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Abstract The Material Point Method (MPM) has been developed from the Parti-
cle in Cell (PIC) method over the last 25 years and has proved its worth in solv-
ing many challenging problems involving large deformations. Nevertheless there are
many open questions regarding the theoretical properties of MPM. For example in
while Fourier methods, as applied to PIC may provide useful insight, the non-linear
nature of MPM makes it necessary to use a full non-linear stability analysis to de-
termine a stable time step for MPM. In order to begin to address this the stability
analysis of Spigler and Vianello is adapted to MPM and used to derive a stable time
step bound for a model problem. This bound is contrasted against traditional Speed
of sound and CFL bounds and shown to be a realistic stability bound for a model
problem.

Keywords MPM Non-linear Stability

1 Introduction

The Material Point Method (MPM) may be viewed as being a solid mechanics method
that is derived [26,27] from the fluid implicit particle, FLIP and PIC methods and
which has had considerable success on large deformation problems. Despite this suc-
cess many theoretical issues to do with MPM remain unresolved. One such issue
is the stability of the method, given its non-linear nature. One approach is to use a
Fourier-based analysis e.g. [7,19] or another is to use an energy-conservation analy-
sis ’approach e.g. [1] is taken. However Wallstedt and Guilkey [29] rightly point out
that the non-linear nature of the MPM scheme makes classic linear stability analysis
inappropriate. Typically, approaches such as a speed of sound approach are used to
define a time step, [12]. An alternative approach to stability s to consider conservation
of energy. While energy conservation is of great importance it does not necessarily
imply stability [20].
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The situation is similar for other particle methods. There is also much related
work on SPH [14,18] and finite element methods, see [3–5] for a summary of this
work. Belytschko and Xaio [5] address two sources of instability of their particle
methods. The first one is a rank deficiency of the discrete equations that is similar
to the ringing instability or the null space problem considered here and the second
is a distortion of the material instability. The work on these methods deals with con-
tinually moving points without having a background grid as is used in MPM. For
this reason it is not at all clear how the body of work introduced above immediately
relates to MPM with its mixture of Lagrangian particles and a Eulerian background
grid.

One way to start to address the issue of stability is is to note that the standard
time integration methods used in MPM corresponds to the use of the semi-implicit
Euler method, or symplectic Euler-A [16]. There is convergence and stability anal-
ysis of this method in [23] and this analysis is sufficiently general to be applied to
the MPM, providing that care is taken with the non-linear nature of MPM. The in-
tention here is to use this approach to shed some light on the non-linear stability of
MPM by considering a one dimensional model problem as an ordinary differential
equations system in the values at particles and nodes. While this does not address
the well-known issues to do with ringing that has been previously considered [11,7],
the aim is to consider how to bound the time step when non-linearity is taken into
account. Consequently Section 2 described the MPM method and the model problem
used, while Section 3 provides the theoretical framework for the stability analysis in
Section 4 which leads to a stability result for the update strain last case. Numerical
experiments as on a model problem used by [11] are reported in Section 5, show that
the derived stability limit is of value for the model problem considered. This paper
build on the conference paper [6] by extending the approach to the GIMP method
and the update stress last approach together with computational results. In deriving
the results here we will derive a stability condition that relates to the speed of sound
condition used by [12].

2 A Simplified Form of MPM Method for Analysis

The description of MPM used here follows [11] in that the model problem used here is
a pair of equations connecting velocity v, displacement u and density ρ (here assumed
constant):

Du
Dt

= v, (1)

ρ
Dv
Dt

=
∂σ

∂x
+b, (2)

with a linear stress model σ = E ∂u
∂x for which Young’s modulus, E, is constant, a

body force b and with appropriate boundary and initial conditions. For convenience a
mesh of equally spaced N +1 fixed nodes Xi with intervals Ii = [Xi,Xi+1] , on on the
interval [a,b] is used where

a = X0 < X1 < ... < XN = b, (3)
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h = Xi−Xi−1. (4)

