source is packed 

more closely to the hot source than those above the hot source. As seen in Fig. 6(a)-(c), 

the temperature of each node inside the enclosure increases by increasing the length of 

fins. This is due to the fact that the increase of h leads to the expansion of heating 

obstacle surface area. As a result, the cold fluid inside the cavity can be heated much 

499



more easily. 

 

(a) (b) 

  

(c) (d) 

  

Fig. 6 Isothermal lines at ϕ = 0.01 for (a) Ra = 106, h = 0.1; (b) Ra = 106, h = 0.2; (c) 

Ra = 106, h = 0.3; (d) Ra = 2.5×106, h = 0.1. 

 

4.3. Unsteady symmetry 

As seen in Fig. 3, when the Rayleigh number is larger than 2.5×106, the flow pattern 

of unsteady symmetry can be observed. For ϕ = 0.01, it can be found that the flow 

pattern is unsteady symmetry at Ra = 5×106 for any fin length. Fig. 7 shows the average 

Nusselt number versus LB time at Ra = 5×106 and ϕ = 0.01 for different h. It can be 

found clearly that the three curves about average Nusselt number have the characteristic 

of periodicity. At h = 0.1 or 0.3, the curves are sinusoidal shape. Moreover, as h 

increases from 0.1 to 0.3, the mean value of average Nusselt number decreases.  
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Fig. 7 Average Nusselt number versus steps at Ra = 5×106 and ϕ = 0.01 for different 

h. 

  In order to illustrate the evolution of the flow and temperature fields in the unsteady 

symmetry flow regime, the instantaneous streamlines and isotherms in one period are 

reported. Fig. 8 shows the instantaneous streamlines and isotherms at three moments (t 

= A, B and C, see Fig. 7) for Ra = 5×106, h = 0.1 and ϕ = 0.01. It can be observed from 

the streamlines that at t = A, only two primary vortices form inside the enclosure and 

the average Nusselt number achieves the maximum value. When the time is t = B, the 

vortex inside the primary vortex breaks into two secondary vortices and the upper cell 

is larger than the lower one. As for t = C, the two secondary vortices vary and the upper 

cell become lower than the lower one. Also, at this moment, the average Nusselt number 

reaches the minimum value.  

 

(a) 
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(b) 

  

(c) 

  

Fig. 8 Streamlines and isotherms at Ra = 5×106, h = 0.1 and ϕ = 0.01 at (a) t = A; (b) t 

= B; (c) t = C. 

 

Fig. 9 presents the fast Fourier transform of average Nusselt number at Ra = 5×106 

and ϕ = 0.01 for different h (see Fig. 7), which expresses the power spectrum. It can be 

found that there is one frequency for h = 0.1 and 0.3. However, at h = 0.2, two different 
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frequencies can be observed. 

 

(a) (b) 

  

(c) 

 

Fig. 9 Fast Fourier transform of Nu signals Ra = 5×106 and ϕ = 0.01 for (a) h = 0.1; 

(b) h = 0.2 (c) h = 0.3. 

 

To verify the existence of the periodicity in the present flow pattern, the phase 

diagrams of two monitoring points (P1 and P2, see Fig. 1) are shown in Fig. 10 and Fig. 

11. In these phase diagrams, the signal of velocity in the horizontal and vertical 

directions (U and V) are plotted along the horizontal and vertical axis (X and Y), 

respectively. After long time, the curves in the phase diagrams become enclosed shapes, 

which illustrates the periodic behavior of the fluid in the flow pattern of unsteady 

symmetry.  
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(a) (b) 

  
Fig. 10 Phase diagrams at Ra = 2.5×106, h = 0.2 and ϕ = 0.01 on (a) P1; (b) P2. 

 

(a) (b) 

  

Fig. 11 Phase diagrams at Ra = 5×106, h = 0.3 and ϕ = 0.01 on (a) P1; (b) P2. 

 

Fig. 12 shows the effect of nanoparticle volume fraction on the average Nusselt 

number at Ra = 5×106 and h = 0.1. The variation of mean value of average Nusselt 

number indicates that the average Nu increases by increasing the solid volume fraction. 

Moreover, the amplitude of average Nu is a decrease function of the nanoparticle 

volume fraction. Especially at ϕ = 0.05, the average Nu becomes a constant value and 

the flow pattern accordingly becomes steady symmetry.  
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Fig. 12 Effect of nanoparticle volume fraction on the average Nusselt number at Ra = 

5×106 and h = 0.1. 

 

4.4. Unsteady asymmetry 

When the Rayleigh number is large enough for certain h and ϕ, the flow pattern 

evolves into the unsteady asymmetry mode. Fig. 13 shows the instantaneous velocity 

contour, streamlines and isothermal lines at Ra = 1×109, ϕ = 0.01 and h = 0.2, which is 

the unsteady asymmetry flow pattern. Both the streamlines and isotherms are very 

complicated, disordered, asymmetrical and hard to anticipate. Due to the high Rayleigh 

number, the convection heat transfer is enhanced and a number of recirculation cells 

can be discovered inside the enclosure. 

 

(a) (b) 

  

Fig. 13 Instantaneous velocity contour, streamlines and isotherms at Ra = 1×109, ϕ = 

0.01 and h = 0.2. 
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The phase diagram on the point of P1 at Ra = 109, h = 0.2 and ϕ = 0.01 is depicted in 

Fig. 14. It’s not hard to find that the curve is disorganized and the characteristics of 

periodicity occurs in the phase diagram, which illustrates the aperiodic unsteady feature 

of the flow pattern. 

 

 
Fig. 14 Phase diagram on P1 at Ra = 109, h = 0.2 and ϕ = 0.01. 

 

5. Conclusion 

In the present paper, a new method (SHSLBM) developed from lattice Boltzmann 

method was used to simulate hybrid nanofluid flow and heat transfer in a thermal energy 

storage with four fins at high Rayleigh numbers (106 ≤ Ra ≤ 109). The effects of 

Rayleigh number, nanoparticle volume fraction and length of fin on the flow pattern, 

temperature distribution and heat transfer characteristics were reported. The following 

remarks can be obtained: 

⚫ SHSLBM is an especially promising approach for solving the problems of 

turbulent flow and heat transfer. 

⚫ Three kinds of flow patterns (steady symmetry, unsteady symmetry and unsteady 

asymmetry) can be observed at various Rayleigh number.  

⚫ When the Ra increases from 1×106 to 1×109, the transitions of flow regime from 

steady symmetry state to unsteady asymmetry state occur, through the unsteady 

symmetry flow pattern. The steady symmetry flow pattern cannot change to 

unsteady asymmetry directly by increasing Ra.  
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⚫ The ϕ affects the flow pattern significantly. For instance, at Ra = 5×106 and h = 0.1, 

the flow inside the enclosure is steadier at higher ϕ. 

⚫ The length of fins also affects the flow pattern. The effect of h on the flow pattern 

varies at different Ra. In the same flow pattern, i.e. at Ra = 5×106 and ϕ = 0.01, 

there is one frequency for h = 0.1 and 0.3, but two different frequencies at h = 0.2. 

⚫ For different h and ϕ, the critical Rayleigh number where the flow pattern changes 

from steady symmetry to unsteady asymmetry is different. 
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Abstract. In this paper, we present our recent work on single relaxation Lattice Boltz-
mann method and Large Eddy Simulation (LES) models, namely the dynamic Smagorin-
sky and wall-adapting local eddy-viscosity (WALE). Initially, forced and decaying homo-
geneous isotropic turbulence cases were run to compare direct numerical simulations with
LES. Moreover, the Taylor-Green vortex was employed to further test the performance
of the turbulence models under transition to turbulence. The main purpose of this work
was the verification for wall-free simulations of the two newly-implemented LES models
in the in-house AMROC framework.

1 INTRODUCTION

Two Large Eddy Simulation (LES) models, namely the Dynamic SMAgorinsky (DSMA)
and the Wall-Adapting Local Eddy-viscosity (WALE), have been recently implemented
in the in-house solver based on the Single Relaxation Time (SRT) Lattice Boltzmann
Method (LBM) [1]. The LBM solver [2, 3, 4, 5] is part of the AMROC framework (Adap-
tive Mesh Refinement in Object-oriented C ++) [6]. In this paper, we verify them under
wall-free circumstances by employed the test cases of Decaying Homogeneous Isotropic
Turbulence (DHIT), Forced Homogeneous Isotropic Turbulence (FHIT) and Taylor-Green
Vortex (TGV). For the case of FHIT, the forcing scheme of [7] was applied due to its low
implementation complexity and, particularly, the ability to start a simulation with the
fluid at rest. For the FHIT and TGV, the results are also compared against the Constant
SMAgorinsky (CSMA) model.

1
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2 LATTICE BOLTZMANN METHOD

In the standard finite difference SRT-LBM scheme the numerical step is divided into
two sub-steps. The first one, called streaming, deals with exchange of information with a
number of neighbour cells depending on the LBM model in use. In the current work the
D3Q19 models was used. The second sub-step, namely collision, occurs locally per cell
and reads

fα(x, t+∆t) = f̌α(x, t) +
∆t

τL
(f̌ eq

α (x, t)− f̌α(x, t)) +
∆t wα(eα · F)

c2s
. (1)

The notation f̌α refers to values of the distribution function after the streaming and before
the collision. The equilibrium distribution function f eq

α is truncated to second order. eα
are the 19 lattice velocities with wα the coefficients of the LBM model. ∆t is the time step,
τL is the relaxation time and cs is the speed of sound with value 1/

√
3. The macroscopic

variables, density, velocities and pressure, can be estimated from the moments of the
distribution function.

The incorporation of an LES model into AMROC-LBM is achieved through the al-
teration of the discrete relaxation time τL and its replacement by an effective discrete
relaxation time τ �L [8]. The difference is the addition of the eddy viscosity νt computed as

νt = (C∆)2OPLES, (2)

where C is a constant depending on the employed model; ∆ is the spatial step size, and
OPLES is a function expressing the characteristic timescale of each LES model.

2.1 The external force for FHIT

The last term in the right side of Eq. (1) is the contribution of the external force F.
In the case of the FHIT, the force of [7] was used, defined as

Fx = 2ρA
(κyκz

|κ|2
)
G(κx, κy, κz, φ),

Fy = −ρA
(κxκz

|κ|2
)
G(κx, κy, κz, φ), (3)

Fz = −ρA
(κxκy

|κ|2
)
G(κx, κy, κz, φ),

where ρ is the density and A the acceleration with value 10−4 for all the simulations. The
force was applied to the range of low wavenumbers 1 ≤ κi ≤ 2,where i ∈ x, y, z with
magnitude |κ|. Finally, the phase of the force is given by the function

G(κx, κy, κz) = sin

(
2πx

L
κx +

2πy

L
κy +

2πz

L
κz + φ

)
, (4)

with φ the random phase estimated by an equidistance distribution and L the length of
the domain which in this case was a cube with value 2π.

2
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2.2 CSMA

For the case of CSMA the eddy viscosity is computed as

νt = (CS∆)2|S|, (5)

where CS is a global user-defined variable and |S| =
√

2SijSij is the intensity of the

strain rate. The notation X describes an LES filtered variable. In the LBM framework
the strain rate can be computed locally per cell avoiding the use of finite differences as

Sij = − 1

2ρc2sτ
�
L

∑

α

eαieαj(fα − f
eq

α ). (6)

After some algebra, τ ∗L can be also calculated locally.

2.3 DSMA

The implementation of the dynamic Smagorinsky in AMROC-LBM is based on the
work of Premnath et al. [9] and follows the idea of Germano et al. [10], including the
modification of Lilly [11]. The same formula of CSMA, Eq. (5), is also applied here for
the estimation of νt. In this case, C is a local per cell variable that is computed before
the streaming as

C2 = −1

2

〈LijMij〉
〈MijMij〉

. (7)

The two tensors Lij and Mij can be calculated as

Lij = ûiuj − ûiûj,

Mij = ∆̂
2

|Ŝ|Ŝij −∆
2 |̂S|Sij, (8)

where x̂ denotes a test-filtered value computed through the employment of a discrete
trapezoidal filter. In Eq. (7), 〈·〉 means averaging in homogeneous directions and, if
the problem is statistically stationary, in time, too. In AMROC the averaging takes
place locally in each cell and per time step. This has the potential of introducing local
extrema with unphysical values of C [11]. To alleviate this problem, C is truncated as
0 ≤ C ≤ 0.23. Compared to the CSMA, the application of the test-filter impose the use
of central finite differences leading to non-local calculations.

2.4 WALE

In the WALE model a more advanced timed scale is employed to handle effectively
the damping of the eddy viscosity in the vicinity of the wall [12]. The new operator is a
function both of the strain rate Sij and the rotation rate Ωij and reads

OPWALE =
(JijJij)

3
2

(SijSij)
5
2 + (JijJij)

5
4

, (9)

3
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where Jij is

Jij = SikSkj + ΩikΩkj −
1

3
δij(SmnSmn − ΩmnΩmn). (10)

The constant of the model C is always equal to 0.5. To compute the two rates, central
finite differences are used for the derivatives. Compared to DSMA, the WALE model does
not need truncation corrections besides the situation where all the velocities are zero, i.e.
during the initialisation of the flow field, in which scenario νt is set to zero.

3 FORCED HOMOGENEOUS ISOTROPIC TURBULENCE

The computational domain for the FHIT, DHIT and TGV test cases was a periodic
cube of a 2π length. The initial conditions for the FHIT were a zero velocity field and
unit density. The value of viscosity ν was used to alter for a specific resolution the value
of Reλ = u′λ/ν, where u′ is the root mean square of the velocity and λ the Taylor length
scale. After a transient time ∆tt, the external energy due to the force equilibrates with the
viscous dissipation and a statistically steady state is achieved for a duration of ∆ta. The
library FFTW [13] was employed to perform the essential Fourier transforms. The end
of the transient time was decided by examining the evolution of the kinetic energy k and
particularly the dissipation rate ε. Figure 1 presents an example of their evolution for a
specific simulation. The time has been normalised by the eddy turnover time τe = L11/u

′,
where L11 is the integral length scale.

Initially, Direct Numerical Simulations (DNS) for a variety of resolutions and viscosity
value equals to 5 · 10−5 were simulated to validate the LBM solver. As a benchmark, the
model spectrum of [14] has been used. Simultaneously, the performance of the applied
force to be used as a verification tool was evaluated. Table 1 shows some parameters and
the measured statistics of four simulations with different resolutions. In this table, we also
report the Kolmogorov scales, η the Kolmogorov length scale, uη the Kolmogorov velocity
scale and τη the Kolmogorov time scale. For more information on the computation of the
mentioned turbulent statistics the interested reader can refer to [14].
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Figure 1: Time evolution of dissipation rate ε (left) and turbulent kinetic energy k
(right) for DNS of resolution of 1283 cells and ν = 5 · 10−5. The vertical dashed line

shows the onset of the averaging time. The horizontal dashed line is the averaged value.
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Table 1: Turbulent statistics and simulation parameters for LBM DNS for the FHIT
case.

N3 323 1283 2563 5123

∆t 2 x 10−1 4.9 x 10−2 2.5 x 10−2 1.2 x 10−2

Reλ 47 59 66 69
k 2.6 x 10−5 7.4 x 10−5 1.2 x 10−4 1.5 x 10−4

ε 4 x 10−8 2.1 x 10−7 4.3 x 10−7 6.2 x 10−7

κmaxη 6.8 x 10−1 1.8 3 5.4

η 4.2 x 10−2 2.8 x 10−2 2.3 x 10−2 2.1 x 10−2

λ 5.7 x 10−1 4.2 x 10−1 3.7 x 10−1 3.5 x 10−1

L11 1 9.3 x 10−1 9 x 10−1 8.8 x 10−1

L(= k3/2/ε) 3.2 3 3 2.9

uη 1.2 x 10−3 1.8 x 10−3 2.1 x 10−3 2.4 x 10−3

u′ 4.1 x 10−3 7 x 10−3 8.9 x 10−3 9.9 x 10−3

τη 35.9 15.7 11 9
k/ε 632.1 349.3 274.4 238.9
τe 250.51 132.94 101.6 88.5
∆ta/τe 63.88 104.68 68.5 19.1
∆tt/τe 15.68 18.46 12.08 8.32
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Figure 2: Time-averaged Kolmogorov
energy spectra of LBM DNS for four
resolutions (solid) and the model

spectrum (dashed) [14] for ν = 5 · 10−5.
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Figure 3: Time-averaged energy spectra
normalised by k and L11 of LBM DNS
and LES for two resolutions and a value

of ν = 5 · 10−5.

Comparing the turbulent statistics in Table 1, it is evident that there is a resolution
dependence for the input energy due to the current forcing scheme affecting the other
turbulent statistics, too. However, by applying Kolmogorov normalisation for the spectra,
it is possible to compare them, as one can see in Fig. 2. Due to the different Reλ per
resolution the spectra do not collapse in the lower wavenumbers. On the other hand, it
is the numerical dissipation that prevents the spectra from aligning with the model one,
besides the highest resolution of 5123 cells or κmaxη > 5.

The results and particularly the energy spectra of DNS have validated the AMROC-
LBM solver to deal with elementary turbulent flows. Moreover, this DNS database was
used for comparison for the verification of the LES models. Table 2 shows the measured
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Table 2: Turbulent statistics and simulation parameters for LBM LES simulations for
two resolutions of the FHIT test case.

CSMA (C = 0.1) DSMA WALE

N3 323 1283 323 1283 323 1283

∆t 2 x 10−1 4.9 x 10−2 2 x 10−1 4.9 x 10−2 2 x 10−1 4.9 x 10−2

Reλ 51 60 55 61 52 60
k 2.5 x 10−5 7.3 x 10−5 2.5 x 10−5 7.3 x 10−5 2.5 x 10−5 7.4 x 10−5

ε 3.1 x 10−8 2 x 10−7 2.7 x 10−8 1.9 x 10−7 3 x 10−8 2 x 10−7

κmaxη 7.2 x 10−1 1.8 7.5 x 10−1 1.8 7.3 x 10−1 1.8

η 4.5 x 10−2 2.8 x 10−2 4.7 x 10−2 2.9 x 10−2 4.5 x 10−2 2.8 x 10−2

λ 6.3 x 10−1 4.3 x 10−1 6.8 x 10−1 4.4 x 10−1 6.4 x 10−1 4.3 x 10−1

L11 1.08 9.3 x 10−1 1.13 9.5 x 10−1 1.08 9.3 x 10−1

L 4 3.1 4.6 3.3 4.1 3.2

uη 1.1 x 10−3 1.8 x 10−3 1.1 x 10−3 1.8 x 10−3 1.1 x 10−3 1.8 x 10−3

u′ 4.1 x 10−3 7 x 10−3 4 x 10−3 7 x 10−3 4.1 x 10−3 7 x 10−3

τη 40.4 16.1 44 16.4 41.3 16.1
k/ε 796.1 363.6 928.8 380.8 823 367.7
τe 264.47 133.47 280.63 136.29 267.14 133.18
∆ta/τe 60.51 113.09 57.02 98.15 59.9 100.44
∆tt/τe 14.8 9.19 14 21.61 14.7 22.11

statistics of LBM LES for two resolutions, namely 323 and 1283 cells. To assist the
discussion, Fig. 3 presents the energy spectra of the LES models and DNS for this two
resolutions. The spectra are normalised by the turbulent kinetic energy k and the integral
length scale L11. Under this normalisation the spectra should collapse in the energy-
containing range, which is verified by the plot. The lowest resolution is under-resolved
based on the previous data, κmaxη = 0.68, while the other one is well-resolved, κmaxη =
1.8. Therefore, we can examine the behaviour of the LES models for both scenarios.

First of all, in the case of the well-resolved resolution, the spectra of all three LES mod-
els have collapsed to the one of DNS. This behaviour can be also identified by comparing
Table 1 and Table 2 for the resolution of 1283 cells. The turbulent statistics are identi-
cal for all simulations. This indicates the shut-down of the LES models in well-resolved
meshes as it is expected.

On the other hand, for the lowest resolution, all LES models have diverged for the
DNS spectrum in the higher wavenumbers, showing increased dissipation in this range.
In this way, by reducing the energy of the small scales, the turbulence models stabilise
the simulation. Indeed, all three LES models have estimated higher values of κmaxη
compared to their DNS counterpart. This behaviour is highly important for running high
Re number flows with a low dissipation scheme such as the SRT-LBM. Moreover, by
further examining the data, the CSMA with C = 0.1 had identical results as the WALE.
Considering the isotropy of this test case, this was expected. On the contrary, the DSMA
returned the highest value of κmaxη with the smallest estimated dissipation rate ε. These
results indicate increased values of eddy viscosity compared to the other models and thus
a more dissipative behaviour.
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Figure 4: Evolution of the turbulent kinetic energy k (left) and dissipation rate ε (right)
for DNS of 5123 against DSMA and WALE of 1283 cells resolution.

4 DECAYING HOMOGENEOUS ISOTROPIC TURBULENCE

To further exploit the above mentioned set-up, we restarted the DNS simulation of 5123

resolution from the final saved time step without the forcing scheme. Simultaneously, by
appropriately locally volume-averaging the same initial data, we run DSMA and WALE
simulations of a resolution of 1283 cells, again without the employment of the force. Under
this set-up, one can examine DHIT. We have also tried to initialise a DNS of 1283 cells
using the same procedure but it crashed.

Figure 4 shows the evolution of the turbulent kinetic energy k and the dissipation rate ε
for the three simulations. Their initial values have been used to normalise both variables.
All simulations were run for 1000 time units. It is evident that all three simulations have
estimated similar behaviour for the evolution of the turbulent kinetic energy k. On the
other hand, the LES models have deviated from the DNS solution in the case of the
dissipation rate ε for the first 300 time units. However, after this initial period, their
solution collapsed with the DNS data. At this point, it is important to mention that we
have not experienced the deviations reported in [15], where the DSMA model of 323 cells
resolution was compared against DNS of 643 for a similar case. Moreover, another vital
difference is that the Multi Relaxation Time (MRT) collision model was used instead of
the SRT in our case.

To further evaluate the LES models, Fig. 5 shows the energy spectra for the three
models after 100 and 1400 iterations, at t = 4.91 and t = 68.72, respectively. Both of
these times lie in the initial period of the deviation in the dissipation rate ε. It is clear that
the spectra in both times collapse in the energy-containing range and they only deviate
in higher wavenumbers due to the lower resolution and the application of the filtering due
to LES. We have also plotted the spectra at t = 1000 (not shown here), and the situation
was identical. This is a strong indication of the expected behaviour of the implemented
models.

Finally, Fig. 6 shows the vorticity field of the three models for the two previously
mentioned times. First of all, both LES models have predicted similar flow fields. On
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Figure 5: Energy spectra at t = 4.91 (left) and at t = 68.72 (right) for DNS of 5123

against DSMA and WALE of 1283 cells resolution.

Figure 6: Contours of vorticity magnitude (|ω| = 0.18) at t = 4.91 (left) and t = 68.72
(right) for DNS (thin blue lines) of 5123 against DSMA (dotted black lines) and WALE

(thick red lines) of 1283 cells resolution.

the other hand, the DNS solution of the higher resolution has captured much finer scales.
However, the LES models were able to simulate the majority of large eddies appearing in
the DNS.

5 TAYLOR GREEN VORTEX

The TGV case was chosen as the final wall-free benchmark for the newly implemented
LES models. Again the domain was a periodic cube with a length equal to 2πL, where
L = 1. There is no external force, while the initial conditions read

8

517



Christos Gkoudesnes and Ralf Deiterding

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 2 4 6 8 10 12 14 16 18 20

k(
t)

t*

k WALE 64

k DSMA 64

k CSMA 64

k WALE 32

k DSMA 32

k CSMA 32

0.001

0.002

0.003

0.004

0 2 4 6 8 10 12 14 16 18 20

ε(
t)

t*

ε WALE 64

ε DSMA 64

ε CSMA 64

ε WALE 32

ε DSMA 32

ε CSMA 32

Figure 7: Evolution of kinetic energy (left) and kinetic energy dissipation rate (dashed)
against dissipation rate based on enstrophy (solid) (right) of LES for two resolutions.

u(x, t0) = U0 sin
(x

L

)
cos

( y

L

)
cos

( z

L

)
, v(x, t0) = −U0 cos

(x

L

)
sin

( y

L

)
cos

( z

L

)
,

w(x, t0) = 0, ρ(x, t0) = ρ0 +
ρ0U

2
0

16c2s

[
cos

(2x
L

)
+ cos

(2y
L

)][
cos

(2z
L

)
+ 2

]
. (11)

In the above, ρ0 = 1 and U0 = 0.1 leading to Ma ≈ 0.17. To achieve Re = U0L/ν = 1600,
the viscosity ν was set to 6.25 · 10−5. Due to the imposed initial conditions, large scale
vortices appear initially in the flowfield. As the time passes, they will start to break
into smaller eddies that finally will be dissipated. Therefore, this test case has an initial
inviscid part that is followed by transition to turbulence and finishes with the decay of
turbulence. The above procedure imposes new challenges for the new models.

To test them, two resolutions of 323 and 643 cells were simulated for WALE, DSMA
and CSMA, with C = 0.1, while their DNS counterparts crashed. The left plot in Fig. 7
shows the evolution of the turbulent kinetic energy k for these simulations. Firstly, for the
lowest resolution some oscillations can be detected in the initial part for all three models
indicating insufficient number of cells. For t∗ > 3, the lines predicted by the three models
are diverged, with DSMA has the largest diversion. On the contrary, the WALE is able to
recover and for t∗ > 7 returns similar values to CSMA. This diversion indicates that both
WALE and, particularly, DSMA have added extra dissipation during the transition phase
compared to CSMA, with C = 0.1. The extra dissipation has led to the appearance of
fewer small eddies and thus reduction in the peak of the kinetic energy dissipation rate, as
one can see in the right plot of Fig. 7. The WALE has predicted a lower peak compared
to CSMA. However, it has a smoother slope for the rest of the time showing that was
able to adjust better during the phase of decay of turbulence. Moreover, in this plot, the
difference between the two dissipations is a measure of the numerical dissipation. In that
respect, DSMA had the best performance.

For the highest resolution, there are no apparent discrepancies in the evolution of
the turbulent kinetic energy k for the three models. Examining the evolution of the
dissipation rates, again both WALE and DSMA have exaggerated the dissipation during
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Figure 8: The Smagorinsky constant C estimated at t∗ ≈ 3 (left) and its volume
averaged evolution (right) for the DSMA for the resolution of 323 cells.

the transition phase, though in this resolution the difference was smaller. Similarly, the
CSMA has performed better during the transition phase but the steeper slope in the
dissipation rates during the decay phase denotes overestimated dissipation.

To further analyse the behaviour of the DSMA, the left plot of Fig. 8 shows the in-
stantaneous estimation of the constant C over the domain for the lowest resolution at
t∗ ≈ 3. Around this moment, the transition to turbulence is initiated. This is also the
time when DSMA started to diverge from the other models. It is evident from the plot
that the model was able to identify the inviscid large vortices, the square blue regions
with a value close to zero, while a value around 0.1 was estimated in the majority of the
domain. However, the constant C reached the maximum available value of 0.23 in regions
where the vortices interacted. In an attempt to further examine this issue, the same
simulation was rerun without trimming the maximum value. The outcome was regions
with overestimated values of C, even above 1, indicating that the trimming is necessary.
This behaviour is the result of calculating C, Eq. (7), locally and not averaging in ho-
mogeneous directions, which are all three in this case. This approximation tends to lead
to local maxima [11]. However, a complicated and rather expensive algorithm would be
needed to identify the homogeneous directions in a real engineering application and is thus
avoided. Finally, the right plot in Fig. 8 presents the evolution of the volume averaged
values of C. The maximum peak is located during the first inviscid part and it is around
35% higher than the value for CSMA, explaining the more dissipative behaviour during
this phase. Afterwards, as the time passes its value was reduced, as it is anticipated, due
to the gradual depletion of the kinetic energy. During the final phase of decay, it reached
values below the one of CSMA (C = 0.1) leading to the smoother shape of the dissipation
rates.
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6 CONCLUSIONS

In this paper, we present an easily to implement methodology to verify and evaluate
LBM-LES models under wall-free circumstances. To achieve this, initially, we employed
the test case of FHIT. For its realisation, the force scheme of [7] was applied, having the
important advantage that no initialisation of the velocity field is needed. The disadvantage
of this force is the appearance of a resolution-dependent Reλ. To deal with this issue,
one can still compare the energy spectra of different resolutions by applying suitable
non-dimensionalisation [14]. Moreover, having a solution of FHIT case, it is trivial to
run DHIT by deactivating the external force. In this way, one can compare different
resolutions with the same Reλ, by using the same initial data and appropriately locally
volume-average them. In the end, the test case of TGV can challenge the models for the
situation of an inviscid flowfield transitioning to turbulence and final decay.

By applying the above procedure, we have verified the two newly implemented models,
DSMA and WALE. In the case of FHIT and DHIT, we have examined their performance
to deal with a fully developed turbulent field showing an expected behaviour. We present
that under a reasonably well-resolved mesh, they could be deactivated. On the other
hand, in an under-resolved simulation, they estimated a more depleted dissipation range
compared to DNS, improving the stability. In comparison with the CSMA, the WALE had
identical behaviour while the DSMA seemed to be slightly more dissipative. In the case of
DHIT, they managed to capture accurately the large scales of a DNS of higher resolution.
Finally, by running the TGV case, we show that both of them tend to overestimate the
eddy viscosity during transition to turbulence. The DSMA had the worst performance,
particularly in highly under-resolved meshes. However, they were able to adjust their
extra dissipation in the final phase of the decay. As for the DSMA, we conclude that the
localisation of the calculation of the constant C leads to local maxima and thus a more
dissipative behaviour compared to the other models.

Acknowledgements

This work was supported by UK Research and Innovation under the grant EP/N509747/1
with project number 1831845. The authors also acknowledge the use of the IRIDIS High-
Performance Computing Facility, and associated support services at the University of
Southampton.

REFERENCES

[1] Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, OUP
Oxford, Oxford, New York, 2001.

[2] Deiterding, R. and Wood, S. L. An adaptive lattice Boltzmann method for predicting
wake fields behind wind turbines, in: A. Dillmann, G. Heller, E. Krämer, C. Wagner,
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Abstract. Flow-like landslides in mountainous areas can cause extensive damages due to 
their high velocity and long run-out distance. This work presents a real case of landslide 
occurred on 11 May 2018 in Val d’Arán (Catalonia, Spain). It involved about 50.000 m3 of 
glacial and colluvial material, travelling about 250 m until the valley floor and climbing 
about 100 meters on the opposite hillside. With the aim to assess the capabilities of the 
Material Point Method (MPM) [1,2] plane strain analyses with the 2-phases 1-point 
formulation [3,4] are conducted on a representative section. First, the slope material is 
described with the Mohr-Coulomb criterion. Second, a constitutive model based on the 
critical state theory (Ta-Ger [5,6]), is adopted. The simulations results led to conclude that 
an advanced constitutive model, able to simulate the strength loss of the material during the 
movement, is required to reproduce flow-like landslides and to obtain realistic results in 
terms of long run-out distance. 

1 INTRODUCTION 
Velocity and run-out of landslides are key factors determining the damage induced by 

landslide. Estimation of the initiation and post-failure behaviour is essential for evaluating the 
risk and quantifying the magnitude of consequences. The prediction of both run-out distances 
and velocity was investigated experimentally through flume laboratory tests [7]–[11] and 
numerically in the framework of the continuum [12]–[16] and discontinuous methods [17]. 
However, its numerical modelling is still challenging mainly because it involves large 
deformations, dynamic factors and requires a proper constitutive model able to reproduce the 
transitional behaviour between solid and fluid.  

The landslide investigated in this work occurred on 11 May 2018 in Val d’Arán (Catalonia, 
Spain) after a period of significant rainfall. It involved about 50.000 m3 of glacial and 
colluvial material, travelling about 280 m until the valley floor and climbing about 100 meters 
on the opposite hillside [18]. Based on field observation and laboratory tests conducted, both 
materials can be classified as clayey sands. Although the evolution of groundwater level and 
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pore water pressures prior the failure is unknown, one of the hypotheses that could explain the 
failure triggering is the soil saturation induced by the water table rising. If the soil is 
susceptible to liquefaction, excess pore water pressure can be generated with the associated 
decrease of effective stress, affecting the velocity and post-failure behaviour of the landslide. 

2 METHODOLOGY 
The numerical method adopted in this study is the Material Point Method (MPM). It was 

developed to represent fluid dynamics [19] and extended to soil mechanics problems [1,2]. 
The method is intermediate between particle-based methods and finite element methods. The 
continuum media is described by a set of Lagrangian materials points that can move with the 
material and a computational mesh that remains fixed through the calculation and covers the 
whole domain. Each point represents a portion of the domain and carries all the information 
of the material while the governing equations are solved at the nodes of the computational 
background. This double discretization can simulate large deformations without problems 
associated with mesh distortion, which are typical in conventional finite element methods. 

In this study, plane strain analyses with the MPM 2-phases 1-point formulation [3,4] are 
conducted on a representative section by using the Anura3D software, developed by the MPM 
Research Community (www.anura3d.com). 

The failure triggering was probably due to the soil saturation induced by the water table 
rising. With the aim of evaluating the initiation of the movement, different hypotheses of 
phreatic levels are considered by modelling the slope material with the Mohr-Coulomb 
criterion. Then, the strength loss of the failed mass and its effect on the run-out distance are 
investigated by introducing a softening behaviour of the material. Finally, the limitations of 
the previous analyses are discussed and the advanced constitutive model Ta-Ger [5,6] is 
adopted to reproduce the flow-like landslide. 

The objective is to ascertain if this model is able to track the triggering of the movement 
and the post-failure behaviour by reproducing the strength loss due to the propagation of pore 
water pressure, allowing the landslide mass to travel a long distance. 

3 NUMERICAL MODEL 
The geometry of the problem and the computational mesh are given in Figure 1. Plane 

strain conditions are imposed by means of the boundary conditions restricting out-of-plane 
deformation and horizontal displacements along the vertical contours. The computational 
mesh is generated by using a 3D mesh of linear tetrahedral elements with a size of 5 m. A thin 
slice of one element thickness is considered to simulate 2D conditions. Initially, four material 
points are distributed within each element in the position of Gauss points. 

From a geological point of view, the slope is characterized by a layer of colluvium material 
on the top of a deposit of glacial origin with irregular thicknesses. The bedrock is located at a 
depth of about 25 m and is modelled as linear elastic as it is not involved in the failure. In 
order to simplify the geological model, the colluvial and glacial layers are represented as a 
unique material. This assumption can be accepted since the results of laboratory tests 
provided similar properties for both materials. In particular, a friction angle 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟′ = 33 º, 
obtained from ring shear tests, is assumed in the simulations. 
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For a given phreatic level, the material above is defined as dry material, while the one 
below is considered fully saturated. A more accurate analysis may be performed by modelling 
the slope as a 3-phase unsaturated material, however, in this work, a simplified simulation is 
presented. 

  
Figure 1: Geometry and computational mesh for the phreatic level located at -15 m of depths from the upper 

surface. 

4 RESULTS 

4.1 Drained analysis with Mohr-Coulomb 
As a first approximation, the Mohr-Coulomb constitutive model is used to model the 

colluvial and glacial layers and drained conditions are considered for the saturated material, 
thus no excess pore water pressures are computed. The material properties are summarized in 
Table 1. The simulation is carried out in two stages. Stresses are initialized by applying a 
quasi-static gravity loading. A homogeneous local damping factor 𝛼𝛼 = 0.75 is applied to 
reach a quasi-static equilibrium state in a faster way allowing a considerable reduction in the 
computational time. In the second stage, the full dynamic behaviour of the soil is analysed and 
a small local damping factor 𝛼𝛼 = 0.05 is used in order to simulate the natural energy 
dissipation of the material. 

Table 1. Mohr-Coulomb model parameters. 

Parameter  Symbol Unit Value 
Initial porosity  n - 0.48 
Young Modulus  𝐸𝐸 kPa 10000 
Poisson ratio  𝜈𝜈 - 0.33 
Friction angle  𝜙𝜙′ ◦ 33 
Cohesion  𝑐𝑐′ kPa 5 

Figure 2 shows the results of the numerical simulations for the different assumption in the 
depth of the phreatic levels. In drained conditions, the water table rising leads to an increase 
in the destabilizing forces but they are not sufficient to accelerate the slide and reach the 
observed run-out. This result seems to indicate that during the movement the resistance 
offered by the mobilized mass significantly reduced. In order to investigate this aspect, in the 
second simulation, the slope material is described with Mohr-Coulomb with strain softening 
model. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Total displacement and accumulated deviatoric strain results (after 10 seconds) for different depths of 
phreatic levels (PL) by using the Mohr-Coulomb model. (a) PL = −15m; (b) PL = −10m; (c) PL = −5m; (d) 

PL = 0 m. 
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4.2 Drained analysis with Mohr-Coulomb Strain Softening 
The softening behaviour of the soil is introduced by reducing the effective strength 

parameters with the accumulated equivalent plastic strain. The strength loss of the material 
after the landslide triggering can generate a progressive failure phenomenon and facilitates the 
acceleration of the failed mass. For the case of phreatic level located at the surface, the 
residual values of cohesion and friction angle that needed to simulate the long run-out 
distance are shown in Table 2. The table also indicates the rest of the model parameters. The 
shape factor is an additional parameter that controls the rate of strength decrease with shear 
displacement. The simulation is carried out in two stages as described in the previous section. 

Table 2: Mohr-Coulomb with Strain Softening model parameters. 

Parameter  Symbol Unit Value 
Initial porosity  n - 0.48 
Young Modulus  𝐸𝐸 kPa 10000 
Poisson ratio  𝜈𝜈 - 0.33 
Peak friction angle  𝜙𝜙′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ◦ 33 
Residual friction angle  𝜙𝜙′𝑟𝑟𝑝𝑝𝑟𝑟 ◦ 10 
Peak cohesion  𝑐𝑐′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 kPa 5 
Residual cohesion  𝑐𝑐′𝑟𝑟𝑝𝑝𝑟𝑟 kPa 1 
Shape factor  𝛽𝛽 - 50 

As shown in Figure 3, the post-failure mechanism and the long run-out can be quite well 
simulated by imposing a softening behaviour to the soil. However, the residual values of 
friction angle and cohesion that are needed are not compatible with the geotechnical 
characterization of the material. 

 
Figure 3: Total displacement and accumulated deviatoric strain results (after 40 seconds) for the case of the 

phreatic level at the surface by using the Mohr-Coulomb with strain softening model. 

4.3 Undrained analysis in effective stresses with Ta-Ger 
In the last simulation, the strength loss of the material is attributed to the excess pore water 

pressure generated during motion, which induces an effective stress decrease and, 
consequently, loss of frictional strength [20]. The loss of strength is being modelled in order 
to understand the long run-out observed. In the numerical calculation, the water table raising 
is assumed so fast that there is a significant generation of excess pore pressure, but negligible 
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relative movement between solid and fluid phase, therefore pore pressure dissipation is 
neglected. The slope material is described with the Ta-Ger constitutive model [5,6]. It is an 
elastoplastic model based on the critical state theory and developed with the aim of 
reproducing the behaviour of soil under different types of loading, drainage conditions and 
initial stresses, without the need to recalibrate its parameters. A material that exhibits a 
contractive behaviour is considered. 

In order to characterize the mobilized soil, drained and undrained triaxial compression tests 
are simulated for samples consolidated isotropically to 100, 150 and 200 kPa prior to 
shearing. The model parameters are summarized in Table 3. Figure 4 shows the results of the 
simulation in drained and undrained conditions. It can be observed that, when the drainage 
conditions are prevented and the soil is contractive, the mean effective stress decreases as a 
consequence of growing positive excess pore water pressure.  The reduction in mean effective 
stress is accompanied by the reduction in deviatoric stress and hence the sample softens. 

 

Figure 4: Drained and undrained triaxial compression simulations at different confining pressures. (a) 
Deviatoric stress-deviatoric strain relationship; (b) stress path in the triaxial plane. 

The simulation is carried out in two phases: (1) Stresses are initialized by quasi-static 
gravity loading (𝛼𝛼 = 0.75); (2) the full dynamic behaviour of the soil is analysed and 
undrained conditions are imposed to the material (𝛼𝛼 = 0.05). 
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Table 3: Ta-Ger model parameters. 

Parameter  Symbol Unit Value 
Shear modulus constant  𝐺𝐺0 - 2500 
Shear modulus exponent  𝑚𝑚 - 0.4 
Poisson ratio  𝜈𝜈 - 0.33 
Friction angle at critical state   𝜙𝜙′𝑐𝑐𝑐𝑐 ◦ 33 
Hardening exponent  𝑛𝑛 - 0.5 
Initial value of bounding stress ratio  𝑀𝑀𝑐𝑐0 - 1.11 
Bounding and Phase transformation coefficient  𝑐𝑐 - 6 
Initial void index  𝑒𝑒0 - 0.93 
Minimum void index  𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 - 0.597 
Maximum void index  𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 - 0.977 

 
Figure 5: Total displacement and accumulated deviatoric strain results (after 20 seconds) for the case of the 

phreatic level at the surface by using Ta-Ger model with undrained conditions. 

Figure 5 shows the total displacement and accumulated deviatoric strain at the end of the 
simulation period for the case of the phreatic level located at the surface. The dynamics of the 
movement and the large run-out is well reproduced. It can be seen that the generation of 
excess pore water pressure is fundamental to trigger the mechanism of flow-like landslides. 

5 CONCLUSIONS 
A flow-like landslide can be generated by several mechanisms such as the saturation of the 

soil involved in the failure and its susceptibility to liquefaction. The high velocity of the failed 
mass and the long run-out distances characterize its post-failure behaviour. 

Table 4: Results comparison (the run-out observed in the field is 380 m). 

Phreatic level MC MCSS Ta-Ger 
Run-out Duration Run-out Duration Run-out Duration 

-15 m 5.9 m 10 s     
-10 m 6.0 m 10 s     
-5 m 6.6 m 10 s     
0 m 8.4 m 10 s 207 m 40 s 210 20 s 
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The classical elasto-plastic constitutive models such as the Mohr-Coulomb and the Mohr-
Coulomb with strain softening are not able to reproduce the real behaviour of the soil 
including the strength loss due to the propagation of the pore water pressures in the post-
failure stage. 

The hypothesis of a generation of excess pore pressures in undrained conditions, together 
with the advanced constitutive model Ta-Ger, allowed to capture the general characteristic of 
the flow-like failure and the large run-out.  

In Table 4 are summarized the results of the simulations in terms of run-out and duration of 
the movement. 
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Abstract. In order to investigate the ground behavior under shallow foundation with extremely 
low confining pressure, numerical analysis has been performed using the Material Point Method. 
Material Point Method is one of particle-based methods but it still uses numerical grid. It has 
been applied to many problems of geomaterial since it was proposed for the first time. The 
authors focus on the robustness of the method under large deformation problem and applied it 
to the shallow foundation problem of geomaterial. In this paper, the formulation and 
implementation of Material Point Method are described, followed by verification and validation 
for the implemented code. Then, the parametric investigations on ground behavior under 
shallow foundation have been carried out.  

 
 
1 INTRODUCTION 

Foundation stone has been employed for thousands of years to support historical structures. 
The foundation stone support system is basically composed of a base ground, foundation stones, 
and an upper structure. Self-weight of an upper structure is transferred from structural columns 
to a base ground through foundation stones. In this support system, main purpose of foundation 
stones is to distribute a concentrated column force in a foundation stone body, relaxing stress 
concentration at the bottom of columns. 

In this support system, foundation stones often penetrate into a base ground once they are 
undergoing additional external forces such as earthquakes because surface grounds around 
foundation stones don’t have enough bearing capacity due to an extremely low confining 
pressure condition. Conventional bearing capacity theory is employed when it can be regarded 
as it be under the small deformation condition whereas it becomes difficult to evaluate bearing 
capacities and to predict settlements under the large deformation condition such in case of 
foundation stones. The conventional method is based on an assumption of rigid-plastic 
behaviour and it focuses on a bearing capacity at an ultimate state. Therefore, the same approach 
cannot be applied to the case under large deformation conditions, which include geometrical 
nonlinearity. 

In order to assess the support system behaviour under extremely low confining pressure, 
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experimental and numerical study are the main options to be chosen. Experimental testing is 
performed and reported in the companion papers by the same authors, demonstrating that a 
load-settlement relationship under large deformation condition shows much higher bearing 
capacity than the case of small deformation condition, demanding incremental external force 
for a footing to settle. In this paper, the demonstration of the applicability of numerical 
simulation is to be focused, employing a particle-based numerical method, which have been 
applied to geomaterial literally [1]. A shallow foundation model is set up numerically, in which 
footing foundation is modelled as elastic and a base ground is modelled as elasto-plastic 
material with Mohr-Coulomb failure criteria. Then, the support system behaviour is assessed 
by comparing the experimental results with the simulation results. 

From comparison between experimental and numerical results, the load-settlement 
relationship by both methods gives a good agreement to each other, meaning particle-based 
numerical method is capable of simulating the behaviour of the support system under extremely 
low confining pressure. 

2 MATERIAL POINT METHOD 
The Material Point Method (MPM), which is originally proposed by Sulsky et al. [1], is a 

derivative of Particle-In-Cell (PIC) [2], in which a particle has all physical quantities but the 
equation of motion is solved at grid point. PIC is formulated based on for Fluid Mechanics 
while MPM is based on Solid Mechanics. Physical quantities at material point are transferred 
to grid point by using interpolation functions. After equation of motion is solved at grid point, 
the solution is going back to material point by using interpolation function again. The 
transferring of physical quantities by using interpolation function is repeated at every numerical 
step. The first Material Point Method, call original MPM in this paper, uses 4-node shape 
function for the interpolation function in two-dimensional problems. However, the numerical 
oscillation occurs when material point crosses the numerical grid because the derivative of the 
shape function flips its value from plus to minus or vice versa. In order to overcome the 
numerical oscillation, Generalized Interpolation Material Point (GIMP) method is proposed by 
Bardenhagen and Kober [3], in which the interpolation function is averaged over its control 
domain. Hereafter, many interpolation functions have been reported on Material Point Method 
while most of them are derivative of GIMP method. In this section, the formulation of original 
MPM and GIMP method are described. The simulation of verification and validation are 
performed with both original MPM and GIMP method. 

2.1 Formulation of Material Point Method 
In the following equations, superscript k is the time step and subscript g and p are the physical 

quantities at the grid point and material point, respectively. The grid point mass is extrapolated 
from the material point mass as 
 

 (1) 

in whici mg, mp, Sp, np are the mass of the grid point, the mass at the material point, the 
interpolation function value at the material point, and the number of material points in the 
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reference cell, respectively. The grid point internal force is calculated by integrating the stresses 
of the reference material points as 
 

������ � � �������

����� ����� �����
��

���
 (2) 

in which fgint, p, Gp, p, are the grid point internal force, the density of material point, 
interpolation function derivative value at the material point and the stress of the material point, 
respectively. The grid point external force is calculated as 
 ������� � ��� � �� (3) 

in which fgext is the grid point external force and g is the gravitational acceleration. Eqs. (1)-(3) 
yields the equation of motion in each direction(x and y) of the grid point as 
 

��� � 1
���

������� � � �������� (4) 

in which ag is the acceleration of the grid point. The material point coordinates are updated as 
 

���� � �� � �� ������� �����
��

���
 (5) 

in which x, v, t, ng are the material points coordinates, the grid point velocity, the incremental 
time, and the number of grid points in the cell to which the reference material point belongs. 
The material point displacement(u), acceleration(ap) and velocity(vp) are updated as 
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 (6) 
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The grid point velocity(vg) is updated as 
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���
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���
 (9) 

The material point strains(p) are updated as 
 

���� � ��
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���
 (10a) 
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 ����� � ��� � ���� (10b) 
in which p is the incremental strain during a time step (t). The material point stresses are 
updated as 
 ���� � � ⋅ ���� (11a) 

 ����� � ��� � ���� (11b) 
in which  is the incremental stress during time step t. As seen in Eq. (10), the stress and 
strain objectivities are not satisfied. They are assumed to increase linearly during time step t, 
which is set to be very small (e.g., 1.0x10-5(s)). The volume (Volume) and density () of the 
material point are updated as 
 ��������� � ������� ⋅ �� � ����� (12) 
 

���� � ��
�� � ����� (13) 

When using GIMP method, in which the particle control domain is considered, the widths of 
the material points(lp) are updated as 
 ����� � ��� ⋅ �� � ����� (14) 

The widths of material points are often not updated for practical reason. Then, the method, 
which updates the widths, is called contigous particle GIMP (cpGIMP) method whereas the 
method, which does not update the widths, is called unchanged/uniform GIMP (uGIMP) 
method. 
The numerical procedure from Eq.(1) to Eq.(13) corresponds to one cycle of the MPM 
algorithm, and the incremental time is t. To solve time interval t, the procedure above cycles 
for the number of time steps, which becomes t/t times. 

3 VERIFICATION AND VALIDATION OF THE METHOD 
In order to confirm the integrity of the implemented code, the verification and validation for 

the code is performed. The importance of the verification and validation (V&V) has been 
increased as the numerical simulation is more applied in practical engineering use. In this 
section, the implementations of GIMP method are verified by using the theoretical solution and 
validated by comparison with the experimental result. 

3.1 Verification using one dimensional solution under large deformation 
For the investigation of shallow foundation problem under large deformation, the total stress 

formulation is employed. Then, the formulation is verified by comparing the numerical solution 
with the total stress theoretical solution under large deformation condition. Zhang et al. [4] 
proposed the theoretical solution for one-dimensional column under gravitational force by 
assuming that the potential energy is kept constant based on the finite deformation theory. 
Theoretical stress and displacement of Zhang’s 1D column are described as follows. 
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in which �  and �  are the initial and the current coordinates from the bottom of column, 
respectively. ��  is the length of the column. ���� is the stress at the coordinate of � . �  is 
Young’s Modulus. 

For the verification problem, the numerical model for the one-dimensional column is 
prepared. 50 particles are lined with the length of 1 m, meaning each particle has 2 cm wide 
control domain. Column is discretized with 50 cells of numerical grid, in which one particle is 
arranged in each cell. Young’s modulus and unit weight of particles are 10,000 kPa and 9.8 
kN/m3, respectively. The gravitational force is applied to the column incrementally with the 
damping coefficient [5] of 0.8 in order to obtain the quasi-static equilibrium solution. Figure 1 
shows the comparison between numerical results and theoretical solutions. The numerical 
solutions give a good agreement to the theoretical one under 1G gravitational force (Fig. 1(a)). 
Original MPM begins to show the oscillation under 10G condition while uGIMP and cpGIMP 
method still give a good agreement to the theoretical one (Fig. 1(b)). Under 20G condition, 
uGIMP begins to show the oscillation, which becomes much more under 50G condition while 
cpGIMP still shows a good agreement to the theoretical solution (Fig. 1(c), (d)). The uGIMP 
solution is oscillate around the theoretical one. In the elastic problem the solution by uGIMP 
method may acceptable in case that only deformation is focused. However, in case of nonlinear 
problem, only cpGIMP solution is applicable because unexpected deformation occurs if 
particles reach yield surface during their stress oscillation. 

3.2 Validation by comparing numerical result with experimental results 
In order to validate the numerical simulation method, numerical results are compared with 

the experimental results of load-settlement relationship and strain distribution in the ground. 
The experiments are performed in physical simulation of shallow foundation, in which the 
ground and the foundation are modeled by aluminum bar and brass block as a rigid footing, 
respectively. The footing is controlled by displacement, penetrating into the ground while the 
load and the displacement are monitored by load-cell and displacement sensor, both of which 
are attached to the footing. The digital camera, which is located besides the physical model, 
captures snap shots of deformed ground during the loading. By using Particle Image 
Velocimetry (PIV) technique, displacement and maximum shear strain distribution inside the 
ground are visualized at every 5 mm penetration. 

The numerical procedure, which simulates the experiment, is described below. Fig. 2 shows 
the initial configuration of the model and boundary condition. The numerical model is a half 
model by using the geometrical symmetry, in which the left side is the symmetric center. 4 
particles are arranged regularly in one cell. The spacial resolution of the numerical model is 
defined as 5 mm, which is the same as the resolution of image analysis (PIV) in the experiment, 
which enables the direct comparison of strain. Table 1 and 2 show material properties and 
numerical conditions, respectively. During the simulation, the density of the loading block is 
changed gradually, which generates the increase in contact force and induce the ground 
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deformation. The numerical load-settlement relationship is calculated by monitoring both the 
self-weight and the penetration of the loading block. Fig. 3 shows the load-settlement 
relationship obtained from both experiment and numerical simulation, which give a quite 
similar relationship. Fig. 4 shows the vertical displacement of the ground at the footing 
penetration of 5, 15, and 25 mm. The vertical displacements by both experiments and simulation 
also give a good agreement to each other. These comparison of load-settlement relationship and 

Loading Block
(Brass)

4cm
(8 cells)

22cm
(44 cells)

8cm
(16 cells)

20cm
(40 cells)

Base Ground
(Aluminum Bar Deposit)

vertically free
horizontally fix

vertically free
horizontally fix

vertically fix
horizontally fix

Controll Domain

Material Point
Grid Point

4 Material Points per Cell

0.25cm

0.25cm

Items Values
Particles Per Cell 4

Dimensions(H x W) 0.26 m x 0.28 m
Width of cell 0.005 m

Time increment 0.000015
Damping factor 0.8

Ground 8,320
Footing 512

Number of Particles

E v   c

(kPa) (g/cm3) (deg) (kPa)

1000 0.3 2.43 20 0

Figure 2. Numerical model of shallow  
foundation experiments 
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Figure 1. Comparison between numerical result and theoretical solution 
                            (c) 20G                                                               (d) 50G 

                             (a) 1G                                                                (b) 10G 
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deformations inside the ground validate that the simulation result are evaluated as applicable 
for shallow foundation problems.  

Figure 3. Comparison of load-displacement relationship between experimental and 
numerical results 

(i) observed                                                       (ii) simulation 
(a) settlement=5mm 

(i) observed                                                       (ii) simulation 
(b) settlement=15mm 

(i) observed                                                       (ii) simulation 
(c) settlement=25mm 

Figure 4. Comparison of settlement between experimental and numerical results 
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4 SHALLOW FOUNDATION BEHAVIOR UNDER LOW CONFINING PRESSURE 
In order to understand the ground behavior under shallow foundation, parametric study using 

Material Point Method is performed. The same numerical model in previous section is 
employed with different material strength, which is changed as frictional or cohesive material 
to make it simple to understand the ground behavior. Table 3 shows material strength in the 
simulation. Cases from 1 to 3 are for understanding the behavior with frictional soil and cases 
from 4 to 6 are for cohesive soil. The load-settlement relationships and deformation inside the 
ground are obtained from the series of simulations, which are explained below. 

4.1 Ground behavior of frictional soil under shallow foundation 
Fig. 6 shows the load-settlement relationship obtained from soil condition with three 

different internal frictional angles of 15, 20 and 25(degree). The curves in Fig. 6 indicate two 

(i) observed                                                       (ii) simulation 
(a) settlement=5mm 

(i) observed                                                       (ii) simulation 
(b) settlement=15mm 

(i) observed                                                       (ii) simulation 
(c) settlement=25mm 

Figure 5. Comparison of maximum shear strain between experimental and numerical 
results 
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phases. The first phase shows hardening behavior with different initial stiffness, which is seen 
in Fig. 6. The second phase shows the ultimate behavior, which is corresponding to the practical 
bearing capacity. It is quite difficult for the practical use to determine the initial stiffness every 
time only strength parameter changes. In the previous chapter, the initial stiffness has been 
determined by calibrating the material properties. It is also difficult to determine soil stiffness 
without any geotechnical investigation prior to the assessment. Then, geotechnical investigation 
is strongly recommended before assessing the frictional soil behaviors. Fig. 7 shows the total 
displacement and maximum shear strain, in which the punching type failure mechanism is 
observed in the first phase (Fig. 7(a)-(i),(b)-(i)) while the Terzaghi’s bearing capacity theory 

E  Poisson's ratio  c

(kPa) (kN/m3) v (deg) (kPa)
1 15.0 0.0
2 20.0 0.0
3 25.0 0
4 0.0 0.5
5 0.0 1.0
6 0.0 2.0

Case

1000 20.0

0.3

0.4

Table 3. Material strength 

Figure 6. Load-settlement relationship of the frictional material ground 
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type failure mechanism is observed in the second phase (Fig. 7(a)-(ii),(iii),(b)-(ii),(iii)). The 
bearing capacities in Fig. 7 exceed the Terzaghi’s theory. This is mainly due to the embedded 
effect under large deformation condition. In the theory, the embedded effect act only as an 
additional resistance but it extends the sliding line under large deformation, resulting in the 
more effect on the bearing capacity than the Terzaghi’s theory. 

4.2 Ground behavior of cohesive soil under shallow foundation 
Fig.11 shows the load-settlement relationship obtained from soil condition with three 

different cohesions of 1.0, 2.0 and 3.0(kPa). The curves in Fig.11 indicate three phases. The 
first phase shows elastic behaviors, in which all the material shows the same line. The second 
phase shows the hardening behavior, which is a transient phase from elastic status to the 
ultimate status. The third phase shows the ultimate behavior, which is corresponding to the 
practical bearing capacity. Fig. 8 shows the total displacement and maximum shear strain, in 
which the elastic behavior is observed in the first phase, forming the displacement bubble (Fig. 
8(a)-(i),(b)-(i)), followed by the second phase in which the punching type failure mechanism is 
observed(Fig. 8(a)-(ii),(b)-(ii)), and the third phase in which the Terzaghi’s bearing capacity 
theory type failure mechanism is observed(Fig. 8(a)-(iii),(b)-(iii)). The bearing capacities in 
Fig.11 exceed the Terzaghi’s theory. As seen in the result of frictional material, this is also due 
to the embedded effect under large deformation condition. The importance of considering the 
geometrical nonlinearity is recognized from the results. 
 
 
 

Figure 7. Deformation inside the frictional material ground (Case3:=25(deg)) 

        (i) Pressure=4(kPa)                  (ii) Pressure=10(kPa)             (iii) Pressure=13.2(kPa) 
(a) Total displacement 

        (i) Pressure=4(kPa)                  (ii) Pressure=10(kPa)             (iii) Pressure=13.2(kPa) 
(b) Maximum shear strain 
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Figure 8. Load-settlement relationship of the cohesive material ground 

Figure 9. Deformation inside the cohesive material ground (Case6:c=2(kPa)) 

        (i) Pressure=4(kPa)                  (ii) Pressure=10(kPa)             (iii) Pressure=13.2(kPa) 
(a) Total displacement 

        (i) Pressure=4(kPa)                  (ii) Pressure=10(kPa)             (iii) Pressure=13.2(kPa) 
(b) Maximum shear strain 
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5 CONCLUTION 
In this paper, the formulation, verification and validation of the Material Point Method are 

reviewed, in which the difference of the formulation are scribed and the oscillation of the 
original MPM are demonstrated while the GIMP does not show any numerical oscillation. In 
the validation simulation, the numerical simulation results are compared with the experimental 
results. The load-settlement relationship and the deformation of the ground obtained from both 
simulation and experiment shows a good agreement to each other, showing the validity of the 
numerical method. After that, the parametric studies on the ground behavior are reported, in 
which ground behavior with different material strength are simulated. The ground behavior 
with frictional material shows the load-settlement curve with two phases, which are the 
foundation punching behavior in the first phase and Terzaghi’s type sliding behavior in the 
second phase. The ground behavior with cohesive material shows the load-settlement curve 
with three phases, which are the elastic response in the first phase, followed by the punching 
and Terzaghi’s type sliding in second and third phase respectively. 

REFERENCES 
[1] D. Sulsky, Z. Chen and H.L. Schreyer, (1994). A particle method for history-dependent 

materials, Computer Methods in Applied Mechanics and Engineering, 118, 179-196. 
[2] Harlow, F.H., (1956). A Machine Calculation Method for Hydro-dynamic Problems. Los 

Alamos Scientific Laboratory re-port LAMS. 
[3] Bardenhagen, S. G. & Kober, E. M. (2004). The generalized interpolation material point 

method, Computer Modeling in Engineering and Science 5(6), 447-495. 
[4] Zhang, D.Z., Ma, X. and Giguere, P.T., (2011). Material point method enhanced by 

modified gradient of shape function, Journal of Computational Physics, Vol.230, pp.6379-
6398. 

[5] Cundall, P. A. (1987). Distinct element models of rock and soil structure, analytical and 
computational methods in engineering rock mechanics, Ch.4, 129-163. E.T. Brown, ed. 
London : Allen & Unwin. 

554



Time Integration Errors and Energy Conservation Properties of The Stormer Verlet Method Ap-
plied to MPM 
M. Berzins

VI International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2019
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Abstract. The success of the Material Point Method (MPM) in solving many challenging
problems nevertheless raises some open questions regarding the fundamental properties of the
method such as the energy conservation since being addressed by Bardenhagen and by Love and
Sulsky. Similarly while low order symplectic time integration techniques are used with MPM,
higher order methods have not been used. For this reason the Stormer Verlet method, a popular
and widely-used symplectic method is applied to MPM. Both the time integration error and the
energy conservation properties of this method applied to MPM are considered. The method is
shown to have locally third order accuracy of energy conservation in time. This is in contrast to
the locally second order accuracy in energy conservation of the methods that are used in many
MPM calculations. This third accuracy accuracy is demonstrated both locally and globally on
a standard MPM test example.

1 INTRODUCTION

The Material Point Method (MPM) is often described as a solid mechanics method that is de-
rived [10, 11] from the fluid implicit particle, FLIP and PIC methods. MPM has been very suc-
cessful when applied to very many large deformation problems. However some of the properties
of the method are still not as well-understood as they might be in areas such as time integration
and conservation of energy. For example energy conservation is considered by Bardenhagen
[1] and it is shown that the standard MPM method gives second order energy conservation over
a timestep or first order overall. The analysis of Love and Sulsky [8] extends these results and
shows that energy conservation is possible if a full mass matrix is used. The same authors also
show that using a lumped mass matrix gives second order locally energy conservation. Other
improved time integration methods based upon a central difference approach are considered by
[12]. The relationship between MPM time integration and symplectic time integration methods
is considered by [3]. Such symplectic methods have good conservation properties [6]. Further-
more the Stormer-Verlet [6] method has third order accuracy locally. This method is symplectic
and very widely used in many applications [7] such as molecular dynamics and planetary orbits
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and even dates back to Newton as was demonstrated by Feynman see [6]. The intention here
is to apply the Stormer-Verlet method to MPM and to determine its accuracy and conservation
properties. It is shown that the time continuity properties of the spatial methods used play an
important role in time accuracy and in conservation. Furthermore it is shown that it is helpful
for the basis functions to possess a commutative property so that a discrete version of inte-
gration by parts may be used. Although a model one dimensional problem is considered the
results are more broadly applicable to higher dimensions. Section 2 describes the MPM method
and the model problem used, while Section 3 explains how the Stormer Verlet method may
be applied to MPM. Section 4 provides an analysis of the timestepping errors of the Stormer
Verlet method and MPM while Sections 5 and 6 derives the energy conservation error of the
method. Numerical experiments comparing the aproaches on a model problem used by [5] are
reported in Section 7, and show show that the Stormer Verlet method has better accuracy and
conservation properties than the method considered in [1].