Further it is assumed that there are m particles between each pair of nodes, situated
at xn

p points where at each time step, tn = δ t ∗n, where n is the nth time step, and the
computed solution at the pth particles will be written as un

p = u(xn
p, t

n). Suppose that
the particles in interval i lie between Xi and Xi+1 and have positions xim+ j, j = 1, ..,m.
The calculation of the internal forces in MPM at the nodes requires the calculation of
the volume integral of the divergence of the stress, [29], which is written as

f int
i =−1

h ∑
p

D∗ipσpVp. (5)

The coefficients D∗ip may also be chosen to reproduce derivatives of constant and
linear functions exactly, [11], in a similar way to that used in other particle methods
e.g. [8]. The assumption here is that GIMP is being used [2]. A further simplification
is to assume uniform particle masses and that the initial volume of the particles is
uniform for the m particles in an interval. The particle volumes are defined using the
absolute value of the deformation gradient, |Fn

p |, and the initial particle volume,

V n
p = |Fn

p |
h
m
, where F0

p = 1. (6)

From (5) the acceleration equation in MPM method after cancelling h and using
constant density is:

an+1
i =

−1
m

( ∑
xp∈Ii−2

Dn∗
ip σ

n
p |Fn

p |+ ∑
xp∈Ii−1

Dn∗
ip σ

n
p |Fn

p |+

∑
xp∈Ii

Dn∗
ip σ

n
p |Fn

p |+ ∑
xp∈Ii+1

Dn∗
ip σ

n
p |Fn

p |). (7)

The two terms involving particles Xp ∈ Ii−1 and xp ∈ Ii+2 arise as GIMP is being used.
The equation to update velocity at the nodes, as denoted by vn

i is then given by

vn+1
i = vn

i +dtan+1
i . (8)

Using linear interpolation gives the equation for the update of the particle velocity:

vn+1
p = vn

p +dt[λi−1,pan+1
i−1 +λi,pan+1

i +λi+1,pan+1
i+1 +λi+2,pan+1

i+2 ],xp ∈ Ii (9)

where λip is defined by [2,24] . The use of GIMP basis functions would give rise to
an extended stencil involving an+1

i−1 and The equation for the particle position update
is

xn+1
p = xn

p + vn+1
p dt. (10)

The immediate use of the updated velocity vn+1
p in this and subsequent equations is

the symplectic Euler method. The update of the deformation gradients and stresses is
given using their linear spatial derivative defined by : which in the case of GIMP the
derivative is represented by a four point stencil.

∂vn+1

∂x
(xp) =

1
h

i+2

∑
j=i−1

γ j,pvn+1
j ,xp ∈ Ii. where −1≤ γ j,i ≤ 1. (11)
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The following inequality will be useful later∣∣∣∣∂vn+1

∂x
(xp)

∣∣∣∣≤ 1
h

i+2

∑
j=i−1

|vn+1
j |,xp ∈ Ii. (12)

The displacement is updated using

Fn+1
p = Fn

p +
∂vn+1

∂x
(xp)Fn

p dt,xp ∈ Ii. (13)

While stress is updated using the appropriate constitutive model and Young’s Modu-
lus, E,

σ
n+1
p = σ

n
p +dtE

∂vn+1

∂x
(xp),xp ∈ Ii. (14)

3 Stability of Time Integration Using the Spigler and Vianello Approach

Spigler and Vianello [23] consider ordinary and partial differential equations of the
form

u̇ = f (t,u,u),0 < t ≤ T,u(0) = u0 (15)

and apply the semi-implicit Euler method used by MPM to this as given by:

un+1 = un +dt f (tn,un+1,un). (16)

It is assumed that the exact solution ū to the PDE satisfies the perturbed equations
given by

ūn+1 = ūn +dt f (tn, ūn+1, ūn)+δ
n+1, (17)

where δ n+1 is the local truncation error. Spigler and Vianello introduce a perturbed
scheme given by

v̄n+1 = ũn +dt f (tn+1, v̄n+1, ũn)+δ
n+1, (18)

ũn+1 = v̄n+1 + σ̃
n+1 (19)

where σ̃n+1 is a local error on the current time step. Subtracting equation (17) from
(18) and adding and subtracting a term then gives

v̄n+1−un+1 = ūn−un +dt f (tn+1, v̄n+1, ũn)−dt f (tn+1, v̄n+1,un) (20)

+dt f (tn+1, v̄n+1,un)−dt f (tn+1,un+1,un)+δ
n+1. (21)

Defining the error as
ε

n = v̄n−un. (22)

taking the inner product of equation (21) with εn ,using Cauchy-Schwartz on the right
hand side of this equation, and taking norms and using a Lipshitz condition gives the
error inequality [23]

||εn+1|| ≤ (1+dtK2)||ũn−un||+dtK1||εn+1||+ ||δ n+1||. (23)
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While the quantity K1 is defined by [23] via a one-sided Lipshitz condition constant,
here the stronger, but equivalent, condition [13] is used

|| f (tn, v̄n+1,un)− f (tn,un+1,un)|| ≤ K3||v̄n+1−un+1|| (24)

that ensures that the one-sided condition also holds if K1 is replaced by K3. K2 is
defined by [23] as being a Lipshitz constant that satisfies the equation

|| f (tn, v̄n+1,un)− f (tn, v̄n+1, ũn)|| ≤ K2||ũn−un||. (25)

Regardless of which approach is used we arrive at the equation (20) in [23]:

||ũn+1−un+1|| ≤ 1+dtK2

(1−dtK3)
||ũn−un||+ ||δ n+1||

(1−dtK3)
+ ||σ̃n+1||. (26)

The stability condition stated by [23] is then given by

dt(K2 +K3)≤ 1. (27)

In showing how to apply such stability results to non-linear problems Fekete and
Farago [9,10] reference extensive earlier work, such as that of Trenogin [28] and
Sanz-Serna and colleagues [21,22] which in turn references and considers the ap-
proaches of Keller and Stetter [25,15]. that uses locally Lipshitz continuous func-
tions, In this case it is necessary to find a constant R such that a function, say, f (x)
satisfies a Lipshitz condition on an open ball of center z and radius L denoted by BR
which may depend on the time step see [21,22], where

BL(z) := {y ∈ Rm : ||y− z|| ≤ L} (28)

and the Lipshitz condition is then given on this ball by

|| f (x)− f (y)|| ≤ K||x− y||,∀x,y ∈ BL. (29)

Furthermore the theory of Trenogin [9,10] also allows a form of stability in which
the Lipshitz constant may grow in time.

In order to use the [23] theory, we now define vector quantities over the number of
particles. Let the total number of particles be npt. Then vectors of particle velocities
vn

p, and nodal velocities vn
N are defined as:

vn
p =

[
vn

1, ...,v
n
npt
]T

, (30)

vn
N = [vn

1, ...,v
n
N ]

T . (31)

The vectors of particle positions xn
p, stresses σn

p and deformation gradients fn
p are

given by

xn
p =

[
xn

1, ...,x
n
npt
]T

, (32)

σ
n
p =

[
σ

n
1 , ...,σ

n
npt
]T

, (33)

fn
p =

[
Fn

1 , ...,F
n
npt
]T

. (34)
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The MPM vectors that correspond to those used by [23] are now defined by:

un =


vn

N
vn

p
σn

p
fn

p
xn

p

 , and ũn =


ṽn

N
ṽn

p
σ̃n

p
f̃n

p
x̃n

p

 . (35)

The vector norm used is given by the 2 norm given by

||yn
p||2 =

√√√√Ntot

∑
i=1

(yn
i )

2, where Ntot = N +4Nm. (36)

It is useful to have the elementary result[
m

∑
j=1

bi

]2

≤ m
m

∑
j=1

b2
i , f or bi ≥ 0. (37)

As an example that helps explain results used below, the vector norm of the gradient
of the particles velocity is bounded by the norm of the velocity values at nodes.∥∥∥∥∂vn+1