2 MPM MODEL PROBLEM AND METHOD

The description of MPM used here follows [5] in that the model problem used here is a pair of
equations connecting velocity v, displacement u and density ρ (here assumed constant):

Du
Dt

= v, (1)

ρ
Dv
Dt

=
∂σ
∂x

+b(x, t), (2)

with a linear stress model σ = E ∂u
∂x for which Young’s modulus, E, is constant, a body force b,

which is initially assumed to be zero, and with appropriate boundary and initial conditions. For
convenience a mesh of equally spaced N +1 fixed nodes Xi with intervals Ii = [Xi,Xi+1] , on on
the interval [a,b] is used where

a = X0 < X1 < ... < XN = b, (3)
h = Xi −Xi−1. (4)

Theses fixed nodes are referred to as the i points. It will also be assumed that periodic boundary
conditions exist in that

σ(a)v(a) = σ(b)v(b) (5)

together with appropriate initial conditions. While the analysis of MPM for time integration
error and energy conservation uses the model problem above it does apply more generally and
in multiple space dimensions with a few obvious modifications. It will also be assumed that
are np particles between each pair of nodes, situated at xn

p points where at each time step,
tn = δt ∗ n, where n is the nth time step, and the computed solution at the pth particles will be
written as un

p = u(xn
p, t

n). Suppose that the particles in interval i lie between Xi and Xi+1 and
have positions xim+ j, j = 1, ..,m. The calculation of the internal forces in MPM at the nodes
requires the calculation of the volume integral of the divergence of the stress [12] using

f int
i =−∑

p
Dpi(xn

p)σpVp (6)
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In this case the subscript pi represents a mapping from particles p to node i. The subscript ip
would represent a mapping from nodes i to particles p. The negative sign arises as a result of
using integration by parts [5]. The mass at node i is defined by

mi = ∑
p

mpSpi(xn
p) (7)

It is important to note that the coefficients Dpi(xn
p) and Spi(xn

p) depend explicitly on the back-
ground mesh and the particle positions and that they also be chosen to reproduce derivatives of
constant and linear functions exactly [5]. It should also be noted that mappings from particles to
derivatives on grids e.g.Dpi may possibly be very different from forming derivatives at particles
using nodal values as denoted by Dip. Similar comments apply to interpolating from particles
to grids as denoted by the coefficients Spi and from nodes to grids as denoted by Sip. The initial
volume of the particles is uniform for the np particles in an interval. The particle volumes are
defined using the deformation gradient, Fn

p , and the initial particle volume,V 0
p ,

V n
p = Fn

p V 0
p , where V 0

p ,=
h
np

, where F0
p = 1 (8)

From (7) the acceleration equation in the MPM method in this simple case is

ai(t) =
−1
mi

∑
p

Dpi(xp(t))σp(t)Fp(t)V 0
p (9)

The equation to update velocity at the nodes, as denoted by vn
i is then given by

v̇i = ai (10)

The equation for the update of the particle velocity is then
v̇p = ap (11)

Where the value of the acceleration at a point xn
p is given by interpolation based upon nodal

values of acceleration
ap = ∑

i
Sip(xp(t))ai (12)

The equation for the particle position update is
ẋp = vp (13)

The update of the deformation gradients is given using,

∂v
∂x

(xp(t)) = ∑
i

Dip(xp(t))vi (14)

The displacement update equation is
Ḟp =

∂v
∂x

(xp(t), t)Fp (15)

While the stress update equation is, using the appropriate constitutive model and Young’s Mod-
ulus, E,

σ̇p = E
∂v
∂x

(xp(t)) (16)
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3 THE STORMER VERLET TIME INTEGRATION METHOD

In solving the system of equations defined above by equations (6) to (16) one standard ap-
proach used is to order the equations in a certain order and then to solve them in turn using
explicit methods. Differences in how the equations are solved corresponds to whether or not
the stress is updated first or last in a timestep, a choice that is discussed at length by [1] and [4].
These two different choices are related to the use of the semi-implicit Euler A or B method, [7],
[3]. An alternative approach of Hairer et al.[6] defines a method with better time integration
properties. Applying the method of p. 407 of [6] requires one extra step over the symplectic
Euler Stress Last or Stress First methods [3, 1] to define both nodal and particle velocities, and
spatial points at half timestep values. This approach applied to MPM will now be described.
On the very first step the nodal accelerations and velocities have to be calculated.

vn
i = ∑

p
Spi(xn

p)
mp

mi
vn

p (17)

an
i =

−1
mi

∑
p

Dip(xn
p)σ

n
pFn

p V 0
p (18)

The equation to update velocity at the nodes is then given by

vn+1/2
i = vn

i +
dt
2

an
i (19)

The value of the acceleration at a point xn
p is given by interpolation based upon nodal accelera-

tions is
an

p = ∑
i

Sip(xn
p)a

n
i (20)

The equation for the update of the particle velocity is then

vn+1/2
p = vn

p +
dt
2

an
p (21)

Similarly the equation for the particle position update is

xn+1/2
p = xn

p +
dt
2

vn
p (22)

The velocity gradients at particles are calculated using

∂v
∂x

(xn+1/2
p , tn+1/2) = ∑

i
Dip(x

n+1/2
p )vn+1/2

i (23)

These velocity gradients are used to update the stress and deformation gradients at particles

Fn+1
p = Fn

p +
dt
2

∂v
∂x

(xn+1/2
p , tn+1/2)(F

n
p +Fn+1

p ) (24)

While stress is updated using the appropriate constitutive model and Young’s Modulus, E,

σn+1
p = σn

p +dtE
∂v
∂x

(xn+1/2
p , tn+1/2) (25)
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and the acceleration is updated with these two values which are the updated stresses and defor-
mation gradients at the current grid points, but at the next time level tn+1.

an+1
i =

−1
mi

∑
p

Dip(x
n+1/2
p )σn+1

p Fn+1
p V 0

p (26)

The equation to update velocity at the nodes is then given by

vn+1
i = vn

i +
dt
2
(
an+1

i +an
i
)

(27)

The value of the acceleration at a point xn
p is given by interpolation based upon nodal accelera-

tions:
an+1

p = ∑
i

Sip(x
n+1/2
p )an+1

i (28)

The final equation for the update of the particle velocity is then
vn+1

p = vn
p +

dt
2
(
an+1

p +an
p
)

(29)

while the equation for the particle position update is

xn+1
p = xn

p +
dt
2
(
vn+1

p + vn
p
)

(30)

The conservation of energy analysis below will assume that the updated spatial position are
substituted into equation (26) so that the nodal and particle accelerations and velocities at time
tn+1 reflect the correct values of the spatial mesh points.

4 Local Errors in Stormer-Verlet applied to MPM

In evaluating the local error in a step of the Stormer Verlet method it is important to note that
the method consists of a half step using a forward Euler method. The values computed from
this are substituted into what may be described as a Trapezoidal rule or Midpoint rule, before
a final update that appears like part of a second-order Runge-Kutta Method. Considering the
Forward Euler half step, the first error is that in the nodal velocity equation (19). In this case if
this error is denoted as LEVi its value is given by the standard Forward Euler local error as

LEV n+1/2
i =

dt2

8
dan

i
dt

+h.o.t (31)

=
dt2

8
d
dt

(
−1
mi

∑
p

Dip(x(t))σp(t)Fp(t)V 0
p

)
+h.o.t. (32)

This obviously require differentiability of the coefficients Dip(x(t)), even when particles cross
grid boundaries. Similarly at the particles

LEV n+1/2
p =

dt2

8 ∑
p

d
dt
(Sip(x(t))ai(t))+h.o.t. (33)
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For the particle update the local error as denoted by LExn+1/2
p is given by

LExn+1/2
p =

dt2

8 ∑
p

d
dt
(Sip(x(t))Vi(t))+h.o.t. (34)

Second order accuracy requires that the coefficients Sip(x(t)) are differentiable in time. The
local errors in the updates of the deformation gradient as defined in (24) is similar to that of the
Trapezoidal Rule and is given by

LEFn+1
p =

dt3

12
d2

dt2

(
F

∂v
∂x

(xp(t), t)
)
+h.o.t. (35)

Stress is updated using the appropriate constitutive model and Young’s Modulus, E, at the mid
point and so LEσn+1

p is the stress local time error obtained from the mid-point rule

LEσn+1
p =

Edt3

24
d2

dt2

(
∂v
∂x

(xp(t), t)
)
+h.o.t. (36)

Again the differentiability of the coefficients D is required. The full local errors including those
carried from the velocity calculation at the half step are given by

leFn+1
p = LEFn+1

p +dtF ∑
q

∂
∂xq

(
∂v
∂x

(xq(t), t)
)

LExn+1/2
q +h.o.t. (37)

and
lepσn+1

p = LEσn+1
p +dtE ∑

q

∂
∂xq

(
∂v
∂x

(xq(t), t)
)

LExn+1/2
q +h.o.t. (38)

When updating the velocity and position at the particles the nodal errors are carried by inter-
polation. For the final velocity update at nodes the local error as denoted by LEV n+1

i is given
by

LEV n+1
i =

dt3

12
d2

dt2 (ai(t))+h.o.t. (39)

The full local error in the equation to update velocity at the nodes (29) is then given by

levn+1
i = dtlean+1

i +LEV n+1
i (40)

where the propagated error from the stress and deformation gradients in the acceleration is
(ignoring products of these errors) given by

lean+1
i =

−1
mi

[

∑
p

Dip(x
n+1/2
p +LExn+1/2

p )(σn+1
p +LEσn+1

p )(Fn+1
p +LEFn+1

p )V 0
p

−∑
p

Dn+1/2
ip σn+1

p Fn+1
p V 0

p

]
(41)

lean+1
i ≈ −1

mi

[

∑
p

Dip(x
n+1/2
p )(LEσn+1

p Fn+1
p +LEFn+1

p σn+1
p )

+∑
p

∂Dip(xp(t))
∂xp(t)

LExn+1/2
p Fn+1

p σn+1
p )

]
V 0

p (42)
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The time local error in the value of the acceleration at a point xn
p as defined by (28) is given by

interpolating nodal acceleration errors

lean+1
p = ∑

i
Sip(xn

p)lean+1
i (43)

The equation for the full local time error in the update of the particle velocity as defined by (29)
is then

levn+1
p = dtlean+1

p +LEV n+1
p (44)

where the Trapezoidal rule-like error is given by

LEV n+1
p =

dt3

12 ∑
p

d2

dt2 (Sip(xp(t))ai(t))+h.o.t. (45)

For the particle update the local error, as denoted by LExn+1
p , is given by

LExn+1
p =

dt3

12 ∑
p

d2

dt2 (Sip(xp(t))V n
i ) (46)

The equation for the full local time error in the particle position update as given by (30) is

lexn+1
p = dtlevn+1

p +LExn+1
p (47)

In summary, even after taking into account the propagated errors from the different MPM stages,
the local error appears to be third order, providing that the coefficients of the MPM method
Sip(x(t)) and Dip(x(t)) are sufficiently differentiable.

5 ENERGY CONSERVATION OF MPM

The focus here is on the energy of the particles as this corresponds to the points moved in
computation and solution values that used and displayed. The starting point is, for the moment,
to ignore the body forces and then to use the approach of [1].

5.1 Grid Point Kinetic Energy of MPM

The change in kinetic energy as denoted by ∆KEgrid on the points is given by [1]

∆KEpts =
1
2 ∑

p
mp(vn+1

p )
2 − 1

2 ∑
p

mp(vn
p)

2 (48)

where mp is the mass at particle point xp. Hence the grid Kinetic energy is also given by

∆KEpts =
1
2 ∑

p
mp(vn+1

p − vn
p)(v

n+1
p + vn

p) (49)

This may be written in terms of the acceleration as

∆KEgrid =
dt
4 ∑

p
mp(an+1

p +an
p)(v

n+1
p + vn

p) (50)
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Substituting for the acceleration at a point using (12) gives

∆KEgrid =
dt
4

[

∑
p

mp(vn+1
p + vn

p)

(

∑
i

Sip(x
n+1/2
p )an+1

i +∑
i

Sip(xn
p)a

n
i

)]
(51)

and again for the nodal acceleration using (9) gives

∆KEgrid =
−dt

4 ∑
p
(vn+1

p + vn
p)
[
∑

i
Sip(x

n+1/2
p )

mp

mi
∑
q

Dqi(x
n+1/2
q )σn+1

q Fn+1
q V 0

q

+∑
i

Sip(xn
p)

mp

mi
∑
q

Dqi(xn
q)σ

n
qFn

q V 0
q

]
(52)

Using the extension to define velocities and accelerations at the final particle positions xn+1
p

gives

∆KEgrid =
−dt

4 ∑
p
(vn+1

p + vn
p)
[
∑

i
Sip(xn+1

p )
mp

mi
∑
q

Dqi(xn+1
q )σn+1

q Fn+1
q V 0

q

+∑
i

Sip(xn
p)

mp

mi
∑
q

Dqi(xn
q)σ

n
qFn

q V 0
q

]
(53)

5.2 Strain Energy of MPM

The rate of change of strain energy is given by (28) in [1]. Hence integrating this equation
from tn to tn+1 and using the Trapezoidal rule gives

∆SE =
dt
2 ∑

p

(
σn+1

p Fn+1
p

∂vn+1
p

∂x
+σn

pFn
p

∂vn
p

∂x

)
V0

p +O(dt3
) (54)

This expression is different from that derived by Bardenhagen [1] using piecewise linear ap-
proximations for σ and for F . The error in equation (54) is dt3

12
∂t2

∂t2 (σF ∂Vp
∂x ), while the error in

Bardenhagen’s expression is about a factor of three larger. Substituting for the spatial deriva-
tives in equation (54) gives

∆SE =
dt
2

∑
p

(
σn+1

p Fn+1
p ∑

i
Dip(xn+1

p )∑
q

Sqi(xn+1
q )vn+1

q
mq

mi
+σn

pFn
p ∑

i
Dip(xn

p)∑
q

Sqi(xn
q)v

n
q

mq

mi

)
V0

p (55)

Changing the order of summation gives

∆SE =
dt
2
(
∑
q

vn+1
q ∑

i
Sqi(xn+1

q )
mq

mi
∑
p

Dip(xn+1
p )σn+1

p Fn+1
p V0

p+

∑
q

vn
q ∑

i
Sqi(xn

q)
mq

mi
∑
p

Dip(xn
p)σ

n
pFn

p V0
p
)

(56)

The two symmetry relations mentioned in the introduction are now needed
Sqi(xq(t)) = Siq(xq(t)) (57)
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and
Dqi(xq(t)) = Diq(xq(t)) (58)

to be able to write equation (56) as

∆SE =
dt
2(

∑
q

vn+1
q ∑

i
Siq(xn+1

q )
mq

mi
∑
p

Dpi(xn+1
p )σn+1

p Fn+1
p V0

p +∑
q

vn
q ∑

i
Siq(xn

q)
mq

mi
∑
p

Dpi(xn
p)σ

n
pFn

p V0
p

)

6 Energy Conservation Error of the Stormer Verlet Scheme

Combining the kinetic and strain energy expressions gives the energy conservation error

∆E E err =
−dt

2

(

∑
p

(vn+1
p + vn

p

2
)

[
∑

i
Sip(xn+1

p )
mp

mi
∑
q

Dq(xn+1
q )σn+1

q Fn+1
q V0

q

+∑
i

Sip(xn
p)

mp

mi
∑
q

Dqi(xn
q)σ

n
qFn

q V0
q

]
−

(
∑
q

vn+1
q ∑

i
Siq(xn+1

q )
mq

mi
∑
p

Dpi(xn+1
p )σn+1

p Fn+1
p V0

p +∑
q

vn
q ∑

i
Siq(xn

q)
mq

mi
∑
p

Dpi(xn
p)σ

n
pFn

p V0
p

)

Assuming for the moment that the D and S values are updated to have the final velocities this
may now be simplified to be

∆E E err =
dt
2

((
∑
q
(vn+1

q −
(vn+1

q + vn
q)

2
)∑

i
Siq(xn+1

q )
mq

mi
∑
p

Dpi(xn+1
p )σn+1

p Fn+1
p V0

p

+∑
q
(vn

q −
(vn+1

q + vn
q)

2
)∑

i
Siq(xn

q)
mq

mi
∑
p

Dpi(xn
p)σ

n
pFn

p V0
p

))
(59)

and again to

∆E E err =
dt
2 ∑

q
(
(vn+1

q − vn
q)

2
)

(

∑
i

Siq(xn+1
q )

mq

mi
∑
p

Dpi(xn+1
p )σn+1

p Fn+1
p V0

p −∑
i

Siq(xn
q)

mq

mi
∑
p

Dpi(xn
p)σ

n
pFn

p V0
p

)
(60)

Using (18,20,25) and (28) this may now be written as

∆E E err =
dt
2 ∑

q
(
(vn+1

q − vn
q)

2
)mq

(
an+1

q −an
q
)

(61)

It follows that if all the components of the above equation are differentiable then

∆E E err = O(dt3
) (62)
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6.1 Contribution from the Body Forces

The body forces may be divided by nodal mass to get body accelerations at the nodes, de-
noted here by b̂i. The body accelerations at the particles are denoted by b̂p. It is then routine to
show that the energy error due to the body forces, ∆E E B

err is given by

∆E E B
err =

−dt
2

(

∑
p

(vn+1
p + vn

p

2
)

[
∑

i
Sip(x

n+1/2
p )b̂n+1

i +∑
i

Sip(xn
p)b̂i

]
−∑

q
vn+1

q b̂n+1
q −∑

q
vn

qb̂n
q

)

Using the expression
b̂n

p = ∑
i

Sip(xn
p)b̂

n
i +(b̂n

p −∑
i

Sip(xn
p)b̂

n
i )) (63)

allows the above equation to be written as

∆E E B
err =

dt
2

(
∑
q
(vn+1

q −
(vn+1

q + vn
q)

2
)b̂n+1

q +∑
q
(vn

q −
(vn+1

q + vn
q)

2
)b̂n

q +ERRb

)
(64)

and as

∆E E B
err =

dt
2

(
∑
q
(
(vn+1

q − vn
q)

2
)(b̂n+1

q − b̂n
q)+ERRb

)
(65)

where the term ERRB is given by

ERRB =
dt
2

(
∑
p

(vn+1
q − vn

q)

2
(bn

p −bn+1
p +∑

i
Sn+1

ip bn+1
i −∑

i
Sn

ipbn
i )

)
(66)

Again all these terms are O(dt3) if there is sufficient smoothness in time.

6.2 Energy Conservation Errors of The Stress First/Last Schemes

The above analysis may easily be extended to the stress first and stress last schemes discussed
by [1]. In the case of Stress First this gives, in terms of the particular Stress First accelerations
and velocities [?], the energy conservation error

∆E E f irst
err =

−dt
2 ∑

q
vn

qmq
(
an+1

q −an
q
)

(67)

While in the case of Stress Last the sign is reversed. It follows that both these errors are O(dt2).

7 COMPUTATIONAL EXPERIMENTS

In order to illustrate the above results the model 1D bar problem used by [5] and [3] is used.
The cell width is h = 10−2, the material density is ρ0 = 1 and the time interval is [0,1]. The
initial spatial discretization uses two evenly spaced particles per cell with the spatial domain
being [0,1]. The Young’s modulus values are E = 256 and E = 64. The maximum displacement
is A = 0.015, and A = 0.05 and the time step values used are dt = 10−6,10−5,10−4,10−3. In
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both these cases for the values given of A it should be noted that with the use of the above
parameters particles will cross from one cell to another.

Experiments were undertaken with the MPM GIMP method [9] These experiments were run
with fixed time steps as shown in Table 1 in which the time step, dt is varied appropriately. The
number of grid crossings varies greatly, see [3]. Roughly speaking the case with A = 1.5e− 2
has about half the grid crossings of the case when A = 5.0e−2. The results in Table 1 show for
the maximum over th timesteps of the sum of squares of energy and displacement errors that
the Stormer Verlet method is much better at conserving energy that a standard MPM approach,
as indeed the theoretical results suggest. Moreover the theoretical local second and third order
accuracies also in this case give rise to global second and third order accuracy.

8 CONCLUSIONS

This approach addresses the conservation properties of the MPM method by deriving the
conservation properties of the Stormer Verlet Method and by contrasting it in experiments with
the Stress First and Stress Last methods discussed by [1]. The Stormer Verlet method appears
to have superior energy conserving properties.

Acknowledgements

Chris Gritton is thanked for the use of his code for the model problem used to obtain the results
shown in Section 6. This research was partially sponsored by the Army Research Laboratory
under Cooperative Agreement Number W911NF-12-2-0023. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as representing
the official policies of the Army Research Laboratory or the U.S. Government.

REFERENCES

[1] Bardenhagen S., Energy conservation error in the material point method for solid mechan-
ics, Journal of Computational Physics, 180, 2002, 383-403.

[2] Bardenhagen s. and Kober E., The generalized interpolation material point method, Com-
puter Modeling in Engineering and Science, 5 (2004), 477-495.

[3] Berzins M. Nonlinear stability and time step selection for the MPM method, Computational
Particle Mechanics, Jan, 2018.

[4] Buzi O., Pedroso D.M. and Giacomini A. Caveats on the Implementation of the Generalized
Material Point Method. CMES. vol 31, 2, 85-106, 2008

[5] Gritton C.E. and Berzins M., Improving Accuracy In the MPM Methods by Using a Null
Space Filter, Computational Particle Mechanics 2017, 4 131-142.

[6] Hairer E., Lubich C., and Wanner G., Geometric numerical integration illustrated by the
Stormer-Verlet Method. Acta Numerica 2003, pp.399-450, Cambridge University Press.

[7] Leimkuhler B.and Reich S., Simulating Hamiltonian dynamics. Cambridge Monographs on
Applied and Computational Science. Cambridge University Press 2004.

11

565



Table 1: Maximum Energy and Maximum Displacement Errors over Timesteps

A=1.5e-2 E = 256 A=5e-2 E =256
dt Method Energy Displacement dt Method Energy Displacement

Error Error Error Error
1e-3 GIMP 3.2e-2 5.2e-5 1e-3 GIMP 4.5e-4 2.4e-3

SVGP 7.5e-6 7.8e-5 SVGP 2.4e-4 3.0e-3
1e-4 GIMP 2.3e-4 2.2e-5 1e-4 GIMP 7.0e-3 2.9e-3

SVGP 7.7e-9 2.1e-5 SVGP 1.0e-6 3.0e-3
1e-5 GIMP 2.5e-6 2.3e-5 1e-5 GIMP 1.0e-4 2.8e-3

SVGP 8.5e-12 2.3e-5 SVGP 1.5e-9 2.8e-3
1e-6 GIMP 2.5e-8 2.3e-5 1e-6 GIMP 1.0e-6 2.7e-3

SVGP 9.0e-15 2.3e-5 SVGP 1.6e-12 2.7e-3
A=1.5e-2 E = 64 A=5e-2 E =64

dt Method Energy Displacement dt Method Energy Displacement
Error Error dt Error Error

1e-3 GIMP 1.2e-3 1.8e-5 1.e-3 GIMP 1.9e-2 9.3e-4
SVGP 2.0e-7 2.5e-5 SVGP 7.9e-6 6.3e-4

1e-4 GIMP 1.2e-5 6.2e-6 1e-4 GIMP 2.5e-4 7.0e-4
SVGP 1.7e-10 6.5e-6 SVGP 1.3e-8 6.9e-4

1e-5 GIMP 1.4e-7 7.4e-6 1e-5 GIMP 2.8e-6 7.3e-4
SVGP 2.0e-13 7.4e-6 SVGP 1.8e-11 7.3e-4

1e-6 GIMP 1.5e-9 7.5e-6 1e-6 GIMP 2.9e-8 7.3e-4
SVGP 2.0e-16 7.5e-5 SVGP 2.0e-14 7.0e-4

[8] Love, E and Sulsky, D. An energy consistent material point method for dynamic finite
deformation plasticity. International Journal for Numerical Methods in Engineering. 65.
1608 - 1638, 2006.

[9] Steffen M., Wallstedt P.C., Guilkey J.E. , Kirby R.M. and Berzins M., Examination and
analysis of implementation choices within the Material Point Method (MPM), Computer
Modeling in Engineering & Sciences, 2008, 31, 2, 107-127.

[10] Sulsky D., Chen Z. and Schreyer H.L. A particle method for history-dependent materials.
Computer Methods in Applied Mechanics and Engineering 118 (1994):179-196.

[11] Sulsky D., Zhou S.-J. and Schreyer H.L. Application of a particle-in-cell method to solid
mechanics. Computer Physics Communications 87 (1995):236-252 .

[12] Wallstedt P.C. and Guilkey J.E., An evaluation of explicit time integration schemes for use
with the generalized interpolation material point method. Journal of Computational Physics
2008, 227, 22, 9628-9642.

12

566



CS - Meshless methodsApplication of Mixed Meshless Solution Procedures for Deformation Modeling in Gradient 
Elasticity
B. Jalušić, T. Jarak and J. Sorić

VI International Conference on Particle-based Methods – Fundamentals and Applications 
PARTICLES 2019 

E. Oñate, M. Bischoff, D.R.J. Owen P. Wriggers, , & T. Zohdi (Eds) 
 
 
 

APPLICATION OF MIXED MESHLESS SOLUTION PROCEDURES 
FOR DEFORMATION MODELING IN GRADIENT ELASTICITY 

BORIS JALUŠIĆ¹, TOMISLAV JARAK¹ AND JURICA SORIĆ¹ 

 ¹University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture 
Ivana Lučića 5, 10002 Zagreb 

boris.jalusic@fsb.hr; tomislav.jarak@fsb.hr, jurica.soric@fsb.hr; www.fsb.hr/lnm 
 

Key words: Mixed MLPG methods, fourth-order differential equation, gradient elasticity 

Abstract. The present study is related to the utilization of the mixed Meshless Local Petrov-
Galerkin (MLPG) methods for solving problems in gradient elasticity, which are governed by 
fourth-order differential equations. Here, three different numerical MLPG methods are 
presented, where the continuity requirements for the approximation functions are lowered by 
applying different mixed procedures to improve the numerical accuracy and efficiency. The 
first one is based on the direct solution of the problem, where the primary variable 
(displacement) and its independently chosen higher-order variables are approximated 
separately. The global discretized system of equations consists of appropriate equilibrium and 
compatibility equations written for each node and the solution vector contains all unknown 
independent nodal variables. Such approach demands only the first-order continuity of 
meshless approximation functions. The second and third procedures are both based on the 
displacement-based operator-split approach, where the original gradient elasticity problem is 
solved as two uncoupled problems governed by the second-order differential equations. 
Herein, in both uncoupled problems only primary variable (displacement) and its first 
derivative (strain) are approximated independently. In these procedures the original problem 
is solved by a staggered approach, where the solution of the first uncoupled equation is 
utilized as an input in the second equation. The main difference in the second and third 
procedure is that the one is based on the solution of the local weak forms of the governing 
equations, while the other is based on solution of the strong forms of the same equations. The 
accuracy of the presented computational methods is compared to analytical solutions and 
demonstrated on a one-dimensional benchmark problem of axial bar in gradient elasticity. 
 
1 INTRODUCTION 

The solution of the fourth-order differential equations using the Finite Element Method 
(FEM) results is complicated formulations [1]. When solved using primal FEM, where only 
primary variable (displacement) is approximated, the C1 continuous shape functions are a 
necessity, which results in complexity even for two-dimensional problems [2]. On the other 
hand, if mixed FEM procedures [3] are utilized, the well-known Ladyzhenskaya–Babuška–
Brezzi (LBB) conditions [4] need to be satisfied to ensure the stability of the method, and a 
large number of unknown nodal variables appear. Alternatively, meshless methods have 
attracted attention due to simple manner of construction of high-order continuity 
approximations [5]. Nevertheless, the calculation of high-order meshless approximation 
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functions and their derivatives is still a major drawback due to its high computational costs. 
This can be easily seen in early papers where primal C1 formulations of meshless methods are 
applied for solving thin beams [6] and plates [7]. Furthermore, weak form primal meshless 
methods suffer from a further computational deficiency due to the inaccurate integration of 
the weak forms containing the derivatives of meshless functions [8]. This deficiencies are 
here alleviated to a certain extent by using the mixed MLPG method paradigm [9].  

In this contribution, three different mixed MLPG methods for solving problems in gradient 
elasticity are proposed. For simplicity, here the proposed approaches are presented only for 
one-dimensional elasticity, but they can readily be extended to higher dimensional problems. 
In the first method, the displacement and the higher-order independent variables are 
approximated separately by the same functions. The governing equations are based on the 
local weak form of the original strain gradient equation and the compatibility conditions 
between the approximated variables. In the standard Galerkin weak forms, the Heaviside 
functions are chosen as the test function leading to the mixed Meshless Finite Volume 
Method (mMFVM) [10]. Therein, the use of the mixed stratagem lowers the continuity on 
trial functions and enables the use of lower polynomial bases, which improves numerical 
stability and reduces computational costs. In this formulation, only the values of nodal shape 
functions need to be calculated in order to assemble the nodal stiffness matrix. The second 
and third considered formulations are based on the operator-split solution procedure, where 
the original gradient elasticity fourth-order differential equation is first decomposed in an 
uncoupled two sets of the second-order differential equations [11], for the purpose of 
decreasing the continuity requirement on the trial functions. Hence, two different boundary 
value problems, local (classical) and non-local (gradient), are being solved, where the solution 
of the former problem is used as an input in the latter one. The continuity requirements for 
trial functions are further lowered by separately approximating displacements and their first 
derivatives in each decoupled equation set. In the second procedure which is based on the use 
of the local weak forms of the governing equations the application of the operator-split 
solution scheme [12], utilizing the mixed meshless approach, results in a C0 meshless 
formulation. Hence, within this approach only the values of nodal shape functions need to be 
computed to assemble coefficient matrices. In comparison, in the third procedure where the 
strong forms of the governing equations are being used the calculation of the first-order 
derivatives of shape functions is necessary in order to assemble the coefficient matrices. 

The paper is organized as follows: Section 2 is related to the overview of the governing 
equations for one-dimensional gradient elasticity for three different solution procedures being 
considered. The brief description of the utilized Interpolating Moving Least Squares (IMLS) 
approximation [13] and the derivation of the applied mixed meshless methods are presented in 
Section 3. One numerical example of axial bar subjected to force in gradient elasticity is 
analyzed in Section 4. In the last section, concluding remarks on the presented solution 
procedures are given. 

2 GOVERNING EQUATIONS 

2.1 Mixed Meshless Finite Volume Method (mMFVM) 
In order to present the proposed mixed meshless finite volume procedure, here a general 

governing equation for a homogeneous axial bar in gradient elasticity 
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2 0, in ,Eu l Eu q                        (1) 
is considered. In equation (1), the unknown variable is the displacement u , and the primed 
symbols denote its derivatives, while q denotes the axial continuous load per unit length. In 
order to solve the problem, boundary conditions (BCs) on the outer global boundary   need 
to be satisfied. These BCs can be written as  

1

on , on , , ,

on , , on , , ,
u P P u P u

R Du R Du R Du

u u P t

R R Du u 

          

           
             (2) 

where 1,u   is the first-order displacement gradient, i.e. strain, and P and R are the tractions 
and double tractions, respectively, while , , andu P Du R     denote parts of   with the 
prescribed values for the displacements, strains, tractions and double tractions, respectively. 
These tractions are defined as 

   ,1 , .P t n n n R nT nn                                (3) 
Herein, t and T stand for the “true” tractions and double tractions, while P and R are their 
generalized “mathematical” counterparts emerging from the variational formulation of the 
considered problem. Note that in general the above equality between the “true” and 
generalized loading variables is not valid, see e.g. [3] for a detailed discussion on that subject. 
n denotes the outward unit normal vector on the global boundary, and      stands for 
the true stress, with 1,    is the second-order stress, and   denotes the double stress. Here 
it is important to note that the value of R is completely defined by the value of  , e.g. 

R    . 
In this contribution, a simple constitutive law with only one microstructural parameter l is 

employed. Hence, 1,E E u    is the Cauchy stress, and 2 2
11,l l E u     is the double 

stress, with E as the Young’s modulus. According to the mixed MLPG strategy, the primal 
displacement u and the variables depending on the displacement gradients may all be regarded 
as independent variables and approximated separately [9]. In this contribution, the set of 
variables is chosen so that it simplifies the integrals of the weak form as much as possible, 
while preserving a clear physical overview. These set of chosen independent variables are as 
follows  

2
1 2 3 4, , , .u u u u u u u l Eu                                         (4) 

For simplification the substitutions    1 2 3 4, , , , , ,u u u u u      are employed in the further 
text. By using the set of independent variables (4), the original governing equation (1) may be 
recast into the following system of equations  

 

1 2

2 3
2

1 3 4

1 2 4

0, 0,
0, 0,

, 0, 0,
, 0, 0,

u u u
u u
l Eu u

q Eu u q


 

 
 

     
     

    

       

                             (5) 

where the fourth equation is the equilibrium equation written in terms of stresses, and the first 
three equations represent the compatibility equations between various independent variables. 
The local weak forms of the governing equations (5) may now be written for each node as  
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1 1 2 2 2 3

2
3 3 4 4 2 4

d 0, d 0,

d 0, d 0.

S S

S S

v u u x v u u x

v l Eu u x v Eu u q x

 

 

    

      

 

 
                 (6) 

In all the above equations the Heaviside functions are chosen as the test functions 
, 1,2,3,4iv i  , leading to the mixed meshless finite volume method (mMFVM). 

2.2 Mixed Meshless Finite Volume Operator Split Method (mMFVOSM) 
In the second procedure the original fourth-order governing equation (1) is solved as an 

uncoupled sequence of two differential equations of the second-order. According to [12] the 
original problem is split into classical (local) governing equation 

c 0, in ,Eu q                         (7) 
and the gradient (non-local) governing equation 

2
g g c, in .u l u u                         (8) 

Herein and in the following, the indices c and g denote the variables and objects referring to 
the classical (7) or gradient problem (8), respectively. The problem stated by (7) and (8) can 
be solved in a staggered manner. Firstly the classical problem (7) is solved and thereafter its 
solutions are used as input in the gradient problem (8). Due to the operator-split procedure the 
BCs of the original problem (2) have to be modified [11]. The BCs that need to be satisfied 
when solving (7) and (8) are 

c c c c c11 c c c c c c
2

g g g g g g g g g g g

on , on , ,
on , on , ,

u t u t

u t u t

u u t n t
u u t l u n t

        

        
                 (9) 

where cu  and gu  denote parts with the prescribed values of essential BCs of displacements 

cu  and gu , while ct  and gt  are the parts where natural BCs are applied. These natural BCs 
include prescribed values of classical traction ct  and the second-order traction gt . The local 
weak forms of the governing equations of the classical (7) and gradient problem (8), after the 
integration by parts, are written as 

c c

g g

c c c c c c c

2
g g g g g g g c g g

d d d d ,

d d d d d .

S S u S t

S S S u S t

v Eu x v t x v q x v t x

v u x l v u x v t x v u x v t x

    

     

     

    

   

    
               (10) 

In the considered operator-split procedure, a mixed meshless paradigm as in [9] is utilized 
in the classical problem (the first equation in (10)), and the gradient problem is discretized in 
analogous manner (the second equation in (10)). Accordingly, the classical or gradient 
displacements and their first-order derivatives (strains), cu  and c cu  , or gu  and g gu  , 
respectively, are chosen as the unknown system variables, depending on the equation being 
solved. All the unknown variables are approximated separately using the same approximation 
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functions. Again, in the weak forms in (10) the Heaviside function may be used as the test 
function in order to reduce computational costs and to improve the numerical accuracy and 
stability. It is then obvious that all the natural BCs ( c c con tt t    and ong g gtt t  ) are 
enforced in the weak sense. The unknown displacements and the first order derivatives are 
connected via well-known compatibility equations c c g g,u u    . They can be enforced for 
each node in a weak form over the local subdomain as in mMFVM, see (6), or by means of 
collocation at the nodes, as in [9]. In the latter case, the size of the global equation system can 
be reduced relatively easily by eliminating the values of nodal strains from the equations (10), 
see [8] or [9] for more details. Then, the essential BCs ( c c con uu u   and g g gon uu u  ) 
can be satisfied directly as in FEM. 

2.3 Mixed Meshless Collocation Operator Split Method (mMCOSM) 
The third considered procedure is similar to the second one and is also based on the 

previously described staggered solution scheme. If the standard Galerkin weak forms of the 
equations (7) and (8) are written we obtain the local forms of the classical (local) 

 c c d 0, in ,
S

v Eu q x


                    (11) 

and gradient (non-local) governing equation 

 2
g g g c d 0, in .

S

v u l u u x


                     (12) 

In the above equations the Dirac delta function is chosen as the test function leading to 
meshless collocation method [14]. In that way, the strong for of the governing equations only 
at the collocation nodes are obtained 

   c 0, in ,I IEu x q x                     (13) 

     2
g g c 0, in .I I Iu x l u x u x         (14) 

Solution procedure remains the same as in the second procedure, however there is no need for 
numerical integration. In the utilized solution procedure the mixed meshless collocation 
paradigm [15] is used. Herein, the chosen unknown system variables in the solution procedure 
of the classical problem are cu  and c cu  , while in the gradient problem they are gu  and 

g gu  . In order to connect the approximated variables the compatibility equations 

c c g g,u u     are enforced at the nodes using the collocation method. Furthermore, due to 
the used staggered solution procedure the BCs of the original problem according to [11] have 
to be changed. Thus, the BCs that need to be satisfied are 

c c c c c11 c c c, on , , on ,u tu u t n t                                (15) 
2

g g g g g g g gon , , on .u tu u t n u t            (16) 
The essential BCs are here again enforced directly as in FEM, while the natural BCs are 
discretized using mixed meshless collocation and satisfied at the collocation nodes as in [16]. 

571



Boris Jalušić, Tomislav Jarak, Jurica Sorić 

 6 

3 NUMERICAL IMPLEMENTATION 

3.1 Discretization 
The global domain   in both procedures is discretized by a set of N nodes 
, 1,2,...,Ix I N . Around each node I a local sub-domain I

S  is defined, bounded by a local 
boundary I

S , as displayed in Fig.1.  

 
Figure 1: Discretization model 

The local weak forms of equations (6) or (10) are written for each I
S . All the considered 

unknown variables are approximated using the same meshless approximation scheme. In the 
first procedure (mMFVM), independently chosen variables iu  from (4) are considered as the 
unknown variables in (6). Within the mMFVOSM, in the local problem the classical 
displacement cu  and the classical strain c  are approximated, while in the non-local problem 
gradient displacement gu  and gradient strain g  are utilized as unknown variables. Here, the 
IMLS approximation is used, written as  

     
1

ˆ .
N

J J
J

x x  


                     (17) 

In (17), J  and  ˆ J
  represent the one-dimensional (1D) nodal shape function and the nodal 

value of the approximated variables at node J, respectively. According to [17, 18], the nodal 
shape function  J x  can be written as 

       T 1 .J J
x x x x    p A B                             (18) 

In equation (18) the momentum matrix  xA  is 

       
1

,
n

J J J
J

x W x x x


  TA p p                             (19) 

while the matrix  xB is written as 

          1 1 2 2( ) ( ) ( ) ( ) .J J n nx W x x W x x W x x W x x B p p p p      (20) 

In order to improve the conditioning of the momentum matrix  xA , the complete monomial 
basis p  is written in terms of local normalized coordinates [19]. Within (19) and (20)  JW x  
represents the weight function associated with node J. In this contribution the regularized 
weight function [20] is utilized to ensure the Kronecker delta property,  J I J Ix  . It 
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should be stated that the node I influences the values of the approximated variables only at the 
points within the weight function support domain I

tr .  
In the first considered procedure (mMFVM), by inserting approximations defined by (17) 

into the local weak forms (6), the system consisting of four linear algebraic equations 
obtained for each node. In the operator split procedure, by using the approximations (17) 
within the weak forms (10) only one algebraic equation is obtained for a given node in each of 
the problems considered (local and gradient). For both procedures, a global system of 
equations is achieved by writing the equations in node-by-node principle [18]. 

3.2 Discretized equations of the mMFVM 

Analogously to the formulation in [10], all the test functions iv  in (6) are chosen to be 
Heaviside functions. Hence, a form of mixed Meshless Finite Volume Method (mMFVM) is 
obtained. In order to derive the discretized system of equations for each node, firstly the 
integration by parts and divergence theorem is applied in all weak forms (6). Secondly, the 
discretization of the chosen independent variables using IMLS functions [20] is done leading 
to the final system of equation for the node I 

1

ˆ ,
N

IJ J I
J 

K U R                                         (21) 

where IJK  is the contribution of the node J to the stiffness of the local subdomain of the node 
I, I

S . In (21) ˆ JU  denotes the vector consisting of nodal variables at the node J,  while IR  is 
the nodal force vector at node I. For the chosen independent variables vector IR  is defined as 

T

1 2d d d d d .
I I I I I
u Du R S P

I nu nu T q t
    

 
           
  
    R                 (22) 

In the above equation, n represents the outward unit normal vector to the global boundary, and 
the prescribed values are defined as 

     

1 2
2 2

3

2
2 4

, ,
,

.

u u u u
T n n l E u n l E u

t n n n E u l E u n E u u





  

  

  

       

                    (23) 

Note that the double traction R  is completely defined by the known value of the double stress 
 , according to (3). From (22), it is obvious that in this method all BCs are satisfied in a 
weak form, without the need to introduce special procedures for enforcing BCs, which can be 
a problem in meshless methods [18]. In addition, all non-zero terms of the matrix IJK  are 
integrals over I

S  and the parts of local boundary I
S , and contain only nodal shape 

functions. Therefore, the stiffness matrix can be computed without the need of performing 
costly and inaccurate numerical integration of the derivatives of nodal shape functions. 
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3.3 Discretized equations of the mMFVOSM 

Here again the test functions in both classical cv  and gradient problem gv  are chosen to be 
Heaviside functions in order to obtain a form of the mMFVOSM. According to the mixed 
MLPG strategy the local weak forms (10) are firstly discretized by using the approximation 
(17) for c  and g . Next, to obtain the discretized systems of equations with only the classical 

cu  and gradient gu  displacements as unknowns, the compatibility between the approximated 
strains and displacements is enforced via the collocation method at the nodes of the model. By 
employing the compatibility conditions in the discretized form of the local weak forms (10)
the nodal strains are eliminated. This nodal elimination can be performed efficiently during 
the node-by-node assembly of the global system of equations for both the classical and 
gradient problems. Firstly, the classical problem is assembled and solved, and thereafter, the 
solution of the classical problem is utilized in the assembly of the gradient system of 
equations, where the obtained classical displacements appear as the input term in the gradient 
nodal force vector. The final systems of equations in this procedure can be written as 

c c c

1

g g g

1

ˆ ,

ˆ ,

N

IJ J I
J
N

IJ J I
J













K U R

K U R
                                        (24) 

where c
IJK  and g

IJK  are the contributions of the node J to the coefficient matrices associated 
with the local subdomains of node I in the classical and gradient problem, respectively, while 
the nodal vectors cˆ

JU  and gˆ
JU  consist of unknown classical and gradient displacements. 

Furthermore, the nodal vectors on the right-hand side at node I are equal to  

c

g

c
c

g
c g

d d ,

d d .

I I
S t

S t

I

I

q t

u t

 

 

 
    
  
 

    
  

 

 

R

R

                              (25) 

As can be seen from (25), the natural BCs are satisfied in the weak sense, similar to the first 
procedure. Due to the interpolation property of the meshless approximation functions, in both 
uncoupled problems the essential BCs can be easily imposed, just as in FEM.  

3.4 Discretized equations of the mMCOSM 

Since the Dirac delta function in chosen as the test function in both classical cv  and 
gradient problem gv  the form of mMCOSM is achieved. Here, related to the mixed 
collocation strategy in [16] the strong forms (13) and (14) are firstly discretized utilizing (17) 
for c  and g . Furthermore, in order to obtain the closed solvable systems of equations with 
only the classical cu  and gradient displacements gu  as unknowns, the compatibility between 
the approximated strains and displacements in enforced using the collocation method. As in 
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the second procedure, the classical problem is firstly assembled and solved. The solution of 
the classical problem is then used as input in the subsequent assembly and solution of the 
gradient problem. The obtained final system of equations in this procedure can also be written 
analogous to equations given by (24). In addition, at the nodes where the natural boundary 
conditions are present the system equations are replaced by discretized boundary conditions at 
the node I. The BCs are discretized using mixed collocation and can be written as  

c c c

1

g 2 g g g

1 1

ˆ ,

ˆ .

N

I IJ J
J
N N

I FK KJ J
K J

nE

n



 







 

R B U

R H G U
                            (26) 

From (26) it is evident that all the natural BCs are satisfied in the strong sense, no numerical 
integration is used in the procedure. Therein, the matrices B , H  and G  are compatibility 
matrices consisting of first-order derivatives of shape functions. Since the IMLS 
approximation is used the essential BCs are satisfied by a standard procedure as in FEM. 

4 NUMERICAL EXAMPLE 

4.1 AXIAL BAR 
In order to verify the presented methods a benchmark example of the bar in gradient 

elasticity subjected to the axial load, displayed in Fig. 2, is considered. The problem of 
gradient elasticity is governed by the differential equation (1). The bar has the cross-section 
surface 1A   and the length 1L  . The Young’s modulus is taken as 1E  . The left side of 
the bar is clamped, while on the right side the force 0 1P   is applied, as seen in Fig. 2. For the 
mixed Meshless Finite Volume Method (mMFVM) the utilized BCs are (0) 0u  , 

 2(0) 0 0R l Eu   , ( ) 0.5ou L     and    2
0( )P L Eu L l Eu L P    . Here, P and R 

stand for the generalized tractions and double-tractions, respectively.  

 
Figure 2: Axial bar in gradient elasticity 

In the mMFVOSM and mMCOSM, BCs are modified. Herein, the gradient elasticity problem 
is governed by second-order differential equations (7) and (8). Therein, the BCs of the 
classical problem are defined as c(0) 0u   and  c 0t L P , while the BCs of the gradient 
problem are g(0) 0u   and AN

g g( )u L u . Herein, the value of the gradient displacement at the 
right-hand-side of the bar, at ,x L  is dependent on the parameter l  and is calculated from 
the analytical solution [21]. Numerical calculations using presented mixed meshless 
procedures have been done. For the approximation of the unknown variables only the first-
order basis in the IMLS functions is used. For computing purposes, discretizations using 
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uniformly distributed nodes are applied. The influence of the parameter l on the deformation 
responses of the bar has been investigated and the obtained distributions for the displacement 
and strain are compared with the analytical solutions [21] as portrayed in Fig. 3 and Fig. 4.  
 

 
 

Figure 3: Axial bar - distribution of displacement 

 

Figure 4: Axial bar - distribution of strain 

As evident, the obtained results are accurate and analytical distributions are captured correctly 
using all the presented mixed meshless procedures. Thus, these methods show considerable 
potential for applications in high dimensional structures, where gradient elasticity is a 
necessity. Some of these phaenomena include the modeling of size effects in structures and 
capturing accurate stress distributions near the crack tip in fracture problems. 
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5 CONCLUSION 
Three different meshless methods based on the mixed MLPG stratagem for solving 

gradient elasticity have been proposed and applied for solving simple problems in 1D gradient 
elasticity. In first two mixed meshless methods, the Heaviside function is chosen as the test 
function leading to the forms of the mixed Meshless Finite Volume Method (mMFVM). In 
the third method the Dirac delta function is utilized as the test function leading to a mixed 
meshless collocation method. The first method (mMFVM) is based on the modification of the 
original fourth-order governing equation of the gradient elastic bar by employing a mixed 
approach, where displacements and the higher-order gradients are approximated separately, 
while the second (mMFVOSM) and third (mMCOSM) method are based on the application of 
the operator split procedure and a staggered solution of the original problem. For the 
approximation of all unknown field variables IMLS is utilized. In mMFVM, all BCs are 
satisfied in the weak sense, while in mMFVOSM a reduction of the equation system is 
performed, and the essential BCs are imposed directly, as in FEM. In the mMCOSM all the 
BCs are enforced in the strong form at the collocation nodes. The presented mixed meshless 
methods have been tested on one benchmark example dealing with the axially loaded bar with 
gradient elasticity and it has been shown that all methods yield very accurate responses even 
for the first-order meshless approximation functions. The obtained results imply that the 
proposed mixed MLPG strategies have considerable potential for solving engineering 
problems governed by high-order differential equations. It is to note that the application of the 
mixed MLPG strategy lowers the continuity requirements on the trial functions, which in 
general reduces the computational time and increases numerical robustness. Thus, in future 
research the presented methods will be extended and utilized for solving gradient elasticity 
problems in higher-dimensions. 
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Abstract. Fragmenton-based lagrangian vortex methods showed their effectiveness for
inviscid fluid dynamics problems. However the attempts to extend these methods to
viscous flows simulation meet difficulties resulting from nonfulfillment of the Helmholtz
theorems of vorticity motion. Direct implementation of the viscosity models used in
particle-based vortex methods leads to fragmenton ”splitting” problem and accumulation
of numerical errors. In this paper we discuss in details the essence of splitting problem
on the examples of a classical Particle Strength Exchange (PSE) method and a hybrid
DVM-PSE scheme, adapted to a fragmenton-based vortex method.

1 INTRODUCTION

Simulation of viscous fluid with vortex methods has been intensively investigated over
the last 40 years. Wide range of approaches has been created to account for the diffusion
term in the vorticity evolution equation, starting from the stochastic ”random-walk”
model of Chorin, particle strength exchange (PSE) [1], diffusion velocity method (DVM)
[2], hybrid DVM-PSE schemes [3] and ending with hybrid particle-mesh methods, where
the diffusion term is discretized on the mesh [4].

In all mentioned approaches vorticity is discretized over pointwise singular or regular-
ized vortex particles (vortons), somehow distributed in the flow [5]. From the physical
point of view this sight is not ”natural”. Vorticity field is solenoidal and it is best rep-
resented with the notion of vortex tubes, which intensity must be conserved in any flow,
both viscous and inviscid. Vortex particles are mostly mathematical objects than physical
ones and do not constitute a solenoidal field. This may lead to accumulation of approxi-
mation errors during the simulation. Though using hybrid particle-mesh approaches one
can resolve this issue, the method itself stops being pure lagrangian anymore.

Instead of pointwise particles we consider vortex line fragments (fragmentons) [6]. They
can be used either independently or connected into close filaments, making fragmentons
also the basis of vortex filament method [7, 8]. Fragmenton-based vortex methods showed
to be more effective in some specific inviscid cases in terms of the amount of vortex

1
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elements needed for a stable simulation [9]. Pure lagrangian vortex fragmenton methods
also showed their effectiveness for the inviscid fluid-structure interaction (FSI) problems
[10], where the use of a mesh is undesirable or leads to extensive computational costs.

The good performance of fragmenton-based methods for the simulation of inviscid
flows motivates to expand them also to viscous flows. However the direct application
of the particle-based viscosity approaches (like PSE or DVM-PSE) to the fragmenton-
based methods leads to the problem of ”vorticity splitting”. This problem appears due
to nonfulfilment of the Helmholtz theorems that state that the material lines, initially
chosen as vortex lines, stay vortex lines during their evolution in an inviscid flow, that is
generally not true for the viscous flows.

It the following sections we give a brief review of the fragmenton vortex method and
discuss the implementation of the classical PSE model, DVM and the hybrid DVM-PSE
approach suggested by Mycek et al. [3], for the fragmenton-based vortex methods. We
explain in detail the essence of the splitting problem and show that the both viscosity
concepts lead to excessive splitting in the test problem of vortex oval evolution in viscous
fluid.

2 FRAGMENTON-BASED VORTEX METHODS

Consider vorticity evolution equation for a tree-dimensional incompressible viscous fluid
without bodies and frontiers

∂ω

∂t
+ (V · ∇)ω = (ω · ∇)V + ν∆ω, (1)

where V = V (x, t), ω = ∇× V are velocity and vorticity fields ν – kinematic viscosity.
The classical vortex methods suggest approximate the continuous vorticity field ω with

a set of pointwise vortex particles (vortons):

ω(x, t) ≈
N∑

k=1

αk(t)δ(x− xk),

where δ is the Dirac delta function and αk is the intensity of k-th vorton, which can be
treated as the amount of vorticity concentrated in a point with the position xk.

Fragmenton-based vortex methods approximate the vorticity field with a set of frag-
ments of vortex lines [6]. Each fragment (fragmenton) can be mathematically interpreted
as integrals of delta function over the material vector 2hk (fig. 1):

ω(x, t) ≈
N∑

k=1

γk

∫ 1

−1

δ
(
x− (xk + shk)

)
ds, (2)

where γk = γkhk, γk is the k-th fragmenton scalar intensity, which can be treated as
circulation of a vortex filament; xk is fragmenton’s center position (marker). It should be
emphasized that γk must stay collinear to material vector hk in the simulation. Violating
this requirement may lead to stability problems caused by breakdown of the solenoidity
of the vorticity field and accumulation of numerical errors.

2
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Figure 1: Fragmenton model

Velocity field, induced with the set of fragmentons (2), can be recovered by integrating
(2) with the Biot-Savart kernel, that gives [6]

V (x, t) ≈
N∑

k=1

γk
4π

hk × s0
|hk × s0|2

[(
s2
|s2|

− s1
|s1|

)
· hk

]
,

which is also only true when γk and hk are collinear. This formula gives singularities
upon reaching the axis of a fragmenton and can be regularized as described in [6].

For the case of inviscid fluid (ν = 0) substitution of (2) into the vorticity evolution
equation (1) gives the system of the ODEs for the fragmenton parameters: xk, hk and
γk: 




dxk

dt
= V (xk),

dhk

dt
= hk · ∇V (xk),

dγk

dt
= γk · ∇V (xk).

(3)

The last equation of (3) has the same form as the equation for hk and therefore can
equivalently be written as dγk

dt
= 0, and γk = γkhk.

Analysis of (3) shows that fragmenton markers xk follow the velocity field V . Material
vector hk and intensity vector γk change their length and direction with the velocity
gradient tensor ∇V , while the fragmenton intensities γk stay constant in time. This
behavior is aligned with the Helmholtz theorems of motion of vortex filaments in inviscid
fluid, that state that

- vortex filaments conserve their strength in time;

- vortex filaments move and deform with the material lines that carry them.

The latter statement in terms of fragmenton method means that γk and hk always stay
collinear in time, which is particularly important to correctly reconstitute velocity field.
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Nonzero viscosity ν results in a nonzero diffusion term in the vorticity evolution equa-
tion (1) and in nonfulfilment of the Helmholtz theorems. Physically it means that vortex
filaments generally do not move and deform as the material lines, that initially carried
them. This fact does not cause any problem for the hybrid particle-mesh methods, where
the velocity field is found as the solution of Poisson equation [4]. However for pure la-
grangian fragmenton-based methods it becomes a challenge in as much as γk, which we
associate with vorticity vector, and hk, which we associate with material vector, should
stay collinear.

In what follows we call splitting the fact of misalignment of the vectors γk and hk that
potentially may occur in the simulations.

3 VISCOSITY MODELS

The variety of viscosity models created for particle-based vortex methods are all re-
ferred to the means to simplify or approximate the diffusion term ν∆ω [5, 3]. Direct
implementation of these approaches to the fragmenton-based methods results in modifi-
cation of the evolution equations for hk and γk of (3) that may cause splitting, as these
equations loose their symmetrical form.

Here we discuss three approaches to account for the diffusion term in particle-based
vortex methods, applying them for fragmenton-based methods: Particle Strength Ex-
change, Diffusion Velocity Method and hybrid DVM-PSE scheme proposed by Mycek et
al. [3].

3.1 Particle strength exchange

The PSE method was suggested by Degond & Mas-Gallic in [1] who gave its profound
analysis in application to numerical solution of advection-diffusion equations with particle
methods. The idea of the PSE method is approximation of the diffusion term ν∆ω with
the integral operator of the form

Qε(ω) =
ν

ε2

∫

R3

ηε(x− y)(ω(y, t)− ω(x, t))dy, (4)

where ηε(x) =
1
ε3
η
(
x
ε

)
; η(x) ∈ L1(R3) is kernel function that must satisfy several moment

conditions in order to make Qε(ω) converge towards ν∆ω in certain norms when ε → 0.
Details on the kernel function choice can be found in [1].

Replacing ν∆ω with the integral operator (4) and applying the fragmenton approxi-
mation (see [11] for details) we get the following set of the ODEs





dxk

dt
= V (xk),

dhk

dt
= hk · ∇V (xk),

dγk

dt
= γk · ∇V (xk) +

ν

ε2

N∑

q=1

Gkq(γqSk − γkSq),

(5)
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where Sk is the cross-section area of the vortex tube, associated to the k-th fragmenton at
initial time; Sk = σk/|2hk|, where σk is fragmenton’s volume that stays constant in time;
Gkq is the exchange coefficient between the k-th and q-th fragmentons, which depends on
their length and mutual orientation:

Gkq =

∫ 1

−1

∫ 1

−1

ηε(xk + τhk − xq − shq)dsdτ.

Comparison of (5) and (3) shows that the equations for xk and hk stay without change
comparing to the equations for xk and hk for ideal fluid. The equation for γk obtained
the additional term, responsible for the exchange of intensities between k-th and q-th
fragmentons. In two-dimensional problems this additional term causes no splitting as hk

and γk have the only nonzero component in the direction normal to the symmetry plane,
thus they always stay collinear. However for an arbitrary three-dimensional flow this is
not true.

3.2 Diffusion velocity method

The general idea of the diffusion velocity method is to find such vector field U that
can be considered as the ”virtual” velocity field that transfers vortex tubes in a viscous
fluid in a way that the Helmholtz theorems are valid. According to the Fridman theorem
[12] such U must satisfy the equation

∂ω

∂t
+ (U · ∇)ω − (ω · ∇)U + ω∇ ·U = 0 (6)

or, which is the same,

∂ω

∂t
+∇× (ω ×U ) = 0.

In this view there arise two principle questions:

1. Does such vector field U exist for an arbitrary three-dimensional viscous flow?

2. If yes, are there any practical ways to find this field? In that case the splitting
problem would be totally fixed.

Markov and Sizykh proved in [13] that for any elementary fragment of a vortex tube
there always exist such field U , called Fridman velocity. Moreover, this field is not unique
and is given by

U = V +
ω × (−ν∇× ω −∇f +∇W )

ω2
+ γω,

where W is arbitrary scalar field, constant along vortex filaments, γ – arbitrary scalar
field, f is any scalar function satisfying the condition

ω · ∇f = −νω · (∇× ω). (7)
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Determination of function f from the condition (7) requires integration along the vortex
filaments, thus making the numerical algorithm of search of U very impractical. Another
contribution in the problem of the practical ways to find Fridman velocity is given in [14].
It is demonstrated on several examples of swirling flows, that there exist such flows for
which there are no local expressions of Fridman velocity U , i.e. at any point U cannot
be expressed through the flow parameters in the infinitesimal neighborhood of this point.
This result, conceivably, concludes the discussions and gives the negative answer on the
second posed question for an arbitrary tree-dimensional viscous flow.

For two-dimensional or axisymmetrical flows without swirling determination of Frid-
man velocity does not require integration along the vortex filaments. For the 2D-flows it
reduces to a simple expression

U = V + Vd,

where

Vd = −ν
∇|ω|
ω2

is traditionally called diffusion velocity.
Therefore for two-dimensional viscous flows, vorticity evolution equation (1) can be

reformulated in terms of diffusion velocity Vd as follows

∂ω

∂t
+ ((V + Vd) · ∇)ω = 0. (8)

The fragmenton approximation of (8) gives the following system of ODEs:




dxk

dt
= (V + Vd)(xk),

dhk

dt
= 0,

dγk

dt
= 0.

Here fragmenton markers xk follow the Fridman velocity field V + Vd, while their
intensities γ stay constant unlike in the PSE approach, where they constantly change.
The DVM became primary viscosity model used in 2D vortex methods like VVD [15, 16]
and 2D-codes based on it [17].

3.3 Hybrid DVM-PSE scheme

Although the idea of diffusion velocity is not directly applicable for an arbitrary 3D-
flow, one can use it in a hybrid approach where in some sense ”dominating” part of the
diffusion term is simulated with the DVM, while the resting part is treated with the PSE
method. This decomposition can be done in different ways.

Mycek et al. [3] suggested decompose the diffusion tensor ν∇ω into convective tensor
−Vd ⊗ ω and residual tensor B̂:

6
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ν∇ω = −Vd ⊗ ω + B̂. (9)

Substitution of (9) into (1) gives

∂ω

∂t
+∇ · ((V + Vd)⊗ ω) = (ω · ∇)V +∇ · B̂

or

∂ω

∂t
+ ((V + Vd) · ∇)ω = (ω · ∇)V − ω (∇ · (V + Vd)) +∇ · B̂. (10)

Vd is chosen in a way to minimize the components of B̂ in a least-squares manner (see
[3] for details) and is found to be

Vd = −ν
∇|ω|
|ω|

,

and the tensor B̂ takes the form convenient to be approximated with the PSE integral
operator:

B̂ = ν|ω|
(
∇ ω

|ω|

)
.

Though the authors of [3] call Vd diffusion velocity, strictly speaking, it is unfortunate
naming, because vorticity deformation term (ω · ∇)V in (10) does not have additional
Vd that is required according to the Fridman’s theorem (6). For the particle-based vortex
methods this is not a principle problem, since the main aim of such decomposition is
transformation of the diffusion term ν∆ω in a convenient way and not the treatment of
the vorticity splitting problem. Applying fragmenton approximation to (10) we get the
following ODE system





dxk

dt
= (V + Vd)(xk),

dhk

dt
= hk · ∇(V + Vd)(xk),

dσk

dt
= σk∇ · (V + Vd)(xk),

dγk

dt
= γk · ∇V (xk) +

ν

ε2

N∑

q=1

Gkq
|γq|Sk + |γk|Sq

2

[
γq

|γq|
− γk

|γk|

]
,

(11)

where σk = |2hk|Sk is the k-th fragmenton’s volume.
As for the PSE scheme, the equations for hk and γk in (11) loose their symmetrical

form and cause splitting. It should be also emphasized that hk and γk have different
deformation tensors: ∇(V + Vd) and ∇V respectively.
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Figure 2: Three fragmenton models and splitting problem

4 ”SPLITTING” PROBLEM AND SIMULATION EXAMPLES

The splitting problem that occurs with the PSE and DVM-PSE viscosity models,
adapted to the fragmenton-based vortex methods, can be exposed on a simple model.
Consider three fragmentons, connected to each other in three different configurations
(fig. 2). Every configuration may come up in a real simulation with the vortex filament
method, where these fragmentons form a part of a filament. The first case on fig. 2 is
associated with the plane-parallel motion (rectilinear vortex tube), the second one — with
the axisymmetrical motion (vortex ring) and the third case can be associated with the
more general case of 3D-motion, where a rectilinear part merges into a curvilinear part
(p.e. a part of a vortex oval).

Let us examine each of suggested configurations in terms of splitting of the vectors hk

and γk in the PSE and DVM-PSE models. For every fragmenton configuration on fig. 2
we consider |hk| = |hq1| = |hq2| = h, |γk| = |γq1| = |γq2| = γ, Sk = Sq1 = Sq2 = S and
Gkq1 = Gkq2 = G1 so that the terms responsible for splitting for k-th fragmenton in the
PSE (5) and DVM-PSE (11) models simplify as follows:

RP =
∑

q={q1,q2}

Gkq(γqSk − γkSq) = GS(γq1 − 2γk + γq2),

RDP =
∑

q={q1,q2}

Gkq
|γq|Sk + |γk|Sq

2

[
γq

|γq|
− γk

|γk|

]
= GS(γq1 − 2γk + γq2).

As we see, for these particular fragmenton configurations both PSE and DVM-PSE
models give the same result for the term R = RP = RDP , responsible for splitting of the
central k-th fragmenton.

Analyzing each case separately we see that for the first configuration splitting does not
occur as long as γq1−2γk+γq2 = 0 for the k-th fragmenton. For the second configuration
on fig. 2 R is nonzero, but it is collinear to γk and causes decrease of |γk| without change
of its direction (i.e. no splitting). For the third case R tends to change not only the length
of γk, but also its orientation, causing splitting.

The first and the second layouts on fig. 2 are the simplified prototypes of plane-parallel
and axisymmetrical motions for which both PSE and DVM-PSE models work well, cause
no splitting and can be used without problems [18]. But for more general 3D-motion the
possible influence of splitting should be analyzed in more proper simulations.

1Strictly speaking, for the third case Gkq1 �= Gkq2, but we can consider here Gkq1 ≈ Gkq2 without loss

of generality
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Figure 3: Vortex oval Figure 4: Splitting with the

PSE model

Figure 5: Splitting with the

DVM-PSE model

Consider vortex oval with length to width ratio L/D = 3 with D = 2 (fig. 3). Oval
consists in 9 filaments, each divided into 100 fragmentons. Filaments form the oval’s
core of radius 0.1 and have same intensity so that the oval’s overall circulation Γ0 = 1.
Viscosity ν = 0.01 and Reynolds number is Re = Γ0/ν = 100, PSE cut-off parameter
ε = 0.1. The problem was simulated with the PSE and DVM-PSE viscosity models,
using explicit first order Euler scheme for integrating ODEs (5) and (11) with time step
∆t = 0.001 up to T = 1.

At the time T the oval is only on its initial development stage where the circular parts
begin rolling over out of the oval’s plane, but the fragmentons’ splitting is already clearly
seen for both models (figures 4 and 5). Fragmentons, that initially formed continuous
filaments are now completely separated, though material vectors hk still form closed
structures. This leads to incorrect velocity reconstitution and to imminent breakdown
during the following simulation of the oval due to accumulated numerical errors.

5 CONCLUSIONS

Fragmenton-based vortex methods showed to be promising in the simulations of inviscid
flows, especially when the use of mesh is inconvenient. Intentions to extend these methods
to viscous fluid simulation encouraged the development and adaptation of viscosity models
from existing particle-based approaches to the fragmenton-based ones.

The main principal difficulty has physical reasoning that consists in nonfulfillment of
the Helmholtz laws for viscous fluid with vorticity, which are crucial for fragmenton-based
methods. Every existing viscosity model aimed onto the approximation and discretization
between the particles of the diffusion term ν∆ω, faces the problem of misalignment of

9
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vorticity vector and material vector that we call ”splitting”.
Numerical analysis and simulation examples of a vortex oval demonstrate the splitting

problem for the classical PSE approach and the DVM-PSE scheme proposed by Mycek et
al. Though 3D diffusion velocity could be a solution for the stated problem, its search is an
ill-posed problem and appears to be very impractical for the fragmenton-based methods.

It should also be mentioned about the problems with the general use of PSE-approximation
with fragmenton-based methods, as PSE technics needs particles (or fragmentons) to be
positioned uniformly, i.e. on the mesh, to maintain approximation accuracy. It is rather
difficult to achieve with fragmentons, as they must always form closed structures in a
flow.

One should admit that accurate simulation of viscous flow without any assumptions
with the fragmenton-based vortex methods seems to be improbable. However, in the
sight of the advantageous use of these methods for complicated inviscid FSI problems [10],
efforts should be made to the search and elaboration of hybrid DVM-PSE viscosity models
that minimize splitting. The second way is to analyze the ”no-splitting” assumption,
where splitting is suppressed. In this case the DVM part would play the dominating role,
and it should be chosen wisely. These problems are the questions of the following authors’
research.
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ABSTRACT 

In this study, the flow features of vortex shedding from a circular cylinder forced-oscillating in the 
in-line direction were investigated by use of numerical simulation (vortex method) at the Reynolds 
number Re=500, with varied amplitude ratio and varied frequency ratio. The numerical experiment 
was performed at the two-dimensional calculation for incompressible and viscous flow. The circular 
cylinder was divided into 40 panels which distributed the vortices. Every calculation continued to 
more than non-dimensional time T = 200. The main parameters of numerical experiment were the 
oscillation amplitude ratio 2a/d (a: half-amplitude of cylinder motion, d: cylinder diameter), the 
oscillation frequency ratio f/fK (f: cylinder oscillation frequency, fK: natural Karman vortex shedding 
frequency). The amplitude ratio is three kinds, is 0.0, 0.25 and 0.5, respectively.  The oscillation 
frequency ratio is 15 kinds, is from 0.2 to 3.0 every 0.2 steps. As a result of calculations, two typical 
flow patterns of the lock-in were shown, and it was confirmed that the calculated flow pattern were 
reasonable agreement with previous experiment results. The fluid force act on the oscillating cylinder 
was investigated. It was clarified that the amplitude of the lift coefficient was larger than the 
amplitude of the drag coefficient in the lock-in of alternate vortex shedding, and the amplitude of the 
drag coefficient was larger than the amplitude of the lift coefficient in the lock-in of simultaneous 
vortex shedding.  

 

INTRODUCTION 

If a circular cylinder is placed into a steady flow without a time change, vorttices will be discharged 
alternately. And a  Karman vortex street is formed behind the circular cylinder. The Karman vortex is 
a very stable vortex street, and the vortex corresponding to the flow velocity is formed. That can also 
be said to be a natural synchronous phenomenon. Many of flows which exist really are what is called 
unsteady flow to which speed is changed in time. When unsteady, it is thinkable that the 
characteristics of the phenomenon differ compared with the case of being steady. It is industrially 
important to grasp the fluid force characteristic and the vortex shedding characteristic of the object 
put on the unsteady flow field. However, in order to realize an unsteady flow with sufficient accuracy, 
serious troubles are required in a laboratory. In order to experiment simple, in the laboratory, the 
object which exercises in the direction of flow was installed into the steady flow, so the relative 
unsteady flow is made. If the circular cylinder which is oscillating in the flow is placed, the vortex 
shedding which synchronized with circular cylinder oscillating frequency will be observed. This 
phenomenon was called "lock-in phenomenon" and, as for this "interference of the flow velocity 
change", research has been done by many researchers [1-4]. It is known that the flow pattern in the 
lock in state is divided roughly into the "alternate vortex shedding type" and the "simultaneous vortex 
shedding type". Although there is study which showed the flow pattern at the time of the lock-in, 
since the experiment is difficult, there is scarcely much study on the fluid force of acting on the body 
at the time of the lock-in. In order to study the phenomenon, the study which investigates fluid force 
is interesting, and important. Although the experimental study is difficult therefore, the numerical 
simulation using a computer is expected. 