∂x

∥∥∥∥= 1
h

 npt

∑
p=1

(
i+2

∑
j=i−1

γ j,pvn+1
j ,

)2
1/2

(38)

As there are m particles per intervals and using equation (12) and transforming the
sum into one over intervals gives:∣∣∣∣|∂vn+1

∂x

∣∣∣∣ | ≤ 1
h

 N

∑
i=1

m

(
i+2

∑
j=i−1

|vn+1
j |,

)2
1/2

(39)

≤
√

m
h

[
N

∑
i=1

16(vn+1
i )2

]1/2

(40)

≤ 4
√

m
h
||vn+1

i || (41)

4 MPM with Symplectic Euler A Integration (Stress Last)

The approach of [23] is now applied to the stress-last case as described by Barden-
hagen [1] which uses the Euler-A symplectic scheme discussed by [16]. The vector
form of the equations for the update of velocities, stresses and deformation gradi-
ents and then positions are given by the following equations. The vector forms of
equations (7, 8) and (9) are:

vn+1
N = vn

N +dtHN(xn
p,σ

n
p , f

n
p), (42)

vn+1
p = vn

p +dtHp(xn
p,σ

n
p , f

n
p). (43)
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The vector form of equations (14), (13) and (10) are written as:

σ
n+1
p = σ

n
p +dtS(vn+1

N ), (44)

fn+1
p = fn

p +dtG(fn
p,v

n+1
N ), (45)

xn+1
p = xn

p +dtvn+1
p . (46)

Using this notation and that used to define the vectors (35) the MPM method may be
written as

v̄n+1
N

v̄n+1
p

σ̄n+1
p

f̄n+1
p

x̄n+1
p

−


vn+1
N

vn+1
p

σn+1
p

fn+1
p

xn+1
p

=


v̄p+1

N
v̄n

p
σ̄n

p
f̄n

p
x̄n

p

−


vn+1
N

vn+1
p
σn

p
fn

p
xn

p

+dt


HN(x̃n

p, σ̃
n
p , f̃n

p)−HN(xn
p,σ

n
p , fn

p)

Hp(x̃n
p, σ̃

n
p , f̃n

p)−Hp(xn
p,σ

n
p , fn

p)
0

G(f̃n
p,v

n+1
N )−G(fn

p,v
n+1
N )

0



+dt


0
0

S(v̄n+1
N )−S(vn+1

N )

G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )

v̄n+1
p −vn+1

p

 . (47)

4.1 Lipshitz constants

The results of [23] require the determination of the Lipshitz constants K2 and K3
where: ∥∥∥∥∥∥∥∥∥∥


HN(x̃n

p, σ̃
n
p , f̃n

p)−HN(xn
p,σ

n
p , fn

p)

Hp(x̃n
p, σ̃

n
p , f̃n

p)−Hp(xn
p,σ

n
p , fn

p)
0

G(f̃n
p,v

n+1
N )−G(fn

p,v
n+1
N )

0


∥∥∥∥∥∥∥∥∥∥
≤ K2

∥∥∥∥∥∥∥∥∥∥


v̄n

N−vn
N

v̄n
p−vn

p
σ̄n

p −σn
p

f̄n
p− fn

p
x̄n

p−xn
p


∥∥∥∥∥∥∥∥∥∥

(48)

∥∥∥∥∥∥∥∥∥∥


0
0

S(v̄n+1
N )−S(vn+1

N )

G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )

v̄n+1
p −vn+1

p


∥∥∥∥∥∥∥∥∥∥
≤ K3

∥∥∥∥∥∥∥∥∥∥


v̄n+1

N −vn+1
N

v̄n+1
p −vn+1

p
σ̄n+1

p −σn+1
p

f̄n+1
p − fn+1

p
x̄n+1

p −xn+1
p


∥∥∥∥∥∥∥∥∥∥
. (49)

4.2 Bounding the Lipshitz Conditions K2

At particle position xp ∈ Ii, the local part of the equation for K2 is

[
G(fn

p, v̄
n+1
N )−G(fn

p,v
n+1
N )