Since the vortex method which is the Lagrange type flow analyzing method does not need a 
calculation lattice unlike the region type analyzing method such as finite difference method and finite 
element method, analysis is easily possible also for the flow of the around of complicated shape. 
Moreover, since it is the technique of analyzing a flow by following the behaviour of the turbulent 
flow vortex more than the minimum vortex element size directly in Lagrange, it is possible to 
reproduce exactly the flow accompanied by large-scale separation and a large-scale reverse flow as 
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Fig. 1 Coordinate system and definition of symbols (O: the coordinate origin). 

well as the analysis of an unsteady flow. So, it is a technique suitable for cause investigation of 
phenomena made into a problem in engineering, such as a flow induced vibration excited by the flow.  
In this study, about the vortex shedding and the fluid force in the case from the circular cylinder 
which is oscillating in the direction of a flow, a systematic numerical simulation was performed and 
the time history of fluid force and flow pattern were investigated. 

 

NUMERICAL CALCULATION 

The numerical experiment apparatus was consisted of simulation software and a notebook type 
computer (NEC; LaVie LC958/T) as calculation hardware which are on the market. The software 
which named ‘UzuCrise 2D ver.1.1.3 rev.H (College Master Hands Inc., 2006)’ is used. This 
software used the vortex method which is based on the Lagrangian analysis. Since the vortex method 
is the grid-less method, it is suitable for the unsteady problem of such moving boundary. The vortex 
method is a direct viscid-inviscid interaction scheme, and the emanation of velocity shear layers due 
to boundary layer separation is represented by introduction of discrete vortices with viscous core step 
by step of time. In the present study, the flow was assumed incompressible and two-dimensional flow 
field. The configuration of circular cylinder was represented 40 vortex panels using a boundary 
element method. The separating shear layers were represented the discreet vortices, which were 
introduced at the separation points. The details of calculation technique of vortex method and 
accuracy of calculation are shown in Kamemoto [5, 6]. 

In the present study, the calculations were performed at the two-dimensional flow field for 
incompressible and viscous flow. A cylinder diameter d and main flow velocity U were determined 
as 16 mm and 0.04 m/s so that it could compare with the previous experimental result [7]. Since 
water is assumed as for test fluid, Reynolds number Re becomes 500. The configuration of circular 
cylinder was represented 40 vortex panels using a boundary element method. Its vortex panels are 
provided equally. Every calculation continued to until non-dimensional time T  = 200. 

The main parameters of numerical experiment were the oscillation amplitude ratio 2a/d (a: half-
amplitude of cylinder motion, d: cylinder diameter), the oscillation frequency ratio f/fK (f: cylinder 
oscillation frequency, fK: natural Karman vortex shedding frequency). The oscillation amplitude ratio 
is three kinds, is 0.0, 0.25 and 0.5, respectively.  Here, when the oscillating amplitude ratio is "0.0", it 
means circular cylinder stationary. The oscillation frequency ratio is 15 kinds, is from 0.2 to 3.0 
every 0.2 steps.  

The calculation experiment was performed in the following procedures. The case of the stationary 
circular cylinder is carried out first, and the case where the circular cylinder is oscillating in the 
direction of a flow after that is carried out. In order to grasp the flow field on the computer, and to 
determine for the vortex shedding frequency from the stationary single circular cylinder, it needs to 
be calculated in the case of the stationary circular cylinder. Secondly, the oscillating amplitude ratio 
is defined, the oscillating frequency ratio is varied, and systematic numerical computation is 
performed. If a series of numerical computation finishes, the oscillating amplitude ratio will be 
defined again and the numerical computation will be performed similarly. The arrangement of 
circular cylinders is shown in Fig. 1. 

a a 

d

O

Flow 

x 

y 
Oscillating direction 
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RESULTS AND DISCUSSIONS 

In order to verify the calculation software to be used, the experimental result and calculation result of 
a stationary circular cylinder were compared. The time history of the fluid force (a drag component 
and lift component) of acting on a stationary circular cylinder is shown in Fig. 2. Figure 2 (a) is a 
time history from the non-dimension time T = 0 to T = 200, and Fig. 2 (b) expands the section from 
the non-dimension time T = 150 to T = 200. The drag oscillation lurking in periodic oscillation and 
lift oscillation of the lift produced by formation of a Karman vortex street is expressed. The 
relationship whose oscillation frequency of the drag is twice the oscillation frequency of the lift is 
shown. The following results were obtained after non-dimension time T = 150. Here, the diagram 
which defines the quantity about the fluid force is shown in Fig. 3. The average value of drag 
coefficient was CDAVE = 1.08 and the root mean square value of amplitude of drag coefficient was ACD 
= 0.15. The average value of lift coefficient was CLAVE = 0.00 and the route mean square value of 
amplitude of lift coefficient was ACL = 0.73. The average Strouhal number for which it determined 
from the lift oscillating period T was StAVE = 0.26. The Strouhal number is defined by St = fd/U = 
d/�tU = 1/T. When the Reynolds number is Re = 500, it is known that the experimental value of 
Strouhal number St is about 0.2. Although it seems that this calculation result is highly calculated as 
compared with an experimental result, it seems that this calculation has obtained the comparatively 
good calculation result since a two dimensional calculation result becomes higher than an 
experimental result about 30 to 40%. When the Karman vortex shedding frequency fK was calculated 
from the average value of Strouhal number, the Karman vortex shedding frequency was fK = 0.65 Hz. 
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Fig. 2 Time histories of drag and lift coefficients,  

(blue and red lines show drag and lift coefficients, respectivery). 
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Fig. 3 The definition of the magnitude of the drag coefficient or the lift coefficient, and the 

definition of the oscillating period. 
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When forced oscillation of the circular cylinder is carried out, it is one of the most interesting things 
of this study to investigate how fluid force changes. Before performing a systematic numerical 
experiment, the numerical simulation was performed on the oscillating conditions which the alternate 
vortex shedding lock-in and the simultaneous vortex shedding lock-in generate. One example of the 
flow patterns obtained by calculation is shown in Fig. 4. Here, the flow visualization photographs [7] 
in the similar experimental condition are shown for comparison. Figure 4(a) is simulating the aspect 
of alternate vortex shedding lock-in. The direction of vortex shedding changes and an aspect that the 
vortex shedding is performed alternately is shown. An aspect that the vortex discharged from the 
circular cylinder constitutes a vortex pair which differs in a rotatory direction, respectively, and the 
vortex street of mushroom shape like the section of a mushroom is formed is expressed well. Figure 
4(b) is simulating the aspect of a simultaneous vortex shedding lock-in. An aspect that the vortex of 
mushroom shape is simultaneously discharged from cylinder both sides, and the characteristic 
aspects of cylinder wake are shown. Since the characteristic flow patterns by the lock-in are 
expressed well, the high reliability and the usefulness of this calculation technique are found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is the greatest interest matter of this study to investigate change of fluid force. The time histories of 
the drag coefficient CD and the lift coefficient CL in case oscillating amplitude ratios a/d are 0.25 and 
0.5 are shown in Fig. 5 and Fig. 6, respectively. As for the time history, the range by the non-
dimension time 50-100 is shown, a red line shows the lift coefficient, a blue line shows the drag 
coefficient, and a black line shows the motion of circular cylinder, respectively. It is found with the 
increase in the oscillation frequency ratio that change is looked at by the magnitude of the amplitude 
of the drag coefficient and the magnitude of the amplitude of the lift coefficient. And if the circular 
cylinder oscillating amplitude ratio becomes large, it will be found that the tendency becomes 
remarkable. When the oscillation frequency ratio is small, it can be seen that the amplitude of lift 
coefficient is larger than the amplitude of drag coefficient. On the other hand, when the oscillation 
frequency ratio is large, the amplitude of drag coefficient is seen be larger than the amplitude of lift 
coefficient. Here, the "lock-in" is that the vortex shedding frequency from the circular cylinder 
synchronizes with circular cylinder oscillation frequency. So, it takes notice of the relationship 
between the waveform of circular cylinder oscillation, the waveform of a drag coefficient, and the 

 

 
 

(a)                                                                            (b) 
 
Fig. 4 Two kinds of lock-in flow patterns, (a) shows an alternate vortex shedding type flow pattern 

and (b) shows the simultaneous vortex shedding type flow pattern, respectively. 
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(a)                                                (f)                                                 (k) 

 
(b)                                               (g)                                                  (l) 

 
(c)                                               (h)                                                 (m) 

 
(d)                                               (i)                                                  (n) 

 
(e)                                                (j)                                                 (o) 

 
Fig. 5 Time histories of drag and lift coefficients in the case of oscillation amplitude ratio a/d = 

0.25 (blue and red lines show drag and lift coefficients, black line is cylinder motion); (a) 
f/fK = 0.2, (b) f/fK = 0.4, (c) f/fK = 0.6, (d) f/fK = 0.8, (e) f/fK = 1.0, (f) f/fK = 1.2, (g) f/fK = 1.4, 
(h)  f/fK = 1.6, (i) f/fK = 1.8, (j) f/fK = 2.0, (k) f/fK = 2.2, (l) f/fK = 2.4, (m) f/fK = 2.6, (n) f/fK = 
2.8, (o) f/fK = 3.0 
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waveform of a lift coefficient. The case where the lift coefficient is oscillating with the period twice 
the period of the circular cylinder oscillation is the alternate vortex shedding type lock-in. On the 
other hand, the case where the drag coefficient is oscillating synchronizing with the period of the 
circular cylinder oscillation is the simultaneous vortex shedding type lock-in. In the magnitude 
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(a)                                                (f)                                                 (k) 

 
(b)                                               (g)                                                  (l) 

 
(c)                                               (h)                                                 (m) 

 
(d)                                               (i)                                                  (n) 

 
(e)                                                (j)                                                 (o) 

 
Fig. 6 Time histories of drag and lift coefficients in the case of oscillation amplitude ratio a/d = 

0.50 (blue and red lines show drag and lift coefficients, black line is cylinder motion); (a) 
f/fK = 0.2, (b) f/fK = 0.4, (c) f/fK = 0.6, (d) f/fK = 0.8, (e) f/fK = 1.0, (f) f/fK = 1.2, (g) f/fK = 1.4, 
(h)  f/fK = 1.6, (i) f/fK = 1.8, (j) f/fK = 2.0, (k) f/fK = 2.2, (l) f/fK = 2.4, (m) f/fK = 2.6, (n) f/fK = 
2.8, (o) f/fK = 3.0 
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relationship of the lift coefficient and the drag coefficient, when the amplitude of the lift coefficient 
is large, it becomes the alternate vortex shedding, and when the amplitude of the drag coefficient is 
large, it becomes the simultaneous vortex shedding. In Fig. 5, the alternate vortex shedding type 
lock-in is shown in Fig. 5(g), and the simultaneous vortex shedding type lock-in is shown in Fig. 5(k)�
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Fig. 7 The variation of fluid force component act on single oscillating cylinder,  
umax/U = 2(a/d)(f/fK)(�St) 
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-� Fig. 5(o). In Fig. 6, the alternate vortex shedding type lock-in is shown in Fig. 6(e)� -� Fig. 6(g), 
and the simultaneous vortex shedding type lock-in is shown in Fig. 6(i)� -� Fig. 6(o). 

The aspects of a variation of fluid force are shown in Fig. 7. An abscissa is the velocity ratio umax/U 
and an ordinate is each component of fluid force. Here, the velocity ratio defined as umax/U = 2a/d � 
f/fK �(�St) . Since an oscillation frequency ratio f/fK is constant value, this figure means the variation 
of the fluid force over the variation of an oscillating amplitude ratio 2a/d. In the case of low velocity 
ratio, although the value of drag coefficient CDAVE is smaller than a stationary value, the value of the 
lift coefficient CLAVE scarcely changes to the stationary value. The value of the amplitude of drag 
coefficient ACDRMS is increasing while the value of amplitude ratio 2a/d increases. On the other hand, 
although the amplitude of  lift coefficient ACLRMS scarcely changed the amplitude ratio to 2a/d = 0.5, 
the amplitude of lift coefficient became suddenly small value from velocity ratio umax/U = 0.65. In the 
case of high velocity ratio, the value of drag coefficient CDAVE  and the value of lift coefficient CLAVE  
scarcely change to the stationary case. The value of amplitude of drag coefficient is large and the 
value of drag coefficient ACDRMS  tends to increase with increase of amplitude ratio 2a/d. However, 
the value of amplitude of lift coefficient ACLRMS will become smaller than the value of stationary 
cylinder case at 2a/d = 0.25 and 0.5, the amplitude of lift coefficient became suddenly large value 
from the velocity ratio umax/U = 1.14. 

 

CONCLUSIONS 

A systematic numerical simulation of the flow around a circular cylinder which oscillates in the 
direction of a flow using the vortex method was performed. The following conclusions were obtained. 

(1) The flow pattern of two kinds of lock-in states was well in agreement with the aspect of a 
previous experiment visualization result. 

(2) It is found with the increase in the oscillation frequency ratio that change is looked at by the 
magnitude of the amplitude of the drag coefficient and the magnitude of the amplitude of the lift 
coefficient. 
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(3) In the magnitude relationship of the lift coefficient and the drag coefficient, when the amplitude 
of the lift coefficient is large, it becomes the alternate vortex shedding, and when the amplitude of the 
drag coefficient is large, it becomes the simultaneous vortex shedding. 
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Abstract. Experimental and field investigations for solution mining processes have im-
proved intensely within the last years. Due to today’s computing capacities, 3D simu-
lations of potential salt solution caverns can further enhance the process understanding.
They serve as a “virtual prototype” of a projected site and support planning in reason-
able time. In this contribution, we present a meshfree generalized finite difference method
based on a cloud of numerical points that is able to simulate solution mining processes
on microscopic as well as macroscopic scales. Focusing on anticipated industrial require-
ments, Lagrangian and Eulerian formulations including an ALE-approach are considered.

1 INTRODUCTION

Classical simulation methods are meshbased. Moving geometry parts, free surfaces,
phase boundaries, or large deformations are difficult to handle or require time-consuming
re-meshing algorithms. This is not the case for meshfree methods. They show their advan-
tages especially for these applications. The meshfree Finite Pointset Method (FPM) uses
a generalized finite difference method (GFDM) on a cloud of numerical points. There are
already successful applications of the method in CFD and continuum mechanics. Exam-
ples include water crossing of cars, water turbines, hydraulic valves, soil mechanics, and
metal cutting [6, 8, 15, 19]. The current development of the simulation software MESH-
FREE has eliminated previous shortcomings concerning robust and scalable solutions of
sparse, linear systems. MESHFREE combines the advantages of FPM and the fast linear
solvers of SAMG [16]. In this contribution, we present its capabilities with respect to the
simulation of solution mining processes on microscopic and macroscopic scales.

Originally, a Lagrangian formulation is used, i.e. the point cloud moves according to
the flow velocity [6, 9]. Thus, there is an accurate and natural transport of physical
information. The basic physical model consists of the conservation equations for mass,
momentum, and energy. For solution mining processes, we extend it by the standard
k-ε turbulence model and equations for the concentration of the occurring species (see
Section 2). The GFDM specific numerics are derived in Section 3 with special focus on

1
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the Lagrangian and Eulerian formulations. The microscopic simulations in Section 4 illus-
trate a procedure to determine the necessary effective model parameters of a macroscopic
problem. For macroscopic simulations, the Lagrangian formulation leads to a significant
restriction of the time step size due to the explicit movement of the point cloud. To
enable simulations in reasonable time, the Eulerian formulation should be preferred [17].
Thereby, the point cloud is fixed and convective terms represent the transport of physical
information. The necessary movement of the boundary of the salt cavern is implemented
based on the solution rate. Close to the boundary, interior points are subject to an ALE-
approach (Arbitrary Lagrangian-Eulerian) according to [4]. This procedure gives rise to
covering the complete life cycle of a salt cavern by a meshfree simulation. We demon-
strate the advantages of the Eulerian formulation for a simplified macroscopic example in
Section 5, followed by conclusions in Section 6.

2 PHYSICAL MODEL

In this section, we describe the basic physical model and its extensions for solution
mining processes. Furthermore, a specific model for the density of a solution is discussed.

2.1 Basic Equations

The basic physical model is given by the conservation equations of mass, momentum,
and energy in Lagrangian formulation.

dρ

dt
+ ρ · ∇Tv = 0, (1)

d

dt
(ρ · v) + (ρ · v) · ∇Tv = (∇TS)T −∇p+ ρ · g,

d

dt
(ρ · E) + (ρ · E) · ∇Tv = ∇T(S · v)−∇T(p · v) + ρ · gT · v +∇T(λ · ∇T ),

where d
dt

= ∂
∂t

+ vT∇ denotes the material derivative. Furthermore, we have: nabla
operator ∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z
)T, density ρ, velocity v ∈ R3, stress tensor S ∈ R3×3 (deviatoric

part, i.e. tr(S) = 0), pressure p, body forces g ∈ R3, total energy E = cv · T + 1
2
· (vT · v),

heat capacity cv, temperature T , and heat conductivity λ. As described in [6, 9], the
stress tensor is split into its viscous and solid parts by S = Svisc + Ssolid. For simplicity,
the solid part will be neglected for further analysis. The viscous part is defined by

Svisc = (η + ηturb) ·
(
∇vT + (∇vT)T − 2

3
· (∇Tv) · I

)
, (2)

where I ∈ R3×3 is the identity. To incorporate turbulent effects, the standard k-ε turbu-
lence model is considered omitting fluctuating dilatation and source terms, see [14]:

dk

dt
=

1

ρ
· ∇T

((
η +

ηturb
σk

)
· ∇k

)
− ε+

1

ρ
· (Ppr + Pb), (3)

dε

dt
=

1

ρ
· ∇T

((
η +

ηturb
σε

)
· ∇ε

)
− C2ε ·

ε2

k
+

1

ρ
· C1ε ·

ε

k
· (Ppr + C3ε · Pb),

2
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where η is the laminar and ηturb = ρ · Cη · k2

ε
is the turbulent viscosity. The turbulent

production rate is defined by Ppr = ηturb · �∇vT�2M with von Mises matrix norm � · �M.
The turbulent buoyancy is given by Pb = −1

ρ
· ηturb

Prturb
· ∂ρ

∂T
· (g · ∇T ). For this model,

well-established values for the constants are σk = 1.0, σε = 1.3, C1ε = 1.44, C2ε = 1.92,
C3ε = −0.33, Cη = 0.09, and Prturb = 0.85 (turbulent Prandtl number). In the vicinity of
walls, a logarithmic wall function is used. In order to simulate solution mining processes,
the model above is extended by convection-diffusion-equations for concentration ci of
species i = 1, . . . , N with effective diffusion coefficient Di,eff :

dci
dt

+ ci · ∇Tv = ∇T(Di,eff · ∇ci). (4)

In the Eulerian formulation, the material derivative is replaced by its definition.

2.2 Modeling Density, Viscosity, and Heat Capacity

The general form of the equation of state is given by ρ = ρ(T, c1, . . . , cN), i.e. density
depends on temperature and concentrations. Based on the formulation in [10, 13], the
density of a solution of N species in water is given by

ρsol =

(
wH2O

ρH2O

+
N∑
i=1

wi

ρapparent,i

)−1

, (5)

where wH2O and wi are the mass fraction of water and species i, respectively. Additionally,
wH2O +

∑N
i=1 wi = 1 has to be satisfied. The density of water is determined by

ρH2O =
(((((A1 · T + A2) · T + A3) · T + A4) · T + A5) · T + A6)

1 + A7 · T
, (6)

while the apparent density of species i is given by

ρapparent,i =
(C∗

0 · (1− wH2O) + C∗
1) · exp (0.000001 · (T + C∗

4)
2)

(1− wH2O) + C∗
2 + C∗

3 · T
(7)

with A1, . . . , A7 and C∗
0 , . . . , C

∗
4 according to [13]. The mass fractions wi are defined by

wi =
ci∑N

i=1 ci+ρH2O
. Similarly, ηsol(T, c1, . . . , cN) and cv,sol(T, c1, . . . , cN) are modeled, see

[10, 11, 12].

3 NUMERICS BASED ON GFDM

3.1 Point Cloud Management

The GFDM approach uses a discretization by a cloud of numerical points which com-
pactly covers the computational domain. The density of the point cloud is given by a
sufficiently smooth function h = h(x, t), the so-called interaction radius. There is a direct
correlation between the point cloud resolution and the quality of the simulation results

3
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(convergence in h of order 2). Details regarding the initial seeding and quality mainte-
nance of the point cloud are found in [8, 9]. The latter is of utmost importance in the
Lagrangian formulation as well as the ALE-approach since the movement of (parts of) the
point cloud leads to accumulation or scattering of points which would reduce the quality
of the numerical results.

3.2 Differential Operators

We use a specialized weighted moving least squares approach to determine numerical
differential operators ∂̃0, ∂̃x, ∂̃y, ∂̃z, Δ̃ for function approximation, x-,y-,z-derivative, and
the Laplacian which are independent of the considered function, see [8]. The interaction
radius defines the general neighbors of each point. During the least squares operator
generation, the ones with the smallest distance to the considered point obtain the highest
weight. Furthermore, the numerical operators are defined such that chosen discrete test
functions and their derivatives are reproduced exactly. A common choice are monomials
up to a certain order and the delta function.

3.3 Time Integration

A strong form discretization of the physical model (Section 2) can be provided based on
the numerical differential operators and a chosen time integration scheme. For simplicity,
the following considerations are based on first order time integration.

Starting with the Lagrangian formulation, equations (1) can be rewritten as

dρ

dt
= −ρ · ∇Tv, (8)

dv

dt
=

1

ρ
· (∇TS)T − 1

ρ
· ∇p+ g,

(ρ · cv) ·
dT

dt
= ∇T(S · v)− (∇TS) · v − p · ∇Tv +∇T(λ · ∇T ).

Note that we use ρ = ρsol and cv = cv,sol to improve readability. Together with equations
(2)–(4), this is the starting point of the numerical discretization. The spatial derivatives
are replaced by their least squares approximated counterparts. Denoting the future time
level by n+1 and the current one by n with time step size Δt = tn+1− tn, the point cloud
is moved according to a second order method by xn+1 = xn + Δt · vn + vn−vn−1

2·Δt0
· (Δt)2

with previous time step size Δt0 wrt. time levels n and n − 1, see [18]. A semi-implicit
time integration for temperature T n+1 reads

(IT +DT ) · T n+1 = (ρn · cnv) · T n + fT , (9)

where IT = ρn · cnv · I, DT = −Δt · ∇̃T(λ · ∇̃), and fT = Δt · (∇̃T(Sn · vn)− (∇̃TSn) · vn −
pn · ∇̃Tvn). Equation (9) forms a sparse linear system with unknowns T n+1 at each point
of the point cloud. For the sake of clarity, the index of the point is omitted. Analogously,
a semi-implicit time integration for concentrations cn+1

i , i = 1, . . . , N , can be formed:

(Ici +Dci) · cn+1
i = cni , (10)

4
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where Ici = (I + Δt · ∇̃Tvn) and Dci = −Δt · ∇̃T(Di,eff · ∇̃). The future density ρn+1,
viscosities ηn+1

sol and η̂n+1 = ηn+1
sol + ηnturb, as well as heat capacity cn+1

v can be determined
according to Section 2.2.

Time integration of the first equation in (8) provides the targeted divergence of velocity
∇̃Tvn+1. To solve for vn+1 and pn+1 in an implicit time integration scheme, we use the
penalty formulation introduced in [6, 9] which is independent of the Reynolds number.
To this end, the pressure is split into its hydrostatic (body forces) and dynamic parts
(movement of the fluid) by p = phyd + pdyn. For the hydrostatic pressure, we have

∇̃T

(
1

ρn+1
· ∇̃pn+1

hyd

)
= ∇̃Tg. (11)

Defining the preliminary pressure by p̂ = pn+1
hyd + pndyn, we obtain the following coupled

velocity-pressure-system for preliminary velocity v̂n+1 and correction pressure pn+1
corr :(

I− Δt

ρn+1
· ψ̃n+1

η̂n+1

)
· v̂n+1 +

Δt

ρn+1
· ∇̃pn+1

corr = vn − Δt

ρn+1
· ∇̃p̂+Δt · g, (12)

∇̃T

(
Δtvirt
ρn+1

· ∇̃pn+1
corr

)
= ∇̃Tv̂n+1 − ∇̃Tvn+1 (13)

with (ψ̃n+1
η̂n+1)

T = ∇̃T(η̂n+1 · ∇̃)(v̂n+1)T + (∇̃η̂n+1)T · (∇̃(v̂n+1)T)T + η̂n+1

3
· (∇̃(∇̃Tv̂n+1))T −

2
3
· (∇̃Tv̂n+1) · (∇̃η̂n+1)T and Δtvirt = Avirt · Δt, 0 ≤ Avirt ≤ 1. If Avirt = 1, the scheme

corresponds to an implicit Chorin projection, see [2]. Theoretically, choosing Avirt = 0
would give the exact solution. However, the linear system is ill-conditioned and can not
be solved in most cases. For 0.001 ≤ Avirt ≤ 0.1, conditioning of the linear system is
sufficiently good. Furthermore, the resulting preliminary velocity features a divergence
which is very close to the targeted one. The update of the velocity and the dynamic
pressure are given by vn+1 = v̂n+1 − Δtvirt

ρn+1 · ∇̃pn+1
corr and pn+1

dyn = pndyn + pn+1
corr . The updated

stress tensor Sn+1 is determined according to (2).
For the k-ε turbulence model, we derive a singularity formulation from (3):

d

dt

(
k

ε

)
=(C2ε − 1) + Cη · (1− C1ε) · �∇̃vT�2M ·

(
k

ε

)2

+
Cη · (C1ε · C3ε − 1)

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T ) ·
(
k

ε

)2

+
1

ρ
· Δ̃η∗

(
k

ε

)
, (14)

d

dt

( ε
k

)
=(1− C2ε) ·

( ε
k

)2

+ Cη · (C1ε − 1) · �∇̃vT�2M

+
Cη · (1− C1ε · C3ε)

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T ) +
1

ρ
· Δ̃η∗

( ε
k

)
,

where Δ̃η∗
(
k
ε

)
=

ε·Δ̃ηk
k−k·Δ̃ηεε

ε2
and Δ̃η∗

(
ε
k

)
=

k·Δ̃ηεε−ε·Δ̃ηk
k

k2
with Δ̃ηk = ∇̃T

((
η + ηturb

σk

)
· ∇̃

)

and Δ̃ηε = ∇̃T
((

η + ηturb
σε

)
· ∇̃

)
, respectively. If k, ε > 0 for all tn ≤ t ≤ tn+1, nu-

merical mean values can be determined from (14): k
ε

∣∣
m

= 1
Δt

∫ tn+1

tn
d
dt

(
k
ε

)
dt, ε

k

∣∣
m

=

5
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1
Δt

� tn+1

tn
d
dt

�
ε
k

�
dt. We use the mean values to avoid singularities in the discretized k-ε

turbulence model.

dk

dt
=

Δ̃ηkk

ρ
− ε

k

���
m
· k + Cη ·

�
�∇̃vT�2M − 1

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T )

�
· k
ε

����
m

· k, (15)

dε

dt
=

Δ̃ηεε

ρ
− C2ε ·

ε

k

���
m
· ε+ C1ε · Cη ·

�
�∇̃vT�2M − C3ε

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T )

�
· k
ε

����
m

· ε.

Consequently, a fully implicit time integration scheme for kn+1 reads

kn+1 − Δt · Δ̃ηkk
n+1

ρ
+Δt · ε

k

���
m
· kn+1 (16)

−Δt · Cη ·
�
�(∇̃vn+1)T�2M − 1

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T n+1)

�
· k
ε

����
m

· kn+1 = kn.

Analogously, we have

εn+1 − Δt · Δ̃ηεε
n+1

ρ
+Δt · C2ε ·

ε

k

���
m
· εn+1 (17)

−Δt · C1ε · Cη ·
�
�(∇̃vn+1)T�2M − C3ε

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T n+1)

�
· k
ε

����
m

· εn+1 = εn.

The mean values are determined analytically. This is illustrated in detail for k
ε

��
m
. Assum-

ing that the diffusion term 1
ρ
· Δ̃η∗

�
k
ε

�
is negligible as well as defining x = k

ε
, a = C2ε − 1,

and b = Cη ·
�
(C1ε − 1) · �∇̃vT�2M + (1−C1ε·C3ε)

ρ·Prturb
· ∂ρ
∂T

· (g · ∇̃T )
�
, we can rewrite equation

(14) as dx
dt

= a− b · x2. Thus, we obtain

xn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
a
b
· tanh

�
Δt ·

√
a · b+ arctanh

��
b
a
· xn

��
, xn <

�
a
b�

a
b
, xn =

�
a
b�

a
b
· coth

�
Δt ·

√
a · b+ arccoth

��
b
a
· xn

��
, xn >

�
a
b

. (18)

The updated turbulent viscosity is determined by ηn+1
turb = ρn+1 · Cη · (kn+1)2

εn+1 .
In case of the Eulerian formulation, [17] shows that a second order time integration

scheme should be applied to numerically solve transport terms of the form vT∇. For this
purpose, the SDIRK2 method is proposed (see [1]). It features the same stability proper-
ties as an implicit Euler time integration scheme. Furthermore, an upwind discretization
by means of a MUSCL reconstruction with a Superbee limiter is used. For example, the
coupled velocity-pressure-system is solved by the following two-step procedure:

�
Iv̂n+α − α ·Δt

ρn+α
ψ̃n+α
η̂n+α

�
· v̂n+α +

α ·Δt

ρn+α
· ∇̃pn+α

corr = vn − α ·Δt

ρn+α
· ∇̃p̂+ α ·Δt · g, (19)

∇̃T

�
Δtvirt
ρn+α

· ∇̃pn+α
corr

�
= ∇̃Tv̂n+α − ∇̃Tvn+α
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with Iv̂n+α = (I + (ṽT∇)v̂n+α) and (ψ̃n+α
η̂n+α)T = ∇̃T(η̂n+α · ∇̃)(v̂n+α)T + (∇̃η̂n+α)T ·

(∇̃(v̂n+α)T)T + η̂n+α

3
· (∇̃(∇̃Tv̂n+α))T − 2

3
· (∇̃Tv̂n+α) · (∇̃η̂n+α)T and, subsequently,

v̂n+1 −Δt · α ·V(v̂n+1, pn+1
corr ) = vn +Δt · (1− α) ·V(v̂n+α, pn+α

corr ), (20)

∇̃T

(
Δtvirt
ρn+1

· ∇̃pn+1
corr

)
= ∇̃Tv̂n+1 − ∇̃Tvn+1

withV(v̂n+1, pn+1
corr ) = − 1

ρn+1 ·(ṽT∇)v̂n+1+ 1
ρn+1 ·ψ̃n+1

η̂n+1− 1
ρn+1 ·∇̃p̂n+1+g andV(v̂n+α, pn+α

corr ) =
v̂n+α−vn

α·Δt
are solved for α = 1 −

√
2
2
. Density and viscosity for the intermediate step can

for instance be determined by linear interpolation between time level n and n+ 1.

4 MICROSCOPIC SCALE

In this subsection, we present a general method based on the Lagrangian formulation
to identify the effective parameters that are necessary for macroscopic scale simulations.
These are effective diffusion coefficient and boundary condition between water and sur-
rounding species. For simplicity, we restrict the following illustration to sodium chloride.
Please note that the procedure can directly be transferred to any other species.

4.1 Setup

We consider a cylinder with diameter of 5m and height of 10m which is initially filled
with pure water, i.e. cNaCl(t = 0) = 0. During the simulation, the temperature is fixed
to T0 = 20 ◦C. The roof of the cylinder acts as inexhaustible supply of sodium chloride
which is modeled by applying a Dirichlet condition with saturation concentration csNaCl =
csNaCl(T0) = 357 kg

m3 . For the hull of the cylinder, a homogeneous Neumann condition
is applied. Aiming at a quasi-stationary profile, the bottom of the cylinder models an
outflow boundary. In the interior, we solve ∂cNaCl

∂t
= ∇T(Dmicro · ∇cNaCl), where Dmicro =

Dlaminar+Dturb. The laminar diffusion coefficient for sodium chloride is given byDlaminar =
1.611 · 10−9 m2

s
(see [3]). For the turbulent part, we have Dturb = Cη · k2

ε
. Standard

boundary conditions (Dirichlet and Neumann) are prescribed for velocity, pressure, and
the turbulent quantities. The simulation runs until a quasi-stationary state is reached.

4.2 Evaluation Strategy

In order to determine the effective quantities, the cylinder is split in z-direction into
equal sub-cylinders SCj, j = 1, . . . , J , which are used to estimate the mass flow. The
planes between the sub-cylinders are denoted by HPj, j = 1, . . . , J − 1. Analogously
to the heat flow, the mass flow of sodium chloride is given by dm

dt
= −DNaCl,eff · ∂c̄NaCl

∂n
,

where c̄NaCl is the mean concentration. The mass flow and the mean concentration in
sub-cylinder SCj are determined by

dm

dt
(SCj) =

∫
SCj

cNaCl · v3 dVSCj∫
SCj

1 dVSCj

, c̄NaCl(SCj) =

∫
SCj

cNaCl dVSCj∫
SCj

1 dVSCj

. (21)
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Based on the mean concentration in a sub-cylinder SCj, we can approximate its normal
derivative wrt. the help plane HPj. This yields the effective diffusion coefficients

DNaCl,eff(SCj|HPj) = −
dm
dt
(SCj)

∂c̄NaCl

∂n

∣∣
HPj

, j = 1, . . . , J − 1. (22)

As soon as a quasi-stationary state is reached, the values for the different j tend to the
desired effective diffusion coefficient for a macroscopic setup (resolution is of the order of
the height of the sub-cylinders). To accommodate the “quasi-stationary” character of a
simulation, we use a time-averaged effective diffusion coefficient wrt. a small time interval.

In the macroscopic simulation, we use the Robin boundary condition

DNaCl,eff · ∂cNaCl

∂n
= γNaCl,eff · (cNaCl − csNaCl), (23)

where the effective transition coefficient γNaCl,eff can be derived from the microscopic setup
similarly to the effective diffusion coefficient DNaCl,eff :

γNaCl,eff(SCj) =
dm
dt
(SCj)

c̄NaCl(SCj)− csNaCl

, j = 1, . . . , J − 1. (24)

If the quasi-stationary state is reached, the (time-averaged) sub-cylinder specific values
tend to the desired value of the effective transition coefficient. With the help of γNaCl,eff ,
we can define the solution rate of sodium chloride for given temperature T0 by

RNaCl(T0) = γNaCl,eff(cNaCl − csNaCl). (25)

4.3 Numerical Results

The resolution (interaction radius h) in the macroscopic simulation in Section 5 is
of the order of meters. Thus, we choose J = 10 in the microscopic setup which yields
sub-cylinders of height 1m. We consider five levels of resolution with interaction radii
h = 0.30m, 0.25m, 0.20m, 0.19m, 0.18m. The evolution of the concentration for the highest
resolution in the time interval [0s, 100s] is illustrated in Figure 1. As expected, the flow
is characterized by viscous fingering.

Decreasing the interaction radius h, leads to convergence of the estimated effective
diffusion and transition coefficients towards DNaCl,eff = 0.1m2

s
and γNaCl,eff = 0.000042m

s
,

respectively (see Table 1). According to this, we obtain a solution rate of RNaCl(20
◦C) =

−0.0150 kg
m2·s . Compared to the solution rate of −0.0488 kg

m2·s for T0 = 23 ◦C determined in
[7] on crystal level, the estimated solution rate is of the correct order of magnitude.

5 MACROSCOPIC SCALE

The effective parameters determined in Section 4 are used in the macroscopic setup
below which models a simplified solution mining process. Both the Lagrangian as well as
the Eulerian formulation are evaluated, see [17].
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(a) t = 10s (b) t = 55s (c) t = 100s

Figure 1: Evolution of the microscopic simulation for h = 0.18m – concentration.

Table 1: Estimated effective diffusion and transition coefficient, as well as solution rate.

interaction radius DNaCl,eff γNaCl,eff RNaCl(20
◦C)

h = 0.30m 0.1515m2

s
0.000184m

s
−0.0657 kg

m2·s
h = 0.25m 0.1558m2

s
0.000141m

s
−0.0504 kg

m2·s
h = 0.20m 0.1096m2

s
0.000074m

s
−0.0264 kg

m2·s
h = 0.19m 0.1028m2

s
0.000050m

s
−0.0179 kg

m2·s
h = 0.18m 0.0999m2

s
0.000042m

s
−0.0150 kg

m2·s

5.1 Setup

We are interested in the geometrical evolution of a salt cavern. The initial geometry is
given by a small cavern filled with pure water which is surrounded by sodium chloride, see
Figure 2. The dimensions of the initial cavern are approximately: width of 90m, height
of 50m, and depth of 26m. The sodium chloride deposit is limited in extension which
corresponds to impermeable surrounding rock. The pipe on the left side acts as an inlet
of fresh water with |vin| = 1m

s
, whereas the pipe on the right side acts as the outlet.

In reality, the maximum diameter of the pipes is of the order of 1m. Hence, the

Figure 2: Macroscopic simulation setup – initial geometry, see [17].
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resolution of the point cloud close to the inlet and the outlet has to be of the order of
0.1m to ensure accurate results. In case of the Lagrangian formulation, this would lead
to an extremely small time step size compared to the desired simulation time of several
years due to the CFL-condition ΔtLag ≤ CFLLag · hmin

|v| . Stable results are achieved for

CFLLag = 0.15. Since |v| ≥ |vin| and hmin = O(0.1m), we obtain ΔtLag = O(0.1s).
In order to allow for a comparison of Lagrangian and Eulerian formulation, we consider
pipes of diameter 12m and constant interaction radius of h = 4m. Furthermore, we fix
the temperature to T0 = 20 ◦C and, subsequently, obtain the corresponding saturation
concentration csNaCl = 357 kg

m3 . For simplicity, the following linear relations for density and

viscosity of the solution are used as described in [17]: ρ(cNaCl) ≈ (0.56 · cNaCl + 1000) kg
m3 ,

η(cNaCl) ≈ (1.96 ·10−6 ·cNaCl+10−3)Pa
s
. We use DNaCl,eff = 0.1m2

s
and γNaCl,eff = 0.00005m

s
.

5.2 Movement of the Boundary

The movement of the boundary of the cavern can be defined by the Stefan condition
ρv� = γNaCl,eff(cNaCl − csNaCl), see [5]. This yields v� =

γNaCl,eff

ρ
· (cNaCl − csNaCl) and,

consequently, a movement of the boundary in normal direction n with velocity vboundary =
v�·n. To speed up computation, a time lapse procedure can be applied which introduces an
additional factor A in the definition of v� which is limited by certain stability conditions.
For details, the reader is referred to [17].

Due to the movement of the boundary, interior points close to this boundary have to
move in the Eulerian formulation also. For this purpose, the ALE-approach presented
in [4] is used. Based on current and future position of an affected interior point, the
translational velocity vtrans = xn+1−xn

Δt
is determined. Due to the explicit movement of

these points, the convection terms in the numerical model in Eulerian form in Section 3.3
must refer to the relative velocity v − vtrans instead of v. Furthermore, this introduces a
CFL-condition of the form ΔtALE ≤ CFLALE · hmin

v�
. It depends on the boundary velocity

v� = O(0.01m
s
) which is considerably smaller than the flow velocity, cf. [17]. Furthermore,

hmin is subject to the desired resolution at the moving boundary. At the inlet and the
outlet, a coarse resolution is sufficient in this case.

5.3 Numerical Results

Figure 3 illustrates the evolution of the salt cavern in the Eulerian formulation ac-
cording to C = cNaCl. The need for an ALE-concept is emphasized by the difference in
time steps to cover a simulation time of 7200s: in the Lagrangian formulation, 22915 time
steps are necessary, whereas only 936 time steps suffice in the Eulerian formulation. This
corresponds to a speed-up of approximately 25 in computation time.

6 CONCLUSIONS

In this contribution, we presented the capabilities of the simulation software MESH-
FREE regarding solution mining processes on different scales. The developed generalized
finite difference approach on a point cloud enables the use of a Lagrangian as well as
an Eulerian formulation. On the microscopic scale, we described a procedure to deter-
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(a) t = 1537s (b) t = 2446s (c) t = 3228s

Figure 3: Evolution of the macroscopic simulation for h = 4m – concentration, see [17].

mine effective diffusion and transition coefficients for an arbitrary species based on the
Lagrangian formulation by considering sodium chloride as numerical example. The re-
sulting effective parameters are then used in macroscopic simulations. A comparison of
the simulation results for the Lagrangian and the Eulerian formulation (extended by an
ALE-approach) illustrate the advantages of the latter one. Aiming at a simulation time
of several years, the forecast computation time for a simulation based on the Lagrangian
formulation would be of the order of years. In contrast to that, the flexibility of the
Eulerian formulation regarding the resolution of the point cloud (local refinement only
at the moving boundary) enables meshfree simulations in reasonable time – especially in
terms of real applications.
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Abstract 
The ladle pouring process is one part of die casting which has the advantages of high speed, 

good quality and mass production. The molten metal is quickly poured into the sleeve by tilting the 
ladle, and immediately injected into the die cavity with high speed and high pressure by advancing the 
plunger. Since the entrapment of air and the generation of solidified layer in the ladle pouring may 
cause the defects of cast products, it is necessary to simulate the ladle pouring behavior.  

In the present study, the pouring experiment into the sleeve using water and die casting 
aluminum alloy JIS-ADC12 are carried out to observe the flow behavior by tilting the ladle. The 
temperature of the dissolved metal is measured using a thermocouple to investigate heat transfer 
behavior. The flow behaviors in ladle pouring of water and molten aluminum alloy are simulated using 
ParticleworksTM of MPS software. The simulation results, when using water are almost the same actual 
wave behavior. It is difficult to simulate the wave behavior of molten aluminum alloy because there is 
a difference in wave behavior between water and molten aluminum alloy. On the other hands, it is clear 
that the molten aluminum alloy is not solidified during wave behavior in the early stage of pouring by 
the experiments. Therefore, we try to adjust the kinematic viscosity of molten metal and the thermal 
conductivity of sleeve die. As the result, the wave behavior and temperature of molten aluminum alloy 
after adjusting the parameters are almost agreed with the actual phenomena. Flow and heat transfer 
simulation using the MPS method is effective method that ladle pouring of molten aluminum alloy 
with free surface flow can be simulated accurately. 
Keywords: Ladle pouring, Wave behavior, Molten metal, Aluminum alloy, Solidification 
 
1. Introduction 

 Since the molten metal in die casting process injects to the cavity with high speed and high 
pressure, it has the advantage of good quality and mass production.[1][2] However, defects are caused 
by the solidified layer in the sleeve [3][4], air entrainment, the oxide film of the aluminum alloy.[5]-
[7] So, it is desirable to suppress the sleeve air entrainment and generation of oxide film in the pouring 
process [5]-[8].  

In this study, the influence of the tilting ladle conditions on the flow behavior in the sleeve is 
investigated using water and die casting aluminum alloy. The temperature of molten metal is measured 
using thermocouple in order to investigate the heat transfer behavior. The conditions are three tilting 
speed and three angle between ladle and sleeve. Also, in recent years, attempts have been made to 
apply the particle method to the casting field. Mochida et al. Use the SPH method to simulate the die 
casting process by adopting a model in which the viscosity is changed according to the solid content 
of the molten metal.[2]  Hasuno et.al. is simulated  pouring process to sleeve from ladle using MPS 
method.[5] Kazama et al. Have used the SPH method to reproduce the vibration of the surface of the 
molten metal during conveyance of the molten metal and to develop an oxide film model of the 
aluminum alloy, and also obtained good results in analysis.[6][7] Suwa et al. Investigated the validity 
of the oxide film model when changed the angle and pouring speed of the ladle.[8] There, simulated 
ladle pouring behavior using by lagrangian MPS particle method software. Further, the flow behaviors 
in ladle pouring of water and molten aluminum alloy are simulated using ParticleworksTM of MPS 
software.[9] 
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2. Pouring experiment by tilting ladle 
 2.1 Experimental apparatus 

Experimental apparatus consists of 
tilting ladle, sleeve, automatic pouring machine, 
recorder and video camera, as shown in Fig.1. 
The sleeve shape is the rectangular container 
300×60×35mm and the front side is the heat-
resistant glass wall in order to observe the 
pouring behavior directlly. It is possible to 
change the tilting speed and the angle between 
ladle and sleeve. 

 The tilting speeds are 0.45,0.37 and 
0.28[rad/s]. The angles are 0°, 20° and 40° , as 
shown in Fig.2. The temperature of molten 
metal is measured using K-type (Chromel-
Alumel) thermocouple in order to investigate 
the heat transfer behavior. 
The measurement points P1, P2, P3 and P4 are 
located at 1mm from the bottom and at 
100,150,200, 250mm from right wall, and P5 is 
located at 10mm from bottom and on the left 
wall, as shown Fig.3. 
 
 
2.2 Experimental procedure 

 The pouring experiment into the sleeve 
using water and die casting aluminum alloy JIS-
ADC12 are carried out to observe the wave 
behavior by tilting ladle. The flow behavior is 
observed using by video camera with 60fps. 
Table 1 shows the experimental conditions of 
ladle pouring. Mass of water and aluminum 
alloy are 250g and 675g, respectively. Those 
values mean about volume of 250cm3. 

 In the experiments, the aluminum alloy 
are melt in the Muffle furnace, and the sleeve 
and the ladle are pre-heated at 300℃. When the 
temperature of molten metal aluminum alloy 
reaches 700℃, the ladle is tilted by the automatic 
pouring machine, then the molten aluminum 
alloy is poured into the sleeve. Number of 
repetition times is 3 or more taking consideration 
of reproduciblity. 
 
 
2.3 Experimental results and discussion 

The wave behaviors of water and molten 
aluminum alloy obtained by experiment in the 
case of tilting speed 0.45rad/s are shown in Fig.4 
to Fig.7, respectively. The first column shows front view in the case of the ladle angle 0° and the second 
and third columns show the front and top view in the case of ladle angle 40°. In the case of water, the 
liquid height rises by bouncing back when the water hits the bottom of the sleeve. Even if the ladle 
angle varies, the wave behavior of water not almost changed. This tendency is the same in other tilting 
speeds. The liquid height of molten aluminum alloy is not become high like water. This result is the 
same trend in other tilting speeds. Further, in the case of water, the tip reaches the left wall at about 
2.5 [s], whereas it does not reach in the case of the molten aluminum alloy. Although the kinematic 

 
Fig.1 Experimental apparatus. 

 
Fig.2 The angle between ladle and sleeve 

 
Fig.3 Measurement points for molten metal. 

Table 1 Experimental conditions of  
ladle pouring. 

Material Water JIS-
ADC12 

Pouring temp. [℃] Room 
temp. 

700 

Mass of sample [g] 250 675 
Ladle angle [°] 0,20,40 

Tilting speed [rad/s] 0.45,0.37,0.28 
Initial temp. of ladle 

and sleeve [℃] 
Room 
temp. 300 
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viscosity of molten aluminum alloy is almost the same with water, it is clarified the different wave 
behaviors. Please refer to Table 3 and Table 4. Also, in the case of molten aluminum alloy of top view, 
molten metal is found meandered from Fig.7. 

As an example, the temperature cooling curve at P1 in the case of tilting speed 0.45rad/s is 
shown in Fig.8. Although the result of ladle angle of 20° is a little lower than others, the cooling 
behavior of molten metal are almost the same tendency. In the case of high tilting speed of 0.45rad/s, 
the temperatures go down to liquidus temperature about at 5s. From the wave behavior of Fig.5, the 
flow front of molten metal collides with the left wall at 2.9s, and reaches the front go back to the right 
wall at 4.2s, and then the wave movement is stopped before the temperature of molten metal reaches 
the liquidus temperature. Therefore, the solidified layer is not large influenced on the wave movement 
and is not involved to stop it. 
 

 

 
 

 

 
Fig.4 Wave behavior of water obtained by experiment in the case of tilting speed of 0.45rad/s 

of ladle angle 0°. 

 
Fig.5 Wave behavior of water obtained by experiment in the case of tilting speed of 0.45rad/s 

of ladle angle 40°. 

 
Fig.6 Wave behavior of molten aluminum alloy obtained by experiment in the case of tilting 

speed of 0.45rad/s of ladle angle 0°. 
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3. Particle-based Simulation 

It is difficult to simulate the pouring behavior of tilting ladle because the process has the 
moving boundary of the ladle and free surface boundary of molten metal. [4] Further, in the die casting 
process, the molten metal is injected from sleeve to the cavity by pushing of plunger. So, the particle-
based methods are suitable for the numerical simulation for the die casting process. [5]-[8] In the 
present study, the ladle pouring behavior is simulated using by the ParticleworksTM of MPS software. 
 
 
3.1 Wave behavior of water 

The calculation conditions of present 
study are shown in Table 2. This speed of sound 
is not physical property value but also 
calculation parameter. The physical properties of 
water shown in Table 3 are used in simulation. 

The comparisons of wave behavior 
between experiment and simulation in the case 
of the water, the tilting speed of 0.45rad/s and 
ladle angle of 0° are shown in Fig.9. In the 
simulation of Fig.9, the color of the fluid is 
changed by the velocity. Blue indicates that the 
speed is almost 0m/s, and the speed becomes 
faster as the color approaches light green. The 
wave behaviors obtained by simulation are 
almost agreed with experiments. Fig.8 shows the 
front view of wave behavior in the case of ladle 
angle of 40°. Also, Fig.11 shows the flow of top 
view of water obtained by in the case of ladle 
angle 40°. The difference in color in the 
simulation of Fig. 9 is the same as Fig. 10. The 

 
Fig.7 Wave behavior of molten aluminum alloy obtained by experiment in the case of tilting 

speed of 0.45rad/s of ladle angle 40°. 

 
Fig.8 Temperature cooling curve at P1 in the case of tilting speed 0.45rad/s. 

Table 2 Calculation conditions. 
Software Particleworks 6.1.2 

Pressure Eq. Scheme Explicit 
Speed of sound [m/s] 7.37 

Viscosity condition Explicit 
Surface tension condition CSF model 

Surface tension 
coefficient 0.90 

Particle size [mm] 1.0 
Analysis time [s] 6.0 

Initial time step [s] 1.25×10-4 
Courant number 0.2 

Collision distance 0.90 
Influence radius 3.1 

Interparticle distance 1.0 

Table 3 Physical properties of water. 
Density [kg/m3] 1000 

Kinematic viscosity coefficient 
[m2/s] 1.0×10-6 

Surface tension coefficient [N/m] 0.072 

0 1.0 2.0 3.0 4.0 5.0 6.0500

550

600

650

700

Times[s]

Te
m

pe
ra

tu
re

[℃
]

Mold angle 0[°]
Mold angle 20[°]
Mold angle 40[°]
Liquidus temperature

613



wave behavior of water can be reproduced even if the angle is changed from Fig.11. The flow front of 
water obtained by simulation in the case of ladle angle 40° meander like real phenomena. Even if the 
ladle angle and tilting speed are varied, it possible to simulate in the case of the water the wave behavior 
reasonably. 

 

 
Fig.9 Comparison of front view of wave behavior between experiment and simulation 

 in case of water, tilting speed of 0.45rad/s and ladle angle of 0°. 
 

 
Fig.10 Comparison of front view of wave behavior between experiment and simulation 

 in case of water, tilting speed of 0.45rad/s and ladle angle of 40°. 
 

 
Fig.11 Comparison of top view of wave behavior between experiment and simulation 

 in case of water, tilting speed of 0.45rad/s and ladle angle of 40°. 
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3.2 Wave behavior of molten aluminum alloy 
The physical properties of die casting 

aluminum alloy JIS-ADC12 are shown in Table 
4. The calculation conditions of aluminum alloy 
are the same of water shown in Table 2 other than 
the surface tension coefficient for molten 
aluminum alloy is 0.97. Table 5 shows the 
physical properties of sleeve made by steel (JIS-
SS400). 

Fig.10 shows the comparison of wave 
behavior between experiment and simulation in 
the case of molten aluminum alloy, the tilting 
speed of 0.45rad/s and ladle angle of 0°. In the 
simulation, the temperature is changed the color 
of the fluid. Red indicates the liquidus temperature, blue indicates the solidus temperature, and the 
other colors indicate the temperature between the liquidus temperature and the solidus temperature. 
The simulation reproduces the phenomenon close to water and cannot explain the actual wave 
phenomenon. The reason is considered that it does not taken consideration of specific oxide film of 
aluminum alloy. Fig.11 shows the comparison of temperature at P1 between experiment and simulation 
in the case of the molten aluminum alloy, tilting speed of 0.45rad/s and ladle angle of 0°. The calculated 
temperature decreases rapidly unlike the experiment. The software has not the functions of temperature 
calculation by heat transfer coefficient and by solidification phenomena.  

 

 

Fig.12 Comparison of wave behavior between experiment and simulation  
in case of molten aluminum alloy, tilting speed of 0.45rad/s 

            and ladle angle of 0° 

 

Table 5 Physical property of sleeve. 
Density [kg/m3] 7850 

Specific heat [J/(kgꞏK)] 4730 
Thermal conductivity [W/(mꞏK)] 51.6 

Table 4 Physical property of aluminum alloy. 
Density [kg/m3] 2700 

Kinematic viscosity coefficient 
[m2/s] 

1.1×10-6 

Surface tension coefficient [N/m2] 0.886 
Specific heat [J/(kgꞏK)] 960 

Thermal conductivity [W/(mꞏK)] 96 

 
Fig.13 Comparison of temperature at P1 between experiment and simulation 

    in the case of the molten aluminum alloy, tilting speed of 0.45rad/s 
and ladle angle of 0° 
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3.3 Wave behavior of molten aluminum alloy using adjusted physical properties 
Hasuno et.al [5] is adjusted kinematic viscosity coefficient in order to take into consideration 

of oxide film of aluminum alloy molten. In the present study as well, we tried to adjust kinematic 
viscosity coefficient unite flow behavior. Regarding heat transfer, the thermal conductivity of sleeve 
metal is adjusted to match heat transfer behavior. 

Fig.14 shows the comparison of wave behavior between experiment and simulation using 
adjusted parameter in case of molten aluminum alloy, the tilting speed of 0.45rad/s and the ladle angle 
of 0°. The results in the case of the ladle angle of 40° are shown in Fig.15 and Fig.16. Fig.16 shows 
the top view of wave behavior. About the difference in the color of the simulation of Fig.14, Fig.15 
and Fig.16, it is the same as Fig.12. Fig.17 shows the comparison of temperature at P1 between 
experiment and simulation using adjusted parameters in the case of the molten aluminum alloy, tilting 
speed of 0.45rad/s and ladle angle of 0°. From Fig.14 and Fig.15, the simulated result obtained by using 
adjusted parameters are almost agreed with the experiments. Thermal conductivity behavior obtained 
by using adjusted parameters as shown in Fig.17 are also the same tendency to the experiment. 
Although the flow front of molten metal in experiments as shown in Fig.16 goes like a meander, these 
phenomena cannot simulate in the present study. Because it is considered that the flow front of molten 
metal goes advance while meandering by repeating of generation and tearing of oxide film. This 
phenomenon will be simulated in the future study. 

 

 
Fig.14 Comparison of wave behavior between experiment and simulation using adjusted 

parameters in case of molten aluminum alloy, tilting speed of 0.45rad/s and ladle 
angle of 0°. 

 

 
Fig.15 Comparison of wave behavior between experiment and simulation using adjusted 

parameters in case of molten aluminum alloy, tilting speed of 0.45rad/s and ladle angle 
of 40°. 
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Fig.16 Comparison of top view of wave behavior between experiment and simulation using 

adjusted parameters in the case of molten aluminum alloy, tilting speed of 0.45rad/s and 
ladle angle of 40° 

 

 
Fig.17 Comparison of temperature at P1 between experiment and simulation using adjusted 

parameters in the case of the molten aluminum alloy, tilting speed of 0.45rad/s and 
ladle angle of 0° 

 
 
4. Conclusion  

The pouring experiment of water and molten aluminum alloy by tilting ladle is carried out to 
observe the wave buhavior in the sleeve and temperature measurement is done. Further, the numerical 
simulation using MPS software executed to simulate the real phenomena. The following results are 
obtained. 
(1)  It is clear that the molten aluminum alloy is not solidified during wave behavior in the early stage 

of pouring by the experiments in the case of pouring temperature of 700℃. 
(2)  The ladle pouring simulation used MPS software is good match to experiment result in the case of 

water. 
(3)  The simulation result of molten aluminum alloy is not agreed with experimental result. Adjusting 

the parameters which are the kiematic viscosity of molten metal and the thermal cinductivity of 
sleeve metal we can get the results coresponding to the real phenomena. 

(4)  The flow behavior of molten aluminum alloy in the case with ladle angle is observed like a meanber. 
From the experiment, the flow front of molten metal goes advance while meandering by repeating 
of generation and tearing of oxide film. 

(5)  The parameter adjustment is not useful operation for casting CAE. To simulate the real phenomena, 
it is necessary to develop the new funtional algorithm. There are the oxide film model, heat 
transfer analysis,  solidification analysis and taking into consideration of air gap between mold 
and melt. 
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Abstract. In recent years, many sediment-related disasters have occurred in Japan. To predict the 
sediment flow, granular flow analysis was conducted with the moving particle simulation method, using 
the viscosity term formulated by the Drucker-Prager model. The program code used is Particleworks 
Ver. 6, developed by Prometech Software. Plastic viscosity is described as a function of (cohesion) c 
and Φ (the shear resistance angle). Simple problems, such as freestanding height and dam breakage of 
the simulations were analyzed to assess the accuracy of the particle simulation method with the model.  

 
 
1 INTRODUCTION 

Soil-related disasters occur frequently in Japan. After such occurrences, simulation analysis 
can be performed on the soil flow area to determine what factors lead to the disaster. The 
discrete element method (DEM), or particle method, can be employed by assuming soil to be 
the Bingham model. Dent et al. (1983) simulated an avalanche flow, involving snow and not 
soil, by assuming snow as the Bingham model. Subsequently, Soussa and Voight (1991) and 
Moriguchi et al. (2009) applied the particle method to soil flows. Nonoyama et al. (2015) also 
used simulation, with Smoothed Particle Hydrodynamics (SPH), for soil collapse analysis. 
Various other numerical analysis methods of collapsed systems are available, each with their 
own characteristics. In the current study, the collapse analysis was examined with the Moving 
Particle Simulation (MPS) particle method, originally developed by Koshizuka et al. (1996). 
This method is known to be able to solve stability for simulation, such as free surface flow. On 
the other hand, although soil can be assumed as a viscous fluid, such as in the Bingham model, 
the viscosity is considered inconstant as it can be changed by shear strain and soil constraint 
pressure. Focusing on this aspect, Moriguchi et al. (2009) proposed a ''new'' viscosity. Because 
viscosity changes with stress, it was necessary to modify the basic equation. In this study, 
therefore, the viscosity proposed by Moriguchi et al. (2009) is used. The basic equation is 
modified from the original and the behavior was investigated before and after modification.  
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2 FORMULATION OF THE MATHEMATICAL MODEL 
The equivalent viscosity coefficient of the Bingham model proposed by Moriguchi et al. 
(2009) is as follows: 

η
′ = {

η0 + c+𝑝𝑝tanϕ
√2𝑉𝑉ij𝑉𝑉ij

(η ≤ ηmax)

ηmax               (η >ηmax)
   

(1) 

where Vij is the shear strain tensor. 

𝑉𝑉ij = 1
2 (∂ui

∂xj
+

∂uj
∂xi

) 
(2) 

where c is the cohesion (kPa),φis the shear resistance angle (°). The constitutive equation 
of fluid is as follows: 

σij = −𝑝𝑝δij + 2η′𝑉𝑉ij = −𝑝𝑝δij + η′ (∂ui
∂xj

+ ∂uj
∂xi

)  (3) 

where p is the pressure (kPa). The conservation of momentum is as follows: 
∂ui
∂t + uj

∂ui
∂xj

= 1
ρ

∂σij
∂xi

+ gi 
(4) 

where g (m/s) is the gravity acceleration. The uncompressed condition was considered. 
∂ui
∂xi

= 0  (5) 

Substitute Equation (4) for (3) 
∂ui
∂t + uj

∂ui
∂xj

= − 1
ρ

∂p
∂xi

+ 1
ρ

∂
∂xj

[η′ (∂ui
∂xj

+ ∂uj
∂xi

)] + gi   (6) 

was obtained.  
Ignoring the spatial gradient of the viscosity coefficient, it becomes a Navier-Stokes equation. 
However, in the current research, as a spatial gradient was needed, it was expanded by 
equation (6). Separate each term as follows: 

Advection term：ui
∗−ui

n

∂t = −uj
∂ui
∂xj

   (7) 

External force term：ui
∗∗−ui

∗

∂t = gi (8) 

Viscous term：ui
∗∗∗−ui

∗∗

∂t = 1
ρ

∂
∂xj

[η′ (∂ui
∂xj

+ ∂uj
∂xi

)]   (9) 

Pressure term：ui
n+1−ui

∗∗∗

∂t = − 1
ρ

∂p
∂xi

    (10) 

Further expansion of the viscosity term is as follows: 
X velocity: 
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1
ρ [ ∂

∂x η (∂ux
∂x + ∂ux

∂x ) + ∂
∂y η (∂ux

∂y + ∂uy
∂x ) + ∂

∂z η (∂ux
∂z + ∂uz

∂x )]  

= 2
ρ ∂η

∂x
∂ux
∂x + 1

ρ ∂η
∂y (∂ux

∂y + ∂uy
∂x ) + 1

ρ ∂η
∂z (∂ux

∂z + ∂uz
∂x )  

(11) 

Y velocity: 
1
ρ [ ∂

∂x η (∂uy
∂x + ∂ux

∂y ) + ∂
∂y η (∂uy

∂y + ∂uy
∂y ) + ∂

∂z η (∂uy
∂z + ∂uz

∂y )]  

= 2
ρ ∂η

∂y
∂uy
∂y + 1

ρ ∂η
∂x (

∂uy
∂x + ∂ux

∂y ) + 1
ρ ∂η

∂z (
∂uy
∂z + ∂uz

∂y ) 

(12) 

Z velocity: 
1
ρ [ ∂

∂x η (∂uz
∂x + ∂ux

∂z ) + ∂
∂y η (∂uz

∂y + ∂uy
∂z ) + ∂

∂z η (∂uz
∂z + ∂uz

∂z )]  
= 2

ρ ∂η
∂z

∂uz
∂z + 1

ρ ∂η
∂x (∂uz

∂x + ∂ux
∂z ) + 1

ρ ∂η
∂y (∂uz

∂y + ∂uy
∂z )  

(13) 

In addition, the uncompressed condition of the following equation was taken into 
consideration: 

∂2uz
∂x2 + ∂2uz

∂y2 + ∂2uz
∂z2 =0  (14) 

As can be seen from equations (11) – (13), they are the products of differential coefficients, 
and the extent of this influence was examined. 

In this study, Particleworks Ver. 6 (Prometech Software, Inc. Japan), that introduced MPS, 
was used. 
 

3 SIMULATION AND DISCUTTION 

3.1 Slump test 
The influence of the equivalent viscosity coefficient was determined by simulation of the 

slump test. Figure 1 shows the outline of the slump test. A cone with an inner diameter of 100 
to 200 mm, an outer diameter of 166.34 to 266.34 mm, and a height of 300 mm was installed. 
Soil particles were placed inside the cone and gravity was applied. Subsequently, the cone was 
raised for 2 seconds. Table 1 shows the simulation cases and the material parameters. In this 
simulation, the limit of shear velocity was adopted in order to stabilize the analysis. In addition, 
cases in which the products of the differential coefficients were taken into consideration (termed 
'Case A') and not taken into consideration (termed ''Case B'') were evaluated; as in equations 
(11) to (13). Table 2 shows the numerical results of the particle spread at 10.0 seconds. Figure 
2 shows the state of the average velocity at a steady state(10 seconds). In Case 2, the height is 
larger and the width smaller than in Case 1. This is because the shear resistance angle is larger 
than in Case 1. This specimen has the influence of self-sustaining. It is thought that the general 
behavior of soil can be expressed even as granular matter. A comparison of Case A to Case B 
indicated less difference between them in this simulation.   The analysis of the products of the 
differential coefficients solved the Navier-Stokes equation implicitly. However, this term was 
an explicit analysis method in our simulation that became difficult to converge. Moreover, the 
procedure is time consuming. It was unnecessary to consider the differential coefficient in this 

621



Kazuhiro Kaneda and Tomoki Sawada 

 4 

model test. 
 