]
p = Fp

1
h

i+2

∑
j=i−1

γ j,p∆vn+1
j ,xp ∈ Ii (50)
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where ∆vi =
[
v̄n+1

N −vn+1
N

]
i. Writing this as a vector equation and taking norms and

using equation (41)gives:

||G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )||= (

npt

∑
p=1

(
Fp

1
h

i+2

∑
j=i−1

γ j,p∆vn+1
j

)2

)1/2,

||G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )|| ≤

Fmaxp

h
√

m
N

∑
i=1

(
i+2

∑
j=i−1

|∆vn+1
j |)

2)1/2,

≤
Fmaxp

h
4
√

m||∆v||, (51)

where Fmaxp = maxp|Fp|. Similarly at the same particle position[
S(v̄n+1

N )−S(vn+1
N )

]
p = E

(
1
h

i+2

∑
j=i−1

γ j,p∆vn+1
j

)
(52)

and so using the same arguments as above

||S(v̄n+1
N )−S(vn+1

N )|| ≤ E
4
√

m
h
||∆v||. (53)

The final equation of (49) is satisfies by a Lipshitz constant with value one. Com-
bining these results, after noting that they apply to different parts of the right side of
(49), gives

K3 ≤ max(1,
4
√

m
h

(E +Fmaxp)). (54)

4.3 Defining the Lipshitz Conditions for the Function G(...) in Equation (48)

From equation (50) at particle position xp ∈ Ii[
G(f̄n

p,v
n+1
N )−G(fn

p,v
n+1
N )

]
p = (F̄n

p −Fn
p )

1
h

i+2

∑
j=i−1

γ j,p∆vn+1
j . (55)

Squaring both sides gives

|
[
G(f̄n

p,v
n+1
N )−G(fn

p,v
n+1
N )

]
p |

2 ≤ |(F̄n
p −Fn

p )
2(

1
h

i+2

∑
j=i−1

γ j,p∆vn+1
j )2, p = 1, ...Nm,

(56)
where i is defined by which xp ∈ Ii. Summing over the number of particles p and
using a similar argument as in Section 4.2 gives

||
[
G(f̄n

p,v
n+1
N )−G(fn

p,v
n+1
N )

]
|| ≤ K∗2 ||(f̄p−, fp)|| (57)

where again using equations (41) gives

K∗2 ≤=
4
h
√

m||∆vn+1
j ||. (58)

Hence from equations (58,54)

K∗2 +K3 ≤
4
h
√

m(E +Fmaxp + ||∆vn+1
j |||). (59)
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4.4 Defining the Lipshitz Conditions for the Function HN(...) in Equation (48)

Applying the triangle inequality to the first equation in (48) gives:

||HN(x̃n
p, σ̃

n
p , f̃

n
p)−HN(xn

p,σ
n
p , f

n
p)|| ≤ ||HN(x̃n

p,σ
n
p , f

n
p)−HN(xn

p,σ
n
p , f

n
p)||+

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)||+ ||HN(x̃n

p, σ̃
n
p , f̃

n
p)−HN(x̃n

p, σ̃
n
p , f

n
p)||. (60)

This condition may be broken down into three parts

||HN(x̃n
p,σ

n
p , f

n
p)−HN(xn

p,σ
n
p , f

n
p)||+≤ KN

2,2||x̃n
p−xn

p||, (61)

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)|| ≤ KN

2,0||σ̃n
p −σ

n
p ||, (62)

||HN(x̃n
p, σ̃

n
p , f̃

n
p)−HN(x̃n

p, σ̃
n
p , f

n
p)|| ≤ KN

2,1||f̃n
p− fn

p||. (63)

For which, by using the properties of vector norms, it follows that

K2 ≤ KN
2,0 +KN

2,1 +KN
2,2. (64)