 
 Figure 1: Layout of slump test 

Table 1: Simulation cases and material parameters 

 Initial viscosity 
coefficient 
η0 

Maximum 
viscosity 

coefficient 
ηmax 

Cohesion 
c (kPa) 

Shear resistance 
angle 

φ(degrees) 

Minimum 
shear velocity 

Vmin (m/s) 

Case 1 1.0 10100 100 30 10-3 
Case 2 1.0 10100 100 45 10-3 

 
Table 2: Numerical results 

  Height (mm) Width (mm) 
Case 1 Case A 62.6 412.3 

 Case B 75.8 384.5 
Case 2 Case A 64.3 417.7 

 Case B 76.5 383.7 

200 mm

100 mm

166.34 mm

266.34 mm

30
0 

m
m

50
 m

m

900 mm
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                                   Case 1                                                                                 Case 2 

Case A 

   

                                   Case 1                                                                                 Case 2 

Case A 

Figure 2: Results of the slump test 
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3.2 Slope flow analysis 
The slope flow analysis was performed at a large scale. Figure 3 shows the outline of the 

slope flow analysis. It was set to the soil height of 50 m and a width of 40 m. The angle of slope 
is 60 degrees. In the beginning, the wall on the slope surface was set, and then that wall would 
be removed to begin the flow. The material parameters are the same as in Table 1. Figure 3 
shows the shear strain distributions. In the case of a shear resistance angle of 30 degrees (Case 
1), at 11 seconds both Case A and Case B are shown. In the case of a shear resistance angle of 
40 degrees (Case 2) at 18 seconds Case A is shown, and at 40 seconds Case B is shown. In Case 
1, there is less difference between Case A and Case B. The soil particles flow overall, and the 
especially high shear strain occurred at the surface. In Case 2 and Case A, the soil particle 
velocity is low, and the slope shape is retained. The shear strain occurs at the surface and then 
the surface flow can be seen because of a high shear resistance angle. On the other hand, in 
Case 2 and Case B, at the 40 second mark, the slope shape is retained and surface flow cannot 
be seen. When the shear resistance angle or coherence is small, the slope becomes more fluid. 
Once it flows, the shear rate in equation (1) increases and the effects of c and φ become 
relatively small. As a result, the influence of the spatial gradient of η is reduced. Contrastingly, 
when the shear resistance angle or coherence is large and the fluid flows slowly, the shear rate 
of the surface grows larger and the influence of the spatial gradient of η appears. Moreover, it 
appears that the effect was not as visible in the small model, as shown in Figure 1. 

 

     
                              Case 1                                                                Case 2 

Case A 

    
              Case 1                                                                Case 2 

Case A 
Figure 3: Results of slope flow analysis 
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4 REMARKS 
The moving particle method was employed for the slump test and soil flow analysis. The 

conclusions are as follows: 
- In the slump test as the shear resistance angle increases, the height increases and the 

width remains wide at a steady state. 
- When the slope flow model with a large area is analyzed, the difference in shear 

resistance angle shows the difference in slope flow. It was also found that the effect of 
the spatial gradient of η becomes larger as the shear strain at the ground surface 
becomes larger. 

Although aspects of the method need improvement, such as the friction of the bottom surface, 
the study was able to express the soil flow according to the adhesive strength of the soil and the 
shear resistance angle.  
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Abstract. Eutectic melting and subsequent relocation of the boron-carbide (B4C) con-
trol rod materials were simulated by a particle method. In the past, it was difficult to
simulate the eutectic melting by a particle method because the melting starts at the inter-
face between two different materials, which leads to the instability of the particle motion
due to the small amount of fluid particles and lack of the thermodynamic consistency
of the particle system. Thus, the Moving Particle Full Implicit (MPFI)-Moving Particle
Semi-implicit (MPS) method was developed and introduced in the current study. Specif-
ically, the MPFI method was introduced for the momentum transfer calculation, and the
MPS method was introduced for the heat and mass transfer calculation. The MPFI-
MPS method realized the simulation of the eutectic melting and subsequent relocation
behaviour.

1 INTRODUCTION

In Fukushima decommissioning, investigation of the boron distribution in the fuel de-
bris is of great significance because it affects the risk of re-criticality[1]. The major source

1
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for the boron species is the boron-carbide B4C control rod. Thus, the eutectic melting
and relocation behavior of B4C control rod materials receive remarkable attention.

Eutectic melting can occur at the contact interface of several chemical components at
lower temperature than melting points of each pure material. B4C and stainless steel (SS)
can have eutectic melting[2] in the B4C control rod. Liquid phase suddenly appears at the
solid interface in eutectic melting, and the complicated multi-component interactions and
surface deformation occur. which are challenging for Eulerian direct numerical simulation
methods. A particle method, which is one of the Lagrangian methods, is suitable for sim-
ulating such complicated flows because it can easily track the motion of thermo-physical
properties of eutectic melting, inclusive of solid/liquid phase changes. The Moving Par-
ticle Semi-implicit method developed by Koshizuka and Oka[3, 4] is one of such particle
methods for the incompressible free surface fluid flow. Eutectic melting model was also
developed in MPS framework[5]. However, it was difficult to calculate the initial formation
of the liquid phase between the solid phases due to eutectic melting. It is often because
the instability of pressure calculation is caused by the too small number of liquid parti-
cles between solid phases just after eutectic melting started. Suppressing the numerical
oscillations in pressure calculation solves this issue in some cases[6]. Meanwhile, it was
reported that modeling a solid phase as very high-viscous fluid can solve the issue because
it virtually increases the number of fluid particles used for the pressure calculation[7]. The
Moving Particle Full Implicit method[8] is one of the promising method for this kind of
issues related with the instability. The MPFI method inherently suppresses the instabil-
ity of the particle motion because it assures thermodynamic consistency of the particle
system after discretization. Thus, it may be expected that adopting the MPFI method [8]
for the momentum transfer calculation, and the MPS method [3, 4] for the heat and mass
transfer calculation can enjoy the benefits from both the methods to simulate eutectic
melting and subsequent relocation; stable calculation and smooth distribution of physical
values.

In this study, eutectic melting and subsequent relocation of the B4C control rod mate-
rials were simulated by a particle method. The MPFI-MPS method was developed and
introduced in the current simulation. The eutectic melting and relocation processes of
the control rod materials were discussed.

2 NUMERICAL METHOD

In this study, we adopted the MPFI method [8] for the momentum transfer calculation,
and the MPS method [3, 4] for the heat and mass transfer calculation. The MPFI method
suppresses the instability of the particle motion because it assures thermodynamic consis-
tency of the particle system after discretization. Moreover, it conserves angular momen-
tum and makes it possible to simulation rotational motion of fluid. Meanwhile, the heat
and mass transfer calculation by the MPS method offers smooth distribution of physical
values. We call this method the MPFI-MPS method. In the MPFI method, the particle

2
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interaction models for gradient, divergence and Laplacian operators are formulated as:

∇ϕ =
∑
j

(ϕj + ϕi)rijw
′ij

dij
, (1)

∇ •A =
∑
j

(Aj −Ai)rijw
′ij

dij
(2)

and

∇2ϕ =
∑
j

(ϕj − ϕi)
w′ij

dij
. (3)

where w′ij is the differential of the weight function shown in Eq. 4:

w(d) =

{
(re−dij)2

n0
(0 ≤ r ≤ re)

0 (re ≤ r)
(4)

where re is an effective radius and dij is a particle distance. n0 is a constant to stan-
dardize the weight function. The weight function of Eq. 4 is used in the MPFI method.
The differential of this weight function is non-zero at dij = 0 so as to keep the particle
arrangement uniform.

The following governing equation was adopted:

ρ
dui

dt
=

∂

∂xj

µ ˙εij +
∂

∂xi

(λ ˙εkk + κεkk) + ρgi. (5)

Since this equation becomes the well-known form of incompressible NS equation when
we set the parameters λ and κ large enough, it can be used instead of the incompressible
NS equation. The first term on the right-hand side is the viscosity term and the second
term is equivalent to the pressure term in the general NS equation. Here, the pressure is
expressed as:

P = −(λ ˙εkk + κεkk). (6)

The details of the MPFI method are described in the literature [8].

In the MPFI method, the particle interaction models for gradient, divergence and
Laplacian operators are formulated as:

∇ϕi =
d

n0

∑
j ̸=i

(ϕj − ϕi)(rj − ri)

|rj − ri|2
w(|rj − ri|) (7)

∇ · ϕi =
d

n0

∑
j ̸=i

(ϕj − ϕi) · (rj − ri)

|rj − ri|2
w(|rj − ri|) (8)
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∇2ϕi =
2d

λn0

∑
j ̸=i

[(ϕj − ϕi)(w(|rj − ri|)] (9)

λ =

∑
j ̸=i |rj − ri|2w(|rj − ri|)∑

j ̸=i w(rj − ri)
(10)

where, d, n0 and w denote spatial dimensions and a particle number density. λ is a
coefficient to make the statistic increase of deviation consistent to an analytical solution.
w denotes the weight function defined as:

w(r) =

{
re
r
− 1 (0 ≤ r ≤ re)

0 (re ≤ r)
(11)

where, r denotes a particle distance.
In this study, melting and solidification behavior is expressed with the viscosity change.
The solid SS and solid B4C were modeled as a very high-viscous fluid.

The temperature field is calculated with the heat transfer equation:

Dh

Dt
= k∇2T +Q (12)

Here, h denotes enthalpy, T denotes temperature, k denotes thermal conductivity and
Q denotes heat source. To estimate the temperature from enthalpy, linear relationship
between them was assumed in this study. The latent heat was considered with tempera-
ture recovery method [9]. Eutectic melting model in the literatures[5, 6] was adopted in
the current study. It is mainly composed of two procedures; solving diffusion equation
with respect to B4C and determining the phase of a particle based on Fe–B binary phase
diagram. The phase diagram decides whether a particle is solid or liquid by referring to
its temperature and mass fraction of B4C to SS. We assumed that no volumetric change
occurs due to the phase change.

3 CALCULATIONS

The eutectic melting of the control-rod materials was simulated in a three-dimensional
way to understand their relocation behavior. Figure 1 shows the calculation geometry and
initial condition used in the simulation. Two calculation bodies were set in the calculation
region. The rod-shaped body at the center (Specimen region) represents the simulated
control rod with the physical properties of the control-rod materials. The plates at the
sides of the specimen region represent tungsten heaters (W heaters). Thermal radiation
was calculated by the S2S thermal radiation model in the simulation. Solid SS and solid
B4C were modeled as a very high-viscous fluid. The bottom half of the specimen was
treated with the wall particles. The temperature of heaters was set at 2473 K in this case.
The emissivity of the materials was set at 0.23.

4
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Table 1 shows the physical properties used in this study. Here, T denotes the tempera-
ture of a particle. The thermal conductivity of B4C powder bed at the filling rate of 76%
was used.

Figure 2 is a representation of solid/liquid particles with respect to viscosity at 60–
77 s in a front view. Figure 3 is a front sectional view of Figure 2. The melting at
the B4C-SS interface was successfully calculated. The eutectic melting started from the
interface. It was kept inside the specimen until it melted through the SS cladding. After
that, it flew down along the SS surface. It was observed that the outer surface of the SS
cladding was molten after the contact of the spreading melt (see Figure 3). Some of the
eutectic melt solidified because its shape changed while flowing down and heat release
to the environment overwhelmed the heat absorption there. Figure 4 and Figure 5 show
temperature distribution at 0–68 s and 68–77 s in a front view. The temperature on a
upper part of the rod increased by the thermal radiation from the tungsten heaters while
that on its bottom part decreased due to the heat release to the environment by thermal
radiation. The temperature distribution has approached almost equilibrium before the
eutectic melting started. Figure 6 and Figure 7 show B4C distribution at 0–68 s and
68–77 s in a front view. The B4C was transferred into the pure SS cladding. In this
simulation, temperature distribution reached the steady state firstly, and afterward the
rod started to melt when the Fe-B composition in a part of the rod reached the enough
value to form a liquid phase in the Fe-B binary phase diagram. The viscosity of the
melted part decreased, while that of the solid part remained at the initial high viscosity
(Figure 2). The results imply that the eutectic melting from the outer surface of the SS
cladding governs the melting speed of the control rod after the eutectic melt penetrates
the SS cladding and flow out.

Table 1: Calculation conditions for simulation

Initial particle distance 5.0× 10−4 m
Density of SS [10] 7.90× 103 kg/m3

Density of B4C[10] 2.52× 103/1.33 kg/m3

Specific heat capacity of SS[10] 326.0− 0.242T + 3.71T 0.719 J/kg/K
Specific heat capacity of B4C[10] 563.0 + T (1.54− 2.94× 10−4 × T ) J/kg/K
Thermal conductivity of SS[10] 7.58 + 0.0189T W/m/K
Thermal conductivity of B4C[10] 4.60 + 0.00205T + 26.5 exp(− T

448.0
) W/m/K

Latent heat of fusion 1929 mJ/mm3

Inter-diffusion coefficient 2.00× 10−07 exp(−21000×4.184
8.3×T

) m2/s

Kinematic viscosity of eutectic melt 1.0 mPa·s
Gravity 9.81 m/s2

5
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Simulation of relocation experiment (MPFI&MPS)

SUS304
Density 7930 kg/m3

Thermal conduct. 30.0 W/(Km)
Specific heat 689.9 J/Kg/K
Emissivity 0.23

B4C
Density 2520 kg/m3

Thermal conduct. 20.0 W/(K m)
Specific heat 960.0 J/kg/K
Emissivity 0.23

W heaters

Specim
en region

Melt
Thermal property Mass average

Top view Side view

Solid
(High viscos fluid)

Solid

Figure 1: Calculation geometry and conditions in three-dimensional simulation.

Figure 2: Representation of solid/liquid particles with respect to viscosity at 60–77 s (front view).
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Figure 3: Representation of solid/liquid particles with respect to viscosity at 50–77 s (front sectional
view).

Figure 4: Temperature distribution at 0–68 s (front view).
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Figure 5: Temperature distribution at 68–77 s (front view).

Figure 6: B4C distribution with respect to mass [kg] at 0–68 s (front view).
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Figure 7: B4C distribution with respect to mass [kg] at 69–77 s (front view).
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4 CONCLUSIONS

Eutectic melting and subsequent relocation of the B4C control rod materials were
simulated by a particle method. The MPFI-MPS method was developed and introduced
in the current simulation. The numerical analysis of the specimen which simulates the
partial length of the B4C control rod suggested that dominant eutectic-melting interfaces
changes before and after the eutectic melting reaches the specimen surface.
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ABSTRACT 

Spray cooling is often used in the steel manufacturing process, and the steel plate 
temperature at the time of manufacture affects productivity and quality. Therefore, the spray 
heat transfer coefficient estimation becomes important when determining manufacturing 
conditions or when designing manufacturing facilities. The conventional heat transfer 
coefficient estimation method is obtained by reversely analyzing the temperature of the steel 
plate when the heated steel plate is cooled by a single nozzle used or an experimental device 
simulating a real machine manufacturing facility. However, in actual equipment 
manufacturing facilities, it is difficult to grasp the heat transfer and flow state of heat transfer 
part details due to the presence of rolls, water staying on steel plates, and spray when a large 
amount of water is injected, heat transfer by numerical calculation Coefficient prediction has 
been desired. 

In order to calculate the actual physical phenomena even with a single spray, one hundred 
million droplets of about hundred micrometer diameter are calculated while resolving a few 
micrometers of vapor film thickness at the time of collision of the steel plates with droplets, 
so calculation load is huge.Therefore, the authors describe the heat transfer coefficient of the 
experimental results as a function of the collision pressure because the vapor film is broken 
and the heat transfer is promoted if the collision pressure of the spray droplets to the steel 
plate is high [1]. The heat transfer coefficient was calculated by substituting the collision 
pressure obtained by the numerical calculation into the experimental formula. 

The behavior of the spray cooling water includes a complex free interface, but can be 
calculated by the MPS method, and there is an example [2] where the flow rate of the spray 
cooling water between rolls of a real steel facility is calculated. In the present examination, 
the MPS method was similarly used for the prediction of the spray collision pressure, and the 
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 2 

calculated particle diameter was also set to 3 mm as in the case [2]. As a result of examination, 
the particles were injected from the spray outlet so as to match the actual water density, and 
the actual droplet size was matched with the actual collision pressure. 

1. Introduction 

There are various cooling processes using spray in the steel manufacturing process, and play 
an important role in quality improvement and productivity improvement. In the continuous 
casting process, solidification non-uniformity caused by cooling non-uniformity of spray 
water is a problem [2]. In the previous report, it was possible to quantify the macroscopic 
flow distribution of spray water in a continuous casting machine by numerical analysis. 
However, the heat transfer coefficient of spray cooling cannot be predicted by numerical 
analysis, and the solidification state of the entire continuous casting machine was predicted by 
combining the heat transfer coefficient measurement by experiment and the flow analysis 
result. In this study, we investigated a method of numerically determining the heat transfer 
coefficient distribution of spray cooling that could not be predicted by conventional numerical 
analysis. 

2. Impact pressure for cooling capacity estimation 

It is difficult to model all physical phenomena by numerical analysis because the spray of the 
steel cooling process is accompanied by the boiling phenomenon. A steam film is formed 
between the steel plate and the cooling water, and heat exchange between the steel plate and 
the cooling water is performed by the steam film having high heat resistance. Therefore, the 
increase of the water collision pressure  makes the vapor film thinner or breaks down, which 
reduces the thermal resistance and also causes solid-liquid contact phenomenon, thereby 
promoting heat exchange and improving the heat transfer coefficient (Fig. 1) ). 

 

 

 

 

 

 

 
From this mechanism, the heat transfer coefficient h of the steel plate surface is a function f using the 
water density W per unit area, the collision pressure Pc of the droplets onto the steel plate surface, and 
the steel plate surface temperature Ts after cooling as in equation (1) It is known that it can be 
formulated [1].  

),,( sTPcWfh 

Fig.2 spray injection condtion 

(a) Width direction 
(x-z plane) 

(b) Thickness direction 
 (y-z plane) 

heating steel plate

droplet

vapor film
droplet

vapor film

●low  collision pressure 
→ thick vapor film

low heat transfer

●high  collision pressure 
→ thin vapor film

high heat transfer

Fig.1.  spray heat transfer mechanism 

638



Takao Taya, Norimasa Yamasaki and Atushi Ymoto 

 3 

Since Ts is the surface temperature of steel plate which is the result of cooling, it is 
necessary to obtain the water density w and the collision pressure Pc in order to predict the 
heat transfer coefficient by calculation. The water density distribution is the spray 
performance itself and is relatively easily available from the manufacturer of the spray nozzle. 
In this paper, we apply the particle method that facilitates free interface handling to flow 
analysis, model spray injection that can simulate the actual spray water density distribution, 
and calculate the distribution of collision pressure required for heat transfer coefficient 
prediction.  

We examined whether it was possible to ask. Numerical analysis was performed using 
general-purpose particle method analysis software "Particleworks". Specifically, two sprays 
as shown in Fig. 2 are wrapped, and the collision pressure against the steel plate when the 
spray flow rate, the width direction angle, and the thickness direction angle are changed is 
compared with the experimental value. 

 

In the standard function of the software, as shown in Fig. 3, random droplet velocity three 
components Vx, Vy and Vz according to the spray spread angle were given using the equation 
(2) regardless of the position of the particles. 

 

Here, Qn means the flow rate per nozzle, An means the sectional area of the nozzle outlet, 
and rand [x0: x1] means that numbers are randomly given in the range of x0 ≦ x ≦ x1. 
However, in this injection logic, the spread of droplets assumed cannot be obtained because 
the particles collide with each other before reaching the steel plate, and the amount of water is 
concentrated at the center and there is a problem that it does not match the actually measured 
water density. Therefore, a spray injection logic as shown in Fig. 4 was considered. The 
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Fig.3 spray injection logic in the standard function of the software 
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 4 

droplet velocity is given using equation (3). In the improved logic, the initial velocity is given 
at the injection angle obtained by giving the x coordinate with random numbers to the 
injection range xi-1 ≦ x ≦ xi obtained from the actually measured water density for the ith 
particle. By injecting the particles in this manner, the particles do not collide with each other 
before reaching the steel plate, and the particles can be injected according to the actually 
measured water density. The implementation of the logic was performed using a user 
subroutine of general purpose software. 

 

 

 

 

 

 

The governing equations are discretized using the interparticle interaction model when 
solving the same continuous equation (Equation (4)) and Navier-Stokes equation (Equation 
(5)) as in the flow calculation with the finite volume method etc. It is carried out. 

0
tD

D

21D p
Dt




     
u u f

Here, u in the equation (5) is a flow velocity vector, p is a pressure, ρ is a density, ν is a 
kinematic viscosity coefficient, and f is an external force vector (gravity and surface tension). 
For the boundary condition of the wall, we used a model in which the wall of Harada et al. [3] 
is treated as a polygon wall. The collision pressure of the droplets is determined using 
equation (6) which is a blend of pressure gradient and penalty method when wall particles are 
used. 
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Fig.4.  Spray injection logic improved in this paper 
(When coming out 5 pieces in a horizontal row from the discharge port) 
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Where press
walliP,  is the collision pressure, press

wallif , is the force applied when the particle collides 
with the wall, A is the examination area, im  is the mass of the particle, iwr is the closest 
distance from the wall to the particle i, and the wall weighting function )( iwrZ   determined by 

iwr , wallP  is the pressure at the wall , )( iwgrad rZ   is the slope of the wall weighting function 
)( iwrZ   in the wall normal direction, n is the normal vector, and β is the weighting parameter. 

 

3. Calculation result of spray injection and collision pressure 

When the spray is made to collide with the steel plate under the condition of θ = 110 °, φ = 
20 °, H = 145 mm, L = 315 mm according to the definition of Fig. 2 with two nozzles lapped 
with a flow rate of 24 l / min in Fig.5 . The situation of is compared with experiment and 
numerical calculation. The particle diameter at the time of calculation was 1 mm. It was 
confirmed by both experiment and numerical calculation that cooling water collides in the 
part which two sprays wrap to right and left, and it separates up and down and flows.

 

In Fig. 6, two nozzles with a water volume of 30 l / min were used, and injection was 
performed under the conditions of θ = 114 °, φ = 10 °, H = 80 mm, L = 100 mm. The water 
density ratio of the central part of the spray thickness of the The water density is a flow rate 
per unit area measured by placing a container of 20 mm square on one side at a position 
separated by 80 mm from the spray. The same method was used for measurement in 
numerical calculation. According to the method proposed this time, the water density 
distribution near the actual measurement was calculated from Fig.6. 

Fig.5.  State of spray injection 
24ℓ/min ×２,θ=110°,φ=20°,H=145mm,L=315mm 
 

(a)experiment (b)numerical simulation 
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Fig. 7 shows the collision pressure at the center of the thickness when the spray is injected 
under the same conditions as Fig. The calculated value is the collision pressure obtained by 
the injection logic of equation (3). The collision pressure was measured by attaching a 
pressure sensor to a plate having a width of 20 mm and a thickness of 100 mm, and moving 
the plate over the entire spray injection width. As shown in Fig. 7, the phenomenon that the 
collision pressure becomes large immediately below the nozzle and the collision pressure 
decreases as it separates from the region below quantitatively coincides with the measured 
value and the calculated value. 

 

 

 

 

 

 

 

 

 

 

4. Heat Transfer Calculation 

Consider numerically predicting the heat transfer coefficient of a single spray. The heat 
transfer coefficient h of the steel plate surface can be formulated by the function f using the 
water density W per unit area, the collision pressure Pc of the droplets on the steel plate 
surface, and the steel plate surface temperature Ts after cooling as in equation (1) It is known 
[1]. 

Based on this finding, first, the spray condition of the spray is set to match the water mass 
density distribution W of the catalog spec, and the flow of the complex free interface of the 
spray cooling water is calculated using the particle method. The initial velocity of the particles 
given by calculation is given from the value obtained by back-calculating the pressure 
obtained by the PQ diagram of the spray or the value measured by PIV. 

In this paper, we calculate the heat transfer coefficient of the spray by substituting the 
collision pressure and water density distribution of the steel plate which is the calculation 
result of the particle method into the equation (1). The spray conditions for the spray were a 
flow rate of 14.8 L / min, the distance between the spray and the steel plate was 155 mm, the 
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Fig.6. Water density distribution of spray 
(Thickness center, Frow Rate 30ℓ/min 
×2,θ=114°,φ=10°,H=80mm,L=100mm） 

Fig.7. Impact pressure distribution of spray  
(Thickness center, Flow Rate 30ℓ/min ×2 
, θ=114°,φ=10°, H=80mm, L=100mm） 
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spread angle in the width direction was 110 °, and the spread angle in the thickness direction 
was 20 °. The heat transfer coefficients measured in the experiment and the results are 
compared. The heat transfer coefficient of the experiment was calculated by inversely 
analyzing the temperature history of the thermocouple embedded in the steel plate after the 
steel plate was heated to 900 ° C. in a heating furnace. The heat transfer coefficients 
determined by numerical calculation and the measured heat transfer coefficients are shown in 
Fig. 8 

 

 

 

 

 

 

 

 

5. Conclusion 

By calculating the spray injection using the particle method, it becomes possible to calculate 
the distribution of the collision pressure Pc quantitatively by calculation by combining the 
water density W with the actual measurement value. From this, it was found that the flow 
analysis of W, Pc, etc. could predict not only the macro behavior of the spray water but also 
the heat transfer coefficient h. 
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Summary. The proposed flutter interpretation is applicable to plasma aeroelasticity analysis. 
In this case it shall be possible to divide a particle in two, to generate two opposite electric 
charges and thus ionize the flow. The proposed two-mass gas gyro-particle has the elastic 
elements and the two pairs of multiple oscillation frequencies. The incident gas gyro-particles 
interact with the structural particles of the streamlined elastic body. The gas particles start to 
rotate and pulsate. The multiple oscillation frequencies of the gas particles split. The higher 
the vehile speed, the larger the gap between the oscillation frequencies of the gas particle. The 
structural resonance takes place, when the gas-particle pulsation frequency gets into the 
vicinity of an eigenfrequency of the elastic structure. This resonance is the flutter. Plasma is 
not considered here. This work is only a preparation step in this direction. 

1 INTRODUCTION 
 

Consider the elastic body in the high-speed supersonic flow. From one side, the front of the 
shock wave gets closer to the body surface. From another side, the turbulent frictional 
boundary layer of the body gets wider. Assume that these two quantities are commensurable 
ones. If plasma is available, then the shock wave starts to disintegrate, the flow medium starts 
to intermix [1,2]. Static equilibrium analysis [3,4] is not satisfactory to solve the flow-and-
structure interaction problem. The clearly defined shock-wave-front surface shall be replaced 
with a specific contact-type vortex-induced formation with uncertain boundaries. The concept 
of the contact-type vortex-induced formation is introduced by O. Azarova [5]. Her work is 
available free in the Internet. Possibility of a vortex-type interpretation of the supersonic flow 
is proved in the work [6]. 

Nowadays the "piston" theory and its modifications are widely used for solving the 
supersonic aeroelasticity problem. The important results are obtained [7-9]. The well known 
vortex-element method [10-12] works properly in the incompressible-liquid medium. The 
particle approach specified in this issue provides the following calculation facilities: joint 
analysis of aerodynamic pulsations and oscillations of the elastic body, arbitrary structural-
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surface geometry in the incident flow, 3D-motion analysis, gas-compressibility assumption, 
refinement of the gas-pulsation character, particle disintegration, heating effects, etc. Each 
particle has its own repulsion-type force characteristic. By changing the force characteristic 
parameters the subsonic flow may be replaced with the supersonic one. The considered 
problem is the time-dependent Cauchy one with the given initial conditions. 

The concept of the elementary gyro-particle is introduced in [13]. This report considers the 
so-called two-mass elastic gas gyro-particles with the given repulsion-type force 
characteristic. The particles are point masses [14,15]. The proposed particle takes the medium 
elasticity into account. Under the special conditions a separate two-mass particle can be 
disintegrated in two and thus ionize the incident flow. Each particle interacts with each one. 
The streamlined elastic body is also made of particles. They are the structural one-mass 
particles connected by springs. The gas particles interact with the structural ones. This 
interaction produces the so-called contact-type vortex-induced formation with intensive 
pulsations. The clearly defined shock-wave-front surface is not available. 

The gas particle "rotation intensity" is associated with the its gyro-load parameter. If the 
gyro-load parameter is zero, then the particle eigenfrequencies are the multiple ones. The 
higher the gyro-load parameter, the larger the frequency gap. They are the frequencies of the 
gas pulsations. The system resonance takes place when a gas pulsation frequency gets into the 
vicinity of the eigenfrequency of the elastic body. 

The problem-solution convergence rate (in the number of considered particles) is high 
[15,16]. Dozens (hundreds) of the particles are quite enough to illustrate the considered 
aeroelastic effects. 

 
2 DESCRIPTION OF THE TWO-MASS GAS GYRO-PARTICLE 

 

The two-mass gas gyro-particle is shown in Figure 1. 
 

 
 

Figure 1: The two-mass gas gyro-particle 
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The particle displacements are translational. Friction is not available. A separate particle (see 
Figure 1) move in compliance with its dynamics equations: 

 

0)( 3121  yayycym       (1) 
0)( 4122  yayycym   
0)( 1343  yayycym   
0)( 2344  yayycym   

 

where: 
a − is the particle gyro-load parameter associated with its "rotation intensity". 
Matrix A of the gyro-load coefficients is the skew-symmetric one: 
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The particle characteristic eigenvalue equation takes the following form: 
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If the gyro-load parameter a=0 (the particle is not "spinned up" yet), then b6=0. In this case 
the particle has the two pairs of multiple eigenvalues and the two zero (solid-state) ones. 
 

 
 

Figure 2: Splitting of the particle eigenvalues. Loss of one the two zero (solid-state) ones 
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Figure 3: The particle pulsations induced by the unit impulse (4) 
 
It is shown in Figure 2, that increase of the gyro-load parameter (associated with the particle 
"rotation intensity") leads: 1) to splitting of the particle eigenvalues, 2) to loss of one of the 
two zero (solid-state) ones. 

Figure 3 specifies the typical pulsation trajectories of the subparticles of the two-mass 
gyro-particle in its phase plane. It is the dynamic response to the external unit impulse under 
the following initial conditions: 

 

0;1;0... 322141  yyyyyy      (4) 

One of the two zero (solid-state) eigenvalues is lost. So, displacements of the particle (as a 
solid body) are constrained. 

       
 

Figure 4a: The streamlined 3-mass elastic body  Figure 4b: The body 11.2 Hz eigenmode 
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The report presents the simplified 2D-model of the dynamic interaction of the elastic body 
with the incident contact-type vortex-induced formation. Figure 4a presents the elastic body. 
Initially it is the equilateral triangle. Its initial leg is d1. The 3 structural particles (the m1 point 
masses) are in its vertices. The structural particles are connected using the c1 springs (red 
arrows in Figure 4a). The structural particles move translationally in the plane. They oscillate. 
Figure 4b specifies one of the body eigenmodes. Its corresponding eigenfrequency is 11.2 Hz. 

The considered gas gyro-particle has two m2 subparticles (see Figure 1): the main 
subparticle and the conjugate one. It is assumed that only the main subparticle is active. It 
takes part in all the interactions. The conjugate subparticle is passive. It just hangs on the 
main subparticle and hampers its motion. The conjugate subparticles are influenced by inertia 
forces, elastic springs and gyro forces. The subparticles are connected by the c2 springs in the 
coordinate-wise manner. 

 
3 VORTEX CHARACTER OF THE PARTICLE MOTION 
 

The subparticle is a point mass. Its rotation is not available. Its motion is translation under 
the applied gyro forces. The response trajectory is a polyharmonic one. It has the vortex 
character. It is the superimposition of rotations (pulsations) in the phase plane. High-
frequency weak pulsations are superimposed by the low-frequency strong ones. (The particle 
numeration scheme is specified later in Figure 7). 

The idea is that supersonic character of the flow is defined not by the streamlined-body 
linear velocity. It is defined by the incident-particle rotation intensity (by the value a of the 
associated gyro-load parameter). That is why in all the considered examples the body linear 
velocity is always the same, but the gyro-load parameter a is different. Figures 5a-5b show, 

 

  
 

Figure 5a: Particles Nos.2-7, a=20 (kg/sec)  Figure 5b: Particles Nos.1-2, a=50 (kg/sec) 
 
that the higher the particle rotation intensity, the lower the particle pulsation amplitude, the 
greater the gap between the splitted frequencies. 

To the first approximation, Mach number of the incident gas flow can be identified by 
comparing the considered vortex with the reference one. The reference O. Azarova supersonic 
vortex (corresponding to M=1.89) is shown in Figure 6a. The reference [5] is available free in 
the Internet. 
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The vortex in Figure 6b is obtained for a=50 (kg/sec). Compare the Figures 6a and 6b. The 
considered vortex and the reference one are much alike. So, the gyro-load parameter a=50 
(kg/sec) of this model corresponds approximately to M≈2. 

 

   
 

 Figure 6a: Reference O. Azarova supersonic vortex [5]  Figure 6b: Particle No.6, a=50 (kg/sec) 
 
4 FORCE CHARACTERISTIC OF THE GAS GYRO-PARTICLE 
 

Interactions of the gas gyro-particles with each other and interactions of the gas gyro-
particles with the structural ones are determined by the repulsion-type force characteristic. 
Each gas particle repels each one. The force characteristic is the two-particles interaction 
force depending on the distance between them. It is approximated by the non-positive 
segment of the shifted parabola: 

 

)/1/1()( 2 ijijijij ddkdF  , ji      (5) 
If 2ddij  , then 0ijF . If 2ddij  , then 0ijF ; 

 

where: 

ijk  − is the compressibility factor; 22 )()( ijijij yyxxd   − is the distance between the 
gyro-particles (subparticles); d2 – is the diameter of the particle influence zone. The 
compressibility factor controls the flow-disturbance propagation velocity. The particles do not 
interact, if the distance between them exceeds the diameter of the particle influence zone. 
Initially the particles are packed closely. The step of the particle initial-distribution grid (in 
the square of the contact-type vortex-induced formation) is equal to d2 (see Figure 7). 

So, there are 3 structural particles, 16 main gas subparticles and 16 conjugate gas 
subparticles. The total number of the point masses is 3+16+16=35. To provide effective 
computer-program cycling, to simplify the formulae derivation, it is taken that all these 
elements interact with each other. Only some of the compressibility factors ijk  are zeroes. The 
structural particles interact with the main subparticles only. They do not interact with 
themselves. They do not interact with the conjugate subparticles. The main subparticles do 
not interact with themselves. They do not interact with the conjugate subparticles (by the 
repulstion-type force characterisitic). The conjugate subparticles do not interact with other 
subparticles at all (by the repulstion-type force characteristic). 
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Let K be the matrix of the specified compression factors. It has 35×35=1225 elements. The 
factors are entered into the matrix in compliance with the following procedure. At first zero 
all the matrix elements: 35,...,1;35,...,1;0  jikij . Then start to enter non-zero elements. 
Let k1 be the compression factors of the structural particles and the main gas subparticles. Let 
k2 be the compression factors of the main gas subparticles only. So, the K matrix has the 
following two corresponding blocks. The first block: 

 

19,...,4;3,2,1;1  jikkij ; 19,...,4;3,2,1;1  ijkkij   (6) 
 

and the second block: 
 

19,...,4;19,...,4;2  jikkij     (7) 
 

The main subparticles do not interact with each other. So, in addition: 
 

19,...,4;0  jk jj      (8) 
 

5 DYNAMICS EQUATIONS OF VORTEX-INDUCED FORMATION 
 

The considered equations are nonlinear. The considered aeroelasticity problem is the 
nonstationary one. The flutter is interpreted as a classic resonance, when the two-mass gas 
particle pulsation frequency gets into the vicinity of an eigenfrequency of the streamlined 
elastic body. Friction is not available. These are the X-components of the forces applied to the 
considered 35 point masses: 
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  2351935235 /)( myaxxcx    
where: ijijij dxx /)(cos  . 
The Y-components of the forces applied to the considered 35 point masses are much alike. 

The initial integration conditions of equations (9) are specified in Figure 7. Initially the 
two-mass gas gyro-particles are motionless. But the structural particles initially move. X-
components of their linear velocities are non-zero and equal to vx0. Actually, the elastic body 
tries to penetrate through the motionless square-type gas formation at the given speed. 

The system of 70 equations (9) is integrated using the 4-th order Runge-Kutta procedure. 
The equation parameters are: а= 0-5000 (kg/sec), m1=50 (kg), m2=0.5 (kg), с1=105 (N/m), 
с2=50-50000 (N/m), k1=1000 (N×m), k2=10 (N×m), vx0=5 (m/sec). Total integration time is 
Т=0.4 (sec). During this time the elastic body penetrates the gas formation completely. The 
preliminary determined eigenfrequencies of the elastic body (see Figures 4a-4b) are: 8.72 Hz, 
8.74 Hz, 11.2 Hz. 
 
6 THE AEROELASTICITY ANALYSIS RESULTS 
 

The red arrow in Figure 7 specifies the initial vx0 velocity direction of the streamlined 
triangular body. Red lines are the trajectories of its structural particles. The elastic body 
moves into the motionless 1×1 (m2) square contact-type vortex-induced formation. This 

 

 
 

Figure 7: The triangle elastic body penetrates through the contact-type vortex-induced formation 
 

square-shape formation is occupied with 16 two-mass gas gyro-particles. Their initial 
distribution grid is uniform, d2 – is the grid step. It is assumed that supersonic character of the 
incident flow is determined not by the body linear velocity, but by gas particle rotation 
intensity (by the gyro-load a parameter). Initially all the gas gyro-particles are motionless, but 
they are spinned up strongly. The gyro-loads are applied, a≠0. Rotation intensity of all the 
particles is the same. If the gyro-particles are arranged from the opposite sides of the 
streamlined body, then they are spinned up in different directions. Gyro-load parameter of the 
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upper particles is positive, gyro-load parameter of the lower particles is negative. 
Trajectories of the main subparticles are blue. Trajectories of the conjugate subparticles are 

green. The main trajectory and the conjugate trajectory of the two mass particle start from the 
same point at the initial time moment. Figure 7 is overloaded. So, not all the particles are 
numbered. The numbering scheme is: 1) 3 structural particles Nos. (red trajectories) are from 
1 to 3, 2) 16 main subparticles Nos. (blue trajectories) are from 4 to 19, 3) 16 conjugate 
subparticles Nos. (green trajectories) are from 20 to 35. So (see Figure 7), designation 5-21 
specified the initial positions of the main subparticle No.5 and its conjugate particle No.21. 
Note that the applied gyro-loads carry the gas particles down the flow (see the green arrow 
and the blue arrow at the bottom of Figure 7). The disturbances do not go up the flow. This 
effect characterises the supersonic nature of the model. It is seen in Figure 7 that the elastic 
body (in the right) has already penetrated through the gas formation, but motion of the 19-35 
gyro-particle has hardly started. In other words, the elastic-body motion velocity exceeds the 
flow-disturbance propagation velocity. 

Traditionally [13] flutter is considered as a solution of the corresponding boundary 
problem. Unlike the traditional approach in this report flutter is a resonance. Increase of the 
gyro-load a parameter (gas particle rotation intensity) provides the gas gyro-particle 
eigenfrequency splitting (see Figure 3). These are the pulsation frequencies of the gas-
particle. The resonance takes place when a flow pulsation frequency gets into the vicinity of 
an eigenfrequency of the elastic body. 

Figure 8 specifies the surge of amplitude of relative displacements 112 dyy   of the 
structural particles in the gyro-load a parameter interval from 30 to 40 (kg/sec). 

It is shown in Figure 2, that for a=35.05 (kg/sec) the gas particle pulsation frequency is 
11.79 (Hz). Figure 4b specifies the 11.2 (Hz) elastic-body eigenmode. So, it is the resonance, 
because the gas pulsation frequency has got into the vicinity of the elastic-body eigenvalue. 

 

 
 

Figure 8: Resonance (flutter) of the streamlined elastic body 
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Figure 9: Quarter turn (divergence) of the streamlined elastic body, a=5000 (kg/sec) 
 
Note that further increase of the gyro-load a parameter (gas-particle rotation intensity) is 

accompanied with growth of aerodynamic drag. Figure 9 illustrates the case, when a is high 
enough. In this case, the streamlined body runs against the contact-type vortex-induced 
formation, oscillates chaotically and makes a counter-clockwise quarter turn. This is the 
aeroelastic divergence. 
 
7 CONCLUSIONS 
 

- The two-mass gyro-particle is proposed as the tool for modeling the plasma-
containing supersonic flow. This particle can be divided in two oppositely-charged 
single gyro-particles and thus ionize the incident flow. Plasma is not considered 
here. This work is only a preparation step in this direction. 

- It is shown that the supersonic flow character may be determined not by linear 
velocity of the streamlined body, but by rotation intensity of the incident gas gyro-
particles. 
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Abstract. The present work uses a fully coupled direct numerical simulation-Lagrangian 
particle tracking solver in conjunction with an interaction energy-based deterministic 
agglomeration algorithm to determine the effect of particle diameter on the aggregation 
properties of a wall-bounded, particle-laden channel flow at shear Reynolds number, 𝑅𝑅𝑒𝑒𝜏𝜏 =
180. Three primary particle diameters are considered of relevance to the nuclear industry 
resembling 200µm - 400µm calcite particles dispersed in water, with a Hamaker constant of 
3.8×10-20 J. The simulations are initialized with randomly dispersed particles of numbers 
calculated to ensure a constant volume fraction ΦP = 10-3. Analysis is focused on elucidating 
the collision and agglomeration behaviour throughout the channel flow over time. A statistically 
steady state for collision and agglomeration rate is observed 10 non-dimensional time units after 
the particles have been injected which persists until at least 𝑡𝑡∗ = 50. Results indicate a decrease 
in particle agglomeration efficiency as diameter is increased, which provides for a reduction in 
agglomeration rate at large time scales as the particles begin to aggregate and the mean 
agglomerate diameter increases. Further to this, the normalized number of collisions is similar 
in all simulations, with the smallest particles showing a slightly increased collision rate. 
Arguments associated with energy dispersed in collisions are presented to substantiate these 
findings. Collision rates across the channel are approximately constant with an increase close 
to the walls which, when normalized by the total number of primary particles, are actually 
favoured by smaller particles. Finally, agglomeration outcomes after a collision are shown to 
be more likely towards the channel centreline, since the particle dynamics in this region favour 
collisions with low relative velocity. 
 
1 INTRODUCTION 

Particle-laden flows with high mass loading are ubiquitous in nature and industry, such as 
atmospheric transport [1], blood drop forensics [2] and mineral processing [3]. Of relevance to 
this study is the nuclear industry, which depends on a comprehensive understanding of the 
particle-scale and system-scale processes associated with such flows in order to predict the 
long-term behaviour of waste suspension slurries [4]. At present, a key challenge exists in the 
ability to transport legacy nuclear waste material from historic ponds and silos at Sellafield, UK 
to interim locations where they can be safely stored. In order to do so, knowledge must be 
generated surrounding the aggregation and interaction dynamics of densely dispersed two-
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phase fluid-solid flow systems. Of importance is the long term morphology of the particles 
(size, shape and interaction profile information) in order to predict potential hazards over long 
time-frames. Fundamental knowledge of this kind could also be used to improve current waste 
transport designs. 

At high particle-fluid volume fractions, the dynamics of both phases are governed by 
interparticle collisions, which in most cases can lead to particle-particle adhesion or 
agglomeration due to electrokinetic interactions between the dispersed phase elements [5]. 
These mechanisms cause long-term particle morphology changes which increase the risk of 
blockages, local concentration peaks and poor heat-transfer conditions. Furthermore, 
modifications to the particle concentration field can then impact on the turbulence properties of 
the carrier fluid, affecting the transport efficiency. The present study focuses on developing 
computational tools to predict and quantify these phenomena, before exploiting them to 
elucidate the physics surrounding long-term particle-particle agglomeration in wall-bounded 
flows. 

Motivated by the inherent impracticality of experimental studies to capture individual 
particle-particle interactions on a sufficient analytical scale, along with the recent advances in 
computational performance, fluid dynamics modelling has become a powerful tool to study 
such phenomenon for multi-phase fluid flows. Typically, the carrier phase is simulated using  
direct numerical simulation (DNS) or large eddy simulation (LES), however the latter has been 
shown to provide less accurate results for dense flows, since the unresolved scales fail to 
provide the correct two-way coupled forcing field back to the continuous phase [6], despite its 
computational cost advantages. Over the last few decades, DNS has been used along with 
Lagrangian particle tracking (LPT) to study a wide variety of turbulent systems containing 
particles, droplets and bubbles. The majority of these studies simulate particles in isotropic or 
wall-bounded turbulence and focus on behaviours such as dispersion, wall deposition, 
entrainment, resuspension, turbulence modulation and particle-particle collisions.  

The focus of the present work relies on modelling post-collision effects (i.e. adhesion or 
bouncing). Work in this field is sparse, despite most real multiphase systems possessing 
electrokinetic dynamics at close interparticle distances [7]. Typical attempts to consider 
agglomeration are divided into either stochastic [8], wherein the particles stick based on the 
outcome of a random process, or deterministic [9] approaches. In the deterministic approach an 
adhesion requirement is usually based on collision momentum [10, 11], kinetic/potential energy 
considerations [12] or local flow properties. 

The present work utilizes a model based on energy budget arguments during the collision 
which has previously been successfully applied to the LES of multiphase turbulent channel 
flows [13]. We here aim to expand on this work by switching to a DNS continuous phase solver, 
which will allow us to further elucidate the fundamental dynamics which determine particle-
particle adhesion throughout the various regions of the turbulent channel flow. In order to relate 
the present work to the systems present in the nuclear waste processing industry, we consider 
mechanical and chemical properties matching those of spherical calcite particles in water [14], 
which is a frequently used simulant for radioactive waste material. 
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2 METHODOLOGY 

2.1 Fluid flow simulation 
The spectral element method-based code Nek5000 is used to obtain a carrier-fluid field 

representing a fully developed turbulent channel flow. This was chosen due to its impressive 
and reliable testing and validation history, along with its scalability in terms of parallelisation. 
The element discretization ensures that all the smallest length and time scales are resolved, 
down to the structures and processes associated with the Kolmogorov length scale. The code 
solves the incompressible Navier-Stokes (NS) equations to 7th order accuracy on a Cartesian 
structured grid which consists of 27 × 18 × 23 elements (i.e. 5.7M nodes). The elements are 
distributed more densely in the near-wall region in order to capture the smaller scales of 
turbulence in this location. The non-dimensional NS equations are presented in Eqs. (1) and 
(2), with distances, velocities and densities normalized by the channel half-height, 𝛿𝛿, the bulk 
velocity, 𝑈𝑈𝐵𝐵, and the fluid phase density, 𝜌𝜌𝐹𝐹, respectively. From here on, any quantity with an 
asterisk (*) denotes a variable non-dimensionalised in this manner. 

𝛁𝛁 ⋅ 𝒖𝒖∗ = 0 (1) 

𝜕𝜕𝒖𝒖∗

𝜕𝜕𝑡𝑡∗ + 𝒖𝒖∗ ⋅ 𝛁𝛁𝒖𝒖∗ = −𝛁𝛁𝑝𝑝∗ + 1
𝑅𝑅𝑒𝑒𝐵𝐵

𝛁𝛁 ⋅ 𝝉𝝉∗ + 𝒇𝒇2𝑊𝑊,𝑖𝑖
∗ + 𝒇𝒇𝑃𝑃𝑃𝑃

∗ (2) 

Here, 𝒖𝒖∗ is the fluid velocity, 𝑝𝑝∗ is the fluid pressure, 𝑅𝑅𝑒𝑒𝐵𝐵 is the bulk Reynolds number defined 
as 𝑅𝑅𝑒𝑒𝐵𝐵  =  𝑈𝑈𝐵𝐵𝛿𝛿/𝜈𝜈𝐹𝐹, 𝜈𝜈𝐹𝐹 is the fluid kinematic viscosity and 𝝉𝝉∗ is the viscous stress tensor. The 
additional term 𝒇𝒇2𝑊𝑊,𝑖𝑖

∗  is cell-dependent and accounts for the two-way momentum exchange 
between particles in that cell and the surrounding fluid. Finally, the term 𝒇𝒇𝑃𝑃𝑃𝑃

∗  is constant and 
accounts for a pressure gradient across the channel in the streamwise direction. 

The NS equations are solved across the computational position domain (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), which 
corresponds to a 12𝛿𝛿 ×  2𝛿𝛿 ×  6𝛿𝛿 channel as illustrated in Fig. 1. We define 𝑥𝑥 to be the 
streamwise direction, 𝑦𝑦 to be the wall-normal direction, and 𝑧𝑧 to be the spanwise direction. 
Periodic boundary conditions are enforced in the streamwise and spanwise directions, whereas 
the wall-normal axis uses no-slip conditions at 𝑦𝑦∗ = ±𝛿𝛿. The flow rate is maintained by a 
constant pressure gradient. Using non-dimensional parameters this is: 

𝒇𝒇𝑃𝑃𝑃𝑃
∗ = 𝜕𝜕𝑝𝑝∗

𝜕𝜕𝑥𝑥∗ �̂�𝒙 = (𝑅𝑅𝑒𝑒𝜏𝜏
𝑅𝑅𝑒𝑒𝐵𝐵

)
2

�̂�𝒙 (3) 

where 𝑅𝑅𝑒𝑒𝜏𝜏 is the shear Reynolds number for the flow. The present simulations were carried out 
at 𝑅𝑅𝑒𝑒𝐵𝐵 = 2800 which corresponds to 𝑅𝑅𝑒𝑒𝜏𝜏 = 180. A constant fluid timestep of 
Δ𝑡𝑡𝐹𝐹

∗ = 0.01 was used throughout. 
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Figure 1: Schematic of the multi-phase turbulent channel flow at 𝑅𝑅𝑒𝑒𝜏𝜏 = 180. 

2.2 Particle advection 
To simulate the advection of large quantities of solid spherical particles throughout the fluid 

flow field, an LPT has been developed which runs concurrently after each fluid solution step. 
The non-dimensional Newtonian equations of motion for each particle are integrated to obtain 
trajectories at each timestep. The equation is based on the Maxey-Riley (MR) force-balance 
[15] and in the present work, contributions from drag forces, along with shear lift, virtual mass 
and pressure gradient forces are considered, since the study entails particles with low density 
ratio. The only term we neglect from the MR equation is the Basset history force term which 
would involve very long computation times for minimal increase in accuracy [16]. 

The Newtonian equations of motion for velocity and acceleration are, respectively: 
𝜕𝜕𝒙𝒙𝑃𝑃∗

𝜕𝜕𝑡𝑡∗ = 𝒖𝒖𝑃𝑃
∗       (4) 

𝜕𝜕𝒖𝒖𝑃𝑃∗
𝜕𝜕𝑡𝑡∗ =

3𝐶𝐶𝐷𝐷|𝒖𝒖𝑠𝑠∗|
4𝑑𝑑𝑝𝑝∗𝜌𝜌𝑃𝑃∗

𝒖𝒖𝑠𝑠∗⏟      
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 34
𝐶𝐶𝐿𝐿
𝜌𝜌𝑃𝑃∗
(𝒖𝒖𝑠𝑠∗ × 𝝎𝝎𝐹𝐹∗ )⏟          
𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡

+ 1
2𝜌𝜌𝑃𝑃∗

𝐷𝐷′𝒖𝒖𝐹𝐹∗
𝐷𝐷𝑡𝑡∗⏟      

𝑉𝑉𝐿𝐿𝐷𝐷𝑡𝑡𝑉𝑉𝐷𝐷𝑉𝑉 𝑀𝑀𝐷𝐷𝑠𝑠𝑠𝑠

+ 1
𝜌𝜌𝑃𝑃∗
𝐷𝐷𝒖𝒖𝐹𝐹∗
𝐷𝐷𝑡𝑡∗⏟    

𝑃𝑃𝐷𝐷𝑃𝑃𝑠𝑠𝑠𝑠𝑉𝑉𝐷𝐷𝑃𝑃 𝐺𝐺𝐷𝐷𝐷𝐷𝐺𝐺𝐿𝐿𝑃𝑃𝐺𝐺𝑡𝑡

(5) 

In Eqs. (4) and (5), 𝒙𝒙𝑷𝑷∗  represents the coordinates of the particle position, 𝒖𝒖𝑷𝑷∗  is the particle 
velocity, 𝒖𝒖𝑆𝑆∗ = 𝒖𝒖𝐹𝐹∗ − 𝒖𝒖𝑃𝑃∗  is the particle-fluid slip velocity, 𝑑𝑑𝑃𝑃∗  is the diameter of the particle non-
dimensionalised by the channel half-height, 𝜌𝜌𝑃𝑃∗  is the particle-fluid density ratio and 𝝎𝝎𝑭𝑭∗  is the 
fluid vorticity at the particle position given by 𝝎𝝎𝐹𝐹∗ = 𝛁𝛁 × 𝒖𝒖𝐹𝐹∗ . The drag coefficient, 𝐶𝐶𝐷𝐷, is taken 
from standard empirical observations [17] and the lift term uses the Saffman-Mei [18, 19] 
coefficient. A fourth-order accuracy Runge-Kutta method was used to integrate Eqs. (4) and (5) 
to obtain each particle's new position and velocity at each fluid step. The timestep used in the 
integration scheme was equal to that of the fluid, Δ𝑡𝑡𝑃𝑃∗ = 0.01. 

2.3 Two-way coupling 
To account for each particle's inertial feedback effect on the fluid phase, an additional source 

term in the Navier-Stokes equations was included: 

𝒇𝒇2𝑊𝑊,𝐿𝐿∗ = 1
𝑉𝑉𝐿𝐿∗
∑

𝜕𝜕𝒖𝒖𝑃𝑃,𝑗𝑗∗
𝜕𝜕𝑡𝑡∗

𝑁𝑁𝑃𝑃

𝑗𝑗=1
, (6) 

where 𝑉𝑉𝐿𝐿∗ is the volume of computational cell i, and 𝑁𝑁𝑃𝑃 is the total number of particles in that 
cell. This is applied at each fluid flow timestep and uses the particle acceleration calculation 
from the previous timestep. 
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2.4 Four-way coupling 
The LPT also considers hard-sphere inelastic collisions between binary particles in order to 

predict more accurately systems at increased volume fraction. It is assumed here that the time 
it takes for a full collision to occur (touch, contraction, expansion and recoil) is lower than the 
particle integration timestep. We also assume that any other interactions between the particles 
are negligible, other than in the case of van der Waals attraction (which is modelled separately). 
A deterministic binary search algorithm is also implemented as described in Breuer and 
Almohammed [20] in order to reduce the computational cost associated with collision 
identification from 𝑂𝑂(𝑁𝑁𝑃𝑃

2 ) to 𝑂𝑂(𝑁𝑁𝑃𝑃). 
Once identified, resultant velocities and positions are determined using kinetic-energy and 

momentum conservation equations, with particles also deflected a short distance, accounting 
for the time they spent travelling ‘inside’ their collision partner. 

2.5 Deterministic energy-based agglomeration model 
Upon collision, particles satisfying a certain energetic condition will agglomerate with their 

partner, producing a larger particle with volume equivalent to that of the two initial particles. 
The model, which is based upon the work of Njobuenwu and Fairweather [13], assumes that a 
collision will produce an agglomeration event if the resulting collision energy (after dissipation 
due to inelastic collision) is insufficient to overcome the attractive van der Waals potential 
between the two colliders, accounting for plastic deformation at the contact surface. The 
requirement is: 

𝒖𝒖∗
𝑃𝑃,𝑟𝑟
2 −

(1 − 𝑒𝑒𝑛𝑛
∗)(𝒖𝒖𝑃𝑃,𝑟𝑟

∗ ⋅ �̂�𝒏)2

|(𝒖𝒖𝑃𝑃,𝑟𝑟
∗ ⋅ �̂�𝒏)| ≤ 𝐻𝐻∗

6𝛿𝛿0
∗2 [6(1 − 𝑒𝑒𝑛𝑛

∗ )
𝜋𝜋2𝜌𝜌𝑃𝑃

∗ 𝜎𝜎∗ ( 𝑑𝑑𝑃𝑃,1
∗3 + 𝑑𝑑𝑃𝑃,2

∗3

𝑑𝑑𝑃𝑃,1
∗2 𝑑𝑑𝑃𝑃,2

∗2 (𝑑𝑑𝑃𝑃,1
∗2 + 𝑑𝑑𝑃𝑃,2

∗2 ))]
1
2

, (7) 

where 𝒖𝒖∗
𝑃𝑃,𝑟𝑟 is the relative particle collision velocity, 𝑒𝑒𝑛𝑛

∗  is the coefficient of normal restitution, 
�̂�𝒏 is a unit vector pointing from particle 2 to particle 1, 𝐻𝐻∗ is the non-dimensional Hamaker 
constant of the fluid-particle phase, 𝛿𝛿0

∗ is the minimum contact distance, 𝜎𝜎∗ is the maximum 
contact pressure and 𝑑𝑑𝑃𝑃,𝑖𝑖

∗  is the diameter of particle i. If the requirement in Eq. (7) is met, then 
the particles agglomerate forming a new volume-equivalent spherical particle. The new 
diameter is therefore: 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
∗ = √𝑑𝑑𝑃𝑃,1

∗ 3 + 𝑑𝑑𝑃𝑃,2
∗ 33

. (8) 

Positions and velocities of the agglomerate are also adjusted accordingly. Specifically: 

𝒖𝒖𝑎𝑎𝑎𝑎𝑎𝑎
∗ = 1

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎∗ 3 (𝑑𝑑𝑃𝑃,1
∗ 3𝒖𝒖𝑃𝑃,1

∗ + 𝑑𝑑𝑃𝑃,2
∗ 3𝒖𝒖𝑃𝑃,2

∗ ),. (9) 

𝒙𝒙𝑎𝑎𝑎𝑎𝑎𝑎
∗ = 1

2 (𝒙𝒙1
∗ + 𝒙𝒙2

∗ ), (10) 

where 𝒖𝒖𝑎𝑎𝑎𝑎𝑎𝑎
∗  is the new velocity of the agglomerate and 𝒓𝒓𝑎𝑎𝑎𝑎𝑎𝑎

∗  is the new position of the 
agglomerate. 
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3 RESULTS AND DISCUSSION 

3.1 Unladen fluid flow statistics 
The simulations were first performed unladen, allowed to develop from an arbitrary initial 

flow field to a state of statistically stationary turbulence. When the first and second moments 
of the velocity distribution across the channel were unchanging, the statistics were zeroed and 
new distributions were obtained between 0 ≤ 𝑡𝑡∗ ≤ 300, with 𝑡𝑡∗ representing the time after the 
statistics were reset.  

 

Figure 2: Statistical moments of unladen 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 turbulent channel flow velocity field. Left: Mean 
streamwise velocity; Right: root mean square of streamwise, spanwise and wall-normal (top to bottom) velocity 
fluctuations. Present work (solid line) is compared with Vreman and Kuerten [21] (dashed) and Kim, Moin and 

Moser [22] (dotted).  

The continuous phase predictions for mean streamwise velocity and turbulence intensities 
are presented in Fig. 2, which are compared to the work of [21] and [22] with excellent 
agreement obtained in all statistical moments considered. 

3.2 Particle-laden flow statistics 
Particles with diameters ranging between 202.5μm and 405.0μm were injected into the 

turbulent channel flow randomly throughout the domain. Initial velocities were set to be 
equivalent to that of the local fluid, obtained via spectral interpolation. The mechanical and 
chemical properties of each particle set are presented in Table 1. 
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Table 1: Particle-phase mechanical and chemical properties with dimensional equivalents based on calcite 
particles in a 𝛿𝛿=0.02m water channel at 𝑅𝑅𝑒𝑒𝜏𝜏 = 180. 

Parameter St+=0.5 St+=1 St+=2 Unit 
𝑆𝑆𝑡𝑡+ 0.5 1 2 - 
𝑆𝑆𝑡𝑡∗ 0.043 0.086 0.173 - 
𝜏𝜏𝑃𝑃 6.17 12.35 2.47 ms 
𝜌𝜌𝑃𝑃 2710 2710 2710 kg m-3 
𝜌𝜌𝑃𝑃∗  2.71 2.71 2.71 - 
𝑑𝑑𝑃𝑃 202.5 286.4 405.0 μm 
𝑑𝑑𝑃𝑃∗  0.0101 0.0143 0.0202 - 
𝑑𝑑𝑃𝑃+ 1.82 2.58 3.64 - 
Θ𝑃𝑃 10-3 10-3 10-3 - 

𝑁𝑁𝑃𝑃 309,185 109,313 38468 - 
Δt* 0.01 0.01 0.01 - 
Δt+ 0.12 0.12 0.12 - 
𝐴𝐴 3.8 × 10-20 3.8 × 10-20 3.8 × 10-20 J 
𝐴𝐴∗ 2.42 × 10-16 2.42 × 10-16 2.42 × 10-16 - 
𝛿𝛿0 2.0 × 10-10 2.0 × 10-10 2.0 × 10-10 m 
𝛿𝛿0∗ 1.0 × 10-8 1.0 × 10-8 1.0 × 10-8 - 
𝜎𝜎 3.0 × 108 3.0 × 108 3.0 × 108 Pa 
𝜎𝜎∗ 0.15 × 108 0.15 × 108 0.15 × 108 - 
𝑒𝑒𝑁𝑁 0.4 0.4 0.4 - 

 
All simulations presented here were performed four-way coupled with the post-collision 

agglomeration mechanism switched on. Figure 3 demonstrates the time evolution of the number 
of particle collisions and agglomerations over the course of the time period 0 ≤ 𝑡𝑡∗ ≤ 50, where 
𝑡𝑡∗ now refers to the time after particle injection. Note that all quantities here have been 
normalized by the initial number of particles, 𝑁𝑁𝑃𝑃, which differs in each simulation to preserve 
a constant volume fraction between the studies.  

The left plot indicates a very similar collision rate for all three particle diameters, with the 
larger particles exhibiting fewer collisions. This is explicable by the constant volume fraction 
for all three sizes. Furthermore, the particle’s possess similar Stokes numbers which are all in 
the tracer regime, and so particle-fluid interaction dynamics such as low-speed streak clustering 
will be minimal. The righthand plot indicates varied behaviour in terms of the number of 
agglomeration events over time. The rate is approximately constant for all three particle 
diameters, and is much greater for the smaller particles than for the larger ones. Particle size 
plays an important role in the energetics associated with Eq. (7), and so provided the particles 
collide, those with lower diameter are more likely to agglomerate. Clearly, as the particles in 
the system begin to agglomerate, the mean particle diameter will increase, meaning the 
agglomeration rate will start to decrease over time, since adhesion of large particles is 
unfavourable. 
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Figure 3: Effect of Stokes number on the temporal evolution of total number of particle-particle collision (left) 

and agglomeration (right) events normalized by the initial number of injected primary particles. 

The left plot in Fig. 4 illustrates the rate of agglomeration, given a collision has occurred. 
After a short initial transient period, the rate reaches a steady state, with larger particles once 
again exhibiting lower frequency of agglomeration. Since this quantity is normalized by the 
number of collisions, it is expected that this rate will settle to a constant value as the simulation 
evolves. The right plot in Fig. 4 shows the evolution of the mean number of agglomerated 
primary particles over time. Again, we observe that the smaller particles exhibit more 
agglomeration events and as such, more primary particles form constituents of agglomerates as 
the simulation evolves. 

 
Figure 4: Effect of Stokes number on the temporal evolution of the agglomeration rate, 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴/𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶  (left) and on 
the mean number of agglomerated primary particles (right) normalized by the initial number of injected primary 

particles. 
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Figure 5 shows the time evolution of the percentage of agglomerates of size N, for each 
Stokes number particle type. As Stokes number increases, the rate at which N=2 and N=3 size 
agglomerates form is reduced. Over the timeframe studied, the number of N>2 size 
agglomerates formed is very low, accounting for below 0.1% of the total number of particles 
by the end of the simulation. 
 

 

Figure 5: Effect of Stokes number on the temporal evolution of the number of agglomerates of size N. Black: 
N=1; red: N=2; green: N=3, blue: N=4. 

To determine the variation in collision and agglomeration dynamics in the wall-normal 
direction of the channel flow, the collision and agglomeration rates have been sampled over the 
entire simulation time. These are plotted in Fig. 6, note that the scatter in the distributions is 
due to a limitation in the number of collision events which take place in the time sampled, but 
despite this the general trends are still evident. The left plot shows the number of collision 
events across the channel. The largest diameter particles show little variation in collision rate, 
whereas as the diameter is reduced, the particles at 𝑆𝑆𝑡𝑡+ = 1 show more of a preference for 
collisions taking place in the wall region (𝑦𝑦∗ < 0.2). Although not plotted here, the same trend 
is observed for the wall-region local particle concentration around this Stokes number. This due 
to the strong preferential concentration exhibited by these particles, wherein the particle 
timescale and the fluid vortical timescales are similar. The right plot indicates the variation in 
agglomeration rate (given a collision has taken place) across the channel. Here, it is evident that 
the smallest particles actually show an increased agglomeration rate in the centre of the channel, 
despite the fewest collisions taking place within that region. 

This last observation implies that the kinetics associated with agglomeration are more 
favourable closer to the channel centreline, which is to say that the collisions disperse more 
energy. Consulting Eq. (7), for a favourable agglomeration, either the term 𝒖𝒖𝑃𝑃,𝑟𝑟∗  must be small 
or the term (1 − 𝑒𝑒𝑛𝑛∗)(𝒖𝒖𝑃𝑃,𝑟𝑟∗ ⋅ �̂�𝒏)2 |(𝒖𝒖𝑃𝑃,𝑟𝑟∗ ⋅ �̂�𝒏)|⁄  must be large within this region (or a combination 
of the two). Previous work [23] indicates an increase in collision angle close to the wall, hence 
the relative velocity will be large and the kinetic energy dispersed will be low leading to 
unfavourable conditions for agglomeration, despite the increase in particle concentration. 
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Figure 6: Effect of Stokes number on mean particle collision rate normalized by the initial number of injected 

primary particles (left) and mean particle agglomeration rate (right) across wall-normal direction of the channel. 
Sample time is 0 ≤ 𝑡𝑡∗ ≤ 50. 

4 CONCLUSIONS 
A deterministic energy-based agglomeration model has been applied to a DNS-LPT solver 

in order to determine the effect of particle diameter on collision and aggregation dynamics in 
multiphase turbulent channel flows. The continuous phase statistics have been validated against 
two very well regarded DNS databases at the same shear Reynolds number, with excellent 
agreement obtained. 

Time evolution of various statistical quantities indicates that the system posseses a 
statistically steady state in terms of collision and agglomeration rate at 𝑡𝑡∗ > 10, where 𝑡𝑡∗ is the 
non-dimensional time after the particles have been injected. This persist throughout the entire 
simulation time considered here (𝑡𝑡∗ ≤ 50). All three particle sizes considered exhibit similar 
collision rates when non-dimensionalized by the total number of injected primary particles, but 
agglomeration events are much enhanced for smaller particles. This is partially due to the 
inverse dependance of the required change in van der Waals attraction energy on particle 
diameter. Agglomeration rates (given a collision has occurred) are also observed to scale 
inversely with particle size, along with the mean number of primary particles which form a 
typical agglomerate in the system. Finally, collision and agglomeration rates across the wall-
normal direction of the channel indicate that collisions favour the near-wall region. However, 
agglomeration events are actually more likely towards the channel centreline. We conclude that 
the bulk flow region posseses particles with favourable dynamic properties for agglomeration, 
whereas the wall region does not. It is likely that agglomerates forming in the centre of the 
channel at long timeframes may drift towards the walls through turbophoresis as their Stokes 
number increases, but these simulations should be extended to confirm such predictions. 
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Abstract. Most of the recent natural disasters such as landslide and tsunamis are complex 
phenomena in which fluid, ground, structures, etc. affect each other. Therefore, it is necessary 
to study from various mechanical viewpoints. Among them, in this research, we focus on “soil-
water mixed phase flow” where fluid and soil affect each other, such as slope failure and ground 
collapse. In this study, ISPH method is applied for fluid simulation while DEM is applied for 
modelling of soil behavior. Then, a general-purpose fluid-solid multiphase flow simulator is 
developed using the ISPH-DEM coupling method. In addition, in DEM analysis, there are 
problems in consideration of apparent cohesion related to water content. In our analysis method, 
in order to adapt to unsaturated ground, the liquid bridge force model proposed in the powder 
technology field. 
 