The ith component of the left side of equation (62) may be written as[
HN(x̃n

p, σ̃
n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)
]

i = ãn+1
i (65)

where

ãn+1
i =

1
m ∑

xp∈Ii+1∪Ii∪Ii−1∪Ii−2

Dn∗
ip δσ

n
p |Fn

p |. (66)

and
δσ

n
p = σ̃

n
p −σ

n
p . (67)

Upon defining
DFn = maxp|Dn∗

ip Fn
p | (68)

and noting that |Dn∗
ip | ≤ 1 allows equation (65) to be written as

|
[
HN(x̃n

p, σ̃
n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)
]

i | ≤
1
m

Fmaxp| ∑
xp∈Ii+1∪Ii∪Ii−1∪Ii−2

δσ
n
p |. (69)

Squaring both sides, summing over i nodes and using (37) gives

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)||2 ≤ (

1
m

Fmaxp)
24m ∑

xp∈Ii+1∪Ii∪Ii−1∪Ii−2

(δσ
n
p)

2 (70)

which after taking the square root gives and using equation (41) gives

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)|| ≤ (

1
m

Fmaxp)4
√

m||δσ || (71)

and so

KN
2,0 ≤

4√
m

Fmaxp. (72)
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For equation (63) the pth component of the vector δ f is defined by

δ f n
p = f̃ n

p − f n
p . (73)

After defining
σmaxp = maxp|σn

p |, (74)

and a similar argument as above in equations 69) to 72) leads to

|
[
HN(x̃n

p, σ̃
n
p , f̃

n
p)−HN(x̃n

p, σ̃
n
p , f

n
p)
]

i | ≤
1
m

σmaxp ∑
xp∈Ii+1∪Ii∪Ii−1∪Ii−2

|δFn
p |. (75)

A similar argument as in equations (70, 71,72) then gives

KN
2,1 ≤

4√
m

σmaxp. (76)

In the case of equation (61) Berzins [6] shows that the original MPM method does
not satisfy a Lipshitz condition. In contrast for the GIMP method, see (29) and Figure
4b in [24], it follows that

|Dn∗
ip (x̃

n
p)−Dn∗

ip (x
n
p)| ≤

2
l
|x̃n

p− xn
p| (77)

where l is the nominal width associated with the particle. Let

σFn = maxp|Fn
p σ

n
p |, (78)

then the change in acceleration in the left side of equation (61) as denoted by δan+1
i

is given by

δan+1
i =

1
m ∑

xp∈Ii+1∪Ii∪Ii−1∪Ii−2

δDn∗
jpσ

n
p |Fn

p |,where xp ∈ I j. (79)

and satisfies the inequality

(δan+1
i )2 ≤

(
2

lm
σFn

)2
(

∑
p∈Ii+1∪Ii∪Ii−1∪Ii−2

|δxn
p|

)2

(80)

where
δxn

p = x̃n
p− xn

p. (81)

It then follows that

(δan+1
i )2 ≤

(
2

lm
σFn

)2

4m ∑
p∈Ii+1∪Ii∪Ii−1∪Ii−2

(δxn
p)

2 (82)

and after summing over p and taking square roots that

||δan+1
i || ≤

(
2

lm
σFn

)
4
√

m||δxn
p|| (83)

Similar arguments as in the previous section give the result

KN
2,2 ≤

8√
ml

σFn. (84)
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4.5 Defining the Lipshitz Conditions for the Function Hp(...) in Equation (48)

Again this equation can be broken down into three parts

||Hp(x̃n
p, σ̃

n
p , f̃

n
p)−Hp(xn

p,σ
n
p , f

n
p)|| ≤ ||Hp(x̃n

p,σ
n
p , f

n
p)−Hp(xn

p,σ
n
p , f

n
p)||+

||Hp(x̃n
p, σ̃

n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)||+ ||Hp(x̃n

p, σ̃
n
p , f̃

n
p)−Hp(x̃n

p, σ̃
n
p , f

n
p)|| (85)

and three Lipshitz constants used to bound the terms on the right side of this equation:

||Hp(x̃n
p,σ

n
p , f

n
p)−Hp(xn

p,σ
n
p , f

n
p)|| ≤ K p

2,2||x̃
n
p−xn

p|| (86)

||Hp(x̃n
p, σ̃

n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)|| ≤ K p

2,0||σ̃
n
p −σ

n
p || (87)

||Hp(x̃n
p, σ̃

n
p , f̃

n
p)−Hp(x̃n

p, σ̃
n
p , f

n
p)|| ≤ K p

2,1||f̃
n
p− fn

p|| (88)

Equation (87) is considered first using the definition in (67). Let

ãn+1
i =

1
m ∑

p∈Ii+1∪Ii∪Ii−1∪Ii−2

Dn∗
jpδσ

n
p |Fn

p |, f or xp ∈ I j (89)

ãn+1
i+1 =

1
m ∑

p∈Ii+2∪Ii+1∪Ii∪Ii−1

Dn∗
jpδσ

n
p |Fn

p |, f or xp ∈ I j (90)

and note that from equations (7,9) the pth component of equation (87) is[
Hp(x̃n

p, σ̃
n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)
]

p =[
λi+1,pãn+1

i+1 +λi,pãn+1
i +λi−1,pãn+1

i−1 +λi−2,pãn+1
i−2
]
. (91)

Using the same approach as in equations (69) to (71) gives the inequality

|
[
Hp(x̃n

p, σ̃
n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)
]

p | ≤=
Fmaxp

m ∑
xp∈Ii+2∪Ii+1∪Ii∪Ii−1∪Ii−2

|δσ
n
p | (92)

and, as above, summing over 5 intervals and 5m particles and using (41) gives

K p
2,0 ≤

5√
m

Fmaxp (93)

For equation (88) a similar argument as above again leads to

|
[
Hp(x̃n

p, σ̃
n
p , f̃

n
p)−Hp(x̃n

p, σ̃
n
p , f

n
p)
]

i | ≤
1
m

σmaxp ∑
xp∈Ii−2∪Ii−1∪Ii∪II+1∪I+2

|δFn
p | (94)

and then
K p

2,1 ≤
5√
m

σmaxp. (95)

The final case gives

|
[
Hp(x̃n

p,σ
n
p , f

n
p)−Hp(xn

p,σ
n
p , f

n
p)
]

p | ≤
2

lm
σFn

∑
xp∈Ii−2∪Ii−1∪Ii∪Ii+1∪Ii+2

|δxn
p| (96)

resulting in

K p
2,2 ≤

10√
ml

σFn. (97)
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4.6 Stability Condition

It is now possible to define the constants in the stability condition (27). The con-
stant K3 is defined by equation (58). Collecting together the different local Lipshitz
conditions with respect to the vectors multiplied by those constants from equations
(61,62,63,86,87,88) gives

K2 ≤ KN
2,0 +KP

2,0 +KN
2,1 +KP

2,1 +K∗2 +KN
2,2 +KP

2,2 (98)

Bringing together (72,76,84,93,95,97), then gives

K2 ≤ K∗2 +
9√
m
(Fmaxp +σmaxp +

2
l

σFn). (99)

The only part of this that is similar to a conventional CFL type condition is the coef-
ficient K∗2 , however even this term depends on the velocity gradients. This expression
gives additional weight to the comments in [19] about how more than a conventional
CFL condition is needed. Combining equations (98) and (99) in (27) gives the stabil-
ity condition

dt ≤ 1/(K3 +K∗2 +
9√
m
(Fmaxp +σmaxp +

2
l

σFn)) (100)

Combining results from equations (59) and (100) and using the bound on D coeffi-
cients from equation (68) we get

dt ≤ h
√

m
4m(E +Fmaxp + ||vi||)+9h(Fmaxp +σmaxp +

2
l
√

m σFn)
(101)

This result reflects the form of the original equations in that the Young’s modulus
constant E appears in its original form in the equation (14) for the evolution of stress.
In contrast the speed of sound heuristic used by codes such as [12] gives rise to the
equation:

dtsound ≤
√

E/h (102)

This difference between e and
√

E occurs in part by noting that when the standard
wave equation Utt = c2Uxx is written as a pair of first order equations.