1 INTRODUCTION 

In Japan, there are huge inundation damage such as the tsunami disaster caused by the Great 
East Japan Earthquake and torrential rain disasters that occur frequently in various parts of 
Japan. In order to prevent such inundation damage, structures such as breakwaters and levees 
that are generally made of soil should prevent inundation. In the case of disasters occurred in 
recent years, damage could not be completely prevented and minimized. Now that the 
frequency of heavy rains is high due to the effects of global warming, and there are concerns 
about huge earthquakes and tsunamis, numerical analysis techniques are needed to know the 
limit state of structures such as breakwaters and levees. With these background, our research 
group has developed multi-scale and multi-physics disaster simulator based on particle method 
in order to estimate the level of damage caused by unexpected natural disasters. Among them, 
we are developing a fluid-soil multiphase flow simulator for seepage failure, scour failure and 
ground collapse phenomenon. In this simulator, SPH (Smoothed Particle Hydrodynamics) is 
applied for fluid simulation, and DEM (Discrete Element Method) is applied for soil behavior 
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analysis. And coupled analysis is performed through the empirical interaction force of both. In 
the previous study [1], the seepage and scouring analysis of the breakwater mound is analyzed, 
and its validity has been confirmed from the comparison with the experiment. In this research, 
the effect of apparent cohesion with moisture is newly introduced to expand the target area to 
unsaturated ground. Using the above analysis method, it is reproduced the ground collapse 
phenomenon that is with few examples. The ground collapse phenomenon is a large 
deformation and discrete phenomenon accompanied by the segregation of soil masses, and this 
method based on the particle method is one of the suitable examples. 

 

2 SPH-DEM COUPLED ANALYSIS MODEL 
A coupled model of SPH and DEM is important in the multiphase flow analysis. There are 

two models to couple those methods, one is the “Direct pressure model” we call. In general, a 
solid in fluid is moved by receiving a dynamic pressure from fluid. In this direct pressure model, 
a solid also moves in same way. However, if this model is adopted, the diameter of fluid 
particles need to be much smaller than the solid to calculate a force acting on its surface 
accurately. It is not desirable to adopt such a computationally expensive method to carry out 
the real-scale analysis that we aiming for. The other method is “Interaction force model”. In 
this methods, a fluid particle can overlap with solid particles, and a fluid pressure don’t act on 
its surface. Instead of a pressure, an interaction force acts on each particle, a resistance force on 
fluid and a drag force on solid. In addition, the diameter of fluid particle can be almost the same 
size with a solid particle. Then, the latter coupled model is adopted because it is possible to 
reduce the computational cost by using “Interaction force model”. 

3 ANALYSIS METHOD OF EACH PHASE 

3.1 The unified governing equation 
In fluid-solid(soil) multiphase flow analysis, fluid flow is regarded as free surface flow in 

the fluid region and seepage flow in the ground. According to Akbari, H. [2], a unified 
governing equation modeled to solve free surface flow and seepage flow continuously can be 
written as: 

𝐶𝐶"(𝜀𝜀)
𝜀𝜀

𝐷𝐷𝒗𝒗()

𝐷𝐷𝐷𝐷 = −
1
𝜌𝜌)

𝛻𝛻𝛻𝛻 + 𝒈𝒈 + 𝜈𝜈4(𝜀𝜀)𝛻𝛻5𝒗𝒗() − 𝑎𝑎(𝜀𝜀)𝒗𝒗() − 𝑏𝑏(𝜀𝜀)𝒗𝒗()8𝒗𝒗()8 (1)  

𝐷𝐷�̅�𝜌)

𝐷𝐷𝐷𝐷 + �̅�𝜌)𝛻𝛻 ∙ ;
𝒗𝒗()

𝜀𝜀 < = 0 (2)  

where 𝜌𝜌) , 𝒈𝒈, 𝛻𝛻 and 𝜀𝜀 represent the original fluid density, the gravitational acceleration, the 
fluid pressure and the porosity. 𝒗𝒗()  is the Darcy velocity which is understood as a spatially 
averaged velocity given by 𝒗𝒗() = 𝜀𝜀𝒗𝒗), 𝒗𝒗) is the intrinsic fluid velocity. Here, �̅�𝜌) denotes the 
apparent density, which is given by �̅�𝜌) = 𝜀𝜀𝜌𝜌). This relation regarding the apparent density is 
necessary to be employed in order to satisfy the volume conservation of fluid inside the porous 
medium. Some of the coefficient are defined as: 
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𝐶𝐶"(𝜀𝜀) = 1 + 0.34
1 − 𝜀𝜀
𝜀𝜀  (3)  

𝜈𝜈4(𝜀𝜀) =
𝜈𝜈A + 𝜈𝜈B

𝜀𝜀  (4)  

𝑎𝑎(𝜀𝜀) = 𝛼𝛼D
𝜈𝜈A(1 − 𝜀𝜀)5

𝜀𝜀E𝑑𝑑G
5  (5)  

𝑏𝑏(𝜀𝜀) = 𝛽𝛽D
(1 − 𝜀𝜀)
𝜀𝜀E𝑑𝑑G

 (6)  

where 𝐶𝐶"(𝜀𝜀) is the inertial coefficient to evaluate the additional resistance force caused by the 
virtual mass, while 𝜈𝜈4(𝜀𝜀) is the effective viscosity including the kinematic viscosity of the fluid 
𝜈𝜈A  and the turbulent viscosity 𝜈𝜈B . The Smagorinsky model is adopted to define the eddy 
viscosity. 𝑎𝑎(𝜀𝜀) and 𝑏𝑏(𝜀𝜀) are the linear and non-linear coefficients, 𝛼𝛼D and 𝛽𝛽D in these equation 
are defined as the constant in our analysis. Moreover, 𝑑𝑑G is the diameter of a solid particle. Here, 
the fourth and fifth terms in right side of Eq. (1) means the resistance force from the porous 
medium. This unified governing equation is proposed by Akbari to represent the seepage flow 
in a fixed porous medium with a low porosity. However, in the floating soil or on the soil mass 
surface, the soil as a porosity medium also moves and the porosity comes to be high. Therefore, 
the resistance force terms in Eq. (1) are modified referring to Wen and Yu [3], and the unified 
governing equation is rewritten as: 

𝐶𝐶"(𝜀𝜀)
𝜀𝜀

𝐷𝐷𝒗𝒗()
𝐷𝐷𝐷𝐷 = −

1
𝜌𝜌)

𝛻𝛻𝛻𝛻 + 𝒈𝒈 +	𝜈𝜈4(𝜀𝜀)𝛻𝛻5𝒗𝒗() J
−𝑎𝑎(𝜀𝜀)𝜀𝜀𝒗𝒗" − 𝑏𝑏(𝜀𝜀)𝜀𝜀5𝒗𝒗"|𝒗𝒗"|		(𝜀𝜀 < 0.8)

−𝑐𝑐(𝜀𝜀)𝒗𝒗"|𝒗𝒗"|	 	 							 								(𝜀𝜀 ≥ 0.8)
 (7)  

Here, in considering the movement of the porous medium, the velocity in resistance force terms 
is changed to relative velocity 𝒗𝒗" between fluid and solid which is given by 𝒗𝒗" = 𝒗𝒗) − 𝒗𝒗G. In 
taking a relative velocity, the fluid velocity must not be a spatially averaged velocity 𝒗𝒗() but an 
original velocity 𝒗𝒗). Thus, the porosity 𝜀𝜀 is multiplied by the linear and non-linear coefficients. 
In addition, the resistance force proposed by Wen and Yu for the high porosity domain (𝜀𝜀 ≥
0.8) is considered. 𝐶𝐶P is drag coefficient and defined with Reynolds number 𝑅𝑅R as follows: 

𝐶𝐶P =
24T1 + 0.15 ∗ 𝑅𝑅R

W.XYZ[
𝑅𝑅R

	 (𝑅𝑅R ≤ 1000) (8)  

𝐶𝐶P = 0.43																																	(𝑅𝑅R > 1000) (9)  

𝑅𝑅R =
𝜀𝜀𝜌𝜌)𝑑𝑑G8𝒗𝒗) − 𝒗𝒗G8

𝜇𝜇)
 (10)  

According to Eq.(7), the fluid flow outside the porous medium can be given by the Navier-
Stokes equation with the porosity 𝜀𝜀 = 1. On the other hand, the fluid flow inside the porous 
medium can be described by including the resistance force. Eq. (2) represents the unified 
continuity equation for a compressible fluid. 

The resistance force in Eq. (7) acts on fluid as a resistance force, and it needs to act on the 
porous medium as a drag force in the opposite sign as well to satisfy the action-reaction law. 
Thus, this resistance force can be considered as the interaction force between fluid and solid. 
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3.2 SPH Formulation 
In this paper, the Smoothed Particle Hydrodynamics (SPH) method is adopted to solve the 

unified governing equation for free surface and seepage flow. The basic concept in SPH method 
is that for any function 𝜙𝜙 attached to particle “𝑖𝑖” located at 𝒙𝒙b is represented by the following 
volume summation of contributions from neighbor particles: 

𝜙𝜙(𝒙𝒙b) ≈ 〈𝜙𝜙b〉 ∶=g
𝑚𝑚i

𝜌𝜌ii

𝜙𝜙i𝑊𝑊k𝑟𝑟bi, ℎo (11)  

 

 
Figure 1: Particle placement and influence radius in the SPH 

 
where 𝑚𝑚 and 𝑊𝑊 are the representative volume of particle and a weight function known as the 
smoothing kernel function. In this paper, the “Cubic B-Spline function” is adopted as the kernel 
function. 𝑗𝑗 is a particle in the smoothing length ℎ and 𝑟𝑟bi is the length of the relative coordinate 
vector 𝒓𝒓bik= 𝒙𝒙i − 𝒙𝒙bo. In this study, the smoothing length set to 2.4 times the initial diameter 
of the particle. Note that, the triangle bracket 〈𝜙𝜙b〉 means SPH approximation of a function 𝜙𝜙. 
The divergence  ∇ ∙ 𝜙𝜙, the gradient ∇𝜙𝜙 and the Laplacian ∇5𝜙𝜙 can be assumed by using the 
above defined SPH approximation as follows: 

〈∇ ∙ 𝜙𝜙b〉 = 𝜌𝜌b g𝑚𝑚i s
𝜙𝜙i

𝜌𝜌i
5 +

𝜙𝜙b

𝜌𝜌b
5t ∙ 𝛻𝛻𝑊𝑊(𝑟𝑟bi, ℎ)

i

 (12)  

〈∇𝜙𝜙b〉 = 𝜌𝜌b g𝑚𝑚i s
𝜙𝜙i

𝜌𝜌i
5 +

𝜙𝜙b

𝜌𝜌b
5t𝛻𝛻𝑊𝑊(𝑟𝑟bi, ℎ)

i

 (13)  

〈∇5𝜙𝜙b〉 = g𝑚𝑚i s
𝜌𝜌b + 𝜌𝜌i

𝜌𝜌b𝜌𝜌i

𝒓𝒓bi ∙ ∇𝑊𝑊k𝑟𝑟bi, ℎo
𝒓𝒓bi

5 + 𝜂𝜂5 t (𝜙𝜙b − 𝜙𝜙i)
i

 (14)  

𝜂𝜂 is the parameter to avoid division by zero and defined by the following expression 𝜂𝜂5 =
0.0001(ℎ 2⁄ )5. 

3.3 Formulation of the unified governing equation in the stabilized ISPH method 
In this paper, fluid analysis is performed using the stabilized Incompressible SPH method 

proposed by Asai et al. [4]. In the ISPH method, the governing equations of incompressible 
fluid are time discretized by a separate method called a projection method based on the predictor 
modifier method, and the separated equations are spatially discretized based on the basic 

i

W

j

h
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formula of SPH method. In this method, the pressure is calculated implicitly and the velocity 
fields are updated explicitly. In this study, the same idea of ISPH for the Navier-Stoke equation 
is applied to solve the unified governing equation, Eq. (2) and Eq. (7). To begin with the 
discretization, 𝒗𝒗() at 𝑛𝑛 + 1 step is written as: 

𝒗𝒗()
xyz = 𝒗𝒗()

∗ + ∆𝒗𝒗()
∗  (15)  

where 𝒗𝒗()
∗  and ∆𝒗𝒗()

∗  are the predictor term and the corrector term. Based on the projection method. 
Eq. (7) can be separated as: 

𝒗𝒗()
∗ = 𝒗𝒗()

x +
𝜀𝜀∆𝑡𝑡
𝐶𝐶"(𝜀𝜀)

k𝒈𝒈 + 𝜈𝜈4(𝜀𝜀)∇5𝒗𝒗()
x − 𝜸𝜸xo (16)  

∆𝒗𝒗()
∗ =

𝜀𝜀∆𝑡𝑡
𝐶𝐶"(𝜀𝜀)

s−
1
𝜌𝜌)

∇𝑃𝑃xyzt	 (17)  

where 𝜸𝜸 summatizes the resistance terms in Eq. (7) at 𝑛𝑛 step. The pressure 𝑃𝑃xyz in Eq. (19) is 
determined by the Pressure Poisson Equation as follows: 

∇5𝑃𝑃xyz =
𝐶𝐶"(𝜀𝜀)𝜌𝜌)

𝜀𝜀∆𝑡𝑡 ∇ ∙ 𝒗𝒗()
∗	 (18)  

During numerical simulation, the ‘particle’ density may change slightly from the initial value 
because the particle density is strongly dependent on particle locations in the SPH method. If 
the particle distribution can keep almost uniformity, the difference between ‘physical’ and 
‘particle’ density may be vanishingly small. In other words, accurate SPH results in 
incompressible flow need to keep the uniform particle distribution. For this purpose, the 
different source term in the pressure Poisson equation can be derived using the ‘particle’ density. 
In stabilized ISPH method, the pressure Poisson equation (18) reformulated as: 

〈∇5𝑃𝑃xyz〉 ≈
𝐶𝐶"(𝜀𝜀)
𝜀𝜀 s

𝜌𝜌)

∆𝑡𝑡
〈∇ ∙ 𝒗𝒗()

∗〉 + 𝛼𝛼
�̅�𝜌)
x − 〈�̅�𝜌)

x〉
∆𝑡𝑡5 t	 (19)  

where 𝛼𝛼 is called as the relaxation coefficient and is generally set to be much less than 1.0. In 
this study, 𝛼𝛼  is set to 0.01. The analysis with the stabilized ISPH method can get good 
conservation of volume. 

3.4 The equation of motion of soil 
In this study, the behavior of the soil particles constituting the ground is analyzed by Discrete 

Element Method (DEM). Here, the soil particles were modeled as spherical DEM particles, its 
diameter is 𝑑𝑑G. In general, the contact detection is done every time step and a DEM particle 
moves by receiving the contact forces in DEM. In addition to that, the fluid force also acts on 
the DEM particles in the fluid domain. There some kinds of the fluid forces, however the all of 
them don’t influence the particle motion. In this study, the buoyancy force and drag force are 
adopted to the fluid forces, the equation of motion of soil in fluid is written as follows with the 
contact force: 

𝑚𝑚G
𝑑𝑑𝒗𝒗G

𝑑𝑑𝑡𝑡 = 𝑚𝑚G𝒈𝒈 − 𝛻𝛻𝑃𝑃𝑉𝑉G + 𝑭𝑭P +g𝑭𝑭D +g𝑭𝑭D�€	 (20)  
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𝑭𝑭P = Å
(𝑎𝑎(𝜀𝜀)𝜀𝜀5𝒗𝒗" + 𝑏𝑏(𝜀𝜀)𝜀𝜀E𝒗𝒗"|𝒗𝒗"|)

𝑉𝑉G
1 − 𝜀𝜀				

(𝜀𝜀 < 0.8)

(−𝑐𝑐(𝜀𝜀)𝒗𝒗"|𝒗𝒗"|)
𝑉𝑉G

1 − 𝜀𝜀 																									
(𝜀𝜀 ≥ 0.8)

 (21)  

where 𝑚𝑚G, 𝒗𝒗G and 𝑉𝑉G are the mass, the velocity and the volume of a soil particle respectively. 
The second and third terms in right side are the fluid forces, the second is the buoyancy force 
and the third 𝑭𝑭P is the drag force. 𝑭𝑭D means the contact force between DEM particles. 𝑭𝑭D�€ 
means the apparent cohesive force related to water content, which is explained in a 3.6 section. 
The drag force 𝑭𝑭P has the same meaning as the interaction force. Therefore, the resistance force 
for fluid is adopted to the drag force for soil. The drag force acting on one particle is given by 
Eq. (21). 
The equation of angular motion for the spherical DEM is written as: 

𝐼𝐼
𝑑𝑑𝝎𝝎
𝑑𝑑𝑑𝑑 = g𝑻𝑻	 (22)  

The contact force between the particles or particle-wall is calculated by the intrusion of a 
particle with a spring-dashpot model in DEM. The contact force 𝑭𝑭D  is divided into two 
components, a repulsive force in the normal direction 𝑭𝑭D

x and a friction force in the tangential 
direction 𝑭𝑭D

… , and described as: 
𝑭𝑭D = 𝑭𝑭D

x + 𝑭𝑭D
… 	 (23)  

𝑭𝑭D
x = (−𝑘𝑘𝛿𝛿x − 𝜂𝜂|𝒗𝒗"

x|)𝒏𝒏 (24)  

𝑭𝑭D
… = ‰

(−𝑘𝑘𝛿𝛿x − 𝜂𝜂|𝒗𝒗"
… |)𝒕𝒕			|𝑭𝑭D

…| < 𝜇𝜇|𝑭𝑭D
x|

−𝜇𝜇|𝑭𝑭D
x|𝒕𝒕																			|𝑭𝑭D

…| ≥ 𝜇𝜇|𝑭𝑭D
x| (25)  

𝜂𝜂 = −2𝑙𝑙𝑙𝑙	(𝑒𝑒)ç
𝑘𝑘

𝑙𝑙𝑙𝑙5(𝑒𝑒) + 𝜋𝜋5
2𝑚𝑚b𝑚𝑚i

𝑚𝑚b +𝑚𝑚i
 (26)  

where 𝑘𝑘,	𝛿𝛿,	𝜂𝜂, 𝒏𝒏 ,	𝒕𝒕 and 𝑒𝑒 are the stiffness, the displacement, the damping coefficient, normal, 
tangential unit vector and the coefficient of restitution.  

The equation of angular motion for the spherical DEM is written as follows. The torque is 
calculated from the tangential contact force. 

𝐼𝐼
𝑑𝑑𝝎𝝎
𝑑𝑑𝑑𝑑 = g𝑻𝑻 = g𝒍𝒍 × 𝑭𝑭D

…  (27)  

where 𝒍𝒍 indicates the vector from the center of a particle to a contact point. 

3.5 Rolling friction 
In order to reduce the calculation cost, DEM analysis is carried out using spherical particles 

whose contact judgment is relatively easy. However, real soil particles have unique concave 
and convex shapes, and it is impossible to express steep deposition shape. Therefore, in this 
research, rolling friction is introduced, which is an additional force artificially suppressing 
particle rotation. There are many rolling friction models proposed from the past research. 
Among them, in this study, rolling friction proposed by Fukumoto et al.[5] is used, and 
described as follows: 

𝑴𝑴𝒓𝒓 = |𝑭𝑭x|𝑎𝑎𝝎𝝎’ = |𝑭𝑭x|𝜆𝜆𝑟𝑟”𝝎𝝎’ = 𝜆𝜆•𝐿𝐿(2𝑟𝑟 − 𝐿𝐿)|𝑭𝑭𝒏𝒏|𝝎𝝎’  (28)  
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where 𝑟𝑟, 𝑭𝑭x, 𝝎𝝎’  and 𝐿𝐿 are the radius of particle, the acting force in the normal direction, unit 
angular velocity vector and displacement. 𝑏𝑏 is the rolling friction coefficient representing the 
shape characteristic. And also, using a soil sample to be analyzed, examination was conducted 
by simple preliminary analysis as shown in the next chapter. 
 

 
Figure 2: Rolling friction model 

3.6 Apparent cohesive force 
The method up to the previous section did not take into consideration of the cohesion effect 

related to the water content of the soil in the unsaturated ground. Depending on its moisture 
content, the soil forms aggregate shapes by sticking particles together, and the soil clumps 
become self-supporting. Therefore, by incorporating the effect of the apparent cohesive force 
into the method, a DEM analysis adapted to dry, saturated and unsaturated state is developed. 
In this study, the liquid bridge force model proposed by X. Sun et al. [6] is adopted as the 
apparent cohesive force related to the water content of the soil particles. This force model is 
presented based on a toroidal approximation of the liquid bridge profile. Its advantage resides 
in generality, which is applicable to a wide range of liquid volumes, contact angles and radius 
ratios. In addition, Laplace pressure, which is a suction in soil mechanics, can be taken into 
consideration. However, since spherical DEM particles are used in this study, the presence of 
fine particles filling the gaps is ignored. Then, the apparent cohesion, in particular Laplace 
pressure, is underestimated. In addition, suction is a field that has been studied in soil mechanics, 
so there is no mechanical model that can be used for DEM. In order to take account of this 
effect, a conversion parameter 𝜅𝜅 is introduced to the model proposed by X.Sun et al. , and this 
value is adjusted by comparison with a simple experiment. 

𝑭𝑭D�€ = 𝜅𝜅(∆𝑝𝑝𝑝𝑝𝜌𝜌bx
5 + 2𝑝𝑝𝜋𝜋𝜌𝜌bx)𝒏𝒏 (29)  

where ∆𝑝𝑝, 𝜌𝜌bx, 𝜋𝜋 and 𝒏𝒏 are the Laplace pressure, the internal radius of the liquid bridge, surface 
tension and unit normal vector. 
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Figure 3: Liquid force model [6] 

4 DETERMINATION OF VARIOUS PARAMETERS 
It is necessary to identify various parameters corresponding to material property values in 

advance. Firstly, a pulling test of a cylindrical specimen filled with soil sample is carried out, 
and various parameters are identified. A simple experiment with dry soil are carried out to 
identify the rolling friction coefficient 𝜆𝜆. Next, a series of experimental test with different water 
contents is carried out to identify the apparent parameter 𝜅𝜅 for estimating the magnitude in the 
apparent cohesion force. 

4.1 Rolling friction parameter 𝝀𝝀 
Using the soil sample used in the road caving collapse experiment, a cylindrical specimen 

pulling test with a diameter of 5 cm and a height of 10 cm was repeated ten times, and an angle 
of repose of 26.5 degrees was obtained. As a result of the reproduction DEM analysis, when  
𝜆𝜆 = 0.9, the angle closest to the repose angle of the experiment, and the same diameter as the 
sand cone after the experiment was obtained. Therefore,  𝜆𝜆 = 0.9 is adopted in this research. 

 

 

Figure 4: Comparison of angle of repose in experiment and DEM analysis 

4.2 Conversion parameter 𝜿𝜿 in apparent cohesive force  
Next, in order to reproduce the collapse behavior of unsaturated soil, the same experiment 

as previous one using wet sand. In the tests where water content was different, we focused on 
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the results of rapid lateral deformation after temporary stabilization. This time, the magnitude 
of the conversion parameter (𝜅𝜅 = 15) required to reproduce this  result was determined by 
DEM analysis. 

 
Figure 5: Comparison of angle of repose in experiment and DEM analysis 

 

5 ANALYSIS OF GROUND COLLAPSE PHENOMENON 
In this research, we focused on the qualitative reproduction of the ground collapse process 

in the reproduction experiment of the ground collapse phenomenon under the condition 
corresponding to the experiment conducted by Konishi et al.[7]. A small ground model with a 
width of 300 mm, a height of 200 mm and a depth of 50 mm is prepared as an analysis model 
shown as follows. 

Table 1: Analysis condition 
Water (SPH) 

Numbers of particles Particle size [cm] Density [g/cm3] 
12,626 0.3 1 

Soil (DEM) 
Numbers of particles Particle size [cm] Density [g/cm3] 

132,124 0.3 2.6 
Restitution coefficient Spring constant[N/m] Friction coefficient 

0.5 1000 0.57 
Rolling friction coefficient λ Conversion parameter α 

0.9 15 
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Figure 6: The small model of ground collapse phenomenon 

5.1 Analysis without water level (only DEM analysis) 
At first, the movement of soil particles of wet and dry sand is compared by the presence of 

apparent cohesion without considering groundwater level. In the case of dry sand analysis, 
cohesion is not considered, and in the case of wet sand analysis, it is considered.  

As a result of the analysis of dry sand, the velocity distribution spreads to the left and right 
with time, and it has been confirmed that it flows out without stopping like an hourglass. On 
the other hand, in the case of wet sand, the outflow velocity of soil particles decreased 
significantly. Furthermore, since the velocity distribution is concentrated around the outflow 
hole, it can be said that the localization of the behavior can also be reproduced. In the analysis 
where the cohesion is increased, it is confirmed that the self-supporting of soil mass and the 
outflow of soil particles stopped. From the above results, it is considered that the behavior of 
wet sand can be reproduced and verified qualitatively by introducing the effect of adhesion. 
However, when there is no water, it is not possible to reproduce the hollows and occurring the 
ground collapse phenomenon. 

 

 
Figure 7: Analysis result without groundwater level (downward velocity ditribution) 
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5.2 Analysis with water level (SPH-DEM coupled analysis) 
Next, a water level of 5 cm in height was set as groundwater, and coupled analysis of water 

(SPH) and soil (DEM) is carried out. In this case, both unsaturated and saturated ground give 
apparent cohesive force in DEM calculation. The saturated ground below the groundwater level 
was set to be smaller than the cohesive force of the unsaturated ground.  

As a result, due to a large difference in apparent cohesive force near the free surface and the 
outflow of water, a hollow grows in the horizontal direction, and the ceiling is destabilized, 
collapsing, collapsing soil drainage, and repeating arched stability of the ceiling…The situation 
was confirmed. 

 
Figure 8: Analysis result with groundwater level (downward velocity ditribution) 

 

 

Figure 9: Experiment result conducted by Konishi et al.[7] 
 

The same tendency of collapse has been confirmed in the experiment of Konishi et al. From 
this study, by carrying out coupled analysis of SPH and DEM, it was possible to show the 
collapse behavior of the ground sink which has not been reproduced so far. 
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6 CONCLUSIONS 
In this study, we tried to analyze the behavior of unsaturated soil considering the apparent 

cohesion with moisture in the coupled analysis method of the previous research. As a result, in 
the reproduction analysis of the ground sinking phenomenon, the collapse tendency confirmed 
in the experiment could be qualitatively reproduced. 

Through this research, it was confirmed that the ground collapse phenomenon cannot be 
reproduced only by increasing the cohesive force. In the future, in addition to the quantitative 
evaluation of cohesion, we will introduce a cluster DEM model that is composed of can 
explicitly give the effect of the shape of soil particles without rolling friction. By doing so, 
sedimentation of the upper ground can be suppressed, and more brittle collapse should be able 
to be reproduced.  
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Abstract. Binary solid spherical particle-particle interactions are studied in forced isotropic 
turbulence at 𝑅𝑅𝑒𝑒𝜆𝜆 = 29 and 197 using direct numerical simulation and an immersed boundary 
method. Isotropic turbulence in a periodic box is forced using a linear forcing method to 
maintain statistically stationary turbulence, with inter-particle interaction modelled using 
DLVO interaction forces which include attraction and repulsion due to van der Waals and 
electric double layer potential forces, respectively. Particle collisions are modelled using the 
inelastic hard sphere model with a coefficient of restitution of 0.4. The DLVO parameters are 
chosen to be representative of calcite particles, a simulant of nuclear waste material found in 
storage ponds in the UK. The Reynolds numbers chosen for the boxes are equivalent to 
typical values of 𝑅𝑅𝑒𝑒𝜆𝜆 that are found in the bulk flow and viscous sub-layer regions of a 
turbulent channel flow at 𝑅𝑅𝑒𝑒𝜏𝜏 = 180. The techniques described are used to study the 
dynamics of critical Stokes number particles in turbulence by analysing probability density 
functions (PDFs) of collision statistics such as particle displacement and the particles’ relative 
velocities to determine the likelihood of agglomeration. The results indicate that 
agglomeration can occur in both the 𝑅𝑅𝑒𝑒𝜆𝜆 turbulent boxes considered. However, the occurrence 
is much more likely at lower 𝑅𝑅𝑒𝑒𝜆𝜆 values due to the higher dispersion of kinetic energy after 
impact. 

 
 

1 INTRODUCTION 
Particle-laden turbulent flows occur commonly in both natural and industrial 

environments. Understanding of the dynamics of such flows is of interest to many industries. 
One application of relevance to the present work is in the nuclear industry. In the UK, most 
spent nuclear fuel and nuclear waste is stored in ponds or silos, often occurring as a solid-
liquid slurry. Over many years the structural integrity of the ponds has been deteriorating and 
there is an increased need to transport the waste to other safe storage facilities. A key problem 
remains in knowing how best to transport the solid-liquid slurry in the most efficient, 
effective and safe way. The present work addresses this issue with the help of particle-laden 
flow and particle-particle interactions simulations.  

One method of simulating particle-laden flows is to consider particles to be point-like, 
meaning that the particle diameter must be less than the smallest scales found in a turbulent 
flow, namely the Kolmogorov length scale. By using Lagrangian particle tracking (LPT) in 
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multi-phase fluids, i.e. through solving the equation of motion for each particle in the flow 
[1], a relatively good understanding of particle dynamics in fluid flows can be obtained. 
However, this method is inherently problematic since particles in nature are not point-like. 
For example, LPT does not accurately resolve all the forces acting on a particle. To overcome 
this limitation in LPT simulations a more fundamental approach is to use, for example, the 
immersed boundary method (IBM). IBM emerged from Peskin’s work [2] in 1972 on the 
mathematical modelling of the heart. This method allows a particle to have a finite size and 
shape, which in turn allows the realistic capturing of all the forces acting on particles in all 
directions from the fluid. Over the years, authors such as Mark and van Wachem [3], and 
Tseng and Ferziger [4], have worked on the development of this method, with various degrees 
of accuracy. However, to date there has been no previous work implementing IBM with 
resolved DLVO forces, which are the forces that describe the interaction between electrically 
charged particles. 

The novelty of the present work therefore lies in the implementation of IBM using DLVO 
forces to study the dynamics of interacting particles. Particles not only interact with the fluid 
turbulence but also with each other through DLVO forces. The study focuses on using IBM to 
elucidate particle dynamics and the likelihood of particle agglomeration in isotropic turbulent 
boxes at two Reynolds numbers, based on the Taylor microscale, of 𝑅𝑅𝑒𝑒𝜆𝜆 = 29 and 𝑅𝑅𝑒𝑒𝜆𝜆 =
197. Conclusions are drawn by analysing PDFs of the relative velocity and displacement of 
interacting binary particles for critical Stokes number, 𝑆𝑆𝑡𝑡𝑘𝑘 = 1, particles obtained through 
ensembles of interactions. Such particles are considered since one question of interest in 
particle-laden flows is at what Stokes number (for a given concentration) do particles start to 
affect the flow and turbulence dynamics. Elghobashi [5, 6] has demonstrated that at solid 
volume fractions between 10-6 and 10-3 there exists a critical Stokes number. Below this 
value, particles are considered small and their response time is much smaller than the 
Kolmogorov time scale, with such low inertia particles prone to becoming trapped in vortical 
structures of the flow, increasing the fluid turbulence kinetic energy and its dissipation rate. 
Above the critical Stokes number, particles are considered large and are less likely to respond 
to local fluctuations in the fluid velocity field and, unlike small particles, are ejected from 
vortical structures. The net result is that these large particles attenuate the turbulence kinetic 
energy and its dissipation rate within the fluid flow. 

2 METHODOLOGY 

2.1 Fluid flow simulation 
The spectral-element method code, Nek5000 [7], was used to perform direct numerical 

simulations of single-phase homogeneous, isotropic turbulent boxes at 𝑅𝑅𝑒𝑒𝜆𝜆 = 29 and 𝑅𝑅𝑒𝑒𝜆𝜆 =
197. The domain of the isotropic box was 2𝜋𝜋 × 2𝜋𝜋 × 2𝜋𝜋 which was resolved using 48 ×
48 × 48 elements of 7th order, such that there were 336 × 336 × 336 (or a total of 38M) 
nodes in each box. These elements were distributed uniformly inside each box. The 𝑅𝑅𝑒𝑒𝜆𝜆 of the 
isotropic boxes was chosen to match the Reynolds number that is typical of the bulk flow 
(𝑅𝑅𝑒𝑒𝜆𝜆 = 29) and viscous sub-layer (𝑅𝑅𝑒𝑒𝜆𝜆 = 197) regions of a turbulent channel flow at shear 
Reynolds number, 𝑅𝑅𝑒𝑒𝜏𝜏 = 180.  

The code solves the following governing fluid flows equations, i.e. the mass conservation 
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and Navier-Stokes equation: 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 + 𝒖𝒖 ⋅ ∇𝒖𝒖 =  −∇𝑝𝑝 + 1

𝑅𝑅𝑅𝑅 ∇ ⋅ 𝝉𝝉 + 𝒇𝒇 (1) 

∇ ⋅ 𝒖𝒖 = 0 (2) 

where 𝒖𝒖 is the fluid velocity field, 𝑝𝑝 is pressure, 𝑅𝑅𝑅𝑅 is Reynolds number, 𝜏𝜏 is the viscous 
deviatoric stress tensor and 𝒇𝒇 is an arbitrary forcing or source term. 

Isotropic turbulence in each box was obtained by implementation of the linear forcing 
method proposed by Lundgren [8], and Rosales and Meneveau [9], who demonstrated that 
linear forcing proportional to the velocity in physical space gives the same result as forcing in 
spectral space, and that linearly forced boxes converge to a statistically stationary state that 
depends only on domain size and Reynolds number. 

It was demonstrated by Rosales and Meneveau [9] that 𝒇𝒇 = 𝐴𝐴𝒖𝒖′, where 𝐴𝐴 = 𝜖𝜖/3𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
2 , 𝜖𝜖 is 

the dissipation rate and 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
  is the root-mean-square (rms) of velocity fluctuations in any 

direction since isotropy is ensured. This term is a force (in physical space) with an appropriate 
parameter 𝐴𝐴 necessary to obtain statistically stationary isotropic turbulence. Energy is injected 
at a variable rate of 𝐴𝐴 until steady state has been achieved. After that, energy is injected at a 
constant rate of 𝐴𝐴 since both 𝜖𝜖 and 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 will have reached their stationary values. The initial 
conditions used to initiate the simulations were: 

 
 𝑢𝑢 = cos(𝑦𝑦) + sin (𝑧𝑧) 

             𝑣𝑣 = sin(𝑦𝑦) + cos (𝑧𝑧) 
             𝑤𝑤 = cos(𝑥𝑥) + sin (𝑦𝑦) 

(3) 

 
The parameters used to obtain the isotropic boxes are presented below in Table 1. 

 
Table 1: Values of the parameter 𝐴𝐴 in 𝒇𝒇 = 𝐴𝐴𝒖𝒖′ used to obtain stationary isotropic turbulence. 

 
𝑅𝑅𝑅𝑅𝜆𝜆 29 197 

𝐴𝐴 0.0667 0.1667 

2.2 Immersed boundary method 
The immersed boundary method represented each particle using an icosphere with 320 

triangular faces, as illustrated in Fig. 1. The centroid of each triangular face on the icosphere 
has associated with it a position and a velocity. The Dirichlet boundary condition at the 
surface of the icosphere was enforced such that 𝒖𝒖𝐹𝐹 = 𝒖𝒖𝑝𝑝 + 𝝎𝝎𝑝𝑝 × 𝒓𝒓𝑓𝑓 on each particle face, 
where 𝒖𝒖𝑝𝑝 is the particle linear velocity, 𝝎𝝎𝑝𝑝 is the particle angular velocity and 𝒓𝒓𝑓𝑓 is the 
position vector from the centre of the particle to the centroid of a face. 

To ensure the immersed boundary condition was met, a second-order accurate ghost-cell 
method was employed [4]. Every time-step, each cell in the domain was identified as external 
fluid, an internal ghost-cell or internal fictitious fluid. The ghost cell was defined such that the 
immersed boundary intersected the cell and contained the cell midpoint. Internal and external 
fluid cells are those either inside or outside of the immersed boundary, respectively. The 
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velocities at the ghost-cells were maintained each time-step such that, through trilinear 
interpolation across the three closest neighbouring cells, the fluid velocity on the boundary 
was exactly the local face velocity [10]. 

 
 

Figure 1: Icosphere mesh with 320 triangular faces. 

The advection and rotation of each particle was derived from the hydrodynamic forces 
acting on an icosphere, as defined in Eq. (4) [10]: 

 

𝐹𝐹𝑗𝑗 =  ∑(−𝑃𝑃𝑓𝑓𝛿𝛿𝑖𝑖𝑗𝑗 + 𝜏𝜏𝑖𝑖𝑗𝑗
𝑓𝑓 )𝑛𝑛𝑗𝑗

𝑓𝑓𝑑𝑑𝑆𝑆𝑓𝑓
𝑁𝑁𝑓𝑓

𝑓𝑓=1
, (4) 

 
where the 𝐹𝐹𝑗𝑗 is the total force acting on a particle, 𝑗𝑗 is the current face, 𝑁𝑁𝑓𝑓 is the total number 
of faces in a particle, 𝑃𝑃𝑓𝑓 is the pressure interpolated at the centroid of the face, 𝜏𝜏𝑖𝑖𝑗𝑗 is the 
viscous stress tensor, 𝑛𝑛𝑗𝑗

𝑓𝑓 is the unit normal vector to the face 𝑓𝑓 and 𝑑𝑑𝑆𝑆𝑓𝑓 is the surface area of 
face 𝑓𝑓. 

The orientation of a particle was tracked using quaternions. A unit quaternion describes the 
rotation of 𝒗𝒗 by angle 𝜃𝜃 about the axis in the direction of 𝒖𝒖 by 𝒗𝒗′ = 𝑞𝑞𝒗𝒗𝑞𝑞−1, where 𝑞𝑞(𝑣𝑣0, 𝒒𝒒) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃/2) + 𝑐𝑐𝑠𝑠𝑛𝑛(𝜃𝜃/2)𝒖𝒖, and 𝒖𝒖 = 𝑢𝑢1𝑠𝑠 + 𝑢𝑢2𝑗𝑗 + 𝑢𝑢3𝑘𝑘 is a unit vector, 𝜃𝜃 is the angle of rotation 
and 𝒗𝒗′ = 𝑞𝑞𝒗𝒗𝑞𝑞−1 = 𝒗𝒗 + 𝟐𝟐𝑞𝑞0(𝒗𝒗 × 𝒒𝒒) + 2(𝒗𝒗 × (𝒗𝒗 × 𝒒𝒒)). The time evolution of the quaternion 
𝑸𝑸 is described by the differential equation: 

 

𝑑𝑑𝑸𝑸
𝑑𝑑𝑑𝑑 =

(

 
 
 
 
 
 
𝑑𝑑𝑞𝑞0
𝑑𝑑𝑑𝑑
𝑑𝑑𝑞𝑞1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑞𝑞2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑞𝑞3
𝑑𝑑𝑑𝑑 )

 
 
 
 
 
 

= (
 𝑞𝑞0     − 𝑞𝑞1     − 𝑞𝑞2     − 𝑞𝑞3
𝑞𝑞1         𝑞𝑞0     − 𝑞𝑞3      𝑞𝑞2
𝑞𝑞2        𝑞𝑞3        𝑞𝑞0         𝑞𝑞1
𝑞𝑞3      − 𝑞𝑞2       𝑞𝑞1        𝑞𝑞0 

)(
0
𝜔𝜔𝑥𝑥′
𝜔𝜔𝑦𝑦′
𝜔𝜔𝑧𝑧′
), 

(5) 

 
where 𝝎𝝎 = (𝜔𝜔𝑥𝑥′, 𝜔𝜔𝑦𝑦′, 𝜔𝜔𝑧𝑧′) is the angular velocity vector in the particle co-moving frame. The 
unit quaternions were normalised to one after each time step to minimise the error due to 

683



K. Rai, M. Fairweather and L.F. Mortimer 

 5 

floating-point precision issues. The corresponding governing equation for angular 
acceleration can be expressed as: 
 

𝑰𝑰 𝑑𝑑𝝎𝝎 
𝑑𝑑𝑑𝑑 = 𝑻𝑻 = ∑ 𝒓𝒓𝒊𝒊 × 𝑭𝑭𝒊𝒊

𝑖𝑖
 (6) 

 
where 𝝎𝝎 is the angular velocity of the sphere, 𝑻𝑻 is the torque, 𝒓𝒓𝒊𝒊 is the distance vector to the 
centroid of the face from the centre of a particle, 𝑭𝑭𝒊𝒊 is the hydrodynamic force and 𝑰𝑰 is the 
moment of inertia tensor of a solid sphere, given as: 
 

𝑰𝑰 = (
2/5𝑚𝑚𝑟𝑟2 0 0

0 2/5𝑚𝑚𝑟𝑟2 0
0 0 2/5𝑚𝑚𝑟𝑟2

), (7) 

 
where 𝑚𝑚 is the mass of the sphere and 𝑟𝑟 is its radius. 

Once the particle was advected, all pairs of particles were checked for potential collisions. 
The condition required for collision is the inter-surfacial distance is less than zero. The 
particles collided inelastically using a hard-sphere approach with the coefficient of restitution 
of 0.4 during the time of collision. 

Particle-particle interaction was modelled using DLVO theory developed by Derjaguin and 
Landau [11], and Verwey and Overbeek [12]. It was proposed that the interaction between 
two electrically charged spheres can be expressed as: 

 

𝒇𝒇 = − 𝑒𝑒𝑑𝑑𝑒𝑒
𝜅𝜅  𝑒𝑒−𝜅𝜅𝑑𝑑𝑝𝑝 +   

𝐴𝐴 𝑟𝑟𝑝𝑝
6 𝑑𝑑𝑝𝑝2

 (8) 

 
where the first term on the right hand side is due to the electric double layer, and the second is 
due to van der Waals potential, with 𝑒𝑒𝑑𝑑𝑒𝑒 ≡ 64 𝜋𝜋𝑟𝑟𝑝𝑝𝑛𝑛 𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹𝛾𝛾2 for the electric double layer. 𝐴𝐴 is 
the Hamaker constant, 𝑛𝑛 is the number density of electrolyte ions, 𝛾𝛾 = tanh ( 𝑧𝑧 𝑒𝑒 𝜓𝜓

4 𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹
) , 𝜓𝜓 is the 

reduced surface potential, 𝜅𝜅 is the inverse Debye length, 𝑇𝑇𝐹𝐹 is the fluid temperature, 𝑑𝑑𝑝𝑝 is the 
inter-surface distance and 𝑘𝑘𝐵𝐵 is the Boltzmann constant. 

The parameters associated with calcite particles in water are presented in Table 2. 
 

Table 2: Parameters for calcite particles. 
 

Parameter 𝑟𝑟𝑝𝑝 𝑒𝑒 𝜌𝜌𝑝𝑝/𝜌𝜌𝐹𝐹 𝐴𝐴 𝑛𝑛 𝜃𝜃 𝜅𝜅 𝑇𝑇𝐹𝐹 
Value 50𝜇𝜇𝑚𝑚 0.4 2.71 22.3 𝑧𝑧𝑧𝑧 10−3𝑀𝑀 20𝑚𝑚𝑚𝑚 0.1/𝑛𝑛𝑚𝑚 300𝐾𝐾 

3 RESULTS AND DISCUSSION 
Validation of the IBM used in the simulations was performed in [10], reported here for 

completeness. It was based on comparing the simulated drag force on an icosphere with 20, 
80 and 320 faces against empirical values [13]. The results of those simulations are presented 
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in Fig. 2. The results show that as the number of faces on the icosphere is increased, the 
simulated drag force increases in accuracy until at 320 faces the predicted and empirical 
values are in close accord. In the present work, 320 faces represented a good compromise 
between accuracy and computational cost. 

 
Figure 2: Simulated drag coefficient for icosphere face subdivisions, Nf, of 20 (+), 80 (×) and 

320 () compared against empirical values (). 

The results presented in Fig. 3 for the isotropic boxes at 𝑅𝑅𝑒𝑒𝜆𝜆 = 29 and 𝑅𝑅𝑒𝑒𝜆𝜆 = 197 were 
validated against the predictions of Rosales and Meneveau [9]. The figure shows the time 
evolution of the total rms of the fluid velocity fluctuation field. The predictions show that the 
rms values ultimately reach statistically stationary values of 0.244 and 0.581 for boxes 
representative of the bulk flow and viscous sub-layer regions, respectively, with these values 
being in good agreement with those of Rosales and Meneveau [9]. 

 
Figure 3: Time evolution of rms of fluid velocity fluctuations in the isotropic boxes ( 𝑅𝑅𝑒𝑒𝜆𝜆 = 197 and --- 

𝑅𝑅𝑒𝑒𝜆𝜆 = 29). 

Figure 4 shows the variation of 𝑅𝑅𝑒𝑒𝜆𝜆 across a steady 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 turbulent channel flow in 
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the wall normal direction. As we move from the bulk flow region (𝑦𝑦+ = 36 to 180) to the 
viscous sub-layer region (𝑦𝑦+ = 0 to 𝑦𝑦+ = 5) 𝑅𝑅𝑒𝑒𝜆𝜆 increases exponentially as the viscous 
region is approached, and then drops to zero at the wall. If 𝑅𝑅𝑒𝑒𝜆𝜆 is used as a measure of 
turbulence, then the various regions in a turbulent channel flow can be simulated as an 
isotropic turbulent box by generating the required level of 𝑅𝑅𝑒𝑒𝜆𝜆 in the box. By studying the 
particle dynamics using IBM in such isotropic boxes, the characteristic features of particle 
interactions, collisions and agglomeration in particular regions of the turbulent channel flow 
can be examined in detail. 

 
Figure 4: Variation of 𝑅𝑅𝑒𝑒𝜆𝜆 in the wall normal direction of a 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 turbulent channel flow. 

Figures 5 and 6 show PDFs of the particle collision velocity and collision angles obtained 
from LPT simulations of a 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 turbulent channel flow at 𝑆𝑆𝑡𝑡𝑘𝑘 = 1 for the bulk flow 
and viscous sub-layer regions [14]. The most probable velocities and angles from these results 
were used as initial conditions for the isotropic box simulations to investigate the interaction 
of particles in those regions. In the two regions, the most probable collision velocity is 
dominated by the streamwise direction, with the corresponding collision angles indicating that 
collisions in the bulk flow region are generally at very low angles, almost head-on, whilst 
those in the viscous sub-layer show a wider distribution of angles.  

 
Figure 5: PDFs of streamwise particle collision velocity (left) and collision angle (right), both in viscous 
sub-layer and bulk flow regions of 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 turbulent channel flow ( 𝑅𝑅𝑒𝑒𝜆𝜆 = 197 and --- 𝑅𝑅𝑒𝑒𝜆𝜆 = 29). 
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 . 

 

 
Figure 6: PDFs of wall-normal (left) and spanwise (right) particle collision velocities, both in viscous sub-

layer and bulk flow regions of 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 turbulent channel flow ( 𝑅𝑅𝑒𝑒𝜆𝜆 = 197 and --- 𝑅𝑅𝑒𝑒𝜆𝜆 = 29). 

 
Figure 7: PDFs of particle displacement (left) and particle relative velocity (right) in the two isotropic 

turbulence boxes ( 𝑅𝑅𝑒𝑒𝜆𝜆 = 197 and --- 𝑅𝑅𝑒𝑒𝜆𝜆 = 29). 

Figure 7 shows PDFs of the magnitude of particle displacement and particle relative 
velocity in each isotropic box, at 𝑅𝑅𝑒𝑒𝜆𝜆 = 197 (representative of the viscous sub-layer) and 
𝑅𝑅𝑒𝑒𝜆𝜆 = 29 (representative of the bulk flow). The PDFs were obtained by recording the 
displacement and the relative velocity after each time-step of the simulations, until the 2000th 
time-step had been reached. After this time, the whole process was restarted by randomly 
distributing the particles in the box whilst keeping their initial inter-surfacial displacement 
fixed at 2𝑑𝑑𝑝𝑝. 

To analyse the distributions given in Fig. 7, first we consider the displacement of the 
particles. In the figure, 𝑑𝑑𝑑𝑑 = 2 represents the initial displacement and dx = 0 represents 
contact of the particles and their possible agglomeration. The two PDFs are similar in terms of 
their profile in that a peak at 𝑑𝑑𝑑𝑑 = 0 is observed, indicating interactions which resulted in 
agglomeration. The larger peak for the viscous sub-layer region suggests that interactions at 
𝑅𝑅𝑒𝑒𝜆𝜆 = 197 resulted in the particles spending more time in an agglomerated state. In both 
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cases, the PDF drops exponentially as the inter-surfacial distance is increased from 𝑑𝑑𝑑𝑑 = 0. 
At 𝑑𝑑𝑑𝑑 0.25 (viscous sub-layer) and 𝑑𝑑𝑑𝑑 0.5 (bulk flow) each PDF exhibits a minor 
secondary peak, which is the result of bounces to these separation distances. It is clear that the 
particles in the bulk flow region bounce almost twice as far as those in the viscous sub-layer. 
Over the range 0.8 ≤ 𝑑𝑑𝑑𝑑 ≤ 2.0 the results are almost identical in both case since this is the 
range over which the particles initially travel as they approach one another. This indicates that 
during this time turbulence does not significantly affect the relative distance between the 
particles, which in turn means that all the effects due to turbulence over this period are on the 
translational and angular motion of the particles. Overall, the results given in this figure 
demonstrate that the particles in the viscous sub-layer box lose more kinetic energy due to 
collisions than those in the bulk flow box, which can be attributed to the hydrodynamic forces 
acting on the particles caused by the turbulence. This indicates that particles in the viscous 
region at this Stokes number are more likely to agglomerate than particles in the bulk flow 
region as they lose more energy after any collision which increases the impact of local 
hydrodynamic forces. 

Considering the relative velocity PDFs, in Fig. 7 𝑑𝑑𝑑𝑑 = 2.5 represents the initial relative 
velocity of the particles and 𝑑𝑑𝑑𝑑 = 0 indicates that the particles have agglomerated (such that 
they travel with the same velocity). Despite initiating the particles with the same initial 
relative velocity of 2.5 in both the viscous sub-layer and bulk flow boxes, the particles in the 
former case lose a significant amount of their velocity, 20%, equivalent to a loss 36% of 
their kinetic energy, in the first few time-steps due to turbulence interactions. As when 
considering particle displacement, over the range 0.0 ≤ 𝑑𝑑𝑑𝑑 ≤ 1.1 collisions, bouncing and 
agglomeration of the two particles occur. The difference due to their initial approach velocity 
can be seen in the range 0.2 ≤ 𝑑𝑑𝑑𝑑 ≤ 1.1. In that range, as the particles bounce off one 
another, the particles in the bulk flow box tend to move faster than those in the viscous sub-
layer box, thereby reducing the chance of agglomeration due to their retained speed. 

From the analysis of the distribution of both the relative displacement and velocity of the 
interacting particles, it is therefore clear that agglomeration of particles can occur in both the 
viscous sub-layer (𝑅𝑅𝑅𝑅𝜆𝜆 = 197) and bulk flow (𝑅𝑅𝑅𝑅𝜆𝜆 = 29) boxes. However, agglomeration is 
much more likely in the viscous sub-layer due to significant reductions in the particles’ 
kinetic energy post-collision, in this case a reduction of 36%. 

4 CONCLUSIONS 
Direct numerical simulations of boxes of isotropic turbulence were performed using the 

Nek5000 code based on a 7th-order spectral element method, from which good agreement 
with the results from Rosales and Meneveau [9] was established. An immersed boundary 
method using icospheres and inelastic hard sphere collisions was used to describe inter-
particle interactions, with inter-particle forces modelled using DLVO theory. Validation of the 
IBM was performed by comparing the calculated drag force on icosphere particles with 20, 80 
and 320 triangular faces with empirical values, with good agreement found for the more 
resolved icosphere case.  

Two regions of a turbulent channel flow were represented using these isotropic boxes at 
differing values of 𝑅𝑅𝑅𝑅𝜆𝜆, representative of those occurring in the viscous sub-layer and bulk 
flow regions of the channel. PDFs of inter-particle interactions, in this case the particle 
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relative displacement and velocity, were analysed. In both the bulk flow and viscous sub-layer 
cases, agglomeration was found to occur, but the chances of agglomeration were increased in 
the viscous sub-layer box. The results indicate that particles in the viscous box lose 
significantly more kinetic energy after particle impact than in the bulk flow case. 
Furthermore, in the first few time-steps of a simulation, particles in viscous sub-layer box lost 
20% of their initial velocity, which translates into a loss of 36% of their kinetic energy 
which in turn encourages agglomeration of the particles. 

Ultimately, this work aims to use simulations of the type described to assess the use of 
adjustable system parameters to encourage or discourage particle agglomeration in turbulent 
flows. Through such behavioural modification, it may be possible to accelerate nuclear waste 
removal and treatment processes in addition to reducing their cost.  Future work will also 
extend these simulations and analysis to cover more realistic non-spherical particles such as 
prolate and oblate ellipsoids, representative of the needle- and disc-like particles encountered 
in practice.  
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Abstract. The growing interest in energy efficient and sustainable technologies has created 
significant demand for novel heat transfer and thermal energy storage materials, such as 
nanofluids. The importance of nanoparticle science cannot be underestimated, since the 
motivation for the manipulation, through nanoparticle addition, of the properties of existing 
thermofluids (e.g. molten salt) arises from their poor thermal properties which represent a major 
limitation to the development of more energy-efficient processes. In this work, consideration is 
given to investigating the role of heat transfer in nanofluids in three-dimensional flows using 
an advanced computational modelling approach to simulate such flows. In the present work, 
we use direct numerical simulation coupled with a Lagrangian particle tracking technique. The 
heat transfer behaviour of a nanofluid within a turbulent wall-bounded flow is investigated, 
with the fluid phase properties chosen to represent a solar molten salt (NaNO3-KNO3, 60:40 
weight ratio) thermofluid typical of those present in solar thermal power plants. The 
configuration is a fully developed channel flow with uniform heating/cooling from both walls. 
The continuous phase is modelled using the open source spectral element-based solver, 
Nek5000. Predictions of a statistically steady turbulent channel flow at shear Reynolds number 
Reτ = 180 and high turbulent Prandtl number Prt = 5.0 are first obtained and validated. A particle 
tracking routine is implemented to simulate the dispersed phase which can accommodate one-, 
two- and four-way coupling between the fluid and discrete phases. To investigate the effect of 
particles on the turbulent heat flux and temperature field, the nanoparticle concentration 
response to temperature variations and turbulence is obtained across the channel, with the 
associated first and second-order flow and temperature field statistics presented. The advantage 
of the model developed is its ability to study in detail phenomena such as interparticle collisions, 
agglomeration, turbophoresis and thermophoresis, with the approach also being of value in 
investigations of the heat transfer performance and long-term thermal stability of nanoparticle 
dispersions which as yet have not been considered in detail. The outcome of this study allows 
conclusions to be reached regarding the implications of nanoparticle-seeded molten salts for 
solar thermal energy storage systems. 
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1 INTRODUCTION 
Particle-laden flows, containing micro-/nano-sized particulate (e.g. particles, colloids and 

surfactants) have gained increased attention recently because of their wide range of industrial 
applications. Of particular interest are nanofluids, which are dilute fluid suspensions of 
nanoparticles (1-100 nm) at modest concentrations (< 5.0% weight fraction) [1]. They are 
prepared by dispersing nanoparticles in fluids such as water, oil, molten salt or ethylene glycol. 
Unlike conventional fluids, the significant enhancement of the thermal properties of molten salt 
containing nanoparticles allows new pathways for its high temperature application, particularly 
in the energy sector. In this sector, the efficiency of heat removal and thermal management 
systems is presently the greatest technological challenge. The use of molten salt nanofluids as 
a heat transfer fluid and energy storage medium for power generation and storage is very 
promising and could result in increased efficiency and large energy savings [2]. The flow and 
heat transfer of such nanofluids is therefore gaining a lot of interest by researchers in the 
academic community due to their inherent improved thermal transport properties.  

Understanding of the hydrodynamics, heat transfer and thermal enhancement of molten salt 
nanofluids is quite challenging if it is to be gained only experimentally. Apart from the 
restrictions of size and harsh environmental (i.e. high temperature differences), many other 
complications arise from the responsible hydrodynamic and interaction forces which are likely 
to take place at varied magnitudes and multiple time scales. The use of a numerical approach is 
therefore proposed to investigate these phenomena. More specifically, it is intended here to 
develop a multiscale computational model based on Lagrangian particle tracking (LPT) [3] 
coupled with direct numerical simulation (DNS) to investigate the dispersion stability, thermal 
properties and turbulent heat flux in nanofluids in a channel flow. The other benefit of this 
computational fluid dynamic (CFD) model is its ability to investigate more intrinsic phenomena 
such as turbophoresis (the tendency for particles to migrate in the direction of decreasing 
turbulence kinetic energy) and thermophoresis (particle motion induced by thermal gradients), 
and hence the long-term thermal stability of nanofluids that has not yet been well studied.   

It is thought that agglomeration of nanoparticles to form larger particle clusters could lead 
to surface impact, deposition and erosion, although evidence of this in the literature is 
conflicting [4], with few quantitative studies reported. To capture these effects using CFD, a 
comprehensive description of both the fluid phase and solid nanoparticle phase evolution is 
necessary. Since these particles are very small, with Stokes numbers St ~ 0, they are expected 
to behave like tracers within the carrier phase. Hence, the focus here is on the fluid phase that 
dictates the spatial distribution of solid particles relative to the turbulent flow. The evolution of 
the particles’ distribution is therefore highly dependent on the turbulent flow and temperature 
fields, and physical interactions between the particles and between the particle and the cold or 
hot wall heat flux boundaries. Moreover, whereas most transport models are not explicit and do 
not account for feedback between the turbulence and aggregation mechanisms, the model 
proposed does so.  

2 METHODOLOGY  
The focus of the present DNS-based work relies on modelling the heat transfer in 

nanoparticulate multiphase channel flows with a high Prandtl number fluid (i.e. molten salt). 
The method proposed uses a channel flow configuration in three-dimensions that is used to 
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simulate turbulent flows representative of those encountered in practice by providing a full 
range of length and time scales, down to the Kolmogorov scale [5]. This technique enables any 
quantity of interest to be analysed with great spatial and temporal precision, albeit at a large 
computational cost and for somewhat idealised conditions. DNS can generally be regarded as 
a complement to laboratory experiments. Particle-particle interactions are represented using 
detailed surface interactions based on DLVO interaction forces [6]. DLVO theory (after 
Derjaguin and Landau [7], and Verwey and Overbeek [8]) defines inter-particle forces as the 
sum of van der Waals and electric double-layer contributions, and these are fully resolved in 
the computations. 

Turbulent heat transfer in a channel is characterized not only by the Reynolds number (Re) 
but also by the Prandtl number (Pr) of the fluids. Kawamura et al. [9] undertook DNS 
simulations of turbulent heat transfer for various Prandtl numbers ranging from Pr = 0.025 to 5 
with a Reτ = 180 flow using a finite-difference method-based solver. They assumed a constant 
volumetric heating with a uniform wall temperature. Profiles of the mean temperature, 
temperature variance and turbulent heat flux were obtained, with detailed budgets within the 
transport equations for these quantities reported. The present work utilizes a similar turbulent 
heat transfer model to that of Kawamura et al. [9]. However, we here aim to expand on this 
work by seeding the continuous phase with nanoparticles to determine turbulence quantities 
such as the turbulent heat flux and temperature variance of the multiphase system considered 
with Pr = 5 and Reτ = 180.  

In order to relate the present work to the systems present in solar thermal power plants, we 
consider mechanical and chemical properties matching those of Al2O3 nanoparticles in molten 
salt (NaNO3-KNO3, 60-40 weight ratio), which is a simulant for proposed heat transfer fluid 
and thermal energy storage media. In addition, a novel method is used here to describe the 
oscillating layered structure of molten salt fluids (represented by the matrix of liquid molecules 
around the nanoparticles), and the influence of the interfacial layer thickness on the system 
conductivity. Further details can be found elsewhere [10]. This innovative approach allows for 
the simulation of different flows, and modifications to them to gain a better understanding of 
the nanoparticle dynamics and heat transfer characteristics of the system. The final outcome is 
expected to provide the optimum characteristics of the nanofluid flows that can be used in solar 
power plants. 

2.1 Fluid flow simulation 
In the present study the simulations were performed using a numerical multiscale model with 

the continuous phase predicted using the open source spectral element-based DNS code, 
Nek5000 [11]. This code was chosen based on its extensive testing, efficient parallelization 
capabilities and validation history [12]. Within the code, the incompressible Navier-Stokes 
equations (mass and momentum conservation) are solved to high accuracy, with the code 
applied to a Cartesian grid consisting of 27×18×23 8th order elements (i.e. 5.7 M nodes) used 
to represent a turbulent channel flow at shear Reynolds number Reτ = 180 (equivalent to a bulk 
Reynolds number 𝑅𝑅𝑒𝑒𝐵𝐵 = 2800). A constant fluid timestep of  Δ𝑡𝑡𝐹𝐹

∗ = 0.01 was used throughout. 
The elements were scaled such that those closest to the wall were distributed more densely. The 
geometry of the channel was 14δ×2δ×6δ, with δ = 0.1 mm, as illustrated in Fig. 1. For the 
purpose of this study, the computational coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) were used to represent the three-
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dimensional geometry of the channel, with 𝑥𝑥 being the streamwise direction, 𝑦𝑦 the wall-normal 
direction, and 𝑧𝑧 the spanwise direction. Periodic boundary conditions were enforced in the 
streamwise and spanwise directions, while the wall-normal axis used solid impenetrable no-slip 
conditions at 𝑦𝑦∗= ±, with the walls maintained at a constant temperature. The flow was driven 
and maintained by a constant pressure gradient. The non-dimensional Navier-Stokes equations 
are presented in Eqs. (1) and (2), with distances, velocities and densities normalized by the 
channel half-height, 𝛿𝛿, the bulk velocity, 𝑈𝑈𝐵𝐵, and the fluid phase density, 𝜌𝜌𝐹𝐹, respectively. From 
here on, any quantity with an asterisk (*) denotes a variable non-dimensionalised in this manner. 

𝛁𝛁 ⋅ 𝒖𝒖∗ = 0 (1) 

𝜕𝜕𝒖𝒖∗

𝜕𝜕𝑡𝑡∗ + 𝒖𝒖∗ ⋅ 𝛁𝛁𝒖𝒖∗ = −𝛁𝛁𝑝𝑝∗ + 1
𝑅𝑅𝑒𝑒𝐵𝐵

𝛁𝛁 ⋅ 𝝉𝝉∗ + 𝒇𝒇𝑐𝑐 (2) 

Here, 𝒖𝒖∗ is the fluid velocity, 𝑝𝑝∗ is the fluid pressure, 𝑅𝑅𝑒𝑒𝐵𝐵 is the bulk Reynolds number defined 
as 𝑅𝑅𝑒𝑒𝐵𝐵  =  𝑈𝑈𝐵𝐵𝛿𝛿/𝜈𝜈𝐹𝐹, 𝜈𝜈𝐹𝐹 is the fluid kinematic viscosity and 𝝉𝝉∗ is the viscous stress tensor. The 
additional term  𝒇𝒇𝑐𝑐  is  cell-dependent and accounts for two-way momentum exchange between 
particles in a cell and the surrounding fluid. The flow is driven and maintained by a constant 
pressure gradient using the following parameters: 

∂𝑝𝑝
∂𝑥𝑥 = (𝑅𝑅𝑒𝑒 𝜏𝜏

𝑅𝑅𝑒𝑒 𝐵𝐵
)

2
(3) 

where 𝑅𝑅𝑒𝑒 𝜏𝜏 and 𝑅𝑅𝑒𝑒 𝐵𝐵 are the shear and bulk Reynolds numbers, respectively. 

 
Figure 1: Configuration of DNS for turbulent heat transfer channel flow for hot wall case. Direction of 𝑞𝑞𝑊𝑊 is 

reversed for cold wall case. 

In addition to the fluid flow, Nek5000 also solves the following non-dimensional 
conservation equation for energy transport: 
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∂𝑇𝑇∗

∂𝑡𝑡∗ + 𝐮𝐮∗ ⋅ ∇𝑇𝑇∗ = 1
𝑃𝑃𝑃𝑃 ∇ ⋅ ∇𝑇𝑇∗ + 𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣 (4) 

where 𝑇𝑇∗ is the temperature, 𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣 is the volumetric heat source term and 𝑃𝑃𝑃𝑃 =  𝐿𝐿𝐿𝐿/𝛼𝛼 with 𝛼𝛼 =
𝑘𝑘/𝜌𝜌𝐹𝐹𝐶𝐶𝑝𝑝, in which 𝑃𝑃𝑃𝑃 is the Péclet number, 𝐿𝐿 is a characteristic length, 𝐿𝐿 the local flow velocity, 
𝑘𝑘 the thermal conductivity, 𝜌𝜌𝐹𝐹 the fluid density, and 𝐶𝐶𝑝𝑝 the heat capacity. 

Two simulations were performed using Eq. (4) with different heat flux boundary conditions. 
The first had a fixed cold wall boundary with an associated temperature of 250 °C, whereas the 
second was set to have a fixed hot wall boundary with an associated temperature of 500 °C. 
The fluid used in these simulations was set to have a high Prandtl number (Pr = 5), 
representative of molten salt at 400 °C. 

2.2 Dispersed phase simulation 
The dispersed phase was represented by 500k, 100 nm diameter Al2O3 particles which were 

tracked through the fluid flow field. These were simulated using a Lagrangian particle tracking 
routine, which was developed for this work and implemented to interface concurrently with 
Nek5000. The motion of each nanoparticle is described using the Langevin equation, where the 
translational velocity of the i-th particle is obtained from the principle of conservation of linear 
momentum using: 

𝑚𝑚𝑝𝑝
∂𝒗𝒗𝑖𝑖
∂𝑡𝑡 =  𝑭𝑭𝑖𝑖 (4) 

where 

𝑭𝑭𝒊𝒊= 𝑭𝑭𝑖𝑖
𝐶𝐶 +  𝑭𝑭𝒊𝒊

𝒆𝒆 +  𝑭𝑭𝑖𝑖
𝑉𝑉 + 𝑭𝑭𝑖𝑖

𝑓𝑓 +  𝑭𝑭𝑖𝑖
𝐵𝐵 (5) 

Here, 𝑚𝑚𝑝𝑝 and 𝒗𝒗𝑖𝑖 are the mass and the transitional velocity vector of the i-th nanoparticle, 
respectively. 𝑭𝑭𝑖𝑖

𝐶𝐶 is the particle contact force, 𝑭𝑭𝑖𝑖
𝑒𝑒 is the electric double layer repulsive force, 𝑭𝑭𝑖𝑖

𝑣𝑣 
is the van der Waals attractive force, 𝑭𝑭𝑖𝑖

𝑓𝑓is the fluid force and 𝑭𝑭𝑖𝑖
𝐵𝐵 is the random Brownian motion 

force. Other body forces such as gravity and buoyancy were found to be negligible for all length 
and time scales, since their magnitudes are much smaller than the aforementioned 
hydrodynamic and interaction forces . At each timestep, the motion of each particle was 
calculated accounting for the various forces noted. The temperature dependence of these force 
terms was obtained by interpolating the temperature field at the position of the particle, i.e. it 
was assumed that each nanoparticle had a temperature equal to that of the local fluid. Further 
details can be found elsewhere [3]. 

The model described was used to simulate the dynamics and mechanisms responsible for 
nanoparticle dispersion and aggregation, and was fully coupled (i.e. four-way coupled). 
Consideration of solely fluid forces acting upon the particulate phase is known as one-way 
coupling. Two-way coupling was achieved by implementing the point-source-in-cell method 
whereby particle forces were fed back to the local fluid cells. Particle collisions (four-way 
coupling) were resolved using the soft sphere approach, as described by Hertzian normal 
contact theory [13]. Finally, four-way coupled predictions were extended to include DLVO 
interparticle van der Waals attractive and electric double layer repulsive forces to allow the 
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prediction of particle-particle agglomeration events [3]. Chemical and mechanical properties 
were chosen to match Al2O3 in molten salt, with the parameters used in the simulations provided 
in Table 1. 

Table 1: Parameters used in the simulations. 

Parameter Carrier phase (NaNO3-KNO3) Particle phase (Al2O3) 
Shear Reynolds number, Reτ  180 - 
Bulk Reynolds number, ReB 2800 - 
Particle diameter, dp / nm - 100 
Number of particles, Np - 500,000 
Volume, V / m3 1.58×10-10 4.07×10-13 
Volume fraction, Ф / vol % - 0.26 
Temperature, T / °C 420 420 
Bulk velocity, UB / m s-1 25.67 25.68 
Density, ρ / kg m-3  1996.5 3850 
Kinematic viscosity, νF / m2 s-1 0.974×10-6 - 

The simulations were first performed as an unladen single-phase molten salt flow using an 
arbitrary initial turbulence profile with added chaotic terms in the wall-normal and spanwise 
directions. Once turbulence was established, fluid statistics were monitored every 1500 
timesteps until the mean and fluctuating velocity and temperature fields reached a statistically 
steady state. Particles were then injected uniformly throughout the channel and given an initial 
velocity equal to that of the local fluid. Particle statistics in the wall-normal direction were 
obtained by splitting the domain into 120 equal volume cuboidal regions, and by averaging over 
all particles within each region. From this steady state condition, four-way coupled runs were 
started, reducing the fluid and particle time step initially to avoid divergences in the flow field 
due to the impact of particle forces. The statistics obtained in these runs are presented and 
discussed in the following section. 

 
Figure 2: Instantaneous temperature distribution in unladen flow (top), and a zoomed in portion with 

nanoparticles for the hot wall case (bottom).  
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3 RESULTS AND DISCUSSION 

3.1 Single-phase flow statistics 
The results of each simulation were analysed to explain the flow and heat flux behaviour of 

the fluid and the nanoparticles within the channel. Figure 2 shows the instantaneous fluid 
temperature at the top of the figure, as well as illustrating the location of the nanoparticles in a 
zoomed in portion of the channel with hot walls in the lower part of the figure. Considering the 
results of Fig. 2, a trend in preferential concentration of particles within the coldest regions is 
noticeable. It is also evident that the particles exhibit increased concentrations in the centre of 
the channel. The reasons for this will be discussed later. 

  
Figure 3: Mean temperature profile (left), and root-mean-square of temperature fluctuations (right). 

  
Figure 4: Turbulent heat flux components: streamwise (left) and spanwise (right). 

Profiles of the mean temperature and root-mean-square (rms) of temperature fluctuations are 
presented in Fig. 3 for the single-phase flow. The statistics of Kawamura et al.’s [8] DNS of 
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turbulent heat transfer in a channel flow at Reτ = 180 and Prandtl number Pr = 5 were used for 
comparison and found to be in qualitatively good agreement. Small discrepancies were apparent 
between the two set of results, but these may be attributed to be a consequence of computational 
issues due to differences in the number of nodes and elements used in each simulation, with the 
present work using an order of magnitude higher number of nodes. 

The turbulent heat fluxes in the streamwise and spanwise directions are also presented in 
Fig. 4.  These determine the rate and direction of heat energy transfer via turbulence either 
towards (cold wall) or away from (hot wall) the wall. 

3.2 Particle-laden flow statistics 
Profiles of the streamwise mean particle velocity and the rms of particle streamwise velocity 

fluctuations are shown in Fig. 5.   

  
Figure 5: Streamwise mean particle velocity profiles (left), and root-mean-square of streamwise particle 

velocity fluctuations (right) – ○: hot wall; △: cold wall. 

It is clear that the streamwise mean particle velocity distributions are similar for both the 
cold and hot wall configurations. This is likely due to the low particle Stokes number and 
the lack of dependence of mean streamwise flow behaviour on the temperature field. In 
the case of the hot wall, the statistics near the wall are not plotted due to insufficient 
particles in these regions to obtain meaningful averages. However, the rms of velocity 
fluctuation profiles show variation between the two configurations. In the case of the cold 
wall, the peak is closer to the wall, indicating that the particles behave in a more turbulent 
fashion within the near-wall region. This is likely to be due to thermophoresis causing a 
drift in the wall-normal direction towards the wall. For the hot wall case, the peak particle 
rms value is reduced and shifted towards the channel centre slightly, since particles which 
approach the wall are encouraged to move away from it due to increased local 
temperatures, although the spread of streamwise rms velocities further from the wall is 
maintained. The rms of velocity fluctuations in the wall-normal and spanwise directions 
is illustrated in Fig. 6. It can be seen that the wall-normal particle fluctuations exhibit 
similar behaviour near the wall, but the fluctuations are slightly increased for the cold wall 
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configuration in the outer layer. This is likely to be due to turbophoresis and 
thermophoresis working together to give the particles greater distributions in wall-normal 
velocity. The spanwise distributions exhibit similar behaviour, as expected since this 
direction is homogeneous in both fluid temperature and velocity distributions. 

  
Figure 6: Root-mean-square of particle velocity fluctuations, wall-normal (left) and spanwise (right) – ○: 

hot wall; △: cold wall. 

 
Figure 7: Comparison of mean particle concentrations across the channel – ○: hot wall; △: cold wall. 

The predictions also demonstrate how particle concentrations differ in the near-wall regions 
due to thermophoresis, as illustrated in Fig. 7. Over the course of the cold wall simulation it is 
clear that both turbophoresis and thermophoresis take place, encouraging the particles to 
migrate to regions of low turbulence kinetic energy and temperature (i.e. near the walls). Over 
time this leads to a build-up of nano-particulate concentrations close to the wall. This has 
implications for particle collision and agglomeration rates since the local concentration in these 
regions is greater than the initial concentration once the system has reached a steady state. This 
also implies that, with time, particle deposition rates on the walls will likely increase due to 
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migration towards the walls. Conversely, the results for the hot wall boundary condition show 
particles are migrating away from the walls towards the channel centre. The preferential 
concentration of particles within the hottest zones of the channel in this case was also noted 
previously through the observations in regards to the results of Fig 2. 

4 CONCLUSIONS 
Direct numerical simulations of turbulent nanofluid flow and heat transfer were performed 

for two different thermal wall configurations (cold and hot walls) using a high Prandtl number 
fluid, and the effect on nanoparticle motion statistical quantities was investigated. 
Concentration plots indicate a notable difference in particle distributions between the cold and 
hot wall boundary conditions. Specifically, it was observed that an increase in particle 
concentration in the near-wall regions occurred over the run times considered for the cold wall 
configuration. The particles were found to behave in a more turbulent fashion in the near-wall 
regions, due to thermophoresis causing a drift in the wall-normal direction towards the wall. 
Combined turbophoresis and thermophoresis effects were also found to give the particles larger 
distributions in the wall-normal velocity. For the hot wall case, particle migration was observed 
to be in the opposite direction, away from both of the walls towards the channel centre, as 
particles that approach the wall are encouraged away due to the increased wall temperature. 
The results obtained highlight differences in particle migration due to the wall temperature 
boundary condition, which over time will lead to a build-up of a non-homogeneous particulate 
concentrations within the channel. Future work will further consider the influence of 
turbophoresis and thermophoresis in more detail, and will allow conclusions to be reached 
regarding the implications for thermal energy storage systems using nanofluids. 
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Abstract. Among the numerous types of meshless particle methods, SPH is successfully 
applied to simulate complex multiphase flows with impact involving fluids with high-density 
ratio as well as non-Newtonian fluids. These problems are concern in the applied engineering 
dealing with water related natural hazards, such as landslide induced tsunami in artificial 
reservoir, intense rainfall induced shallow landslides. This contribution aims at providing an 
overview on the recent applications of the standard weakly compressible WCSPH for 
modelling these kinds of multiphase flows. The relevant aspects related with the interface 
treatment and numerical stability in high density multiphase flow will be discussed. Advanced 
modelling aspects connected with the SPH simulation of non-Newtonian fast dense granular 
flows and the interaction with pore water. The aspect of tuning model parameters is discussed. 
 
1 INTRODUCTION 

Multiphase flows are involved in several problems of practical interests and in many fields 
of the hydraulic engineering (Guandalini et al. 2015, Todeschini et al. 2019). Among these, 
the analysis of natural hazardous events related to water represents an important category 
(Manenti et al. 2018; Manenti et al. subm.). These problems are frequently characterized by 
fast dynamics, large deformation, flow impact and possibly large density ratio. These peculiar 
features of the multiphase flow may be difficult to handle from numerical point of view. This 
is especially the case of multiphase flows where high-density ratio between the phases can 
cause numerical instability (Monaghan & Ashkan 2013; Grenier et al. 2009; Hu & Adams 
2007; Colagrossi & Landrini 2003). Other relevant issues in the numerical modelling of 
complex multiphase problems of practical interests are: (i) stochastic nature of modelling 
parameters influencing the model response (Manenti et al. 2016), and (ii) the large amount of 
computational time and resources required by complex problems and time step limitation 
when considering viscous non-Newtonian fluids (Manenti et al. 2018; Guandalini et al. 2012). 
Therefore fast-running reliable numerical models are strongly desirable, especially for 
application to multi-disciplinary decision support systems for natural hazard risk reduction 
and management where several scenarios should be explored to account for inherent 
uncertainty affecting influential model parameters (Newman et al. 2017). 

In this paper will be discussed some modelling approaches for handling the above-
mentioned issues in the WCSPH simulation of multiphase flows involved in natural hazards. 
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2 MODEL DESCRIPTION 
In this section will be illustrated two different WCSPH models for the analysis of 

multiphase flows.  
In section 2.1 are shown the analytical details of a relatively simple and novel approach 

based on standard weakly compressible SPH for simulating free-surface multiphase flows 
with high-density ratio involving violent impact (Manenti 2018). The proposed approach, 
which is relatively simple to implement, allows keeping sharp interfaces between the two 
phases and permits to overcome instability problems affecting standard SPH formulation in 
these kind of applications. 

In section 2.2 is illustrated the FOSS code SPHERA v.9.0.0 (RSE SpA) (Amicarelli et al. 
subm.) that is based on the standard WCSPH formulation featuring a mixture model for the 
analysis of dense granular flows consistent with the Kinetic Theory of Granular Flow (KTGF) 
(Amicarelli et al. 2017). A numerical parameter, so-called limiting viscosity, has been 
subsequently introduced in the reference model of Amicarelli et al. (2017) as an appropriate 
means to reduce computational time in those kind of multiphase flows involving a viscous 
non-Newtonian fluid, as the case of landslide post-failure dynamics (Manenti et al. 2018). 

2.1 Novel WCSPH for high-density ratio two-phase flow 
In the following are described the governing equations of an alternative SPH model that 

derives from the discretized balance equations of fluid motion described in Monaghan (1994) 
which were defined as "standard" formulation in Colagrossi & Landrini (2003). Even if 
multiphase flows can be simulated following standard SPH (Manenti et al. 2012), serious 
numerical instability at the interface arises when the density ratio between involved phases 
increases at some order of magnitude. The principal causes of this instability was investigated 
in Manenti (2018) and were due mainly to the discontinuity of density across the interface. 
Adopting the formalism introduced in that work, the mass and momentum balance equations 
in the standard SPH formulation can be conveniently formulated, as explained in the 
following, substituting the density i of a given fluid particle at the point xi, which becomes 
discontinuous across the interface, with the inverse of the its particle volume Vi:  

ii
i

ii m
V

m  
1

 
(1) 

The symbol i in Eq. (1) is used to denote the inverse of the particle volume (or number 
density) which is referred to as the specific volume, according to the nomenclature adopted in 
Hu and Adams (2007). Note that, as the specific volume is continuous across the interface, the 
particle’s mass is discontinuous. The particle mass mi is assumed as constant. 

Thus the differential balance equations for the mass and momentum (v velocity vector, g 
gravitational acceleration, p pressure) of a slightly compressible inviscid fluid can be written:  

gv
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The discretized form of the mass and momentum balance Eqs. (2) can be obtained by 
applying the standard SPH approximation principles after the following simple mathematical 
manipulations:  

  iii
i

Dt
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 vv  
(3) 
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(4) 

If the support of the kernel is not truncated (as occurs when intersecting the fluid free 
surface), a useful relation can be derived for the derivative of a function f (Liu & Liu, 2003). 
Considers the following integral kernel approximation of the quantity f evaluated at the i-th 
point of the continuum domain : 




 dWff ijjji  
(5) 

In the Eq. (5), the gradient on the left side member is calculated at particle i (subscript i is 
omitted for nabla operator), while it is evaluated at particle j on the right-hand member (i.e. 
j). Taking into account the following identity:  

  ijjjijjjijjj WfWfWf   (6) 

the Eq. (5) can be rewritten in the following manner if the Gauss divergence theorem is 
applied at the first integral on the right side member:  




 dWfdsWff ijjjijji n  
(7) 

Because the kernel Wij is a central function of the relative distance between particles i and 
j, it can be easily demonstrated that the kernel gradient Wij evaluated at particle i has 
opposite sign with respect to the kernel gradient j Wij at particle j.  In addition, if the kernel 
compact support (which is function of the smoothing length h) is entirely contained in the 
domain  then the first integral on the right-hand side of Eq. (7) vanishes since it is evaluated 
on the frontiers ∂ of and the kernel function is zero outside its support by definition. For 
the above-mentioned reasons Eq. (7) becomes:  




 dWff ijji  
(8) 

As the discrete element volume is j
 -1, the particle approximation of Eq. (8) is given by:  
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(9) 

Taking into account Eq. (9) with f equal to (i vi) and i respectively, the mass balance in 
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Eq. (3) can be discretized as follows:  
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(10) 

In a similar fashion, by replacing f into Eq. (9) with i and (pi /i) respectively, from Eq. 
(4) can be obtained the discretized momentum balance equation:  
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(11) 

In Eq. (11) the artificial viscosity term ij is introduced to assure numerical stability and to 
keep interface sharply defined. This term derives from the artificial viscosity of Monaghan 
(1994) following proper adaptation to be consistent with the model formulation that adopts 
specific volume as independent variable instead of the density (Manenti 2018). 

The discretized governing Eqs. (10) and (11) provide the following advantages when 
dealing with multiphase flows with large density ratio: (i) each phase is not treated as a 
boundary condition for the other and all neighboring particles in the interaction domain of an 
interface particle are included into its neighbor’s list, regardless of the phase they belong to; 
(ii) kernel truncation is avoided, requiring no need for numerical correctives to improve the 
accuracy at the interface; (iii) no kind of cohesion force is required for eliminating particle 
penetration between heterogeneous phases at the interface; (iv) the algorithm is relatively 
simple to implement and reduce computational effort.  

This model has recently been tested on air-water rapidly varied flow with impact showing 
reliable accuracy, especially if compared with its relative simplicity (Manenti 2018). Section 
3.1 shows the results for another application to the rise of an air bubble in still water. 

 

2.2 WCSPH with limiting viscosity 
The numerical investigation of complex 3D problems of practical interest frequently 

requires the discretization of large domains with a high resolution. This lead to an exponential 
growth of required computational time and involved resources, especially in the case of SPH 
method, which could be much more expensive than traditional grid-based methods. A help 
comes from the recent increase of the parallel computational power of the hardware, 
especially in the branch of Graphics Processing Units (GPUs). Anyway, GPUs based 
computations require that the models are implemented using High Performance Computing 
(HPC) techniques to take advantage of the power of current hardware (Domínguez et al. 
2013).  

As explained in the following, a simple strategy may be applied in those cases involving 
viscous non-Newtonian fluid to carry out code optimization for reducing significantly the 
computational time while preserving suitable degree of accuracy. 

The FOSS code SPHERA v.9.0.0 (Amicarelli et al. subm.) implements a WCSPH 
formulation of mixture model for the analysis of dense granular flows consistent with the 
KTGF (Amicarelli et al. 2017).  This model has been successfully applied to the analysis of 
rapid multiphase flow involving the interaction of fast landslide with stored water (Manenti et 

705



S. Manenti 

 5

al. 2018). Post-failure landslide dynamics is simulated by assuming a non-Newtonian 
rheological model for the slide mass that mimics pseudo-plastic behavior. Time step reduction 
occurs when shear rate approaches zero and the apparent viscosity approaches higher values. 
In order to reduce computational time a numerical parameter is introduced which is referred 
to as limiting viscosity 0. Following the experimental behavior exhibited by high polymer 
solutions, the transition from frictional regime (i.e. solid particle in motion) to the elastic-
plastic regime (i.e. solid particle at rest) occurs with an almost constant value of the apparent 
viscosity which is set equal to 0. This allows keep control of the growth of viscosity at very 
low shear rate, thus reducing computational time when the stability condition for the explicit 
integration scheme is dominated by viscous criterion. 

This approach has been successfully tested on a laboratory experiment simulating, along a 
representative transversal section, the 2D run-out of the Vajont landslide and its interaction 
with the water stored in the artificial basin. The results showed that, with proper choice of the 
value assigned to 0, the model allowed obtaining the desired degree of accuracy in predicting 
maximum wave run-up along with a significant reduction of the computational time. 

An ongoing research is devoted to the application of SPHERA v.9.0.0 to the simulation of 
the post-failure dynamics of rainfall-induced shallow landslides that represents one of the 
most common natural hazards in some areas of the world (Bordoni et al. 20015). These kind 
of landslides are triggered by intense rainfall events inducing water infiltration at slopes that 
increases the volumetric water content and pore water pressure that worsen the slope stability. 
Therefore, reliable assessment of landslide susceptibility requires proper definition of the 
rainfall characteristics considering recent climate trends affecting rainfall and intense storm 
events (Barbero et al. 2014). 

SPHERA v.9.0.0 is particularly suitable for the analysis of the above-mentioned kind of 
shallow landslides that are classified as complex landslides because their run-out starts as 
shallow rotational-translational failure then it changes into earth flows owing to the large 
water content and behaves like dense granular flow (Zizioli et al. 2013).  

The early results of these simulation are shown and discussed in section 3.2. 

3 RESULTS ANALYSIS 
This section illustrates some applications of the two WCSPH models described in sections 

2.1 and 2.2. 
Section 3.1 shows the application of the standard SPH model for the analysis of multiphase 

flow involving two fluids with high-density ratio, as the case of a circular bubble rising in 
water at rest. 

Section 3.2 is devoted to the application of the FOSS code SPHERA v.9.0.0 (Amicarelli et 
al. subm.) to the analysis of multiphase flow involving a viscous non-Newtonian fluid, as the 
case of post-failure dynamics of a rainfall induced shallow landslide. 

3.1 Bubble rise in still water 
The WCSPH model described in section 2.1 has been applied to the analysis of the 

problem investigated in Colagrossi & Landrini (2003). The free rise of a circular air bubble 
with radius r inside a still water column with depth H is simulated.  

As said in the section 1, no additional term is included in the momentum balance equations 
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to account for surface tension effects. However, Colagrossi & Landrini (2003) and Hoover 
(1998) noticed that the discretized form of pressure gradient in the standard SPH momentum 
balance equation implies fictitious surface-tension effects. The adopted formulation of the 
momentum balance Eq. (11) maintains the same structure of standard SPH momentum 
balance equation because it is obtained through the same discretization procedure. 

Table 1: model parameters for test case of rising bubble in water at rest. Superscripts refer to w=water a=air. 

parameter value 
 0.025 m 
h 1.3  

water 45,488 part.ls 
air 2,512 part.ls 
H 10 m 
r 1 m 
 w 7.0 
 a 7.0 
 w 1000 kg/m3 
 a 1.2 kg/m3 
c w 50 m/s 
c a 55 m/s 
 0.4 
M 0.075 

 
Table 1 summarizes the model parameters adopted in the computation. After early trial 

simulations, the optimal inter-particle distance  = 0.025 m is adopted, resulting in 48,000 
total particles. This resolution represents a suitable compromise between required 
computational effort and results quality. The air sound speed c a has been properly reduced to 
a value close to the water sound speed c w in order to enhance bubble deformation. In Table 1 
 is the constant for periodic density smoothing, M is the constant of Monaghan artificial 
viscosity. 

Figure 1(a) displays the initial state of the half system that has been simulated to reduce the 
computational effort. The left-hand panel shows the velocity modulus, which is expressed in 
non-dimensional form with respect to the reference velocity (g r) 0.5. The mid panel displays 
the hydrostatic pressure distribution in the water column and the atmospheric (relative) 
pressure inside the bubble, both of which are expressed in non-dimensional form with respect 
to the pressure at the bottom of the tank (w g H). The right panel shows the density field. 
Note that the air particles are surrounded by a black circle in the left-hand and in the middle 
panels in order to distinguish them from the water particles. For this reason, air particles 
appear darker in the plots showing velocity magnitude and pressure distribution.  

As the computation starts, the air bubble is suddenly compressed because of the strong 
pressure difference with respect to the surrounding water.  Figure 1(b) shows the system at the 
instant at t = 0.70 s. The bubble assumes a lenticular shape because it is pushed upward by the 
water jet that rises from the bottom in the direction of the bubble vertical axis because of the 
pressure difference with respect to the air. The left panel shows the above-mentioned water jet 
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with a vertical velocity of about 4 m/s.  

(a) 

(b) 

Figure 1: bubble rise at (a) t = 0.0s and (b) t = 0.70s. From the left-hand side: velocity, pressure and density 
fields. Cartesian axes in meters. 

As seen in the middle panel, the water pressure is higher around the air bubble, causing it 
to become deformed during the upward motion. Both the velocity and pressure fields are quite 
smooth and vary in accordance with physical expectations. 

The right-hand panel shows that the bubble contour remains quite regular, without 
penetration of water particles, thus highlighting fictitious surface tension effects even if the 
momentum balance equations does not include any term simulating physical surface tension. 
Owing to the hydrodynamic thrust of the upward water jet, the bubble vertical position 
increases, the bubble mean thickness decreases while the transversal length grows with 
respect to the early situation in Figure 1(b).  

The bubble contour at time t = 1.40 s is shown in Figure 2 (red dots), and it is compared 
with the numerical result in the paper by Colagrossi & Landrini (2003), denoted by blue 
diamonds. It can be seen that the simulated bubble is characterized by a reduced vertical 
velocity and that its shape is rather different because the lower volute that subsequently 
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detaches from the upper main body does not form.  

 
Figure 2: bubble position at t = 1.40 s. Comparison between present SPH model (red dots) and the model by 

Colagrossi & Landrini (2003). 

Concerning the reduced rising speed of the air bubble, this may be related partly to the 
high dissipation effects induced by the artificial viscosity when both phases are compressed 
one to each other, as discussed in Manenti (2018).  

Regarding the differences of the shape with respect to the reference results in Colagrossi & 
Landrini (2003), may be these are related to the fact that the present model does not 
implement any term for simulating physical surface tension effects in the momentum balance 
equation. Anyway, the adopted discretized form of the pressure gradient term implies 
fictitious surface-tension effects (Hoover, 1998) and this is partly confirmed by the inter-
phase surface sharpness without heterogeneous particles penetration. 

A similar problem was investigated in  Sussman et al. (1994) considering a rising air 
bubble in a liquid with density ratio 1000/1, medium range Reynolds number and non-
negligible surface tension effects (i.e. low Bond number). Qualitative comparison of the 
bubble shape shows that the results obtained with the present model are consistent with those 
of Sussman et al. (1994) showing that no fragmentation of the air bubble occurs even at 
subsequent instants. Anyway, a rigorous comparison is rather difficult owing to the following 
reasons. The governing equations for slightly compressible fluids are assumed in this model, 
while incompressible Navier-Stokes equations have been adopted in Sussman et al. (1994). 
The physical viscosity is neglected in the present model, and therefore it seems difficult to 
evaluate the Reynolds number based on the artificial viscosity contribution. The fictitious 
surface tension can not be easily quantified to estimate an equivalent physical surface tension 
for evaluating Bond number. 

3.2 Rainfall induced shallow landslide 
The FOSS code SPHERA v.9.0.0 (Amicarelli et al. subm.) illustrated in section 2.2 has 
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been tested for the post-failure analysis of a rainfall induced shallow landslide. This landslide 
occurred during an intense rainfall event on April 2009 in a hilly area of the Oltrepò Pavese 
named Recoaro valley ‒ Northern Italy. Even if SPHERA has 3D formulation, a 2D approach 
has been conveniently adopted in this case because of the landslide peculiarity to be relatively 
narrow so as the flow may be assumed two-dimensional.  

 
Figure 3: 2D SPH simulation of a rainfall induced shallow landslide. SPHERA v.9.0.0 (RSE SpA). 

One of the first contribution to SPH modelling for predicting flow-like landslides including 
hydro-mechanical coupling was given by Pastor et al. (2009). They proposed a 2D depth-
integrated, coupled, SPH model by assuming that the vertical flow structure would be the 
same as a uniform steady-state flow according to the so-called model of the infinite landslide 
having constant depth and moving at constant velocity on a constant slope. This assumption is 
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suitable for landslides whose average depths are small in comparison to their length and 
width. 

In the present case, where initial landslide mean depth is of the same order of its length and 
width, significant variations of the vertical thickness and of the vertical velocity profile may 
occur along the landslide body in the flow direction. The proposed modelling approaches 
removes the hypothesis made by Pastor et al. (2009), thus allowing a numerical 
implementation of the problem that is closer to the actual behavior. The simulated falling time 
seems quite reasonable for the considered event. Comparison of the final landslide profile 
with in situ measurements shows suitable accuracy and will be illustrated in a future paper. 

4 CONCLUSIONS 
- A novel WCSPH based on standard formulation has been illustrated for the analysis 

of multiphase flows with large density ratio. By replacing the density (which is 
discontinuous at the interface) with specific volume, the numerical instability at the 
interface is prevented. Furthermore, no fictitious force should be added in the 
pressure gradient term inside the momentum balance equation to prevent interphase 
particle penetration and maintain the interface sharply defined. Kernel truncation is 
avoided at interface, thus reducing deterioration of computational accuracy. 

- The FOSS code SPHERA v.9.0.0 (RSE SpA) was tested on the simulation of a 
rainfall induced shallow landslide occurred in Italy in 2009. The model, having full 
3D formulation, allows removing the need for a depth integrated formulation. Fast 
computation is assured by introducing a numerical parameter, the limiting viscosity, 
for run optimization. 
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ABSTRACT

The Smoothed Particle Hydrodynamics method (SPH) is a meshfree Lagrangian simulation method
widely applied for fluid simulations due to the advantages presented by this method for solving

problems with free and deformable surfaces. 

In many scientific and engineering applications, surface tension forces play an important or even

dominating role in the dynamics of the system. For instance, the breakage (instability) of a liquid jet
or  film  is  strongly  affected  by  the  strength  of  the  surface  tension  at  the  liquid-air  interface.

Simulating deforming phase interfaces with strong topological changes is still today a challenging
task. As a promising numerical method, here we use SPH to predict the interface instability at a

water-air interface.
With  SPH,  the  main  challenge  in  modelling  surface  tension  at  a  free-surface  is  the  accurate

description of the interface (normal direction and curvature). When only the liquid phase is modelled
(to  decrease  the  computational  cost),  the  standard  SPH approximations  to  calculate  the  normal

direction and curvature of the interface suffer from a lacking “full support”, i.e.  the omitted and
therefore missing gas particles. Various models for such free surface surface tension corrections were

presented, see e.g. among others Sirotkin et al., Ordoubadi et al. or Ehigiamusoe et al. Many of these
models follow the classical Continuum Surface Force (CSF) approach (Morris, Adami et al.) and

incorporate different corrections/treatments at the surface. 

The objective of our ongoing study is to investigate the influence of different interface descriptions.

We  compare  different  free  surface  particle  detection  schemes,  normal  vector  calculations  and
curvature estimations for the quality of the resulting surface-tension effect. In this work, we focus on

two-dimensional problems and consider a static drop and oscillating drops as test cases.

KEYWORDS

Smoothed Particle Hydrodynamics, Free surface flow, Surface tension, Interface description
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I. Introduction

Surface tension plays  an important  role  in many engineering and industrial  applications such as

liquid  atomization.  Usually,  these  phenomena  occur  on  small  length  scales,  therefore  the
development  of  a  proper  surface  tension  model  can  help  greatly  in  physically  developing  these

applications. However, simulating deforming phase interfaces with strong topological changes is still
today a challenging task. 

Among  existing  methods  for  fluid  simulations,  the  Smoothed  Particle  Hydrodynamics  (SPH)
presents  the  advantage  of  simulating  free  surfaces  with  high  deformations.  SPH  is  a  meshfree

Lagrangian  numerical  method that  was  first  introduced independently  in  1977 by  Lucy  [1] and
Gingold and Monaghan  [2] to solve astrophysical problems. The general idea behind SPH lies in

representing the fluid by a series of discretization points/particles each representing a mass of fluid.
The continuity of the fluid and its properties is recovered by the spatial convolution of the physical

properties of each particle by a kernel or smoothing function. 
Three general approaches for modeling surface tension with SPH can be found in the literature. The

first one is the Inter Particle Force (IPF) where an attractive/repulsive force is applied to all the SPH
particles  [3],  [4].  The implementation of the IPF is simple. However, the main drawback of this

method is that the surface tension force needs to be calibrated with experimental results. The second
one  is  the Continuum Surface  Stress  (CSS),  where the surface tension  force is  formulated as  a

gradient of the stress tensor which is calculated from the surface normal with no need to calculate the
curvature [5]. The third one is the Continuum Surface Force (CSF), initially proposed by Brackbill

[6], where the surface tension force is converted to a force per unit volume and is applied only on
particles close to the interface.  The main challenge of this method is  to accurately calculate the

normal vectors and the curvature at the interface. In this work we are focusing on the CSF method
because it is a general approach that uses the physical properties of the fluid and does not need to be

tuned for each simulation case. Many of the CSF models found in the literature are only valid for
fluid-fluid systems [7], [8]. However, for free surfaces, the standard SPH approximations to calculate

the normal  vector  and curvature of  the interface suffer  from the lack of  “full  support”. ,  i.e.  the
omitted  and  therefore  missing  gas  particles.  To  overcome  this  problem  many  corrections  were

proposed in the literature, see e.g. amongst others [9]–[12]. 
In their model, Sirotkin et al. [9] used the correction matrix proposed by Bonet et al. [13] to adjust
the kernel gradient for the calculation of the density, pressure force, normal vectos and curvature.

This kernel gradient modification allows to obtain accurate normal vectors and curvature estimations,
however a 1.5 times bigger smoothing length is required for more reliable results. Ordoubadi et al.

[10] added imaginary particles near the free surface with a mirroring technique in order to accurately
simulate  the  surface  tension  force.  This  technique  seems  complex  to  implement  and  not

straightforward, but according to the examples shown it significantly improves the normal vectors
and gives more accurate curvatures. However, in all their examples a high fluid viscosity was used

(100 times the viscosity of water).  Ehigiamusoe  et al. [11] used a correction factor for only the
curvature calculation without any additional correction for the normal vectors. This method may give

stable and accurate results for simple examples, but in the cases with sharp corners and high surface
deformation, another correction technique needs to be used for the normal vector calculation and

curvature estimation. Russel  et al. [12] adapted the model proposed by Morris  [7] for free surface
simulations by proposing a correction factor for the normal vectors and curvatures.  However, once

again this correction factor is valid only for simple cases but not for complex geometries with sharp
edges or sudden changes in the curvature. It is worth mentioning that in most of the presented models

the numerical validation examples were conducted at relatively high fluid viscosities. 
The  objective  of  our  ongoing  study  is  to  investigate  the  influence  of  the  interface  properties

estimation in the presented models on the surface tension force. We compare different free surface
particle detection schemes, normal vector calculations and curvature estimations for the quality of the

resulting surface-tension effect. In this work, we focus on two-dimensional problems and consider a
static drop with Laplace law and oscillating drops as representative test cases.

II. Basics of SPH method

In the Lagrangian description, the Navier-Stokes set of equations for viscous flow can be expressed
as

2

715



dρ
dt

=−ρ∇ . v (1)

d v

dt
=g+ 1

ρ [−∇ P+F
(ν)+F

(s)] (2)

where ρ, v, g, P, F(ν), F(s) are density, velocity, body force, pressure, viscous force and surface tension

force, respectively.
The idea of SPH is the discretization of the domain with a set of particles and the use of weighted

integrals to approximate the field functions. The value of any function f (e.g. density or velocity) at a
position r can be estimated according to the following summation form

f (r⃗ )≈∑
j

N mj

ρ j

f ( r⃗ j) W (|r⃗ i−r⃗ j|,h ), (3)

where mj and rj are the mass and position of particle j,  respectively. W represents the weighting
kernel  function  with  h  being  the  smoothing  length  that  determines  the  interpolation  domain.  A

suitable kernel function should be normalized, positive and radially symmetric. It should converge to
the Dirac delta function when h tends to 0 and it should have a compact support domain [14]. Here

we  use  the  Spike  3  kernel  function  (with  a  compact  support  of  3h)  because  it  minimizes  the
instability due to compression [9].  

Using Eq. (3), various SPH formulations can be obtained depending on the assumptions and purpose
of the simulation [15]. In our study, we used the formulation proposed by Adami [8].

According to the CSF approach, the surface tension force is applied in the normal direction only on
particles near the free surface to minimize the surface energy. It can be expressed as follows [7]

f
(s)=δsσ k n̂ (4)

where δs is the surface delta function used to smooth the surface tension force over a transition band,

σ is the surface tension coefficient, k the curvature and n̂ the normalized normal vector. 

The accurate representation of the surface tension force at the interface depends on the normal vector

calculation and curvature estimation. 

III. Surface topology characterization

III.1. Surface particle detection

For multi-phase simulations a color function assigned to each particle is used to track the interface.
The smoothing of the color function is defined as 

ci=∑
j

c j

0
V jW ij , (5)

where cj
0 is the color function. For single-phase simulations the color function of all fluid particles is

equal to 1. 
For Eq. (5) the value of ci is theoretically equal to 1 for particles in the bulk with a full  kernel

support, while close to the free surface the number decreases. A threshold value of 0.9 can be defined
for detecting surface particles. This method (Kernel summation) is very simple to implement and

does not  have a  large computational  cost.  It  presents  the advantage of  detecting a  surface band
instead of only surface particles by adjusting the threshold value. However, in some simulations, low

density regions may appear inside the fluid. In these regions, spurious free surface particles can be
detected due to the lack of neighboring particles, inducing non physical surface tension forces.

To avoid this problem, more accurate surface tracking algorithms were developed. Barecasco et al.
[16] presented a simple method for detecting free-surface particles based on the idea of cover vectors.

For each particle i, the cover vector bi is defined as

bi=∑
j

r⃗ i−r⃗ j

|⃗r i−r⃗ j|
(6)

For detecting surface particles, a cone of angle θi (threshold angle) is considered around each bi. If
one of the neighboring particles j is inside the cone, then particle i is not considered as a surface

particle, otherwise particle i belongs to the free surface. The value of θi  plays an important role in
boundary particle detection, it is usually chosen equal to π/3. 
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Another accurate surface particle detection algorithm  [17] is to consider a disk, having twice the

length of the supporting domain for good accuracy, around each particle i. This circular area is then
split into sectors (in our case 8 sectors are considered), and each sector is checked for neighboring

fluid particles. If at least one sector does not have any particle, than particle i is considered as surface
particle.

Figure  1 shows  a  comparison  between  the  three  described  methods  for  a  classical  dam  break
simulation. Surface particles can be detected by these methods even when the surface undergoes

major  deformations.  As explained earlier,  with the first  method,  cavities  inside the fluid can be
wrongly detected as free-surface, see Figure 1 a) (right side).

Because the two last methods are more time-consuming compared to the simple summation (Figure
2), it is interesting to combine these two techniques  [10]. The first step consists of detecting the

surface particles by the Kernel summation technique and then "Cover vector" (b) or "Disk sectors"
(c) can be performed only on these surface particles. 

III.2. Normal vectors 

Many of the CSF surface tension models are based on the model presented by Morris [7]. The normal

vectors can be estimated as the gradient of the color function

n⃗i=∇⃗ci (7)

with ∇⃗ci=∑
j

V j (c j−ci )∇⃗W ij      "NV-Color gradient" (8)

where ci is calculated according to Eq. (3).

When modeling only one phase, the number of interpolation points decreases near the free surface.
One of the techniques that can be used to overcome this problem is the correction matrix proposed by

Bonet et al. [13] to adjust the kernel gradient. Sirotkin et al. [9] used this correction matrix for the
density, pressure force, normal vector and curvature calculation. For each particle i the matrix L i  is

defined as

4

  

Figure 1: Surface particle detection (red particles represent surface particles): a) Kernel

summation, b) Cover vector and c) Disk sectors
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Li=∑
j

V j(∇⃗W ij)⊗r⃗ij
(9)

∇⃗
~
W ij=Li

−1
∇⃗W ij (10)

With this new correction for the kernel gradient, the normal vector for each particle i becomes

∇⃗ci=∑
j

V j (c j−ci )∇⃗
~
W ij      "NV-Color gradient corrected" (11)

Based on  Eq. (7), Russel et al. [12] proposed the following normal vector calculation

n⃗i=∑
j

V j(
1

ci

+ 1

c j

)∇⃗W ij         "NV-Russel et al.".
(12)

Ordoubadi  et  al. [10] proposed  another  method  that  consists  of  adding  imaginary  particles  by

mirroring the particles in the transition band. These particles have the same mass as particle i with a
color function equal to zero. If particle i is a surface particle, then for each particle j located in the

support  domain  of  i  (but  not  a  surface  particle),  a  particle  j'  is  created  by  mirroring  particle  j
according to i. Otherwise, if particle i is not a surface particle, then for each particle j in the support

domain of i and located on the free surface, a particle j' is created by mirroring i according to j.
Another method to calculate the normal vector is to use the cover vectors [16]. In fact, the direction

of the cover vector can be used as an estimation of the direction of the normal vector of the surface.
In SPH, every field variable is evaluated by a smoothing function, thus it seems preferable to apply

the surface tension force over a few smoothing lengths (transition band) and not only on one layer of
surface particles.  Regardless of the interface tracking techniques presented in the previous section,

this transition band can be defined by the normal vectors. In fact, the direction and magnitude of the
normal  vector  are  only  accurate  near  the  interface.  In  the  bulk,  the  normal  vectors  have  small

magnitude with erroneous  directions.  This  may cause a  problem when calculating  the  curvature
because in this case, the normalized normal vectors are used. To address this issue, only well defined

normal vectors are used in the surface tension calculation by applying the following filtering

n⃗i=
n⃗i

0

(13)

where the value of ε is typically 0.01/dx and dx is the initial particle spacing.  

With this condition, a transition band consisting of more than one layer of particles is automatically

detected  near  the  interface.  Thus,  the  surface  tension  force  is  only  applied  on  these  particles.
However, as explained earlier, with this technique voids and cavities inside the fluid will generate

particles inside the transition band which lead to a nonphysical surface tension force. In this case, it
seems important to detect surface particles using an appropriate technique. The transition band will

consist of the particles that are in the support domain of the surface particles and have a well defined
normal vector.

Figure 3 presents a comparison between the different methods presented above. For this comparison,
a disk of radius equal to 5 mm is considered. The particle spacing is equal to 0.3 mm and a total

5

, if |n
i
|>εε

, if |n
i
|≤εε

                                           

Figure 3: Normal vectors: a) NV- Color gradient, b) NV- Color gradient corrected,

c) NV- Russel et al., d) NV- Ordoubadi et al. and e) NV- Cover vector

a) b) c) d) e)

718



number of 865 particles is considered. The normal vector calculated from the method presented by

Russel (c) or from the cover vector (e) are only valid for the first layer of particles. 

III.3. Curvature

The curvature at each particle i is calculated as follows

k i=∇ . n̂i (14)

with n̂i=
n⃗i

|ni|
(15)

Only  the  reliable  normal  vectors  should  be  taken  into  consideration  for  the  calculation  of  the
curvature.  This  means that  the wrong direction for  the normal  vectors  create  a  problem also in

calculating the curvature. Moreover, the calculation of the curvature is sensitive because it is based
on two consecutive derivations of the kernel function. 

Here, we are going to compare different methods found in the literature to calculate the curvature
(Figure  4). For this comparison, the same disk of radius equal to 5 mm was considered with 865

particles  For  the  first  test,  and  in  order  to  eliminate  the  effect  of  the  normal  vector  directions,
prescribed normal vectors are used. We impose the normal vector of particle i to be exactly 

n⃗
i
=r⃗

i
−( r⃗)

center (16)

Morris [7] added a normalization factor for the curvature calculation, thus the curvature is obtained
by

k i=
∑

j

V j(n̂ j−n̂i ).∇W ij

∑
j

V j W ij

(17)

According to Sirotkin et al.  [8], with the correction matrix used for calculating the gradient of the

kernel function the normalization factor is not required anymore, and the curvature is then calculated
as follows

k i=∑
j

V j (n̂j− n̂i).∇
~
W ij (18)

Adami  et  al.  [8] proposed  another  divergence  approximation  for  calculating  the  curvature  with
lacking full support by

k i=d

∑
j

V j(n̂ j−n̂i ).∇W ij

∑
j

V j|rij|
dW ij

dr

(19)
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Figure 4: Different methods for curvature estimation
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According to the results presented in Figure 4, it seems that the three methods give acceptable results

for the curvature estimation. We are more interested in the region close to the free surface (r/R>ε0.95)
where the surface delta function is maximum. In Adami and Morris models, the curvature tends to

decrease slightly near the free surface because of the lack of the full support. On the other hand, the
correction matrix used by Sirotkin compensates the missing particles near the free surface and hence

it  gives  more  accurate  results.  Note  that  Ordoubadi  et  al. [10] used  the  imaginary  particles  to
calculate the curvature based on Eq. (17).

IV. Application of surface tension force

When calculating the surface tension force, we should only consider the surface particles and smooth
this  force  by  using  an  appropriate  surface  delta  function  or  a  kernel  function.  For  example,

Ehigiamusoe  et al. [11] set the surface delta function equal to 1/dx at the interface. For the other
methods, the smoothing of the force can be done using the norm of the normal vector, subsequently

the delta function can be approximated as

δ
s
=λ|n| (20)

where λ is a constant calibration parameter.

The surface tension force should be maximum at the surface or at the tip of sharp corners and it must

decrease  in  magnitude  gradually  while  moving  away  from the  free  surface  to  the  interior.  The
comparison between different surface delta functions is presented in Figure 5. In order to compare

them, the normal vectors are normalized to the maximum value depending on each method. The
smoothing over the transition band with and without correction are completely different, knowing

that the direction of the normal vectors are almost the same. 

In  order  to  obtain  a  proper  surface  tension  force,  many  combinations  of  the  different  methods

presented above for surface characterization were tested. For the surface particle detection, the kernel
summation gives good results and it can be combined with the cover vector method for complex

geometries. For the normal vector, all the presented methods give acceptable directions, at least for
the first layer of surface particle. The crucial differences lay in the definition of the transition band

for the curvature calculation and the choice of the smoothing surface delta function. For the curvature
calculation, the three methods give good results. If the correction matrix is already calculated, Eq.

(18) will be used to calculate the curvature because it is the most accurate. Otherwise, Eq. (17) could
be used to minimize the computational cost. 

The calculation of the surface properties and the accurate representation of the surface tension plays
an important role in the stability of the simulation. However, other parameters should be considered,

notably  the  density  evaluation  method  and  the  momentum  equation  discretization.  Many
combinations can be tested, but we decided to work with the formulation proposed by Adami et al.

[8] for the momentum equation and the density integration technique for the density evaluation.
To sum up, Table 1 presents the most promising methods/combinations that we decided to explore

further in our ongoing study.
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Figure 5: Comparison between the different surface delta functions
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ID Normal vector Surface delta function + Smoothing

Sirotkin et al. Cover vector Sirotkin et al. Morris Kernel  

A X X

B X no smoothing

C X no smoothing

Table 1: Methods/Combinations for surface tension force in SPH

In the next section we present both static and dynamic numerical test cases to validate the models.

V. Numerical examples
V.1. Square droplet

One common test case is the transformation of a square droplet into a circular droplet under the effect
of surface tension .  For this example, an initial square of L=l=5 mm is placed in the center of a

square domain (10*L). The particle spacing is equal to 0.1 mm and a total number of 2500 particles
is considered. The physical properties of water were considered except that a higher viscosity (10

times the viscosity of water) was needed for a stable simulation. For all the test cases a smoothing
length of h=3dx is used. Figure 6 presents the initial and final stable shape after t=0.2 s of the droplet.

By comparing the final results, we can deduce that method C does not give a stable circular droplet
even after t>ε0.2s. 

The pressure profile inside the droplet at t=0.2 s is compared to the Laplace pressure drop given by

Eq. (21) (Figure  7). The pressure profile is almost constant inside the droplet and is equal to the

theoretical  pressure with some fluctuations near the free surface.  The calibration coefficient  λ is

found equal  to  3  for  method A.  An overall  coefficient  of  around 6.5  is  used  for  method B to

compensate in part the drop in the curvature estimated values due to the use of only surface particles.

8

             

Figure 6: Particle positions at t=0 and t=0.2 s : a) Method A, b) Method B, and c) Method C
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In methods A and B, this coefficient is independent on the physical size or the initial spacing of the

particles.

P=σ
R

=σ√π
L

(21)

V.2. Droplet oscillation
An other dynamic test case is the droplet oscillation under the effect of surface tension. Instead of

starting from an elliptic droplet, an initial velocity field was prescribed as follows:

ux=u0

x

rO

(1−
y

2

r0 r
)∗exp(

−r

r 0

)
(22)

uy=−u0

y

rO

(1−
x

2

r 0r
)∗exp(

−r

r 0

) (23)

The circular droplet of radius equal to 1.7 mm is placed at the center of the computational square

domain.  The total  number of particles is  equal  to 912 with a particle spacing equal  to 0.1 mm.
Physical properties of water were considered. However, a dynamic viscosity of 0.003 Kg.m-1.s-1  is

considered. In this example u0 and r0 were taken equal to 2 m/s and 0.05 m, respectively. Figure 8
shows the position of the particles at different times for the three methods listed in Table 1. It can be

deduced that the three methods give relatively stable results. However, by comparing the particles
distribution, we can conclude that the first two methods based on the correction matrix are more

accurate. 
The distance between the top particle along the y axis and the center of the droplet is plotted over

time in Figure 9. According to method A, the SPH period of oscillation is TSPH=21.6 ms. We found
good agreement by comparing the SPH period with the theoretical period of oscillations given by:

T theo=2π√ R
3ρ

s(s
2−1)σ

=21.2ms ,
(24)

where R is the droplet radius and s=2 if the shape of the drop remains close to an ellipse.

9

Figure 7: Pressure profile of the droplet at t=0.2 s
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10

Figure 9: Evolution of the droplet size along the y axis

Figure 8: Evolution of the particles position at different time intervals: a) Method A,  b) Method
B and c) Method C
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VI. Conclusions
In this work, we compare methods found in the literature for detecting surface particles, calculating
normal vectors and curvature in order to estimate the proper surface tension force for free surface

simulations.  Other  interesting  methods  can  be  explored  in  the  future,  like  for  example  the
reconstruction of the interface to calculate the normal vector and curvature [18]. 

Basically, once the normal vectors and curvature are correctly obtained the surface tension forces
should be easily calculated. However, the choice of the transition band and the surface delta function

plays an important role in defining the surface tension force. By comparing the three tested methods,
we can conclude that the classical method presented by Sirotkin et al. [9] is the most stable one. The

use of a transition band in method A is necessary for complex geometries. It ensures that a new
surface particle will consider a surface tension force even though the particle is not detected as a

surface particle but has at least one surface particle in its neighborhood. Another advantage of this
method is the accuracy in calculating the curvature of the free surface.  

Moreover, the stability of the simulation depends on many other factors like the pressure force, the
viscosity force and the density calculation. These elements have a huge impact on the stability of the

simulation. More importantly, the calculation of the density for free surface simulation needs to be
adjusted near the free surface. 

The objective of our future work is to improve the existing models to simulate low viscosity fluids
such as water. 
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Abstract. A high-pressure shock wave was produced during a process near-field underwater 
explosion, which led to serious damage into structures. A Smooth Particle Hydrodynamic 
(SPH) method is suitable for solving problems with large deformations. Hence, it is used to 
investigate pressure characteristics and dynamic response of hull structures subjected to near-
field underwater explosion. Effect of free surface was taken into consideration. Propagation of 
shock wave in multi medium and its dynamic response to hull structures were analyzed. 
 
1 INTRODUCTION 

The probability of ship hull structure subjected to near-field underwater explosion 
increased with the wide application of precision guided weapons [1]. Therefore, in order to 
enhance ship's survivability, it is of great significance to study the damage mechanism of hull 
structures under near-field explosion. Many researchers both at home and abroad have studied 
underwater explosion and its damage into structures theoretically, experimentally and 
numerically [1-16]. With the rapid development of numerical technology, numerical simulation 
has become one of the main means to investigate underwater explosion. The traditional mesh 
methods have disadvantages of mesh distortion in the simulation of underwater explosion. 
However, SPH method with Lagrangian and particle properties is suitable for solving such 
problems as material motion tracking and strong discontinuous capture. Swegle et al. [10] 
discussed the related problems of stability in solving underwater explosion by SPH method. 
Liu et al. [11-13] demonstrated the feasibility of SPH method in solving underwater explosion 
problems through a large number of numerical tests. However, rare researches have reported 
the application of SPH method to near-field underwater explosion and its damage to hull 
structures, especially considering coupling effects of free-surface and damaged structures. 

In this paper, a SPH model of hull structure subjected to near-field underwater explosion is 
first established. Then shock-wave propagation near hull structures and free surface and its 
damage into structures were studied. On this basis, effect of charge material on damage to 
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structures was discussed. The obtained results provide reference to dynamic response of ship 
structures subjected to underwater explosion and design of protective structures. 

2 THEORETICAL AND NUMERICAL MODEL 

2.1 Underwater explosion 
Underwater explosion load [17] is composed by shock wave and bubble respectively 

generated in the early and later stages of explosion and bubble in the later stage, which is an 
important basis for prediction of structural dynamic response and anti-explosion design. The 
shock wave with high pressure and the bubble with long cycle can cause local and overall 
damage into structures, respectively. The shock wave which is the main impact load 
instantaneously results in the local damage for near-field underwater explosion while the 
bubble pulsation should be considered for mid-and far-field explosion [18]. This paper 
investigated the dynamic response of hull structures subjected to near-field explosion; hence, 
the shock-wave load is mainly analysed and studied. 

2.2 Governing equation for underwater explosion 
Large deformation is caused by near-field underwater explosion in a very short time, which 

may result in mesh distortion for the tradition mesh method. Thanks to Lagrangian and 
particle properties SPH method has natural advantages of dealing with problems of 
underwater explosion. The distortion of physical quantities is caused when the standard SPH 
method is used to solve problems with a large density ratio. Therefore, a modified SPH is 
used in this paper, given by [11] 
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where   is density; v  is velocity; a  and b  are directions along axes; p is pressure; e  is 
energy; t  is time; x  is coordinates; ijW  is smoothed function of a pair of particles j  and i ; 

ij  is artificial viscosity [11];  is stress composed of isotropic pressure and viscous shear 
stress. 
 (1) Stress of explosive products 

The viscosity of explosive products and water is too small to be ignored. The stress can be 
obtained by the solution of pressure. Jones-Wilkins-Lee and Mie-Gruneisen equation of states 
(EoS) are used for these two media, expressed as [19] 

1 2
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, (4) 

where p  is pressure;   is the ratio of densities between explosive products and initial 
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explosive; 0  is initial density of initial explosive; 0e  is initial energy; A , B , 1R  and 2R  are 
constants. 
(2) Stress of water 

When the water is in expansion state, the EoS is given by [20] 
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while when it is in compressive state, the EoS is expressed as [20] 

( )2
0 0 0P ρ C μ γ aμ e= + + , (6) 

where C  is sound velocity; 0ρ is the initial density of water; 1μ η= − , η  is the ratio of density 
before and after the explosion; 0γ is Gruneisen coefficient ; 1S , 2S  and 3S  are the fitting 
coefficients. 
(3) Stress of steel  

    Mie-Gruneisen EoS is used [21]  

H
1( , ) (1 ( 1)) ( )
2

p e p e   = −  − +  , (7) 

where， is Gruneisen coefficient， Hp  is the pressure in the Hugoniot curve [11]. 
A shearing force in a metal liner with high shear strength is considered and Johnson-cook 

damage model is used [22]. 

3 NUMERICAL SIMULATION 
A SPH model of hull structures near free surface subjected to near-field underwater 

explosion is established. Propagation of shock wave and its damage into structures are 
analysed. 

3.1 NUMERICAL MODEL 
Numerical model of ship structures attacked by a charge was simplified in Fig. 1. TNT and 

steel were used as materials of the charge and the structure, respectively. The surrounding 
water has a length of 1l  and a width of 2l . The thickness of the steel is 1d  and the length of the 
charge is 2d . The detailed geometrical parameters are shown in Tab. 1.  
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Figure 1: Numerical model 

Table 1 Dimensions of the model 
1l  2l  3l  4l  1d  2d  

5.0 2.0 1.65 0.25 0.01 0.10 
 

3.2 Results and discussion 
Damage process of the hull structure was illustrated in Fig. 2. A spherical shock wave 

(SW1) propagated in the water and peaked at about 2 GPa at t 40μs  in Fig. 2(a). When SW1 
arrived at the steel a reflected shock wave (RSW1) was generated due to higher impedance of 
steel than that of water. Besides, a shock wave was also produced in the steel at about 85μs . 
The shape of the explosive products has transformed from cubic to spherical in Fig. 2(b). At 
about 110 μs SW1 reached the free surface in Fig. 2(c), resulting in a reflected rarefaction 
wave (RRW1). Fig. 2(d) shows that the shape of RSW1 developed to a non-spherical one. 
With the propagation of RRW1, the pressure around the free surface was low. It was found 
that the propagation velocity of the shock wave in the steel was much higher than that in the 
water in Fig. 2(e). The explosive products expanded in the water in Fig. 2(f). The free surface 
moves with the effect of the shock wave, with “spike” produced in the free surface. At about 
205μs  the pressure diminished to about 855 MPa, with a plastic deformation of the steel. 

The spike increased with the effect of impact load. A hole was generated at the outer steel 
at about 305 μs . With the further effect of the high-pressure shock wave, the diameter of the 
hole increased. The surrounding water poured into and impacted the inner structure in Fig. 
2(g). Due to the energy consumption of the reinforced and the spike the damage in the 
upper structure was declined. 

Water

TNT

Steel

l1

l2

d1 l3

l4d2
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Figure 2: Pressure distribution in the process of underwater explosion; (a)-(f) correspond to moments at 40

μs , 85 μs , 110 μs , 140 μs , 165 μs , 205 μs , 305 μs and 480 μs . 

5 CONCLUSIONS 
The SPH method is used for the simulation of hull structures subjected to contact 

underwater explosion. Propagation of shock wave and its damage into structures were 
analysed. Conclusions were summarized as follows. Complex waves were produced in the 
process of structures subjected to underwater explosion. The superposition of these waves led 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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to complex pressure distribution. The phenomenon of "spike" was found and the truncation 
effect on the shock wave was caused by the free surface. It indicates that the shock wave has 
obvious irregular reflection effect near the free surface. Under the combined effect of 
transverse wall and "spike" which dispersed shock wave energy, the damage into the upper 
part of the side structure was weakened. The hole of the hull structure increased with the 
propagation of shock wave. After the water entered the hull, the inner structure was damaged.  
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Abstract. The impact of splashing water as a car moves through water-soil puddle or
flooded areas is significant to the automotive industry. Due to the multifold advantages
of simulating this problem, several numerical approaches exists to understand the fluid
dynamics and the fluid-structure interaction in such scenarios. The current research
focuses on obtaining fluid dynamics of the splashing phenomena as a first step towards
simulating such problems through a Computational Fluid Dynamic (CFD) approach by
adopting the Smoothed Particle Hydrodynamics (SPH). As a mesh-free Lagrangian-based
method, the SPH framework tracks particle behavior in the computational domain at each
instant of dynamic simulations. In contrast to traditional grid-based methods, SPH is well
suited for simulating fluid dynamic problems involving free-surfaces, multi-phase flows,
and involving objects with high degree of deformations.

The current study presents results and discusses the observations from simulating a car
Body-In-White (BIW) geometry with four tires that moves through a water puddle as a
normal car would. The SENSE solver developed at ESS Engineering Software Steyr adopts
the SPH framework and presents several formulations. The solvers are implemented on
Graphics Processing Units (GPU) to enable its usage for industrial applications. The
framework is developed to be easily parallelizable allowing multiple GPU simulations,
that are useful for industrial problems involving huge number of particles. In addition
to the ease of scaling, it also permits computations at higher particle resolutions when
needed to handle specific physical constraints of a problem. The simulations discussed
in the current study were performed using the Divergence-Free (DF-SPH) formulation
in SPH, and implemented on multiple-GPU devices, with a particle discretization that
allows to see the properties to the order of 5 mm.
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1 INTRODUCTION

On a rainy day, it is inevitable in most parts of the world, that one needs to drive
through stagnant water on roads, negotiate through ditches filled with rain water. Rain
water, splashes and hits the lower side of the chassis and spreads onto the engine bottom,
and other areas under engine hood. This can damage a vehicle’s engine, cause the brake
rotors to warp from rapid cooling when immersed in water, cause loss of power steering,
and short circuiting of electrical components in a vehicle. Further the presence of water
puddles at specified locations for long periods leads to the potential risk of rusting of
metal objects. The acidic nature of polluted water (rain water mixed with mud particles)
will damage the paint and eventually reduce the life of chassis. Automotive companies
are continuously trying to reduce the cost of production and improve the design aspects
to ensure longevity of products as well as customer satisfaction. The impact of splashing
water on a car body as it moves through a water-soil puddle region or flooded areas is
significant due to several reasons. These aspects have been of interest to the automotive
manufacturers and component suppliers for several years. They have primarily relied on
experimental investigations to improve design aspects of chassis, engine casing, and other
relevant components. Recent years have seen increased usage of numerical methods and
simulations to understand these phenomena. A preliminary investigation of fluid dynamics
and the fluid-structure interaction in such scenarios can be helpful in estimating the
impact at a reduced cost to the manufacturer. The current research focuses on establishing
fluid dynamics of the splashing phenomena as a first step towards simulating such complex
problems for automotive industry.

In the automotive industry, the adverse effects of puddle splashing are wide ranging and
it is important to estimate the impact at an early stage of the design process [1, 2]. While
negotiating a puddle with depth larger than the ground clearance of automobile, water is
sucked into the engine through air intake passages which are present in the lower part of
most modern cars (especially due to low ground clearance), which causes the engine to
seize. This is known as ‘hydrostatic lock’ – water enters an engine cylinder and during
the compression stroke will lock the engine piston in place. This in turn overloads the
connection rod, causing it to deform and cause significant engine damage. An example of
such a situation is shown in figure 1. In extreme case, this could even cause permanent and
irreversible damage to engine or engine parts. Manufacturers provide protective and safety
mechanisms to deal with such scenarios: the air intake passage is provided with water
trap, which drains the sucked water back out; electrical wiring connectors in the engine
bay are water-tight sealed with silicone gaskets, and so on. However, a detailed assessment
of these protective mechanisms help the designers to preempt potentia dangers and device
more advanced mechanisms to mitigate such adverse scenarios. A prior investigation of
water splash scenario using advanced numerical simulation tools help to identify probable
areas of a car body that are vulnerable for damage, if and where water enters, and to
estimate potential risks of object deformation from suspended solid particles splashing
with the water. There are several advantages of computational analysis of such scenarios,
as opposed to setting up realistic simulations in an experimental lab.

2
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Figure 1: Example of a flood situation that could cause static engine hydrolock [1].

With advancements in the field of Computational Fluid Dynamics (CFD), there are
numerous approaches to simulating the splash phenomena for automotive application.
The most traditional and established methods are Finite Volume based methods which
rely on a spatial numerical grid to descritize the fluid and solid domains.However, such
Eulerian-based methods are dependent on the quality of volumetric meshing, and are
disadvantageous from the perspective of computational resources as well as time efficiency
of simulation. Adding to this is the complexity of modeling scenarios such as splashing,
which involves moving boundaries and rotating objects that force very low time steps. An
alternative and promising approach is adopted in this study, which involves particle-based
meshless method known as Smoothed Particle Hydrodynamics (SPH). Lack of a numerical
grid makes SPH method more suited to handle complex geometries and moving objects.
Nowadays, the SPH approach is more and more commonly used for hydro-engineering
applications involving free-surface flows where the natural treatment of evolving interfaces
makes it an attractive method.

Some relevant outcomes of simulating this problem is understanding the impact on
underbody of the car, estimating water penetration in the engine compartment area, and
visualizing the water splash distribution.

2 COMPUTATIONAL APPROACH: SENSE

The SPH solver used in this study was developed at ESS Engineering Software Steyr
GmbH and will be referred to as SENSE solver. The pre-processor and post-processor
parts of the SENSE were also developed in-house to be compatible with the SPH solver,
and were used to set-up the problem as well as to analyze the results. The SPH is
primarily a particle-based method that solves equations of motion for each particle in
the domain based on their interaction with neighbouring particles. The SENSE approach
for solver design is to simulate fluids and solids for specific physics-based problems such
that simulation of industrial problems may be perfoemd with minimal to zero expertise in
CFD. The computations are performed on Graphics Processing Units (GPU), which are
much faster than Central Processing Units (CPU). Additionally, the algorithm for SPH
is highly parallelizable on GPU devices, providing high speed-up possibilities for scaled

3
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industrial solutions [3].
The main idea behind SPH is the use of integral interpolants to evaluate field properties

of discretized particles at each time step (see [4, 5], [6] , and [7]). Based on the treatment
of incompressibility, there are several options/approaches available in SPH technique. The
solver used for this study adopts a Divergence Free formaulation to treat the incompress-
ibility and hence is known as the DF-SPH solver Peng2019. The SPH approach primarily
involves two stages - an integral interpolation of physical properties based on a suitable
kernel function W (r, h), and a field discretization of fluids (or solids) into particles that
carry physical properties as a function of position f(r). The integral interpolant for a
field property f(r) is written as,

f̂(r) =

∫

Ω

f(r′)W (r− r′, h)dr′, (1)

where r′ is the neighbouring particles in a compact domain defined by the smoothing
length h, W is the kernel function, and the integration is performed on the entire domain
Ω. As the domain is discretized as particles, the integral interpolant maybe written in a
summation form as,

�f� (r) =
∑

b

f(rb)W (r− rb, h)Ωb, (2)

where rb and Ωb denote the position and volume of all particles b in the compact domain.
An additional advantage of SPH method is the possibility to represent the gradient of the
field property using the gradient of the kernel function due to the imposed symmetry
condition and mathematical identities. The gradient of a preprty f(r) can hence be
written as,

�∇f� (r) =
∑

b

f(rb)∇W (r− rb, h)Ωb, (3)

where ∇W is the gradient of the kernel, and hence the gradient of the field variable f(r)
dependents only on the field value and not on its gradient. This makes the implementation
and computations much easier.

For fluid dynamic application such as the one covered in this study, SPH technique
solves the Navier-Stoke’s equations for incompressible fluid flow written in the Lagrangian
form. The primary equations of interest are that of continuity and momentum conserva-
tion,

dρ

dt
= −ρ∇ · u. (4)

du

dt
= −

1

ρ
∇p+

1

ρ
(∇ · μ∇)u+ f , (5)

where ρ = const is the density, u the velocity, t the time, p the pressure, ν the kine-
matic viscosity and f are accelerations due to external forces. These equations are then
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written in SPH discretized format following equations 2 and 3 methodology and using
certain mathematical identities. The SPH discretized mass and momentum equations are
solved using explicit time integration scheme to march forward in time. In this work the
second-order Symplectic integrator is employed. With the solution of the two conserva-
tion equations, we can obtain the motion of the particles and the evolution of the carried
variables. More details of the fluid dynamic formulations maybe obtained by review of [8].
Conventiomally, the imcompressibility in SPH is treated by assuming a Weakly Compress-
ible formulation, which involves the use of an additional equation of state. For stability
purposes, this imposes a very small time steps making the simulation slower especially
when it involves huge number of particles. To allow fast and efficient computations of
industrial cases, a Divergence-Free formulation is used for incompressibility treatment,
more information on which may be obtained from Chitneedi et. al. [9].

Despite all the benefits of particle-based modeling, one of the main disadvantages
of SPH is the huge numerical complexity. In order to model real life phenomena in
appropriate resolution, typically up to several hundred millions of particles need to be
considered, which frequently results in large execution times. However, the discrete par-
ticle formulation renders the SPH method suitable for parallelization, which allows for
a massive speedup – e.g. using the General Purpose Computations on Graphics Process-

ing Units (GPGPU) technology. SPH solutions utilizing the computational power of
GPUs have initially been introduced by [10] as well as [11], where the Open Graphics

Library (OpenGL) was employed. Later, SPH implementations based on the Compute

Unified Device Architecture (CUDA) have been developed by [12].
However, in order to simulate huge domains involving millions of particles, a single GPU

device is usually not sufficient anymore. In these cases, the particle domain needs to be
distributed over several devices – yielding a multi-GPU architecture as presented in [13].
These SPH multi-GPU solutions employ a spatial subdivision of the domain to partition
the whole domain into individual subdomains. These subdomains are distributed to the
corresponding GPUs and executed in parallel. Receiving optimal performance for SPH
on multi-GPUs is a highly non-trivial task due to the massive amount of synchronization
needed between the distinct subdomains. In order to overcome these shortcomings a
range of optimization techniques are introduced as discussed in [14, 15]. Employing these
techniques eventually allows for efficiently applying SPH to engineering applications that
involve millions of particles.

3 COMPUTATIONAL CASE STUDY

In automotive industry, the comprehension of fluid dynamics in splashing scenario
is relevant to improve component designs. The SENSE solver provides a convenient
platform to perform fluid dynamic simulations without significant expertise. Preliminary
simulations were conducted for a typical puddle splashing scenario, where a car body is
moving through stagnant puddle of water at a nominal speed. The SENSE pre-processor
capabilities were used to setup the initial and boundary conditions enabling SPH-based
computations on multiple GPU devices, and the results were analyzed for visualizing the
fluid dynamics and identifying impact regions. The current section covers the approach
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Figure 2: Sample of problem setup showing car geometry at the edge of water puddle.

adopted to setup the problem and presents some preliminary results and observations.
The puddle splashing case is setup with a Body-in-White (BIW) geometry, which is

fitted with four tyres such as to emulate real car movement through puddle. The car
geometry is approximately 4 m long, 2 m wide, and 1.2 m high, which is defined to
moved along a straight line in the X-direction at a speed of 30 km/h. For the current
scenario, the puddle consist of only water with density ρ = 1000 kg/m3 and kinematic
viscosity, ν = 8.94x10−4 m2/s. At the beginning of time, the car is placed outside of the
puddle such that the front tyres are slightly in contact with the edge of the puddle. The
puddle is a rectangular region 6 m long and 80 mm deep. To ensure that the splashing
water stays within the computational domain, the puddle is designed to be wider than
the total width of the car geometry. The computational domain is further extended in
the axial and lateral directions to avoid bouncing of splashing fluid particles. Figure 2
shows a sample of the problem setup at the beginning of time. It is also relevant to note
that the Lagrangian-based solver performs a single-phase SPH simulation that considers
only water without the effects of air. Additionally, surface tension effects and fluid drag
are not currently modelled.

The computational domain is discretized into fluid and solid particles whose physi-
cal properties are tracked by the SPH fluid dynamic equations. For the SPH solver, a
smoothing length of h = 0.0055 m is chosen along with an h

dr
value of 1.1, which ensures

that results are captured to the resolution of 5 mm particle size. The initial setup consist
of 13.6 million particles including both fluid and solid domains. Dynamic simulations are
run for a time period such that the car geometry traverses till the end of the axial domain.
Following sub-section presents some results from one such simulation, and discusses the
observations. The numerical computations were deployed on multiple GPU devices, each
having the configuration of an NVIDIA GeForce GTX 1080Ti with 11 GB memory.

3.1 Simulation Results

The results presented in this sub-section are from simulation of the BIW geometry
moving at 30 km/h through a water puddle 80 mm deep and longer than the length of
the car body itself. Simulation were deployed on 8 GPU devices with the configuration
mentioned above. It takes approximately 0.72 s for the car geometry to move from the left
part of the puddle till the other end. The total time required to simulate this physical sit-

6

738



Muraleekrishnan Menon, G. V. Durga Prasad, Kevin Verma, and Chong Peng

Figure 3: Puddle water distribution presented at t = 0.5 s, coloured by velocity magnitude of water.

Figure 4: Velocity contour represetnation of water particles splashing near the front-right tyre shown
at two stages. Left: t = 0.1 s and right: t = 0.5 s.

uation was 2.5 hours. As an example of fluid dynamics during car movement through the
puddle, some velocity contours of water movement and some other observations relevant
to impact analysis are shown below.

Understanding the dynamic motion of puddle water and potentially suspended solid
particles is significant to the impact caused by car moving through flooded areas. As this
study covers only the fluid dynamics, we discuss velocity profile of the water puddle at
different stages of simulation. At time t = 0.5 s, the splash phenomena looks as shown
in figure 3, where the car has moved completely into the puddle region. Initially, as the
front tyres start moving into the puddle, water is pushed outside. Figure 4 shows this
fluid distrbution at two time stages - t = 0.1 s and t = 0.5 s.

A different perspective of the fluid distribution can be seen in figure 5 showing the top
view of the domain at the same stages of simulation. Additionally, figure 6 shows only
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Figure 5: View of splash phenomena in the domain seen from above, fluid particles coloured by velocity
magnitude. Top: t = 0.1 s and bottom: t = 0.5 s.

the fluid domain at t = 0.5 s. It may also be noted that the tread marks left by the
tyres are noticeable here. This representation of free-surface fluids can be improved by
increasing particle resolution, i.e. updating solver parameters to discretize the domain as
smaller particles.

Another aspect of these simulations are the ability to understand impact on the car
body due to splashing, which is of high importance to manufacturers and suppliers. From
preliminary analysis, we are able to show the contact time of fluid particles hitting the
solid car body. An example is shown in figure 7 that shows a contour plot if time (in s)
that the car body comes in contact with splashing water, seen from underneath. This gives
an initial estimation of car body regions impacted by splashing. Additionally, figure 8
also shows the contact impact on the front-underneath part at different time stages. The
comparison of contact-time legend in figure 8 shows how regions with higher impact can
be isolated.

The SENSE approach makes it easier to study several scenarios in a short time span.
For example, the effect of different puddle depths or flooding situation can be simulated by
merely changing a few parameters in the problem setup. Studying the effects on another

8
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Figure 6: Representaion of fluid distribution viewed from top at t = 0.5 s, fluid particles coloured by
velocity magnitude.

Figure 7: Depiction of splash impact underneath the car surface, shown as the fluid-solid contact time
on the car body at t = 0.5 s.

9

741



Muraleekrishnan Menon, G. V. Durga Prasad, Kevin Verma, and Chong Peng

Figure 8: Comparison of impact at front-bottom of car body. Left: t = 0.1 s and right: t = 0.5 s.

car geometry is also fairly easy by replacing the geometry in the pre-processor. It was also
observed in the analysis that the particle-based study of such splashing scenarios makes
it possible to evaluate where water seeps into the car body.

4 CONCLUSIONS

The current research presents a Lagrangian particle-based approach to study water
splashing phenomena applicable to the automotive industry. Results are presented for an
example fluid dynamic study that covered a Body-in-White with tyres moving through a
water puddle region. Simulating splash phenomena using an advanced Lagrangian-based
solver like this, allows to fairly understand the dynamic free-surface flow as well as to get
an estimation of fluid impact on the car body. Implementing on GPUs, with an easy-to-
scale framework for parallalezation on multiple devices, industrial cases can be evaluated
in a relatively short period of time. This expands the scope of scenarios that can be
studied in a given time frame, providing a good balance of expenditure and amount of
data available for design updates.
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Abstract. Energy dissipation in particle dampers (PDs) is complex and occurs mainly
due to the relative motion between particles and to their surroundings. The degree of
relative motion is particularly sensitive to changes in the external vibration amplitudes.
Low vibration amplitudes lower the relative motion between solid particles, and thus lead
to significantly lower energy dissipation rates. In order to influence the degree of relative
motion between solid particles, a method is investigated in which the PD is filled with
a combination of solid and liquid fillings. Moreover, with the PD partially filled with
a liquid, the solid particle shape plays a more profound role in enhancing the damping
performance. In order to investigate the effects of complex particle shapes and an added
liquid, a simulation model based on Lagrangian methods is presented in this work. In order
to validate the simulation models, experiments were also carried out. The experimental
setup consists of a PD mounted on a vertical leaf spring. The PD is a cylindrical container
filled with complex shaped particles in combination with a liquid. The complex shapes,
here chosen to be tetrapods, were manufactured using a Stereolithography 3D printer.
A good agreement between simulations and experiments is observed. In order to gain a
deeper insight, a numerical study is presented which investigates the effects of solid-liquid
ratio on the dissipated kinetic energy.

1 INTRODUCTION
Particle dampers (PDs) are becoming a popular alternative to conventional dampers

due to their relatively simple design and their flexible ability to dissipate energy over
wide excitation frequencies [1]. A detailed review on PDs can be found in [2]. One
of the main drawbacks of a conventional PD is, that it is highly sensitive to a change
in vibration amplitudes. Especially, their damping performance reduces by a substantial
amount under low forcing conditions [3]. One particularly promising idea to overcome such
shortcomings is to partially fill the conventional PD with a liquid [4, 5]. The added liquid
sloshes along with the solid particles which act as dynamic barriers, in turn dissipating
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significant amounts of kinetic energy. This dissipative effect due to liquid sloshing through
barriers can be further enhanced by replacing the conventional spherical shapes, which
were used in [4], with complex shapes, in this work tetrapod shapes. The tetrapod shape
has been popularly used in coastal engineering applications as wave breaker to dissipate
energy carried by powerful waves and thereby reducing coastal erosion [6].

In order to gain deeper insights into the influence of various parameters on the dis-
sipated energy, a model of the partially liquid-filled PD based on Lagrangian methods
is investigated. The solid particle interactions involving non-convex particle shapes are
modelled using the Discrete Element Method (DEM). The fluid motion is modelled using
the Smoothed Particle Hydrodynamics (SPH) method. A coupled SPH-DEM approach
according to [7] is used to model fluid-solid interactions. The focus of this paper lies in
showing that fully resolved coupled SPH-DEM simulations can be used to reliably predict
solid particle shape effects on the dissipated energy in partially liquid-filled PDs.

This paper is structured as follows. In Section 2 a short description of the experimental
setup is given. In Section 3 details about the simulation model are outlined. Then, in
Section 4 simulation results are compared against experiments. Section 5 showcases a
numerical study to investigate the effect of solid-liquid fill ratio on the PD performance.
Finally, in Section 6 some concluding remarks are provided.

2 EXPERIMENTAL SETUP
In order to better understand the simulation results and to build confidence in the

simulation model, hardware experiments were conducted. The experimental apparatus,
which is identical to the one used in [4, 5] except for the filling, consists of a vertically
mounted steel leaf-spring (480 mm × 30 mm × 3 mm) on top of which a particle damper
is rigidly mounted. The PD is a transparent acrylic cylindrical container of a fixed inner
diameter of 44 mm and an adjustable length of L. Using an electromagnet, the vertical
leaf-spring with the PD mounted on it’s top is given an initial displacement, released
from rest and allowed to oscillate freely in its fundamental mode. A PSV500 Polytec
Laser Doppler Vibrometer is used to measure the displacement and velocity of the PD
container. Depending on various PD parameters such as solid-liquid fill ratio, solid particle
shape, amount of liquid among others, different damping performance is achieved.

The solid particles used in the experiments were manufactured on a Formlabs Form 2.0
Stereolithography (SLA) 3D printer, using a resolution of 100 µm and a Photopolymer
resin (“Black Resin”, Formlabs Inc.). In order to prevent wrapping of the solid particles,
extra support structures are automatically added during the printing process. After the
printing, the printed parts go through a 3-step finishing process. First, the parts are
removed from the 3D-printer platform. The removed parts are then washed in Isopropyl
alcohol in order to dissolve any leftover liquid resin. Finally, the support structures are
removed to obtain the solid particles. An overview illustrating the 3D-printing procedure
is shown in Figure 1.

2
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a) b)

c)

d)

1

Figure 1: Non-convex polyhedron shapes manufactured using a 3D-printer. a) Formlabs Form 2.0 SLA
3D-printer. b) Multiple particles after 3D printing. A single tetrapod shaped particle c) before and d)
after removing the support structure.

3 SIMULATION MODEL
3.1 Smoothed Particle Hydrodynamics

The Reynolds-averaged Navier-Stokes equations (RANS) are used to describe the fluid
motion. The conservation of mass of the fluid with the Reynolds averaged velocity v̄ is
given by

dρ
dt

= −ρ∇ · v̄ (1)

and the conservation of linear momentum is given by

ρ

(
dv̄
dt

)
= −∇p̄+ µ∇2v̄ −∇R + f (2)

with density ρ, viscosity µ, Reynolds turbulence stresses R and external body forces f .
Here p̄ is the Reynolds-averaged pressure. In this work, the weakly compressible Smoothed
Particle Hydrodynamics (SPH) method is used to discretize the RANS equations accord-
ing to [8]. In essence, the first two terms in Eq. 2, namely the pressure term ∇p̄ and the
viscosity term µ∇2v̄, are computed as proposed in [9]. An artificial stress term accord-
ing to [10] and an artificial viscosity term as proposed in [11] are introduced in Eq. 2 to
reduce the tensile instability and to smooth spurious numerical oscillations, respectively.
In addition to this, a diffusive term is introduced in Eq. 1 to obtain smoother density
fields according to [12]. Since the PD is only partially filled with a liquid, violent sloshing
and large free surface deformations are expected. Therefore, an adequate modelling of
turbulence is essential. In this work, the popular k-ε turbulence model according to [8] is
used. Concerning the interaction between liquid and PD container, a penalty approach
similar to the one described in [13] is used.
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3.2 Discrete Element Method
The contacts between solid particles and PD container is modelled using the Discrete

Element Method (DEM). The equations of motion of a single solid particle i is given by
the Newton-Euler equations [14]

Mi
dVi

dt
= Fi, (3)

Ii
dΩi

dt
+Ωi × IiΩi = Li. (4)

In these equations, Ii is the inertia tensor, Mi is the mass, and Fi and Li are the external
forces and torques acting on the particle i. The external force Fi acting on a solid particle
contains forces due to gravity and due to contact between other solid particles and the
PD container. Traditionally, the DEM approach was conceptualized for simple spherical
particles [15]. Since the solid particles used in this work have complicated geometry, as
seen in Figure 1, the traditional approach should be extended to accommodate contacts
between arbitrary shapes. There are different approaches to compute the forces Fi and
torques Li for complicated shapes. One approach, as suggested in [16], is to represent
a rigid particle of arbitrary shape by a set of spherical particles whose relative positions
remain unchanged. In a more sophisticated approach, the particles of arbitrary shapes
can be represented using triangular meshes and the contact forces could be computed
proportional to the overlap volume between two such meshes. Moreover, by using fast
collision detection algorithms such as the Bounding Volume Hierarchy approach [17], the
simulation time can be reduced drastically. In this work, this sort of an approach is used
to model contacts between non-convex shapes, which is readily available in the particle
simulation software package Pasimodo [18].

3.3 SPH-DEM Coupling
In this paper, these hydraulic forces, which are exchanged between SPH and DEM

particles, are described using an approach as in [7]. In this approach a set of virtual
SPH particles are placed uniformly around the boundary of the DEM particle. These
virtual SPH particles are basically meant to mimic the interface atoms between SPH and
DEM particle in a macroscopic scale. This approach has been applied to fluid-structure
interaction problems recently in [19, 20, 21]. Moreover, this approach was also used in
the partially liquid-filled PD context involving spherical shaped solids in [4].

For time integration the explicit second-order Leapfrog scheme with time step control
is used for all the simulations. Moreover, all the simulations are set up and performed
using the particle simulation software package Pasimodo [18], which has been developed
at the ITM for over a decade.

4 MODEL VALIDATION
In this section the coupled SPH-DEM model is validated against experimental data,

which is generated using the ring-down experimental setup introduced in Section 2. The
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vertical leaf spring, which is used in the experiments, is modelled as a simple single degree
of freedom spring-mass-damper system with the system parameters as identified in [4].

All the experiments and simulations presented in this section are conducted for an
acrylic PD container of length L = 100 mm and inner diameter of 44 mm. In both cases,
the PD container is loaded with 60 tetrapod shaped particles and 30 ml of distilled water.
For the experiments each tetrapod particle is manufactured using a 3D printer, as seen
in Figure 1. Moreover, each tetrapod has a bounding box dimension of d =8 mm and a
density of ρp = 1200 kgm−3. On the simulation side the same geometry STL file, which
was given as input to the 3D printer, is loaded in Pasimodo to represent the non-convex
shape during all the simulations. The most relevant model parameters identified are listed
in Table 1.

Table 1: Relevant parameters for the simulations

parameter value

no. of solid particles np 60
solid density ρp (kgm−3) 1200
liquid density ρliq (kgm−3) 1000
liquid viscosity ν (Pa.s) 8.9× 10−4

CFL number 0.7
SPH smoothing length h (m) 7.5× 10−4

In Figure 2 (left), the velocity of the partially liquid-filled PD with tetrapod shapes,
measured during experiments and predicted by coupled SPH-DEM simulation is com-
pared. Figure 3 visualizes the motion of the damper contents as predicted by coupled
SPH-DEM simulations. In order to better understand the effect of solid particles, the
velocity damper filled purely with a liquid measured during experiments is also plotted
in Figure 2 (left). Macroscopically seen, there is a good agreement between simulations
and experiments, showing that coupled SPH-DEM simulations can adequately model the
dynamics involved in a partially liquid-filled particle damper. It can be clearly seen, that
the velocity decay is faster for the case with both liquid and solid filling, than for the
purely liquid filled case. There are two possible reasons for this. First, the solid particles
due to the hydraulic forces applied by the liquid, remain agile even under lower vibration
amplitude, thereby leading to more effective collisions and in turn more energy dissipa-
tion. Secondly, the liquid is squeezed between two approaching solid particles leading
to shearing of liquid layers. This ultimately results in more energy dissipation. In this
case, the non-convex tetrapod particles behave effectively as obstacles to waves created
by liquid motion. So in essence, the energy dissipation in case of a liquid-filled PD is due
to the combined effect of increased solid particle agility and the sloshing motion of the
liquid.
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Figure 2: (left) The velocity of the damper container is compared for all the damper configurations.
The red dashed line represents the container velocity predicted by coupled SPH-DEM simulations. The
simulation and experiment are in good agreement. (right) The PD with liquid and tetrapod filling used
in the experiments.

t= 0.27 s t= 0.55 s

1

Figure 3: The motion of the damper contents, predicted by coupled SPH-DEM simulation, is visualized
at two different time instances. The waves created by liquid motion are broken by the presence of agile
solid particles. The fluid is visualized as colored balls, where the color gradient visualizes pressure from
low (red) to high (blue).

5 INFLUENCE OF SOLID-LIQUID FILL RATIO
In the previous section it was seen that a combination of complex shaped solids and a

liquid can substantially increase the dissipation performance. This newly gained insight
rises a new question regarding the dynamics involved in partially liquid-filled PDs. What
should the solid-liquid fill ratio be in order to maximize the dissipation rate? In order to
gain further insights regarding this question a numerical investigation is performed.

In this numerical study the number of tetrapod solids are varied in three stages (0, 40,
60 solids) while the amount of liquid is kept at a constant 30 ml. By this way, the solid-
liquid ratio is implicitly varied. For this study, the density of each solid tetrapod particle
is chosen to be 7850 kgm−3. While setting up the simulations, compensation masses were
added to the system mass so that all the configurations have the same static mass. All
the other parameters are carried over from Section 4 including the initial deflection of the
spring which is 10 mm.
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In Figure 4 (left) the simulated velocity decay for different solid-liquid fill ratios is
compared and the corresponding average logarithmic decay rate is visualized in Figure
4 (right). It can be seen, that the decay rate for a damper filled purely with a liquid
is lower than the PD with both solids and liquid. Moreover, increasing the number of
solids particles seem to substantially increase the decay rate. This effect can be better
understood using Figure 5 where the motion of the PD contents is visualized as predicted
by coupled SPH-DEM simulations. Increasing the number of solid particles in the presence
of a liquid effectively increases the number of solid particle collisions. Additionally, the
liquid flow is observed to be more fierce with increase in the number of solid particles,
leading to even more kinetic energy dissipation. With this investigation it can be said,
that coupled SPH-DEM simulations can indeed be utilized to reliably predict complex
dynamical effects present in partially liquid-filled PDs.
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Figure 4: (left) The velocity of the damper container for various solid-liquid fill ratios is compared.
(right) The average logarithmic decay rate, computed at the end of every cycle, is visualized with respect
to different solid-liquid fill ratios.

6 CONCLUSIONS
In this work, it is shown that coupled SPH-DEM simulations can adequately predict

the effect of complex particle shapes in enhancing dissipation performance of partially
liquid-filled particle dampers. The tetrapod shape, inspired from coastal engineering, is
the chosen particle shape for this investigation. In order to gain deeper insight into the
various dissipation mechanisms and to increase confidence in the numerical models, ex-
periments were performed. The experimental test bench is identical to the one used in
[4] except that the solid particles were manufactured using a Stereolithography (SLA) 3D
printer and have a different particle shape. A good agreement between experiments and
simulations is observed on a macroscopic level. Both in simulations and experiments the
partially liquid-filled PDs with non-convex particle shapes has superior damping perfor-
mance than a purely liquid filled damper. The reasoning for this effect is twofold. Firstly,
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t= 0.27 s t= 0.55 s

purely liquid-filling

40 tetrapod solids + liquid filling

60 tetrapod solids + liquid filling

1

Figure 5: The motion of damper contents visualized for (top row) purely liquid filled damper, (middle
row) 40 tetrapod solids + liquid and (bottom row) 60 tetrapod solids + liquid, at two different time
instances. In all cases, the fluid is visualized as colored balls, where the color gradient visualizes pressure
from low (red) to high (blue).

due to the presence of a liquid the complex shaped solid particles remain agile even under
low vibration amplitude, leading to more effective collisions and in turn higher energy
dissipation. Secondly, the liquid sloshing in the presence of complex shaped particles
leads to more shearing between liquid layers causing more energy dissipation. In order to
test these insights, a numerical study to understand the effect of fluid-solid fill ratio was
set up. In this study, the solid-liquid fill ratio was varied by keeping the amount of liquid
constant and varying the number of solid tetrapod particles. Adding more solids particles
seemed to increase the dissipation rate. Since the solid particles carry more momentum
than a liquid, the collisions between adjacent solids is much more effective leading to
higher kinetic energy dissipation.
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Abstract. Simulations of gas-solid mixtures are used in many scientific and industrial
applications. Two-Fluid Smoothed Particle Hydrodynamics (TFSPH) is an approach
when gas and solids are simulated with different sets of particles interacting via drag
force. Several methods are developed for computing drag force between gas and solid
grains for TFSPH.

Computationally challenging are simulations of gas-dust mixtures with intense in-
tephase interaction, when velocity relaxation time tstop is much smaller than dynamical
time of the problem. In explicit schemes the time step τ must be less than tstop, that
leads to high computational costs. Moreover, it is known that for stiff problems both
grid-based and particle methods may require unaffordably detailed resolution to capture
the asymptotical bahaiviour of the solution. To address this problem we developed fast
and robust method for computing stiff and mild drag force in gas solid-mixtures based on
the ideas of Particle-in-Cell approach. In the paper we compare the results of new and
previously developed methods on test problems.
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1 INTRODUCTION

In the paper two-fluid model of gas-solid mixture is discussed. In this model gas
is considered as a carrier phase and dust grains are considered as dispersed phase. It
is assumed that the solid phase has one typical size in each volume (so this phase is
monodisperse). Therefore, the continuity and motion equations for gas and dispersed
phase have the following form:

∂ρg
∂t

+∇(ρgv) = Sg, ρg

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ ρgg − fdrag + fg, (1)

∂ρd
∂t

+∇(ρdu) = Sd, ρd

[
∂u

∂t
+ (u · ∇)u

]
= ρdg + fdrag + fd, (2)

where ρg and ρd are volume density of gas and dust, v and u are velocities of gas and
dust, p is pressure, g is gravity acceleration, Sg, Sd are sourses and sinks for gas and dust,
fg, fd are forces affecting gas and dust except for pressure, gravitaion and drag, fdrag is
drag force per unit volume:

fdrag = ρd
v − u

tstop
, (3)

where tstop = tstop(a, ρg, cs, v − u) is a velocity relaxation time. Here a is particle size, cs
is the sound speed in gas. In this work we consider particular case when tstop does not
depend on v− u that corresponds to Epstein and Stokes regimes (see details, e.g. in [1]).

Computing of pure gas dymanics (solution of (1) with fdrag = 0) using explicit schemes
requires time step τ that satisfies Courant condition:

τ < CFL
h

max(v, cs)
, (4)

where CFL < 1 is the Courant limeter. Additional necessary condition arises during
computing of dusty gas dynamisc using explicit schemes

τ < tstop. (5)

Violation of this condition leads to numerical instability. Condition (5) is extremally
prohibitive for intense interphase interaction (for small tstop). Intense interphase interac-
tion arises in many applications of gas-particle mixtures (e.g. in modelling reactors with
finely-dispersed catalyst, in planet formation from gas-dust circumstellar disks etc.) and
is characterized by the fact that time of momentum transfer is much less than process
time.

In the case of intense interphase interaction, fdrag is called stiff relaxation term [2].
Effective schemes for problems with stiff relaxation terms are designed in way that they
could preserve asymptotical solution even with τ � tstop. Main ideas of such design are
described in [3, 4] and assosiated with using of implicit approximation of stiff relaxation
term along with explisit approximation of other terms. This approaches are developed for
euler methods for solving fluid dynamics equations and are used in different applications
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e.g. [5, 6]. Transfering this ideas to lagrangian methods (for example, to TFSPH in
which gas and dust are modelled by different sets of particles) encounter new difficulties
caused by the fact that carrier and disperse phases quantities are known in different
points of space. For TFSPH authors of [7, 8, 9] shown that the way of interpolation this
parametres for computing fdrag influences the method’s property to preserve asymptotic.
In particular, [7] demonstrated that classical method for computing drag force in TFSPH
[10] captures the asymptotic of the solution for small tstop only with

h < cststop. (6)

Getting over this restriction is crucial for modelling mixtures with intense interphase
interaction. For this reason authors of [8], [9] proposed other methods to computing drag
forces. In this paper we present quantitative comparison of the classical [10] and new [8],
[9] approaches focusing on their ability to preserve asymptotic properties of the solution.
The methods are described in detail in section 2, the test problem results are given in
section 3 and the summary is provided in section 4.

2 METHODS FOR COMPUTING DRAG TERMS IN TWO-FLUID
SMOOTHED PARTICLE HYDRODYNAMICS

Let us rewrite the motion equations in (1)-(2) assuming K =
ρd
tstop

:





dv

dt
= −∇p

ρg
+ g − K

ρg
(v − u),

du

dt
= g +

K

ρd
(v − u).

(7)

Further we will give the schemes for solving the equations of gas and dust motion (7)
in the standard SPH notation. We will consider only the schemes in which gas and dust
are simulated by different sets of particles, i.e. by the two-fluid approach for smoothed
particle hydrodynamics (TFSPH). Let n be the number of the time step. Following the
notation introduced in [10], we will use a, b as the indices for gas particles, and j, k as the
indices for dust particles.

2.1 The MK Monaghan–Kocharyan explicit scheme.

Amethod for computing the drag force, which was proposed in [10] (hereinafter referred
to as MK (Monaghan-Kocharyan Drag)), is classical for smoothed particle hydrodynamics.
This method is based on the computing of the relative velocity between each pair of gas-
dust particles and is employed in astrophysical and engineering applications of two-phase
medium mechanics [11, 12, 13, 14] and others.

We implemented this scheme so that the summand accounting for drag uses the veloc-
ities from the previous time step:

dvna
dt

= −mg

∑

b

(
pb

(ρnb,g)
2
+

pa
(ρna,g)

2

)
�a W

n
ab − σmd

∑

j

Kaj

ρna,gρ
n
j,d

(vna − un
j , rja)

r2ja + η2
rjaW

n
ja + ga,

(8)
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dun
j

dt
= σmg

∑

a

Kaj

ρna,gρ
n
j,d

(vna − un
j , rja)

r2ja + η2
rjaW

n
ja + gj, (9)

Kaj =
ρnj,dρ

n
a,gc

n
a,s

snj ρ
n
j,s

, (10)

where mg and md are the masses of gas and dust particles, respectively, rja = rj − ra, η is
a clipping constant, η2 = 0.001h2, sj is the radius of a spherical dust particle with index
j, σ is the constant determined by dimensionality of the problem (for one-dimensional
problems, σ = 1), and W n

ab = W (h, rab) is the smoothing kernel.
The MK scheme (8)-(9) of the first order approximation with respect to time satisfies

the momentum conservation law in the entire computational domain, which means that
the momentum lost by gas due to drag on dust completely coincides with the momentum
acquired by dust due to drag on gas.

2.2 The semi-implicit ISPH scheme with interpolation of the first order ap-
proximation with respect to time.

The second method for computing the drag consists in the calculation of gas charac-
teristics at the points where dust particles are located (and vice versa) using the SPH
interpolation formulas:

vnj = mg

∑

a

vna
ρna,g

W n
aj, un

a = md

∑

j

un
j

ρnj,d
W n

ja, (11)

where ua is the dust velocity at a spatial point where the gas particle with a index is
located, and vj is the gas velocity at a spatial point where the dust particle with j index
is located.

As a result, all features of the gas-dust medium become known for each model particle.
This method and its modifications are applied in refs. [8, 15, 16]. We apply this idea
to construct a semi-implicit scheme that would not require the fulfillment of condition
(5) for obtaining stable solutions. In particular, parsimonious is the following ISPH
scheme with the first order approximation with respect to time (the quantities calculated
using interpolation formulas are marked in blue, while the quantities derived from those
calculated by interpolation formulas are marked in red):

vn+1
a − vna

τ
= −

∑

b

mb

(
pb

(ρnb,g)
2
+

pa
(ρna,g)

2

)
�a W

n
ab −

Kn
a

ρna,g
(vn+1

a − un+1
a ) + ga, (12)

un+1
a − un

a

τ
=

Kn
a

ρna,d
(vn+1

a − un+1
a ) + ga. (13)

vn+1
j − vnj

τ
= −

∑

i

mi

(
pi

(ρni,g)
2
+

pj
(ρnj,g)

2

)
�j W

n
ij −

Kn
j

ρnj,g
(vn+1

j − un+1
j ) + gj, (14)
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un+1
j − un

j

τ
=

Kn
j

ρna,d
(vn+1

j − un+1
j ) + gj. (15)

Kn
a =

ρna,gc
n
a,s

snaρ
n
a,s

, Kn
j =

ρnj,gc
n
j,s

snj ρ
n
j,s

. (16)

2.3 A new SPH-IDIC scheme – the implicit ‘drag in cell”.

In addition, computing of the drag force can be based on the idea of the particle-in-cell
method for simulation of gas-dust flows [17]. The parsimonious semi-implicit SPH-IDIC
approach based on this idea was suggested and tested in our earlier paper [9]. A detailed
description of this approach is presented below.

At each time instant, we will decompose the entire calculation region into disjoint
volumes so that the merging of these volumes will coincide with the entire region. Suppose
a separate volume contains N gas particles of a similar mass mg and L dust particles of
a similar mass md, with N > 0, L > 0. Introduce the volume-averaged values of t∗stop and
ρ∗d (anywise) and assume that

ε∗ =
mdL

mgN
, (17)

thus determining

K∗ =
ρ∗d
t∗stop

, ρ∗g =
ρ∗d
ε∗
. (18)

Let us assume that in computing the drag force that acts from gas on dust, the gas
velocity is constant over the entire volume and equal to v∗, whereas dust particles have
different velocities (and vice versa). In addition, we will calculate the drag factor and
density using values of the quantities from the preceding time layer, and relative velocity
– from the subsequent layer. The resulting scheme will have the form

dvna
dt

= −
∑

b

mb

(
pb

(ρnb,g)
2
+

pa
(ρna,g)

2

)
�a W

n
ab −

K∗

ρn,∗g
(vn+1

a − un+1
∗ ) + ga, (19)

dun
j

dt
=

K∗

ρn,∗d

(vn+1
∗ − un+1

j ) + gj, (20)

v∗ =

∑N
a=1 va
N

, u∗ =

∑L
j=1 uj

L
. (21)

If the time derivative in (19)-(20) is approximated to the first order, there exists a
parsimonious method to calculate un+1 vn+1. In [9], it was shown that the semi-implicit
scheme (19)-(21) with the first order approximation with respect to time satisfies the
momentum conservation law for each cell, i.e. the momentum lost by gas due to drag on
dust completely coincides with the momentum acquired by dust due to drag on gas.
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3 RESULTS

To measure the ability of the schemes to preserve asymptotical properties of the solution
in case of intense interphase interaction two well-known test problems with available
reference solution are used. The first is a problem of sound-wave propagation in isothermal
gas-dust mixture. This problem has a smooth solution and suits perfectly to study the
way of drag computing in SPH. We will refer to this problem as Dustywave. The second is
a problem of shock wave propagation in coupled gas-dust mixture with initial conditions
known as Sod shock tube. Due to discontinuity of the solution and complexity of wave
structure this problem is common and challenging test for computational gas dynamics.
For this problem Dustyshock name is reserved. Both Dustywave and Dustyshock problems
are described in detail [9]. Moreover, for all numerical experiments in the paper we take
the same physical and numerical parameters as in [9]. In particular, for both problems
we take high drag coefficient and high concentration of dust in gas

K = 500,
ρd
ρg

= 1, (22)

which is guarantee intense interphase interaction and challenge for simulation.
Fig. 1 shows the solution of Dustywave problem at the time moment t = 0.5 with MK,

ISPH, IDIC methods. In this case (22) leads to tstop = 0.002. The figure displays the
dust and gas velocity obtained with different smoothing lengths h. The left panels show
the results of computing for explicit schemes MK. At h = 0.025, h = 0.01, the time step
τ = 0.001 < tstop and the number of particles Ntotal = 2×600 are used; while at h = 0.001,
the step τ = 0.0001 and Ntotal = 2×6000. The middle and right panels present the results
of computing for semi-implicit schemes ISPH and IDIC with CFL = 0.1; in this case, the
number of particles was the same as for the left panels.

Fig. 2 shows gas and dust velocity as the solution of Dustyshock problem at the time
moment t = 0.2. The same methods MK, ISPH, IDIC as in Fig. 1 are used. For h = 0.01
we take Ntotal = 2× 990, CFL = 0.1, for h = 0.001 — Ntotal = 2× 9900, CFL = 0.1

One can see that the numerical solutions obtained by MK and ISPH methods with the
smoothing length increased from h = 0.001 (the condition (6) is satisfied) to h = 0.025
((6) is violated) acquire a pronounced dissipation. The observed tendency to solution
dissipation was described in [8, 7]. We can see from Figs. 1, 2 and Tables 1, 2 that
the maximum level of dissipation is obtained in the case of explicit schemes MK. As
follows from the central panel in Fig. 1, the semi-implicit ISPH scheme gives a smaller
dissipation at the same smoothing length as compared to MK. Moreover, thanks to semi-
implicit approximation of the drag force, the ISPH scheme has no restrictions on the time
step (5).

MK and ISPH are the fully Lagrangian methods, which means that all forces are cal-
culated without the introduction of a spatial grid. The IDIC method is a combination of
Lagrangian and Euler approaches because the drag force is computed using the decom-
position of particles into Euler volumes. One can see on the right upper panel of Fig.1
that these numerical solutions obtained by IDIC are free of dissipation, and at h = 0.025
the wave amplitude is reproduced without visible error, in distinction to MK and ISPH.
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Table 1: Error for dust velocity computed with 3 different methods in L2 norm for DUSTYWAVE

problem. Ntotal = 2× 600 SPH particles.

MK ISPH IDIC

h = 0.01 τ = 0.00025 0.0417 0.0332 0.0003

h = 0.02 τ = 0.001 0.1486 0.079 0.0012

Figure 1: Solution of the DustyWave problem at the time instant t = 0.5 found with MK (left panels),

ISPH (central panels) and IDIC (right panels) methods. Relaxation time of the dust velocity with respect

to gas is tstop = 0.002, i.e. tstopcs/l � 1, where l is the length of the computational domain. Solid black

line corresponds to the analytical solution, and individual dots are the numerical solutions. At h = 0.025
and h = 0.01, the time step τ = 0.001 < tstop and the number of particles Ntotal = 2× 600 are used; at

h = 0.001, the step is τ = 0.0001 and Ntotal = 2× 6000.

Table 2: Error for dust velocity computed with 3 different methods in L2 norm for DUSTYSHOCK

problem. Ntotal = 2× 990 SPH particles.

MK ISPH IDIC

h = 0.01 τ = 0.000025 0.1177 0.2101 0.0457

h = 0.02 τ = 0.0001 0.1786 0.29 0.0605
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Figure 2: Solution of the DustyShock problem at the time instant t = 0.2 found with MK (left panels),

ISPH (central panels) and IDIC (right panels) methods. Relaxation time of the dust velocity with respect

to gas tstop = 0.00025, i.e. tstopcs/l � 1, where l is the length of the computational domain. Solid black

line corresponds to the analytical solution, color lines are the numerical solutions. At h = 0.01, the time

step τ = 0.001 and the number of particles Ntotal = 2×990 are used; at h = 0.001, the step is τ = 0.0001
and Ntotal = 2× 9900. For MK method time step is τ = 0.0001 for all spatial resolution.

4 SUMMARY

Simulation of the dynamics of gas-aerosol particle mixtures is computationally challeng-
ing, especially in particle methods as Smoothed particle hydrodynamics. In the paper we
compared ability of fully lagrangian methods MK [10] and ISPH [8] and euler-lagrangian
method IDIC [9] to reproduce asymptotical properties of the solution for dynamics of gas-
dust mixtures with intense interphase interaction. We found that IDIC method where
drag is computed using euler cells is asymptotic preserving and allows to use timestep
and smoothing length independent on drag intensity. MK and ISPH methods require fine
spatial resolution for intense interphase interaction.

Acknowledgements. This work was supported by the Russian Science Foundation grant
19-71-10026.
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ABSTRACT 

A hydraulic jump that generally occurs in river or spillway is a rapid transition from supercritical to 
subcritical flow characterized by the development of large-scale turbulence, surface waves, energy 
dissipation and considerable air entrainment. The hydraulic jump is widely used as energy dissipaters 
in hydraulic engineering due to the high energy dissipation rate. In this study, a weakly compressible 
smoothed particle hydrodynamics model (WCSPH) is established to simulate the 2D hydraulic jump 
in open channel. To test the model, two hydraulic jump cases with different inflow Froude number are 
simulated. The comparison between numerical conjugate depths in the subcritical section with 
theoretical results show generally good agreement with theory. In addition, an aeration at the jump toe 
can be clearly observed in numerical results with only Single-phase flow. It is proved that SPH method 
has unique advantages dealing with the hydraulic jumps. 

Keywords: Hydraulic jumps; SPH; Aeration. 
 

1. INTRODUCTION 

The hydraulic jumps are a common way to dissipate energy in hydraulic engineering. A hydraulic jump 
will occur when the supercritical flow discharged from sluice or overflow dam is lifted by the 
subcritical flow in downstream channel. The turbulence in a jump zone is intense and the energy loss 
is great. The energy dissipation rate can generally reach 60%-70%. In addition, the stilling basins 
installed downstream of discharge structures are often adopted to form hydraulic jumps behind gates 
in the design and construction of hydraulic projects. The stilling basins have the advantages of simple 
structure, convenient design and construction, and large energy dissipation rate. Therefore, the 
hydraulic jumps are widely used in large, medium and small hydraulic projects. 

The hydraulic jumps have been widely investigated by researchers. López et al. [1] used a similar tank 
to obtain several jump shapes with different upstream Froude numbers. Then, the experimental data 
was adopted to check the SPH outcomes. The SPH model provided good average pressures values at 
the boundaries, but large dispersion was observed for instantaneous water depth. Federico et al. [2] 
developed a 2D SPH model with a new scheme to enforce different inlet and outlet flow conditions. 
The proposed treatment could correctly represent the boundary conditions without the generation of 
spurious pressure shock waves caused by a direct creation or deletion of fluid particles. The model has 
been successfully validated through several test cases of free-surface channel flows and hydraulic 
jumps. Babaali et al. [3] studied the hydraulic jump in a convergence stilling basin by a commercially 
software Flow-3D. The Navier-Stokes equations with standard k-ε and RNG model were solved by 
finite volume model. The comparison of the pressure, velocity, flow rate, kinetics energy, kinetics 
energy dissipation, and Froude number between numerical results and experimental data shown that 
this finite volume model could predict the hydraulic jump in a convergence stilling basin, accurately. 
Jonsson et al. [4] focused on the general behavior of the hydraulic jumps using the SPH methods. Four 
hydraulic jump cases with different particles resolution were set up and investigated by comparing the 
conjugate depth with the theoretical results. All of the numerical results shown good agreement with 
the analytical solution. Their work has shown the possibility to reproduce the internal velocity field 
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and its impact on the free surface in the hydraulic jumps by a relative simple and coarse SPH model. 
Azimi et al. [5] used a finite volume model with the volume of fluid scheme to study a hydraulic jump 
in U-shaped channel. A comparison between the numerical and experimental results shown that the 
numerical model simulated the flow field characteristics with good accuracy. 

The present study uses the discretized governing equations proposed by Federico et al. [2] to simulate 
two test cases of undular and full hydraulic jumps. The integration of the discretized SPH equations in 
time is achieved by a two-stage Symplectic method [6]. The time step is a variable value updated in 
each step. The accuracy of the model is validated by comparing conjugate water depth with the 
analytical solution. Meanwhile, the evolution of the flow field for the two types of the hydraulic jumps 
is analyzed and compared. 

2. NUMERICAL METHOD 

2.1 Governing equations 

The governing equations are viscous, weakly compressible Navier-Stokes equations. It is discretized 
by the SPH method, following Lagrangian form Navier–Stokes equations are obtained [2] 

2
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where   represents the density;  u  is the velocity vector; p  represents the pressure; r represents the 
position of a generic material point; g = (0, 0, -9.81) m/s2; 0  is the reference density (1000 kg/m3 for 
water); 0c  represents the reference speed of sound which usually adopts ten times of the maximum 
wave speed. Γ  is the viscous stress tensor; and t  is the time. 

The sub-index is the a-th and b-th particles. More specifically, ba b a= −u u u ;   is the dynamic 
viscosity (1.0 10-3 N  s/m2 for water. For ideal fluid, there is no viscosity in fluid. An artificial 
viscosity is adopted to maintain computational stability. Here a formula 0 0 / 8hc  =  is adopted. 
Following Federico et al. [2], 0.02 =  is taken.); V  is the particle volume, /V m = , where m  
represents the particle mass; ( )b aW r  refers to the kernel function at b-th particle induced by a-th particle. 
In this paper, a renormalized Gaussian kernel [7] is adopted with the smoothing length 4 / 3h x=  . A 
two-stage Symplectic method [6] is selected to integrate the discretized SPH equations in time. 
Meanwhile, the time step is a variable value updated in each step. The symplectic integration scheme 
is time reversible when there is no friction or viscous effects. The governing equations of N-S and 
motion can be rewritten as: 

;  ;  a a a
a a

d d d
dt dt dt


= =

v rF v                                                   (2) 

At the predictor stage, the acceleration and density are updated: 

1/2 1/2;  
2 2

n n n n n n
a a a a a a

t tD + + 
= + = +r r v                                         (3) 

where the superscript n  represents the time step. 

At the corrector stage, half-time step values are used to calculate the next time step values of velocity 
and position. 

1 1/2 1/2 1 1/2 1;  
2 2

n n n n n n
a a a a a a

t t+ + + + + + 
= + = +v v F r r v                                   (4) 
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2.2 Boundary conditions 

For SPH model, the free surface can be captured naturally without additional special treatment. As for 
the wall boundaries, a fixed ghost particle technique is adopted to construct the wall boundary with 
four-layer fixed wall particles. The wall particles are fixed at its position while the density, velocity, 
and pressure of wall particles are determined by the mirror particles in the fluid domain. In this work, 
a slip boundary condition is selected to reproduce the inviscid condition. The inflow and outflow 
condition are treated by two buffer zone. Four-layer inflow and outflow particles are initially contained 
in the inflow and outflow buffer zone. Particles in buffer zone carry specific values of density, velocity, 
and pressure. The detail of boundary conditions can be found in [2]. 

3. NUMERICAL TEST CASES 

An undular and full hydraulic jump test cases [2] are simulated to validate this model by comparing the 
numerical conjugate water depth with the analytical solution.  

 
Fig. 1. Velocity (left) and density (right) magnitude field of case 1: (a) t  = 0.04 s; (b) t  = 0.66 s; (c) 

t  = 6.14 s; (d) t  = 8.52 s; (e) t  = 9.60 s; (f) t  = 11.80 s; (g) t  = 13.42 s; (h) t  = 15.96 s. 

For ideal fluid, the conjugate water depth can be calculated as follow: 

21
2 1( 1 8 1)

2
hh Fr= + −                                                      (5) 

where 1h  is the upstream water depth; 2h  is the downstream water depth; 1Fr  is the upstream Froude 
number 1 1 1/Fr U gh= , 1U  is the upstream velocity. The 1Fr  of case 1 and case 2 are 1.15 and 1.88, 
respectively. The upstream boundary condition sets to 1 0.01 mh =  and 1 0.36 m/sU =  for case 1. The 
corresponding downstream boundary condition is 2 0.3 m/sU = . For case 2, 1 0.01 mh =  and 
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1 0.589 m/sU =  are the upstream boundary condition. 2 0.268 m/sU =  is the downstream boundary 
condition. The length of numerical flume is 140L h= .The initial density and pressure are set according 
to the distribution of hydrostatic pressure. The space between particles is 1 / 50h l = . 

 
Fig. 2. Velocity (left) and density (right) magnitude field of case 1: (a) t  = 0.04 s; (b) t  = 0.12 s; (c) 

t  = 0.56 s; (d) t  = 0.80 s; (e) t  = 1.68 s; (f) t  = 1.96 s; (g) t  = 11.90 s; (h) t  = 15.96 s. 

The velocity and density magnitude field of case 1 are shown in Fig. 1. Inflow particles interact 
with in-domain fluid particles and form a undular jump propagating to downstream at t  = 0.04 s. Until 
t  = 0.66 s, the jump reaches outflow boundary. Meanwhile, a series of weak wave are generated. Then, 
these waves move downstream until propagate upstream, firstly, at t  = 8.52 s. Now, there is only one 
crest in the computational domain. The crest continually propagates upstream at t  =9.60 s and t  = 
11.80 s At t  = 13.42 s, a new crest downstream of the first crest appears. Finally, the two crests move 
upstream for a little distance and basically reach quasi-constant state at t  = 15.96 s. It can be seen that 
both of the velocity and density field are quite smooth in Fig. 1. In addition, the downstream water 
depth shows a good agreement with the analytical conjugate while the two crests are relatively higher 
than the analytical data. The maximum errors of the two crests are 0.002 and 0.0025, respectively. 

Fig. 2 shows the velocity and density magnitude field of case 2. The evolution of the flow field 
can be described as follows. At t  = 0.04 s, the inflow particles with large velocity interact with the 
slowly in-domain particles and generate a high jump. Two shock waves appear and move downstream 
at t  = 0.12 s. Until t  = 0.56 s, the shock wave arrives the outflow boundary. At t  = 0.80 s, the shock 
wave reflects to upstream upstream until the upward shock wave merges with the slower shock wave 
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at t  = 1.96 s. An aeration at the jump toe can be clearly observed at this time. Then, the merged jump 
continually moves upstream and basically reaches quasi-constant state at t  = 15.96 s. Similar to Fig. 
1, the velocity field in Fig. 2 is very smooth. However, the density magnitude field is a little noisy in 
Fig. 2. The numerical conjugate water depth agrees very well with the analytical conjugate water depth. 

4. CONCLUSIONS 

Two types of 2D hydraulic jump, undular hydraulic jump and full hydraulic jump, are simulated by a 
WCSPH model. In this model, an artificial viscosity is adopted to stabilize the calculation due to the 
ideal fluid condition. Comparing the numerical conjugate depth with the analytical solution, the model 
can accurately reproduce the undular and full hydraulic jump. In addition, the numerical flow field 
shows that the aeration in the hydraulic jumps can be captured with this Single-phase model. In one 
word, the WCSPH model is a very power tool to investigate the hydraulic jumps. 

5. FUTURE WORK 

Though this model calculates the conjugate water depth with a good accuracy, the density field with 
large inflow Froude number is a little noisy. To eliminate the noise in density field will be our next 
step work. Besides, the time consumption of SPH model is very large. Therefore, a parallel version of 
the model is necessary to reduce the time consumption. 
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Abstract. This paper aims to present the physical reflective boundary conditions (RBC) in 3-
D domains and applications in fluid dynamics problems. Currently, RBC have been used in 
meshfree particle methods as an attempt to respect the continuum physical laws at the 
macroscopic domain, without the application of fictitious/ ghost particles - that improperly 
mix molecular and continuum mechanics concepts [1]. RBC methodology, validation in 2-D 
domains and applications in hydrostatics and hydrodynamics cases were presented in [2]. 
Hydrostatics and hydrodynamics cases with the RBC implementation in 3-D domains are 
presented in this work. A Newtonian, incompressible, uniform and isothermal fluid inside an 
immobile reservoir open to the atmosphere and dam break flow have been studied. In the first 
case, a modified SPH formulation using a modified pressure concept [3] has been used. Dam 
breaking simulations used the standard SPH formulation. In both cases, the numerical results 
showed good agreement with the analytical results or literature data. 
 
Notation 

oC  initial position of the centre of mass of the particle (initial instant of the numerical 
iteration) 

 o k
C  coordinates of the initial position of the centre of mass 

1C  position of the centre of mass, in a motion without obstacles, at the end of the numerical 
iteration  
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 o k
C coordinates of the centre of mass position, in a motion without obstacles, at the end of 

the numerical iteration  
 1 N
C  coordinates of the centre of mass normal to the collision plane, in a motion without 

obstacles, at the end of the numerical iteration 

fC  position of the centre of mass obtained after the collision response 

 f k
C  coordinates of the centre of mass  position, after the collision response 

 f NC  coordinates of the centre of mass position, normal to the collision plane, after the 
collision response 
CR     coefficient of  restitution of kinetic energy 
CF     coefficient of friction 
g         gravity 
g         gravity magnitude 
h         support radius 
H        vertical coordinate of the free surface in the reservoir 
k        Cartesian direction 

bm      mass of the neighbouring particle  

aP        absolute pressure acting on the fixed particle 

bP        absolute pressure acting on the neighbouring particle 

modP      modified pressure 

mod( )aP  modified pressure of the fixed particle  

mod( )bP  modified pressure of the  neighbouring particle 

0P       pressure of reference 
t          time 
v         fluid velocity 

av       velocity of the reference particle 
 bv      velocity of the neighbouring particle 

abv      relative velocity between a fixed and a neighbouring particle 

okV     component of the initial velocity of the particle (initial instant of the numerical 
iteration) 

f kV      component of the final velocity of the particle (final instant of the numerical iteration) 
W        kernel or interpolation function 

aX     position of the reference particle 
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bX     position of the neighbouring particle 
z        vertical coordinate of the fluid inside the reservoir 

π    coefficient used in the calculation of the artificial viscosity 

π    coefficient used in the calculation of the artificial viscosity 
p     parameter used in the calculation of the artificial pressure 

       parameter used in the calculation of the artificial pressure  
        kinematic viscosity of the fluid 

a       kinematic viscosity of the reference particle 
        density of the fluid 

a      density of the reference particle 

b       density of the neighbouring particle 
        mathematical vector operator nabla 

1.  INTRODUCTION 
Recent publications ([1],[2],[4-6]) have been realised proposing new boundary conditions 

techniques in meshfree particle methods, excluding the use of fictitious particles on or 
adjacent to the contours. Literature [2] presented the first implementation of the RBC, based 
on Newton's restitution law and foundations of analytic geometry, in 2-D domains. This paper 
extends the implementation of the RBC to a higher (3-D) dimension with validation tests and 
simulation results in both hydrostatics and hydrodynamics cases. 

A collision detection and response algorithm has been implemented. Two coefficients were 
used in the collisions treatment: the kinetic energy restitution coefficient (CR), related to the 
energy loss in the direction normal to the collision plane, and the friction coefficient (CF),  
that measures the slow down in the particle’s motion parallel to the collision plane. A 
complete description of the algorithm implementation (considering only the effects of the 
elastic restitution of energy) is in [2]. [1] presents the improvement of the algorithm 
considering the friction effects. 

The remainder of this paper is organised in sections as follows.  In Section 2, the algorithm 
validation is presented. Section 3 brings the cases studies, their numerical results and 
discussions. Finally, conclusions are in Section 4. 

2. ALGORITHM VALIDATION  
Analytical results have been employed to verify the positions and velocities that particles 

reached after the collisions treatment, at the end of each timestep. The velocity of the particle 
was considered constant in each step of time and its centre of mass moved linearly along the 
direction of the velocity from oC  to 1C  (considering a motion without obstacles).  

Tests have been carried out, in which the particle radius was 0.01 m.  The 3-D box had 
sides of 0.50 m. The time step was 0.25s. The coefficients of restitution of kinetic energy 
(CR) and friction (CF) received different values. Some tests results achieved are presented in 
Tables 1 - 6 and Figs. 1 - 4. 
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Test 1: Initial position of the centre of mass: Co = (0.25, 0.25, 0.25) m;  Initial velocity: Vo = 
(1.00, 0.00, 0.00) m/s;  CR = 1.00;  CF = 0.00  (see simulation results in Table 1 and Fig. 1). 

Table 1: Results of the 1st validation test (SI units). 
 

t* 
Input data Output data 

Vox Voy Voz Cox Coy Coz C1x C1y C1z Cfx Cfy Cfz Vfx Vfy Vfz 
0.25 1.00 0.00 0.00 0.25 0.25 0.25 0.50 0.25 0.25 0.48 0.25 0.25 -1.00 0.00 0.00 
0.50 -1.00 0.00 0.00 0.48 0.25 0.25 0.23 0.25 0.25 0.23 0.25 0.25 -1.00 0.00 0.00 
0.75 -1.00 0.00 0.00 0.23 0.25 0.25 -0.02 0.25 0.25 0.04 0.25 0.25 1.00 0.00 0.00 
1.00 1.00 0.00 0.00 0.04 0.25 0.25 0.29 0.25 0.25 0.29 0.25 0.25 1.00 0.00 0.00 
1.25 1.00 0.00 0.00 0.29 0.25 0.25 0.54 0.25 0.25 0.44 0.25 0.25 -1.00 0.00 0.00 
*Number of collisions in every timestep: 1st - 01; 2nd  - 0; 3rd - 01; 4th - 0; 5th - 01 

Test 2: Initial position of the centre of mass: Co = (0.25, 0.25, 0.25) m; Initial velocity: Vo = 
(0.00, 1.00, 0.00) m/s;  CR = 1.00;  CF = 0.00  (see simulation results in Table 2 and Fig. 2). 

Table 2: Results of the 2nd validation test (SI units). 

 
t* 

Input data Output data 

Vox Voy Voz Cox Coy Coz C1x C1y C1z Cfx Cfy Cfz Vfx Vfy Vfz 
0.25 0.00 1.00 0.00 0.25 0.25 0.25 0.25 0.50 0.25 0.25 0.48 0.25 0.00 -1.00 0.00 
0.50 0.00 -1.00 0.00 0.25 0.48 0.25 0.25 0.23 0.25 0.25 0.23 0.25 0.00 -1.00 0.00 
0.75 0.00 -1.00 0.00 0.25 0.23 0.25 0.25 -0.02 0.25 0.25 0.04 0.25 0.00 1.00 0.00 
1.00 0.00 1.00 0.00 0.25 0.04 0.25 0.25 0.29 0.25 0.25 0.29 0.25 0.00 1.00 0.00 
1.25 0.00 1.00 0.00 0.25 0.29 0.25 0.25 0.54 0.25 0.25 0.44 0.25 0.00 -1.00 0.00 
*Number of collisions in every timestep: 1st - 01; 2nd  - 0; 3rd - 01; 4th - 0; 5th - 01 

Test 3:  Initial position of the centre of mass: Co = (0.01, 0.01, 0.01) m; Initial velocity: Vo  = 
(1.00, 1.00, 1.00) m/s; CR = 1.00; CF = 0.00 (see simulation results in Table 3 and Fig. 3). 

Table 3: Results of the 3th validation test (SI units). 

 
t* 

Input data Output data 

Vox Voy Voz Cox Coy Coz C1x C1y C1z Cfx Cfy Cfz Vfx Vfy Vfz 
0 

 

1.00 1.00 1.00 0.01 0.01 0.01 0.26 0.26 0.26 0.26 0.26 0.26 1.00 1.00 1.00 
0.50 1.00 1.00 1.00 0.26 0.26 0.26 0.51 0.51 0.51 0.47 0.47 0.47 -1.00 -1.00 -1.00 
0.75 -1.00 -1.00 -1.00 0.47 0.47 0.47 0.22 0.22 0.22 0.22 0.22 0.22 -1.00 -1.00 -1.00 
1.00 -1.00 -1.00 -1.00 0.22 0.22 0.22 -0.03 -0.03 -0.03 0.05 0.05 0.05 1.00 1.00 1.00 
1.25 1.00 1.00 1.00 0.05 0.05 0.05 0.30 0.30 0.30 0.30 0.30 0.30 1.00 1.00 1.00 
*Number of collisions in every timestep: 1st - 0; 2nd  - 01; 3rd - 0; 4th - 01; 5th - 0 
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Test 4: Initial position of the centre of mass: Co = (0.01, 0.01, 0.01) m; Initial velocity: Vo  = 
(1.00, 1.00, 0.00) m/s;  CR = 1.00; CF = 0.00 (see simulation results in Table 4 and Fig. 4). 

Table 4: Results of the 4th validation test (SI units). 

 
t* 

Input data Output data 

Vox Voy Voz Cox Coy Coz C1x C1y C1z Cfx Cfy Cfz Vfx Vfy Vfz 
0.25 1.00 1.00 0.00 0.01 0.01 0.01 0.26 0.26 0.01 0.26 0.26 0.01 1.00 1.00 0.00 
0.50 1.00

1 
1.00 0.00 0.26 0.26 0.01 0.51 0.51 0.01 0.47 0.47 0.01 -1.00 -1.00 0.00 

0.75 -1.00 -1.00 0.00 0.47 0.47 0.01 0.22 0.22 0.01 0.22 0.22 0.01 -1.00 -1.00 0.00 
1.00 -1.00 -1.00 0.00 0.22 0.22 0.01 -0.03 -0.03 0.01 0.05 0.05 0.01 1.00 1.00 0.00 
1.25 1.00 1.00 0.00 0.05 0.05 0.01 0.30 0.30 0.01 0.30 0.30 0.01 1.00 1.00 0.00 
*Number of collisions in every timestep: 1st - 0; 2nd  - 01; 3rd - 0; 4th - 01; 5th - 0 

Test 5: Initial position of the centre of mass: Co = (0.49, 0.49, 0.49) m; Initial velocity: Vo  = 
(-1.00, -1.00, -1.00) m/s; CR = 1.00; CF = 0.00 (see simulation results in Table 5).                                  

Table 5: Results of the 5th validation test (SI units). 

 
t* 

Input data Output data 

Vox Voy Voz Cox Coy Coz C1x C1y C1z Cfx Cfy Cfz Vfx Vfy Vfz 
0.25 -1.00 -1.00 -1.00 0.49 0.49 0.49 0.24 0.24 0.24 0.24 0.24 0.24 -1.00 -1.00 -1.00 
0.50 -1.00 -1.00 -1.00 0.24 0.24 0.24 -0.01 -0.01 -0.01 0.03 0.03 0.03 1.00 1.00 1.00 
0.75 1.00 1.00 1.00 0.03 0.03 0.03 0.28 0.28 0.28 0.28 0.28 0.28 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 0.28 0.28 0.28 0.53 0.53 0.53 0.45 0.45 0.45 -1.00 -1.00 -1.00 
1.25 -1.00 -1.00 -1.00 0.45 0.45 0.45 0.20 0.20 0.20 0.20 0.20 0.20 -1.00 -1.00 -1.00 
*Number of collisions in every timestep: 1st - 0; 2nd  - 01; 3rd - 0; 4th - 01; 5th  

Test 6: Initial position of the centre of mass: Co = (0.01, 0.01, 0.01) m; Initial velocity: Vo  = 
(1.50, 1.00, 1.00) m/s; CR = 1.00; CF = 0.10 (see simulation results in Table 6). 

Table 6: Results of the 6th validation test (SI units). 

 
t* 

Input data Output data 

Vox Voy Voz Cox Coy Coz C1x C1y C1z Cfx Cfy Cfz Vfx Vfy Vfz 
0.25 1.50 1.00 1.00 0.01 0.01 0.01 0.39 0.26 0.26 0.39 0.26 0.26 1.50 1.00 1.00 
0.50 1.50 1.00 1.00 0.39 0.26 0.26 0.76 0.51 0.51 0.22 0.47 0.47 -1.22 -0.81 -0.81 
0.75 -1.22 -0.81 -0.81 0.22 0.47 0.47 -0.08 0.27 0.27 0.10 0.27 0.27 1.22 -0.73 -0.73 
1.00 1.22 -0.73 -0.73 0.10 0.27 0.27 0.41 0.09 0.09 0.41 0.09 0.09 1.22 -0.73 -0.73 
1.25 1.22 -0.73 -0.73 0.41 0.09 0.09 0.71 -0.10 -0.10 0.27 0.12 0.12 -0.98 0.59 0.59 
*Number of collisions in every timestep: 1st - 0; 2nd  - 02; 3rd - 01; 4th - 0; 5th - 02 
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Figure 1. Positions of the centre of mass of the particle at the 1st validation test. 

 
Figure 2. Positions of the centre of mass of the particle at the 2nd validation test. 

 
Figure 3. Positions of the centre of mass of the particle at the 3rd validation test. 
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Figure 4. Positions of the centre of mass of the particle at the 4th validation test. 

3.  CASES STUDIES 

3.1 Still Fluid Inside a Reservoir Open to the Atmosphere 

This hydrostatics problem consists of a reservoir open to the atmosphere, filled with a 
Newtonian, incompressible, uniform and isothermal liquid. The dimensions of the tank are 1.0 
m × 1.0 m × 1.0 m. The water particles inside the reservoir are at 20oC and at sea level 
(   1.00  × 103 kg/m3,   1.00 × 10-6 m2/s). 25 particles per side of the tank (15,625 in 
total) were used in the discretisation of the fluid. 

The modified pressure concept [3] has been used (Eq.(1)) and the physical reflective 
boundary conditions ensuring the non-motion of the particles and the obedience to the 
continuum laws. 

mod ( ) g(H )0P P P z     (1) 

Taking into account that ( )0P P is the pressure exerted by the fluid column on the 
particle with vertical coordinate z , the modified pressure is zero to each particle in the 
domain.  The SPH approximations to the physical laws of conservation of mass and 
momentum have been employed in the problem solving - Eqs. (2)-(3).  

 
1

d ( , )
dt

n
a

b baa b
b

m W h


   v v . X X  
(2) 

   
1

mod(b) mod(a)
d 1 ,
dt

a
b

n

b
ba

am P P W h
 

  
v

 X X  
 

 2
1

(2 ,)_____ b a
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b b a b

m W h





  v .X X X X

X X
 

             (3) 

 

where  ab a b v v v . 
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Equation (3) is the SPH modified formulation for the momentum conservation equation 
obtained through application of the concept presented in Eq. (1). 

The coefficients of restitution of kinetic energy (CR)  and friction (CF) were 1.0 and 0.0, 
respectively. The time step employed was 1.00 × 10-4 s. 

Figure 5 shows the hydrostatic and the modified  pressure fields acting on the particles 
(represented by their centres of mass) inside the reservoir.   

               (a)                                                                                 
 

(b) 
Figure 5. Pressure acting on the particles inside the reservoir. (a) The hydrostatic pressure field. (b) The 

modified pressure field (equal to zero). The particles are represented by their centres of mass. 

 The initial velocities of the particle were null. After the solution of the mass and 
momentum conservation equations and updating of the positions of the centres of mass and 
velocities of the particles,  the positions of the particles remained unchanged (regardless of the 
interpolation function used in the particle method) and the hydrostatic equilibrium was 
maintained.   

3.2 3-D Dam Break Flow over Dry Bed 

The reservoir has length of 0.420 m, height of 0.440 m and depth of 0.228 m.  The damned 
water has a volume with length of 0.114 m, height of 0.228 m, and depth of 0.228 m. 32,000 
particles were used in the discretisation of the water (at 20oC with   1.00  × 103 kg/m3 and 
 1.00 × 10-6 m2/s).  The water damned was considered incompressible, uniform and 
isothermal. The standard SPH formulation to the equations of conservation of mass and 
momentum - Eqs. (2) and (4) - were employed combined with RBC in the boundary treatment 
(aiming to respect the continuum laws). 

The absolute pressure acting on every fluid  particle was composed by the sum of two 
parcels:  the hydrostatic and the hydrodynamics (predicted by the Tait equation). The free 
surface particles were found at the initial time instant, marked and their absolute pressures set 
to zero (Newman boundary conditions). Those pressures were kept null throughout the 
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simulation. The timestep  was 1.00 × 10-4 s. The temporal integration method employed was 
the Euler’s method.  
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Density renormalisation was performed at every 30 timesteps and the correction of the 
kernel gradient near the boundaries has been done at each numerical iteration. A support 
radius varying with time, have been used [7, 8]. In the RBC implementation, CR and CF 
received the values 1.00 and 0.00, respectively. The artificial viscosity [7,8] (with the 
coefficients  π  = 0.04 and π  = 0.00) and artificial pressure [9]  (with the parameters   
equal to 0.10 and p  equal to the initial lateral distance between two consecutives centres of 
mass) were used in simulations. The validation of the results  has been done from 
experimental data and Eulerian finite element method (FEM) results provided by literature 
[10]. Figure 6 shows the SPH results achieved in this work for the dam breaking flow in some 
time instants of the simulation.   

0.10 s 0.20 s 0.30 s 

   

0.40 s 0.50 s 0.60 s 

   
Figure 6. 3-D dam breaking flow evolution (SPH simulation results) until 0.60s. 
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The evolution of the dam breaking  flow (lateral xz cross-section), in some instants of time, 
is shown in Figs. 7 and 8. In Figure 7 which there is a comparison between the experimental 
data [10] and the SPH results. The comparison between FEM results, provided by [10], and 
the SPH results (achieved in this work) is in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Experimental data [10] and SPH simulation results (in blue) for different time instants until 0.60 s. 

From the analysis of  Figs. 13 and 14, a good agreement, with the experimental data and 
particularly with the FEM results both provided by [10], has been seen. 

4. CONCLUSIONS    
In this work, the implementation of the RBC in the 3-D domain has been presented. 

Validation tests have been performed to verify the results provided by the 3-D collision 
detection and response algorithm.  Simulations of  two  fluid dynamic cases (hydrostatics and 
hydrodynamics) have been performed.  

In hydrostatics,  a Newtonian, incompressible, uniform, and isothermal fluid at rest inside a 
reservoir has been simulated. The SPH results showed complete agreement with the analytical 
solution, regardless of  the interpolation function employed  in the SPH meshfree particle 
method.  

In the hydrodynamics (dam break flow simulation), a good agreement between with the 
SPH results and the experimental data and Eulerian FEM results, both provided by [10], has 
been seen. 
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Figure 8. Finite element method (FEM) results [10] (free surface lines) and SPH results                                                

for different time instants until 0.60 s. 
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Abstract We present an approximate second-order consistent smoothed particle hydrodynamics
method which uses the 1D solutions to approximate the 2D second order derivatives. The numerical
tests of the analytic functions show that the method is exact for regular arrangements of interpo-
lation points, while in the disordered areas the accuracy is lower than the exact solution of the
second-order consistent modified smoothed particle hydrodynamics, but still better that the stan-
dard version or the so-called decoupled finite particle method. We applied the new model to the
flow of a fluid around a circular solid obstacle and found that the use of a corrected semi-decoupled
second-order consistent SPH gives better accuracy for lower resolutions allowing for a more efficient
numerical model and also easier to extend to 3D.

Keywords MSPH · consistency · driven flow of solid-gas systems

1 Introduction

The modified smoothed particle hydrodynamics (MSPH) [1] and finite particle method (FPM)
[2,3] are meshfree particle methods based on smoothed particle hydrodynamics (SPH) [4,5] with
kernel corrections that improve the accuracy of the derivatives by imposing high order consistency.
An n-order consistency Cn imposes that polynomials and their derivatives up to the nth order
are exactly described for any distribution of the interpolation points. In these methods, the field
variables and their derivatives are simultaneously obtained via inversion of corrective matrices
which are computed at every time step for each SPH point. The FPM imposes C1 and uses third
order matrices in 2D and fourth order matrices in 3D, while the MSPH has C2 with sixth order
matrices in 2D and tenth order in 3D. While the standard SPH has been tuned and calibrated to
work for modeling of incompressible fluids [6], some specific applications, such as driven flows of
gas-solid mixtures, require higher order consistency [7].
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2 Cristian V. Achim et al.

However imposing a higher order consistency is in general accompanied by an increase in the
accuracy [8], matrix inversions can be ill conditioned and the numerical error can be very large.
This can happen in regions of space with extremely disordered configurations or for free-surfaces
when the number of neighbors is too small. In order to avoid the matrix inversion problems Zhang
et al [9] suggested a decoupled FPM which approximated the corrective matrix by neglecting its
off-diagonal elements. This solution worked for the free-surface application, however for the driven
flow of gas around solid obstacles Achim et al [10] showed that it was not enough and they presented
a new way to construct decoupled corrections with C1 using the 1D (FPM) solutions with results
very close to the FPM [10] at a small computational cost. The approximations in our previous work
[10] involves semi-decoupled FPM (SDFPM) and corrected semi-decoupled FPM (CSDFPM).

We expand the work done in Ref. [10] to impose second order consistency. The decoupling of the
derivatives is computed using the normalized version of the kernel and its derivatives in which some
of the non-diagonal elements in the correction matrices are exactly zero, while some non-diagonal
cross terms are neglected. An extra advantage of our method is that in one dimension (1D) it is
exact. Similar to Ref. [9], the effective quasi-diagonal matrices have no condition problems. We
present two versions of SDMSPH and find that the corrected SDMPSH (CSDMSPH) gives very
good results in practical applications and it can successfully replace the lower order methods, such
as standard SPH and FPM for the modeling of pure fluid flows and solid-fluids flows. We present
numerical tests of the second order derivatives for various selected analytic functions and finally,
more important, we solve numerically the flow of a weakly compressible fluid around a solid obstacle
using corrected gradients based on the new semi-decoupled MSPH (SDMSPH). The computational
cost of the SDMSPH is the same as the FPM, but with higher accuracy.

2 Smoothed Particle Hydrodynamics and its Corrected Variants

In the SPH the relevant fields are interpolated from a set of points that move with the fluid [11].
In the continuum limit, for any field f(r) the smoothed value is defined as [12,13]:

f(r) ≈
∫

f(r′)W (|r− r′|, h)dr′, (1)

where W is a kernel, a probability distribution function, and h is the smoothing length. The range
of the kernel function can be infinite as in the case of a Gaussian function or it’s limited to a few
κ multiples of h, i.e. κh. All given values of the fields are approximated by the above formula in
discrete form. The accuracy of the SPH is O(h2) [5,4,8].

2.1 Standard SPH

In the standard SPH [12,13], the integral in Eq. (1) can be expressed in a discrete form as follows

(f)SPH
i ≈

∑

j

fjW (|ri − rj |, h)Vj , (2)

where the index j goes over all particles in the range of the point where the evaluation is taking
place, rj denotes the position of the jth point, Vj is the associated volume, and fj the value of the
field at the respective point. Another advantage of the method is that in Eq. (2) the differential
operators are applied to the kernel function, but not to fj . The first order derivatives at ri are

(∂xf)
SPH
i =

∑

j

fj∂x,iWijVj (3)

(∂yf)
SPH
i =

∑

j

fj∂y,iWijVj ,
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where fj = f(rj), Vj = mj/ρj and Wij the kernel function at rij = |ri − rj |.
Because

∑
j ∂αβ,iWijVj (where α and β can be either component x or y) is zero only for the

limit h → 0 (when the kernel function W becomes the Dirac δ-function) [8], we use the following
form for estimating the second order derivatives:

(∂xxf)
SPH
i =

∑

j

(fj − fi)∂xx,iWij (4)

(∂xyf)
SPH
i =

∑

j

(fj − fi)∂xy,iWij

(∂yyf)
SPH
i =

∑

j

(fj − fi)∂yy,iWij ,

2.2 The Corrected Variants, FPM and MSPH

FPM and MSPH are derived similarly, the only difference between them is their order. It is sufficient
to present the derivation of MSPH, because the FPM can be obtained from the same equations
neglecting the higher order terms. The MSPH [1,3,2] is derived from the Taylor expansion of the
field f up to the second order

fj = (f)i + (∂xf)ixji + (∂yf)iyji +
1

2
(∂xxf)ix

2
ji + (∂xyf)ixjiyji +

1

2
(∂yyf)iy

2
ji + . . . (5)

Next a linear system with six unknowns is obtained by multiplying the right and left terms by WijVj ,
∂x,iWijVj ,∂y,iWijVj , , ∂xx,iWijVj ,∂xy,iWijVj , or ∂yy,iWijVjn and performing the summation over
j. Formally, the solution is:




(f)MSPH
i

(∂xf)
MSPH
i

(∂xxf)
MSPH
i

(∂xyf)
MSPH
i

(∂yyf)
MSPH
i



= M−1

∑

j




fjWijVj
fj∂x,iWijVj
fj∂y,iWijVj
fj∂xx,iWijVj
fj∂xy,iWijVj
fj∂yy,iWijVj




(6)

In practice, this is equivalent to replacing the kernel function and its derivatives with the effective
corrected kernel 



(Wij)
MSPH

(∂x,iWij)
MSPH

(∂y,iWij)
MSPH

(∂xx,iWij)
MSPH

(∂xy,iWij)
MSPH

(∂yy,iWij)
MSPH



= M−1




Wij

∂x,iWij

∂y,iWij

∂xx,iWij

∂xy,iWij

∂yy,iWij




(7)

With the correction matrix

M =
∑

j




1 xji yji
1
2x

2
ji xjiyji

1
2y

2
ji

∂x,i xji∂x,i yji∂x,i
1
2x

2
ji∂x,i xjiyji∂x,i

1
2y

2
ji∂x,i

∂y,i xji∂y,i yji∂y,i
1
2x

2
ji∂y,i xjiyji∂y,i

1
2y

2
ji∂y,i

∂xx,i xji∂xx,i yji∂x,i
1
2x

2
ji∂xx,i xjiyji∂xx,i

1
2y

2
ji∂xx,i

∂xy,i xji∂xy,i yji∂xy,i
1
2x

2
ji∂xy,i xjiyji∂xy,i

1
2y

2
ji∂xy,i

∂yy,i xji∂yy,i yji∂yy,i
1
2x

2
ji∂yy,i xjiyji∂yy,i

1
2y

2
ji∂yy,i



WijVj (8)

The FPM is derived in the same way as the MSPH, but the second order terms in the Taylor
expansion (5) and the second order derivatives are not included.
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2.3 Decoupled MSPH

An ill conditioned matrix (which happens when there are not enough neighbors or the configuration
of the interpolation is extremely disordered) can yield very poor results. In addition to this, Zhang
& Liu noted in Ref. [9] that in most cases, the non-diagonal terms of the matrix M are small and
a simplified correction can be used to achieve an accuracy similar to that of the FPM. In the new
correction we make the approximations

Mi,j � 0, i �= j. (9)

The corrected values are

(f)DMSPH
i =

∑
j fjWijVj∑
j WijVj

(10)

(∂xf)
DMSPH
i =

∑
j fj∂x,iWijVj∑
j xji∂x,iWijVj

(∂yf)
DMSPH
i =

∑
j fj∂y,iWijVj∑
j yji∂y,iWijVj

Same in the standard SPH, the following form for estimating the second order derivatives is used

(∂xxf)
DMSPH
i =

∑
j(fj − fi)∂xx,iWijVj
1
2

∑
j x

2
ji∂xx,iWijVj

(11)

(∂xyf)
DMSPH
i =

∑
j(fj − fi)∂xy,iWijVj∑
j xjiyji∂xy,iWijVj

(∂yyf)
DMSPH
i =

∑
j(fj − fi)∂yy,iWijVj
1
2

∑
j y

2
ji∂yy,iWijVj

This method is very easy to implement in both 2D and 3D.

2.4 The Semi-Decoupled MSPH

The formulas presented in the previous section have the advantage of being simple, however the
DFPM does not really have C0, C1 nor C2 and effectively it becomes standard SPH with a normal-
ization. As shown in Ref. [7] more than C0 consistency is needed for the driven solid-gas systems.
We start the derivation from the Taylor expansion (5), but multiplying each equation with one

of the functions W̃ijVj , ∂x,iW̃ijVj , ∂y,iW̃ijVj , ∂x,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
Vj , ∂y,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
Vj +

∂x,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]
Vj , or ∂y,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]
Vj , with W̃ij = Wij/Si and Si =

∑
j WijVj . In the

semi-decoupled MSPH (SDMSPH) the second order derivatives are

(∂xxf)
SDMSPH
i =

∑

j

fj
˜̃∂xx,iW̃ijVjVj (12)

(∂xyf)
SDMSPH
i =

∑

j

fj
˜̃∂xy,iW̃ijVjVj

(∂yyf)
SDMSPH
i =

∑

j

fj
˜̃∂yy,iW̃ijVjVj .
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These are practically the 1D MSPH solutions. The new derivative operators are defined as

˜̃∂xx,i =

∂x,i

[
∂x,i∑

j xji∂x,iW̃ijVj

]

1
2

∑
j x

2
ji∂x,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
Vj

(13)

˜̃∂xy,i =

∂y,i

[
∂x,i∑

j xji∂x,iW̃ijVj

]
+ ∂x,i

[
∂y,i∑

j yji∂y,iW̃ij

]

∑
j xjiyji

{
∂y,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
+ ∂x,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]}
Vj

˜̃∂yy,i =

∂y,i

[
∂y,i∑

j yji∂y,iW̃ijVj

]

1
2

∑
j y

2
ji∂y,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]
Vj

.

Now the SDMSPH first order derivatives are

(∂xf)
SDMSPH
i =

∑

j

fj ∂̃x,iVj − (∂xxf)
SDMSPH
i

1

2

∑

j

x2ji∂̃x,iVj (14)

(∂yf)
SDMSPH
i =

∑

j

fj ∂̃y,iVj − (∂xxf)
SDMSPH
i

1

2

∑

j

y2ji∂̃y,iVj .

The fist order derivative operators defined as:

∂̃x,i =
∂x,iW̃ij∑

j xji∂x,iW̃ijVj
(15)

∂̃y,i =
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

Finally the corrected values of the field are obtained using

(f)SDMSPH
i =

∑

j

fjW̃ijVj − (∂xf)
SDMSPH
i

∑

j

xjiW̃ijVj − (∂yf)
SDMSPH
i

∑

j

yjiW̃ijVj (16)

− 1

2
(∂xxf)

SDMSPH
i

∑

j

x2jiW̃ijVj − (∂xyf)
SDMSPH
i

∑

j

xjiyjiW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2jiW̃ijVj .

One of the advantage of the SDMPSH is that unlike the DFPM and DMSPH, the second derivative
of a constant field is identically zero. In addition the corrected values of a field and its first order
derivatives are coupled to the higher order derivatives. Finally the second order derivatives are
almost exact when the non-diagonal terms, which we ignored in order to obtain Eq. (12), are small
enough.

As shown in Ref. [10] the semi-decoupled forms can be further improved with few additional
operations, but with significant improvement in results, by taking into account the non-diagonal
terms
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(∂xxf)
CSDMSPH
i = (∂xxf)

SDMSPH
i − (∂yf)

SDMSPH
i

∑

j

yji
˜̃∂xx,iW̃ijVj (17)

− (∂xyf)
SDMSPH
i

∑

j

xjiyji
˜̃∂xx,iW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2ji
˜̃∂xx,iW̃ijVj

(∂xyf)
CSDMSPH
i = (∂xyf)

SDMSPH
i − (∂xf)

SDMSPH
i

∑

j

xji
˜̃∂xy,iW̃ijVj

− (∂yf)
SDMSPH
i

∑

j

yji
˜̃∂xy,iW̃ijVj −

1

2
(∂xxf)

SDMSPH
i

∑

j

x2ji
˜̃∂xy,iW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2ji
˜̃∂xy,iW̃ijVj

(∂yyf)
CSDMSPH
i = (∂yyf)

SDMSPH
i − (∂xf)

SDMSPH
i

∑

j

xji
˜̃∂yy,iW̃ijVj

− 1

2
(∂xxf)

SDMSPH
i

∑

j

x2ji
˜̃∂yy,iW̃ijVj

− (∂xyf)
SDMSPH
i

∑

j

xjiyji
˜̃∂xx,iW̃ijVj .

Similarly, for the first order derivatives we get

(∂xf)
CSDMSPH
i = (∂xf)

SDMSPH
i − (∂yf)

SDMSPH
i

∑

j

yji∂̃x,iW̃ijVj (18)

− (∂xyf)
SDMSPH
i

∑

j

xjiyji∂̃x,iW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2ji∂̃x,iW̃ijVj

(∂yf)
CSDMSPH
i = (∂yf)

SDMSPH
i − (∂xf)

SDMSPH
i

∑

j

xji∂̃y,iW̃ijVj

− 1

2
(∂xxf)

SDMSPH
i

∑

j

x2ji∂̃y,iW̃ijVj

− (∂xyf)
SDMSPH
i

∑

j

xjiyji∂̃y,iW̃ijVj .

The corrected values of the field are obtained using Eq. (16), but with the CSDMSPH values for
the first and second-order derivatives.

3 Error estimates for the gradients for the different methods

In general we are interested in a method that allows the accurate estimation of second order
derivatives that appears for example as the temperature laplacian in the heat equation, and in
the divergence of velocity and pressure in the Navier-Stokes equation [12,13]. The accuracy of our
approximations is evaluated by computing the derivatives of several analytic functions. We also
test the performance of the various methods for the flow around a cylinder. [7].
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3.1 Errors estimates of analytic functions close to solid boundaries

We are mainly interested in the errors of the methods close to a circular boundary because in a
driven flow the wall particles remain fixed, while the fluid particles move with a average velocity
close to the inlet velocity. This can result in less ordered configurations which require kernel correc-
tion for the calculations of the gradients. For the evaluation of the analytic functions, we arranged
the SPH particles in a triangular lattice (Fig. 1) with distance ∆x = (3/4)h between them. In
this configuration a circular solid obstacle with diameter D = 30h was placed in the middle of the
simulation box, as in the previous work [7]. Inside the solid a layer of virtual particles of thickness
3h was created, which complete the kernel support for the SPH particles close to the boundary.
The volumes are assigned so that a zero gradient condition is imposed normal to the surface and
various degrees of disorder are created near the solid boundary. In Fig. 1 some of the SPH fluid have
less neighbors or more than in the ordered areas. We are particularly interested in what appears in
the early stages of the simulations of a flow around a fixed or moving obstacle. While, in general,
additional reordering techniques can provide a better configuration of the SPH particles, we believe
that testing the various kernel corrections on this configuration is sufficient for our applications.
For the kernel function we use the quintic B-spline function [14]. A detailed analysis of the different
kernels done in Ref. [15] indicated that this kernel has the best accuracy. The kernel W (r;h) is
defined by

W (r, h) = αD
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h
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3− r

h

)5
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(19)

with αD a normalization constant.

Fig. 1 The SPH interpolation points used to evaluate the gradients of the different functions. The color indicates
the values of the volumes Vj = mj/ρj . The black line gives the position of the solid boundary.

We analyzed three analytic functions, 1− (x/2−1/4) · (y/2−1/4), 1− (x/2−1/4)2 · (y/2−1/4)2,
and exp[−(x/2− 1/4)2 · (y/2− 1/4)2].

The results are shown in Figures 2-7. Depending on the function, the SDMPSH and CSDMPSH
can give up to one order of magnitude smaller errors. In addition we note that the SPH and
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Fig. 2 Error evaluation when computing the second order x-derivative of the function 1−(x/2−1/4) ·(y/2−1/4)
as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-decoupled
MSPH.

DMPSH are more sensitive to the particle configurations. The evaluated derivatives begin to present
deviations as soon as the particle is closer than 3h to the solid surface.

3.2 Comparison of different methods for flow around a cylinder

Lastly, we tested the different approximations for a driven flow around a fixed circular obstacle using
the same method as [7]. For each method, everything was kept the same as in FPM except for the
gradients used in the equations of motion. While the SPH model of the Navier-Stokes equations
can be written in a form that contains only first order derivatives, we expect that a higher order
consistency will give a better accuracy to the lower derivatives as well. We present below the drag
coefficients Cd for two regimes, Re = 40 and Re = 100. We present also the results for the FPM
as shown in [7]. These cases are very useful to test the accuracy of computing the gradients. The
results are summarized in Tables 1-4

When comparing the different methods we see that the CSDMSPH achieves convergence faster
than the other methods. Plotting the drag coefficients as a function of the ratio D/∆x with ∆x =
4h/3 (Figures 8 and 9), we note that the CSDMPSH achieves convergence for D/∆x = 25. While
the difference is small, the other methods require D/∆x > 30 to converge, for both the two Re

numbers investigated.
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Fig. 3 Error evaluation when computing the second order xy-derivative of the function 1−(x/2−1/4)·(y/2−1/4)
as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-decoupled
MSPH.

Table 1 The drag coefficients for Re = 40 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 1.6163± 0.0149 1.6161± 0.0220 1.6400± 0.0095 1.6024± 0.0075
15 1.6572± 0.0058 1.6583± 0.0153 1.6640± 0.0056 1.6440± 0.0054
20 1.6543± 0.0028 1.6638± 0.0114 1.6600± 0.0024 1.6531± 0.0029
25 1.6633± 0.0035 1.6650± 0.0088 1.6643± 0.0031 1.6588± 0.0035
30 1.6632± 0.0030 1.6600± 0.0083 1.6643± 0.0028 1.6584± 0.0031

Table 2 The drag coefficients for Re = 100 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 1.1586± 0.0540 1.2080± 0.0350 1.1604± 0.0232 1.1151± 0.0160
15 1.3282± 0.0200 1.3685± 0.0210 1.3442± 0.0092 1.3252± 0.0093
20 1.3864± 0.0122 1.4031± 0.0134 1.3960± 0.0075 1.4013± 0.0080
25 1.4104± 0.0091 1.4141± 0.0121 1.4140± 0.0077 1.4158± 0.0076
30 1.4130± 0.0090 1.4166± 0.0115 1.4126± 0.0077 1.4129± 0.0080

4 Conclusions

Here we presented higher order corrections to impose C2. The direct calculations of second order
derivatives by CSDMSPH give smaller errors than other methods in the disordered regions. The
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Fig. 4 Error evaluation when computing the second order x-derivative of the function 1−(x/2−1/4)2 ·(y/2−1/4)2

as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-decoupled
MSPH.

Table 3 The lift coefficients for Re = 100 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 ±0.4380 ±0.3547 ±0.2452 ±0.2072
15 ±0.3636 ±0.3877 ±0.3357 ±0.2962
20 ±0.4075 ±0.4219 ±0.3617 ±0.3738
25 ±0.3747 ±0.3830 ±0.3694 ±0.3700
30 ±0.3807 ±0.3982 ±0.3644 ±0.3655

Table 4 The Strouhal number forRe = 100 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 0.1805 0.1751 0.1770 0.1744
15 0.1742 0.1742 0.1751 0.1758
20 0.1733 0.1751 0.1736 0.1738
25 0.1740 0.1752 0.1736 0.1735
30 0.1731 0.1747 0.1728 0.1736

corrections are useful in applications where the laplacian or bilaplacians are present in coupled
equations. A surprising effect is the higher order accuracy results for the flow around a solid cylinder
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Fig. 5 Error evaluation when computing the second order xy-derivative of the function 1− (x/2− 1/4)2 · (y/2−
1/4)2 as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-
decoupled MSPH.

where the CSDMSPH proved to give higher accuracy than the FPM and it obtains convergence
of the drag coefficients at lower values of D/∆x for both cases studied, Re = 40 and Re = 100.
In addition we tested the effect of changing the ratio h/∆x while keeping D/∆x. Aside to having
numerical stability, the drag coefficients had fairly good values. This is explain by the fact that the
SPH configurations are fairly regularly due to the particle shifting technique [16,17] which imposes
the fluid particles to maintain distances close to the initial distance ∆x. Unlike the case of standard
δ-SPH [15] changing the ratio h/∆x resulted in stable simulations with results very close to the
FPM, but with higher standard errors in measuring the drag coefficients. This is important because
decreasing the ratio h/∆x results in decreasing the numbers of neighbors which can significantly
accelerate the speed of simulation depending on the computer platform used.
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Fig. 6 Error evaluation when computing the second order x-derivative of the function exp[−(x/2 − 1/4)2 ·
(y/2 − 1/4)2] as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected
semi-decoupled MSPH.
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Fig. 8 The drag coefficient Cd as a function of the ratio between the particle diameter D and initial particle
distance ∆x for FPM (−◦) and CSDMSPH (−∗), Re = 40. The CSDMSPH reaches the saturated value of 1.6640
for D/∆x = 15. The ratio is significantly lower than in the case of FPM.
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Fig. 9 The drag coefficient Cd as a function of the ratio between the particle diameter D and initial particle
distance ∆x for FPM (−◦) and CSDMSPH (−∗), Re = 100. The CSDMSPH reaches the saturated value of 1.414
for D/∆x = 25, very similar to the FPM, however for the lower resolution the values of the drag coefficient are
closer to the saturated value than values obtained with FPM.
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ABSTRACT

The investigation of fluid structure interactions is crucial in many areas of science and technology. This
study presents a robust methodology for studying fluid structure interactions, which is characterized by
high convergence behavior and is insensitive to distortion and stiffening effects. Therefore, the Smoothed
Particle Hydodynamicy is coupled with the high order FEM. After various coupling methods for linear
and quadratic elements from the literature have been described, a variant with higher-value approach
functions is implemented. The two methods can be meshed independend without loss of accuracy. After
successful validation, it is shown that only a few finite elements are necessary to obtain a convergent
solution. The presented method is promising especially for thin-walled structures where significantly
fewer degrees of freedom are required than for linear elements.

1 Introduction

In many fields of science and engineering, we know that the interaction of fluids with structures has an
important effect on the behavior of the overall system. For this reason, effective and robust methods
for describing these interactions have been the subject of intensive research activities throughout the last
decades. Figure 1 shows three typical applications in which an accurate description of the Fluid Struc-
ture Interaction (FSI) is essential for capturing the dynamics of the system. A section of an automatic
fluid ball balancing unit of a centrifuge is depicted in Figure 1a. Among other things, the ball position
depends on the flow conditions and thus influences the vibration behavior of the system [1]. In Figure 1b
components of a turbocharger system such as shaft, turbine and compressor are shown. Additionally, the
pressure distribution in the floating ring bearings resulting from the operating condition are indicated. It
should be clear that dynamical response of a turbocharger can only be described in a meaningful way by
taking the hydrodynamics in the bearings into account [2]. As a third example, in which the considera-
tion of FSI is essential, Figure 1c illustrates the sound radiation caused by the structural vibrations of an
engine block. Here, the surrounding fluid (air) has to be considered for the simulation [3].
For the numerical investigation of FSI, various numerical procedures are available and their effectiveness
depends on the specific characteristics of the problems that is investigated. An accurate description of the
effect induced by the interaction provides an opportunity to estimate the performance of new products
already in an early stage of the product development cycle. Thus, the design can be enhanced in order
to reach project specific goals. In addition, expensive prototypes are only required for the final testing
as well as for validation purposes. Due to the importance of considering FSI in several applications, the
overarching goal of this contribution is to develop a robust numerical method which features high rates
of convergence.
In this contribution the solid (deformable) structure is described using the finite element method (FEM)
which is the dominant method for solving problems in structural dynamics. In order to improve this ap-
proach a special focus is placed on using high-order FE shape functions, making this numerical method
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insensitive to locking effects and element distortion [5]. An additional advantage are high possibly ex-
ponential rates of convergence [6].
The liquid phase is described using the smoothed-particle hydrodynamics (SPH) method, which is a
particle-based, meshless Lagrangian method [17]. Possible areas of application are multiphase flows,
moving interfaces and problems with large changes in the fluid area. A coupling between SPH and FEM
has been successfully realized with linear [7–9] or quadratic [10] FEs and is well-suited for the descrip-
tion of fluid structural interactions. The novelty of our approach lies in the coupling of SPH to high order
FEs which results in advantages with respect to locking effects and element distortion being of interest
when thin-walled structures are investigated.
The performance of the proposed methodology will be evaluated based on a simple academic bench-
mark test. As mentioned before due to the coupling of high order FEM and SPH the influence of a fluid
phase on the vibrational behavior of a thin walled structure such as an oil pan can be straightforwardly
investigated. By using the high order FEM, the thin-walled structures can be described effectively, since
these elements are robust against distortion (large aspect ratios). Here, it is observed that the fluid has a
significant effect on the dynamic behavior of the structure [3]. This has also a notable effect on the noise
emission and is, therefore, of utmost importance for the acoustic properties of the structure.

2 High order finite element method

The basic idea of the FEM is the division of the considered domain in smaller sub-domains, so-called
finite elements. The exact solution of the mathematical problem is often approximated by simple poly-
nomial ansatz functions, which are defined only within a finite element. In order to obtain a convergent
solution, a distinction is frequently made between the h-, p- and hp- versions of the FEM [11, 12]. In the
h- version of the FEM, which is implemented in all commercial FE programs, convergence is achieved
through the refinement of the mesh. A mesh refinement can be conducted both globally and locally, i.e.
the element dimension h is reduced until a convergent solution is reached (h → 0). In the case of the
p version of the FEM, the element dimensions are kept constant and the polynomial degree p is suc-
cessively increased. Commercial FE programs usually have maximally quadratic elements (p ≤ 2). A
combination of the two presented methods leads to the hp-FEM which ensures exponential convergence
even for singular problems.
In general, it can be stated that higher-order ansatz functions are to be favored, since higher convergence
rates (possibly even exponential ones) can be achieved. An additional advantage is their robust behav-
ior with respect to locking phenomena and element distortions. As a result, highly accurate results can
be achieved even with highly distorted elements [6]. Figure 2 illustrates the benefits of higher order
ansatz functions in terms of improved convergence rates. The error is plotted in the energy norm over the
number of degrees of freedom of the system in a log-log diagram. For problems that exhibit a smooth
solution, the convergence curve for the p-FEM follows an exponential curve, while the h-FEM shows

(a) Ball balancing unit [1] (b) Turbocharger [4] (c) Sound radiation [3]

Figure 1: Typical problems with FSI.

796



3

Figure 2: Convergence rates of the h-, p- and hp-Version FEM for a two dimensional linear problem with
singularities [6].

only algebraic convergence. Even for problems involving singularities, the convergence rate of the p-
version of the FEM is at least twice than of the h-FEM. If the h-refinement is suitably combined with
the p-adaptation, an exponential convergence can be achieved even in the case of problems with singular
locations. Therefore, the application of higher-order shape functions (p ≥ 3) is recommended in many
cases.

3 Smoothed-particle hydrodynamics

SPH is a numerical method in which the bodies and fluids in the solution area are approximated by a set
of particles. In addition to position and velocity, these particles are associated with additional information
such as mass, pressure and temperature of the approximated amount of material. SPH is a Lagrangian
method and thus the particles move together with the approximated material. The method was presented
by Lucy [13] and Gingold & Monaghan [14] for astrophysical investigations and is nowadays widely
used for fluid dynamics [15, 16]. The fundamental idea is based on the integral approximation of a
quantity A of the fluid particle i under consideration of the neighboring particles j

Ai(r) =
∫

A(r) W (r− r j,h)dr j, (1)

where W is the kernel function, h the kernel length, r the location and dr j a differential volume element.
This approximation is exact if the delta function is chosen for the kernel. Hence, the integral given in
Eq. (1) can be approximated by a summation over all particles n within the influence area

Ai(r) =
n

∑
j=1

m j
A j

ρ j
W (r− r j,h j). (2)

A typical set-up of SPH simulations is sketched in Figure 3, where a particle i (red), its neighbor particles
(blue), the influence area, which is a multiple of the kernel length h (depending on the kernel function)
and the kernel function are depicted. The function value indicates the influence of a neighboring particle
exerts on the central particle.
An advantage of SPH is that the path of a particle can be traced exactly. In this way, mixing and boundary
layers can be effectively described. The treatment of different materials is very simple by introducing
different particle properties and the interactions can be implemented in a straightforward fashion. An-
other advantage is that only domains that are filled with the material (fluid) need to be discretized and
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Influence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radiusInfluence radius

Central particle
Kernel function

Neighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particlesNeighbor particles

Figure 3: Central particle with neighbor particles, influence area and kernel function [18].

therefore, no numerical costs are incurred in areas that are not immersed. In Eulerian methods, the entire
simulation area has to be meshed and calculations are executed for the whole domain in each time step.
A detailed description of the method including its derivation for fluid dynamics can be found in [17].
In this contribution, dynamic boundaries are used [19]. That is to say, particles with the same proper-
ties as the fluid particles are placed at the boundaries of the structure. However, these particles have no
translational degrees of freedom (fixed at the current position or move along a given path). In this way, a
penetration of the boundary is prevented.

4 Fluid Structure Interaction – SPH-FEM coupling

In the following, FSI investigations based on coupling SPH and h-FEM are presented. It has been shown
that it is adequate for some studies to consider the solid as a rigid body. A primary example for this
case are offshore platforms, interactions of ships and tsunami, where the influence of the rigid body on
the wave breaking is investigated [20, 21]. The influence of including elastic bodies was considered and
was investigated by different authors. The first publication, which is known to the authors of this paper,
is from Attaway [7]. This study showed an SPH-FEM interaction of two identical solid bodies which
were pressed against each other. The coupling was realized with a master slave concept. Therefore, the
penetration of the slave (SPH) body by the master (FEM) body was prevented using a penalty approach
(coupling forces). This coupling was realized for solid-solid interaction, the possibility for FSI was not
realized but already mentioned in the article. Another realization of FSI using FEM-SPH coupling was
proposed by De Vuyust [22]. In this application, dynamic boundary conditions were used, i.e. in the
area of contact SPH particles that coincide with the nodes of a FEM discretization were deployed. The
displacement of the FE-Nodes directly translates to a displacement of the corresponding SPH boundary
particles. By treating the FE nodes as SPH particles they act as boundary particles and cause a repulsive
force as fluid particles approaches. The generated force acts equally on both fluid and solids. In this way,
a penetration of the boundary is prevented and additionally the force is transferred from the fluid particles
to the elastic body (FE model). The sum of the acting forces is equal to zero according to Newton’s third
law. Forces exerted by fluid particles on boundary particles are distributed among the nodes using the
element ansatz functions. In Ref. [22] three application examples were discussed, whereby a coupling
of fluid and elastic body was not presented. A different type of coupling conditions was introduced by
Fourey [9] who uses the fluid pressure for FSI (referred to as pressure coupling). The pressure value at
a FE node is calculated from the average of the pressures of the fluid particles that are in the influence
area of the FE node. With this method, the mesh size of both variants is independent of each other. The
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penetration of the solid by the fluid was prevented using so-called ghost particles. That is to say, the
fluid particles are mirrored at the boundary and the new particles are treated like fluid particles, while
their movements depend on their parent particles. Another concept, similar to Attaways [7] master-slave
coupling, is used by Yang [8]. By using repulsive boundaries, fluid particles get a repulsive force as a
function of their wall distance normal to the boundary. This force acts on the FE system in the same
size and in the opposite direction. The element ansatz function distributes the force to the nodes of the
element involved (penalty coupling).
The possibility to describe both fluid and solid with a SPH approach is also briefly mentioned. Rafiee [23]
verified a pure SPH-based methodology and obtained a good agreement compared to previously pub-
lished results. This approach will not be discussed in this study, since both the imaging quality of solids
in comparison to the FEM is worsened and the numerical complexity increases significantly [24]. FEM is
by far the most widely used method for solving partial differential equations and is therefore considered
to be a useful supplement to SPH in order to efficiently describe the elastic bodies.
The presented couplings of SPH and FEM from literature uses linear FE elements, but even quadratic
elements have already been implemented [10]. Higher ansatz functions have not been considered to the
knowledge of the authors. Consequently, the paper at hand is an extension of the current state of the art.

5 High order FE-SPH-Coupling

FEM and SPH interact via pressure (nodal forces) respectively force that is exerted by the fluid particles
on the FE mesh. This results in displacements of the FE nodes which are transferred to the particles; i.e.
SPH provides the loads for the FEM, and the FEM transfers the resulting structural displacements and
velocities to the SPH particles. The coupling implemented here is based on the work of Fourey [9]. The
pressure at a FE node is determined by the mean value of the particle pressures in its influence domain.
In Figure 4 this concept is visualized for a two-dimensional setting. Three fluid particles (blue) are de-
tected in the influence area of the left FE-node (orange). The pressure values associated with these fluid
particles are averaged and converted into an equivalent nodal load which is achieved by integrating the
pressure distribution over the face of an immersed FE. In determining the nodal forces, it is important to
accurately approximate the discrete pressure function (given only at the fluid particles). One idea is to
interpolate the pressure function using a simple polynomial distribution along the boundary of immersed
FEs. Figure 5 shows an example of the distribution of nodal forces for a constant pressure along an
element boundary for linear, quadratic and higher-order finite elements. Here, already the non-constant
distribution of the force values on the nodes is observed. This results from the computation of energet-
ically equivalent nodal loads under consideration of the element ansatz functions. The equivalent nodal
force Fe is calculated based on the pressure values p(ξ) and the ansatz function N(ξ) along the surface Γ

Fe =

∫

Γ
NT

(ξ) p(ξ)dΓ. (3)

De Vuyust [22] used a node-particle dualism creating points that are both SPH boundary particles and FE
nodes. That is one suitable option but not necessary, especially when considering the coupling with high
order FEM, because the nodal distribution is not equidistant for most variants [25] and therefore, it is
recommended to discretize the two systems separately. In order to interpolate the particle movement of a
SPH fluid particle, the element ansatz functions are used (note that fluid particles are located at arbitrary
positions on the element boundary which do not generally coincide with a FE node). Therefore, the local
coordinates ξ j of the SPH particle within a FE are determined, at the beginning of the simulation by
solving the following non-linear system of equations (inverse mapping)

xSPH, j =
n

∑
i=1

Ni(ξ j) xi, j (4)
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SPH fluid particle

SPH boundary particle
Area of influence

FEM node
Boundary

Figure 4: Two rows of boundary particles (brown) that prevent the fluid particles (blue) from penetrating
the boundary and FE nodes (orange) with the area of influence, from which the fluid pressures are
averaged.

Figure 5: Determination of equivalent node load at a constant pressure distribution at different higher
orders p of the ansatz function. From left to right: Element with constant pressure, Linear element,
Quadratic element, Cubic element, Quadratic element, Quintic element

with respect to ξ j. Where i is the number of FE nodes in an element, Ni is the ansatz function cor-
responding to node i, and xi, j is the global coordinate of the node i in the j-dimensional space. Now,
the displacement of the SPH particle uSPH can be determined using the displacement result u of the FE
simulation

uSPH, j =
n

∑
i=1

Ni(ξ j) ui, j. (5)

These determination does not cause loss of accuracy. By using the ansatz functions, the particular dis-
palcements are exact in terms of the discretization. In this way, the FEM and SPH systems can be
independently discretized. That is to say, different to the approach taken by De Vuyust, it is not nec-
essary that SPH particles and FEM nodes are at the same position. This is particularly advantageous
because many high order FEM variants do not have an equidistant nodal distribution, which is, however,
a prerequisite in the set-up of the initial SPH discretization.

6 Dam break with a rigid obstacle

For the FEM, an in-house developed FE code is used, which also allows different high order approaches
[5]. In this contribution, conventional serendipity elements are deployed with an order of p ≤ 4. For
the description of the fluid, the open source software SPHysics is used. This code has been utilized in
different scientific contexts [26–28] and has there been thoroughly verified and validated.
The well-known example of a dam break and a rigid obstacle is used to demonstrate the FSI with a
solid structure. The dimensions can be taken by Figure 6. In Figure 7 the water profile obtained in
the experiment (photo and red line), a SPH simulation from literature [23] (green line) and our own
implementation in SPHysics are compared. A good agreement between our simulation results and the
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Figure 6: Initial geometry of the water column with a rigid respectively an elastic obstacle [23].
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1.0 s

Figure 7: Comparison of water profile of experimental results (left and red line) with SPH simulations
(Rafiee, green line) [23] and SPHysics implementation (blue particles) for a collapsing water column
with rigid obstacle.

ones published by Rafiee [23] can be observed. The results at the left and right boundaries of the domain
do not seem to be physical as a part of the fluid stays attached to the walls until 0.5 s after the dam break
(green line). This effect does not occur in our simulations and is also not observed in the experimental
measurements. In [23] the difference was attributed to the neglected air in the simulation. The input
values used for this verification example (See Appendix 1) are used for all further investigations.

7 Dam brake with an elastic obstacle

The second example is a typical benchmark test that is often employed to verify FSI applications in
the context of SPH. We use a similar geometry as in the previous example but for this simulation it is
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assumed that the obstacle is not rigid any more and the dimensions of the obstacle are adjusted. The
geometry is depicted in Figure 6. This example was already used by various authors [10, 23, 29, 30], but
unfortunately experimental results are not available, at least to the authors’s knowledge. Figure 8 shows
the displacement of the upper left point of the obstacle over time, with 240 or 60 quadratic FE elements
and 10000 SPH fluid particles, and a comparison with results taken from literature [10, 23]. In [10], Hu
also used 60 or 240 FE elements but 5000, 80000 and 180000 fluid particles. He introduced an efficient
search algorithm (which is currently not implemented in SPHysics) and therefore was able to deploy
this large number of particles. At the beginning the results are comparable with the literature [10, 23,
29, 30], later on there are clear differences. This differences can be attributed to the large deformations
that occur in the verification example. To account for the effects of geometrical non-linearity the second

Figure 8: Comparison between numerical results for time history of the displacement of the upper left
corner, using 10000 Fluid particles and 60 respectively 240 FEs.

Figure 9: Comparison between numerical results for time history of the displacement of the upper left
corner, using 10000 Fluid particles and seven FEs.

Figure 10: Comparison between numerical results for time history of the displacement of the upper left
corner, using 10000 Fluid particles and one FE.
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Piola-Kirchhoff stress tensor was used in [30]. The FEM program used in this work is based on the linear
theory of elasticity which is sufficient to account for the influence of a fluid on the vibration behavior
being investigated in forthcoming publications by the authors. This does not constitute a limitation of the
proposed approach as geometrically and physically nonlinear behavior can be straightforwardly added to
high order FE codes [31]. The deformations at 60 and 240 quadratic elements are similar, so the solution
is converged. Subsequently, this solution is to be realized with significantly fewer elements and ansatz
functions of different order. Figure 9 shows the displacement of the upper left corner using seven FE ele-
ments and different ansatz functions compared to 60 quadratic Elements. It is good to see that the higher
elements are able to describe the vibration behavior of the obstacle. Already seven quadratic elements
are sufficient. Despite the large deformations that occur, the results are still in relatively good agreement.
In order to clarify the potential of high order FEM, Figure 10 shows the displacement using one FE of
different order. It is good to see that a polynomial order of three or higher is sufficient for the vibration
analysis. In future studies, validation examples with small deformations are considered to demonstrate
the performance of high order FE-SPH coupling.

8 Conclusion

A coupling of SPH and high order FEM was shown and verified, which allows to describe the solid body
efficiently using only a few FEs. The insensitivity of high order methods with respect to locking ef-
fects and element distortion makes it ideal for the discretization of thin-walled structures. The proposed
pressure coupling can be easily implemented in existing codes. Other possible coupling schemes from
literature were briefly mentioned but not implemented and validated in the context of high order FEM.
Such an implementation is analogous to the one presented in this contribution and is easily possible. In
addition to serendipity elements used here, other higher order approaches are conceivable. In further
work, different coupling strategies as well as FE ansatz functions will be investigated and evaluated.
Furthermore, a three-dimensional variant is to be implemented and experiments to validate the results
are performed.
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[28] Moncho Gómez-Gesteira, Alejandro JC Crespo, Benedict D Rogers, Robert A Dalrymple, José
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9 Appendix 1

Kernel Cubic spline
Algorithm Predictor corrector
Density Filter Moving Least Squares

every eight time steps
Viscosity Laminar
Equation of state Tait equation
dt 5e-5
Riemann solver none
Kernel correction none
Hughes and Graham correction every eight time steps
CFL number 0.2
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Abstract. The hydrodynamic forces generated by the water moving inside a U-shaped
tank are predicted by using the open-source Smoothed Particle Hydrodynamic (SPH)
solver DualSPHysics. In particular the study focuses on the roll moment prediction of
the U-tank undergoing forced roll motion at different frequencies. The sensitivity of
the hydrodynamic prediction with respect to variations of particle resolution density is
investigated by a systematic set of numerical simulations. Results of the SPH simulations
are validated by comparison against available experimental data on a particular U-tank
shape and discussed both in terms of roll moment amplitude and phase lag with respect
to the imposed motion.

1 Introduction

Anti-Roll Tanks (ARTs) represent a reliable device to reduce ship rolling motion in
waves. Even tough they have some known problems in specific operating conditions, e.g.
at low frequencies, there is a renewed interest in the form of Liquid Tuned Damper (LTD)
devices for applications other than ships such in Wave Energy Converters (WECs) [1] and
both onshore and offshore wind turbines [2, 3]. In the recent years CFD have started to be
used in Simulation Based Design (SBD) frameworks to reach reliable predictions of the hy-
drodynamic behaviors of such a devices [4, 5, 6]. Considering ARTs from a hydrodynamic
perspective there are some relevant non-linear phenomena that can fall in the categories
of the sloshing and, eventually, of slamming which should be properly addressed by us-
ing high fidelity CFD solutions. There are many studies dealing with CFD analyses of
partially filled rectangular tanks carried out by using different techniques. Smoothed Par-
ticle Hydrodynamics (SPH) technique has been applied to this class of problems [7, 8, 9],

1
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reaching good agreement compared to experimental data, both in terms of dynamics and
global loads.
In the present research an open-source SPH solver called DualSPHysics [10] has been used
to analyze the forces and the moments exerted by a U-tank undergoing forced oscillation
at a fixed motion amplitude. Results of the CFD simulations are validated by comparison
against available experimental data on a particular U-tank design [11]. Results are dis-
cussed in the light of the assumptions of the selected CFD method, both as roll moment
amplitude and phase lag with respect to the weave.
This SPH solver has been widely used in many coastal engineering studies (see for in-
stance [12, 13, 14, 15, 16]) and, in a less extent, for naval architecture related problems
(see e.g. [17, 18, 19, 20]). Such a SPH method, relying on a Lagrangian representation of
the fluid flow, is particularly suitable for free surface flows with fragmented sprays such
as the one experienced in sloshing in partially filled tanks.

2 Backgrounds of Anti-Roll Tank Physics and Design

The shape of a passive ART mainly depends on the hull type on which it will be
installed. Despite possible local changes, two most used geometries show a rectangular
or a U-shaped cross section. The latter shape has been considered in the present study.
Compared to a rectangular tank the free surface of a U-shaped tank is generally divided
in two parts, except for very shallow water depths. Particularly at relatively high water
depths this will reduce the possible water impacts on the tank sides due to roll-induced
sloshing. This in turn will reduce the dynamics effects involved in the physics of this ART
type with respect to classic rectangular ones. Due to ship motions (in particular due to
the roll motion) the water inside the ART will start sloshing back and forth exerting a
roll moment on the tank and then on the ship itself. Hence the ART design is driven by
the need to use such a roll moment as damping correction to ship roll motion. Ideally 90◦

phase lag with respect to roll motion should be the best situation, meaning that the water
motion inside the tank is in phase with roll velocity. Stigter [21] proposed a mathematical
formulation to design U-tank and LLoyd [22] provided some further suggestions based
on Stigter’s method e.g. on the maximum tank angle, on the loss of metacentric height
and on the maximum stabilizing moment. Recent studies are instead based on numerical
simulations both by RANSE [23, 24, 25] and, in a less extent, by SPH [26] methods.

3 Computational Fluid Dynamics by Smoothed Particle Hydrodynamics

The core of the open-source SPH solver [10] follows the original formulation proposed
by Monaghan [27]. This solver has been developed to exploit GP-GPU computation,
hence allowing the use of a relatively large number of particles. According to the SPH
formulation the flow is solved in a mesh-free Lagrangian framework based on particles
description. Field variables (e.g. V , ρ or p) and their derivatives are represented in a
continuous integral form by a suitable kernel function (kernel approximation) and then
discretized over the computational domain (particle approximation). Field variables on a
specific particle are then computed by approximation using the nearest neighbor particles.

2
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Giving a function f(x) its integral form is expressed according to Eq. (1):

f(x) =

∫

Ω

f(x′)δ(x− x′)dx′ (1)

Using a kernel function W (x − x′, h) depending on a smoothing length h, Eq. (1) can
be written in terms of Kernel approximation as in Eq. (2). Such a kernel is substituted
by proper analytic functions that vanish for separations greater than kh (being k a given
constant). The cubic spline kernel function has been chosen.

〈f(x)〉 =
∫

Ω

f(x′)W (x− x′, h)dx′ (2)

Pressure are computed by the state equation of Eq. (3) assuming water as a weakly
compressible fluid. c0 is the sound speed ranging from 50 m/s up to 250 m/s to ensure
Mach < 0.1 and γ is a constant generally taken equal to 7.

p =
c20ρ0
γ

[(
ρ

ρ0

)γ

− 1

]
(3)

Both the mass and the momentum conservation laws, Eq. (4) and Eq. (5), respectively,
are written in terms of particles approximation as follows:

dρi
dt

=
∑

ij

mj (ui − uj)∇iWij (4)

dui

dt
= −

∑

ij

mj

(
Pi

ρ2i
− Pj

ρ2j
+Πij

)
∇iWij + g (5)

The summation over the two indexes i and j accounts for particles interactions; m, u and
P are the particle mass, velocity and the pressure at a particle respectively. Πij is a force
contribution used to avoid tensile instabilities. being the artificial viscosity coefficient α
the main parameter that controls this additional force term. A further diffusive term is
introduced in the continuity equation by the delta-SPH formulation (see for instance [28])
in order to reduce density fluctuations generated by the combination of the stiff density
field described by the state equation and the natural disordering of the particles, resulting
in high-frequency low amplitude oscillations in the density scalar field.

4 Selected test case and numerical simulation settings

The proposed fluid dynamic study has been performed on one of the U-tanks tested by
Field and Martin [11]. They carried out a systematic experimental campaign by varying
both the dimensional ratios of the tank and the water depth inside of it. Fig. 1 displays
a scheme of the U-tank where the reference system used for the computations has been
highlighted. Table 1 instead reports the main dimensions of the configurations used for
the numerical simulation.
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Figure 1: Sketch of the U-Tank. Main dimensions [hTank, BTank, hDuct, BDuct], draft T , center of

rotation CR and the position r of the ith pressure probe Pi are indicated.

Table 1: Main dimensions of the U-Tank (full scale).

hTank 10.0 [ft] BDuct 24.0 [ft]
BTank 42.0 [ft] T 3.0 [ft]
hDuct 1.0 [ft] ZCR

4.5 [ft]

The CFD analysis has been performed by scaling the dimensions of the tested U-tank
by a factor λ = 8.0. Froude similarity has been used since it is considered of general
validity for sloshing-type problems [29] and for scaling gravity forces. Each of the six
SPH simulations has been carried out for 8 roll periods TRoll, hence changing the physical
simulated time TMax according to the specific frequency of oscillation ω. According to the
experimental tests, the maximum roll angle has been taken equal to θ44 = 2◦.
Time-varying lateral and vertical forces, FX(t) and FZ(t), respectively, have been com-
puted from pressures. The latter have been directly measured by pressure probes uni-
formly distributed along each side of the tank, placed at a distance along the normal to
each boundary equal to δProbe = 1.5h, being h the smoothing length of the simulation.
The time-varying roll moment M44(t) with respect to the center of rotation of the tank
CR has then been computed from the forces. Fourier Transform has been used to obtain
the amplitude M44(ω) and phase φ44(ω) of the roll moment. An example of time histories
of the lateral and vertical forces on the tank and of the roll moment exerted by the fluid
is shown in Fig. 2.

5 Particle density sensitivity analysis

A preliminary analysis of the effect of the particle density with respect to the predicted
roll moment has been carried out by using the extrapolation method proposed by Celick
[30]. Table 2 reports the results of such a convergence analysis. The extrapolated value
of the roll moment obtained by using the two finer densities Phi21−EXTR is very close to
the value computed by using the medium size particle density (≈ 200k particles). This
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Figure 2: Time histories of the transverse force FX (top figure), vertical force FZ (middle figure) and

roll motion (bottom figure). Tank sinusoidal motion is shown by a black solid curve.

Table 2: Particle density convergence analysis.

Case nP M44 Φ21,EXTR Φ32,EXTR ∆εΦ21,EXTR−M2

M1 400k 54.56
M2 200k 55.40 54.439 56.361 1.76%
M3 100k 48.72

ensures that the intermediate particle resolution used to compute M44 is accurate enough.

6 Validation by comparison against experimental measurements

The SPH simulations have been carried out on a two-dimensional case scaled accord-
ing to Froude similarity with λ = 8.0. Hence the numerical results have been scaled
considering the width of the tank in order to allow the comparison against the experi-
mental measurements, shown in Fig. 3. A satisfactory agreement between the two results
is found, being the trends of both the amplitude and the phase correctly predicted. The
maximum deviation on the roll moment amplitude of the numerical prediction with re-
spect to experimental measurements is about ∆M44 � 12% at ω = 0.62. The prediction
is even better close to the peaks where the error is significantly decreased, ∆M44 ≤ 4.5%.
A greater maximum deviation is found on the phase lag of the roll moment with respect
to the imposed (sinusoidal) motion Φ44 in the extent of about ∆Φ44 � 20%. Again at
the peak frequencies the quality of the prediction is higher on the phase lag too, being
∆Φ44 ≤ 5%.

Fig. 4 displays the fluid velocity magnitude at four characteristics phases over a roll
period, ψ = [0◦, 45◦, 90◦, 135◦, 180◦], respectively, for two frequencies of oscillation, ω =
0.44 [rad/sec] and ω = 0.62 [rad/sec]. The first correspond to the peak frequency while
the latter is the one showing the larger error on the roll moment amplitude. Both set
of snapshots have been taken at the 8th roll period of the corresponding simulation. At
the lower frequency (the peak one) the fluid reaches higher velocities. This is mainly due
to gravitational effects during the water transfer from one side to the other. In fact, the
slower dynamics of the tank allow the flow to be more affected by the gravity forces. As a

5

810



A. Papetti, G. Vernengo, S. Gaggero, D. Villa and L. Bonfiglio

 0

 20

 40

 60

 80

 100

 120

 140

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

M
4
4
 [

to
n

 m
]

Φ
4
4
 [

d
eg

]

ω [rad/sec]

M44-SPH
M44-EXP
Φ44-SPH
Φ44-EXP

Figure 3: Comparison of the experimental measurements (black) against SPH results (red) in terms of

amplitude (circles) and phase lag (squares) of the roll moment.

result the fluid is accelerated for a longer time lapse. For the same reasons, there is also a
greater difference between the water levels on the two sides of the tank. Furthermore there
are stronger vortexes at the inner corners of the tank that rise due to water re-circulation
while the side is filling with water.

7 Conclusions

A CFD study on a U-Tank under forced oscillating motion has been carried out by
using a Smoothed Particle Hydrodynamics (SPH) open source solver. Backgrounds of
both the U-Tank analysis and the numerical solver have been briefly presented. The roll
moment has been computed by the forces that in turn have been derived directly from
pressures over the tank boundaries.
A preliminary analysis of the effect of the particle density on the solution has been car-
ried out. Results have been extrapolated by using the Richardson’s method providing
information on the convergence properties of the solution. The proposed SPH solution
has finally been validated by comparison against available experimental measurements on
a U-tank. The tank has been scaled by considering Froude similarity. Both predictions
of the amplitude and the phase lag of the roll moment provide satisfactory results. The
maximum relative difference with respect to the experiments close to the peak frequen-
cies is lower than 4.5% for the amplitude and 5.0% for the phase lag. It rises up to 12%
and 20% at a higher frequency for the amplitude and the phase lag, respectively. Some
insights of the fluid flow have also been provided by comparison of the snapshots over

6
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(a) ω = 0.44 rad/sec ψ = 0◦ (b) ω = 0.62 rad/sec ψ = 0◦

(c) ω = 0.44 rad/sec ψ = 45◦ (d) ω = 0.62 rad/sec ψ = 45◦

(e) ω = 0.44 rad/sec ψ = 90◦ (f) ω = 0.62 rad/sec ψ = 90◦

(g) ω = 0.44 rad/sec ψ = 135◦ (h) ω = 0.62 rad/sec ψ = 135◦

(i) ω = 0.44 rad/sec ψ = 180◦ (j) ω = 0.62 rad/sec ψ = 180◦

Figure 4: Snapshots of the flow inside the tank at two oscillation frequencies, ω = 0.44 [rad/sec] (left
column) and ω = 0.62 [rad/sec] (right column), respectively. The same phases ψ over the roll period has

been compared on each row. Velocity magnitude is show by the colormap.
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a roll period of the fluid flow at two frequencies. As expected, it has been shown that
gravitational forces have a greater effect on the fluid properties as a slower dynamics is
developed, hence at lower frequencies of oscillation.
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Abstract. In this paper, analytical and experimental studies of the vibration suppression of a 
square plate with a particle damper are discussed. The primary objective of this paper is to 
construct an analytical model to simulate the transient impact response of a plate with a particle 
damper. In the experimental approach, an acrylic resin plate with all sides clamped was used. 
The transient vibration of the plate caused by the impact of a steel ball was measured with a 
laser displacement sensor. The effects of the mass ratio, particle material and cavity shape on 
the damping efficiency were investigated. To capture the behavior of the entire system in detail, 
an analytical model based on coupling between the finite element method and the discrete 
element method was constructed. Rayleigh damping was used to approximate the damping 
behavior of the plate without granular materials. Comparison between the experimental and 
analytical results showed that accurate estimates of the response of a plate can be obtained. 

 
 
1 INTRODUCTION 

Particle damping is a typical cost-effective technique for vibration suppression. It involves 
the use of small metallic or plastic particles contained in a cavity of a primary mass. 
The damping effect results from the exchange of momentum during the impact of granular 
materials against the wall of the cavity. Owing to the simplicity of their construction, particle 
dampers have been widely used for structural damping applications in boring bars [1], printed 
circuit boards [2] and double-layered ceilings [3]. 

Many experimental and analytical studies have demonstrated the effectiveness of particle 
dampers. In the experimental studies, the effects of the mass ratio, particle size, cavity 
dimensions and excitation level on the efficiency of the damping system were investigated [4]. 
In the analytical studies, the discrete element method (DEM) [5, 6] and the direct simulation 
Monte Carlo approach [7] were used to predict particle damping. Most previous theoretical 
analyses have focused on single-degree-of-freedom systems with particle dampers. Recently, 
some researchers have been studying the vibration characteristics of continuous structures with 
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particle dampers [8, 9]. However, these studies were limited to predicting the dynamic 
responses of a cantilever beam with particle dampers. 

In this paper, analytical and experimental studies of the vibration suppression of a square 
plate with a particle damper are discussed. The primary objective of this work is to construct 
an analytical model to simulate the transient impact response of a plate with a particle damper. 
In the experimental approach, an acrylic resin plate with all sides clamped was used. The 
transient vibration of the plate caused by the impact of a steel ball was measured with a laser 
displacement sensor. In the theoretical analysis, the simulation was performed by combining 
the finite element method (FEM) with the DEM. The damping characteristics of the plate 
without granular materials were approximated by Rayleigh damping.  

 
Figure 1: Experimental apparatus 

 

2 EXPERIMENT 

2.1 Experimental apparatus 
Figure 1 shows the experimental apparatus used in this study. A square plate made of acrylic 

resin was clamped on all sides. The plate was 400mm wide and 5mm thick. A container 
enclosing granular materials was attached to the center of the plate as a particle damper. An 
electromagnet was located above the plate. A steel ball was attached to the electromagnet as an 
impactor. Upon cutting off the current to the electromagnet, the ball collides with the center of 
the plate and the plate is allowed to oscillate freely. The motion of the plate was measured with 
a laser displacement sensor. A ball with a diameter of 12.7mm was dropped from a height of 
990mm. 

Figures 2(a) and 2(b) show the shapes of the containers of the particle damper. To investigate 
the effect of the shape on the damping performance, cubic and cylindrical containers were used. 
Also, the effects of the mass ratio λ and particle material on the damping performance were 
investigated.  
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(a) Cubic container     (b) Cylindrical container 

Figure 2: Shapes of containers of the particle damper 

 
Figure 3: Measurement of the spring constant 

 

 
Figure 4: Effect of the shape of the container 

(h=8.0mm, λ=14.6%, φ6.35mm, copper particles) 
 

Here, the mass ratio λ is the total mass of the granular materials divided by the equivalent mass 
of the first mode of the plate. The equivalent mass was obtained as follows. A container was 
hung from the plate and a predetermined mass was placed on the container. The displacement 
of the center part of the plate was measured with the laser displacement sensor, which was 
installed as shown in Figure 3. Because the weight is proportional to the displacement, the 
spring constant 𝑘𝑘� was determined from the proportionality constant. Then, the equivalent mass 
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is given by 
𝑚𝑚� = 𝑘𝑘�/(2𝜋𝜋𝑓𝑓��)�, (1) 

where 𝑓𝑓�� is the fundamental frequency of the plate. 
 

 

 
Figure 5: Effect of the mass ratio 

(cubic container, h=8.0mm,φ4.0mm, steel particles) 
 

 
Figure 6: Effect of the particle material 

(cubic container, h=8.0mm, λ=14.6%, φ6.35mm) 
 

2.2 Experimental results 
Figure 4 shows the effect of the shape of the container on the damping performance. This 

figure also shows a plot of the displacement of the center of the plate versus time. It is clear that 
damping is efficient in the presence of granular materials. There is little difference in the time 
history between the cubic and cylindrical containers. Therefore, it is shown that the shape of 
the container does not affect the damping performance. 

Figure 5 shows the effect of the mass ratio λ on the damping performance. It is shown that 
the damping performance increases with the mass ratio. This appears to be because more 
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momentum transfer occurs as the mass ratio increases. 
Figure 6 shows the effect of the particle material on the damping performance under the 

same mass ratio. Although the same mass ratios were used for the steel and copper particles, 
the number of steel particles was different from the number of copper particles owing to the 
density difference. It is clear that the damping performance is independent of the particle 
material. 

 

3 NUMERICAL METHOD 
To capture the behavior of the entire system in detail, the equations of motion for the plate 

and each particle should be solved. In this paper, physical interpretations of the damping   
behavior of the plate with the particle damper are given with the help of coupled FEM-DEM 
simulations. In this study, the simulation code was developed using C++ language. 

  

(a) Single view drawing                 (b) Side view 

Figure 7: FEM mesh representing the plate 

 

3.1 Model of the vibration system 
Figure 7 shows the FEM mesh representing the plate with the particle damper used in this 

numerical analysis. The plate was modeled with tetrahedral elements.  The equation of motion 
for the plate is given by 

[𝑀𝑀]{�̈�𝑢} + [𝐶𝐶]{�̇�𝑢} + [𝐾𝐾]{𝑢𝑢} = {𝑓𝑓}, (2) 

where {𝑢𝑢} is the displacement of each node and [𝑀𝑀], [𝐶𝐶] and [𝐾𝐾] are the mass, damping and 
stiffness matrices, respectively. The dots denote time derivatives and {𝑓𝑓} is the external force 
vector. Rayleigh damping was used to approximate the damping behavior of the plate without 
granular materials. 

The equation of motion for particle 𝑖𝑖 is given by 
𝑚𝑚�̈�𝒑� = 𝑭𝑭� − 𝑚𝑚𝒈𝒈

𝐼𝐼�̈�𝜃� = 𝑻𝑻�              
, (3) 

where 𝑚𝑚 is the particle mass, 𝐼𝐼 is the moment of inertia of the particle, 𝒑𝒑 is the position vector 
of the center of gravity of the particle, 𝜃𝜃 is the angular displacement vector, 𝑭𝑭� is the sum of the 
contact forces acting on the particles and 𝑻𝑻� is the sum of the torque generated by the contact 
forces. 
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The normal component of the contact force acting on a particle is given by [10] 

𝑓𝑓� = 𝑘𝑘�𝛿𝛿�
�/� + 𝜂𝜂��̇�𝛿�, (4) 

𝜂𝜂� = 𝛼𝛼�𝑚𝑚𝑘𝑘�𝛿𝛿�
�/�, (5) 

where 𝛿𝛿� and �̇�𝛿� are the normal displacement and velocity of particle 𝑖𝑖 relative to particle 𝑗𝑗, 
respectively. The value of  α is determined by the coefficient of restitution. 

The tangential component 𝑓𝑓� of the contact force is given as follows if there is no slipping 
[10]: 

𝑓𝑓� = 𝑘𝑘�𝛿𝛿�
�/�𝛿𝛿� + 𝑐𝑐��̇�𝛿�, (6) 

 

 
(a) Cubic container without granular materials 

 

 
(b) Cubic container with granular materials 

(h=8.5mm, λ=18.8%, φ4.0mm, steel particles) 
Figure 8: Experimental and analytical results 

 
where 𝛿𝛿� and �̇�𝛿� are the tangential displacement and velocity, respectively. 

In the case of slipping, the following equation is satisfied: 
𝑓𝑓� > 𝜇𝜇�|𝑓𝑓�|, (7) 

where 𝜇𝜇� is the coefficient of static friction. 
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When Eq. (7) is satisfied, the tangential component 𝑓𝑓� of the contact force is expressed as 
𝑓𝑓� = −𝜇𝜇�𝑓𝑓��̇�𝛿�/��̇�𝛿��, (8) 

where 𝜇𝜇� is the coefficient of kinetic friction. The contact force acting on the impactor was 
also calculated using Eqs. (3)–(8). 

The procedure for the calculation is as follows. First, collision detection is performed and 
the contact force is calculated. This force is used to analyze the vibration of the plate by the 
FEM. Then the particle motion is analyzed using Eq. (3). The same procedure is repeated for 
all the particles. 

3.2 Analytical results 
Figures 8(a) and 8(b) show experimental and analytical results in the same plane as in Figure 

4. For the cases in Figures 8(a) and 8(b), the cubic containers without and with granular 
materials, respectively, were used. As shown in Figures 8(a) and 8(b), it was found that the 
calculated results agree with the experimental results. Therefore, the analytical approach in this 
study is very effective for estimating the damping effect in the dynamics of a plate with granular 
materials.  

 

4 CONCLUSIONS 
The dynamics of a square plate with a particle damper was investigated both experimentally 

and analytically. The combination of the finite element method with the discrete element 
method yielded an analytical solution for estimating the transient impact response of a plate 
with a particle damper. From the experimental results, it was shown that the shape of the 
container does not affect the damping performance. It was also shown that the mass ratio affects 
the damping performance whereas the particle material does not affect the damping 
performance. An analytical approach using the coupled FEM-DEM is very effective for 
estimating the transient vibration of a plate with a particle damper.  
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