∂U
∂ t

= c
∂W
∂x

(103)

∂W
∂ t

= c
∂U
∂x

(104)

where c is the sound speed. The same approach can be used here by defining

σ̂ =
σ√
E

(105)

This means that the equation for the evolution of stress (14) may be rewritten as:

∂ σ̂

∂ t
=
√

E
∂v
∂x

(106)
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Hence the associated Lipshitz constant K3 involves
√

E instead of E. and the accel-
eration equation (7) may be rewritten as

an+1
i =

−
√

E
m

( ∑
xp∈Ii−2

Dn∗
ip σ̂

n
p |Fn

p |+ ∑
xp∈Ii−1

Dn∗
ip σ̂

n
p |Fn

p |+

∑
xp∈Ii

Dn∗
ip σ̂

n
p |Fn

p |+ ∑
xp∈Ii+1

Dn∗
ip σ̂

n
p |Fn

p |) (107)

and the associated Lipshitz constants are appropriately multiplied by
√

E. Once this is
done then this scaling filters through the analysis to give modified Lipshitz constants
and in a straightforward manner arrive at the modified stability condition.

dt ≤ h
√

m
4m(
√

E +Fmaxp + ||vi||)+9h
√

E(Fmaxp +σmaxp +
2

l
√

m σFn)
(108)

5 Computational Experiments

5.1 Model Problem

In order to illustrate the above results the model problem used by Gritton and Berzins
[11] will be employed. This problem is defined by:

σ = P = E
∂u
∂X

= E(F−1), (109)

where E is the Young’s modulus. The rate of change of stress is then computed as,

σ̇ = E(Ḟ), (110)
= E(lF), (111)

where l is the velocity gradient in the spatial description.
The problem considered is a 1D bar problem, following similar examples in [24].

The analytic solutions for displacement and velocity defined in the material descrip-
tion are:

u(X , t) = Asin(2πX)sin(cπt), (112)
∂u
∂ t

= Acπsin(2πX)cos(cπt), (113)

where c =
√

E/ρo and A is the maximum displacement. The constitutive model is
defined in Equation (109) and the body force is,

b(X , t) = 3A(cπ)2u(X , t). (114)

The initial spatial discretization uses two evenly spaced particles per cell with the
spatial domain being [0,1]. The periodic nature of the analytic solution means that
both periodic boundary conditions and zero Dirichlet boundary conditions are both
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appropriate. The initial conditions for the updated Lagrangian description of the par-
ticles are:

F = 1, (115)

xp = X0
p , (116)

Vp =V 0
p . (117)

For the 1d bar problem the cell width is h = 10−2, the material density is ρ0 = 1
and the time interval is [0,1], The Young’s modulus is varied across the values E =
104,103,256,64,16,4, the maximum displacement is A = 0.015, and A = 0.05 and
the time step values used are dt = 10−5,10−4,10−3,10−2. In both these cases for the
values given of A it should be noted that with the use of the above parameters particles
will cross from one cell to another.

5.2 MPM Methods used in Experiments

Initial experiments were undertaken with both the standard MPM method using linear
basis functions at the nodes and delta functions at the particles analyzed by Berzins
[6] and the MPM GIMP paper [24] as describe by Steffen et al. [24]. These experi-
ments were run with fixed time steps as shown in Table 1 in which the time step, dt
is varied appropriately. A value of * indicates instability when particles leave the do-
main due to too large a time step being used. In all cases just running with the speed
of sound caused the code to fail. The number of grid crossings varies greatly. Table
2 shows this variation. The results in Table 1 show that the derived stability bounds
while obviously conservative, give numerical errors that are close to the minimum
possible with the given mesh and particle distribution.

In order to illustrate some of the challenges that arise with these calculations,
more detailed results are shown for the case when E = 1.e+ 4 with A = 6.0E − 2.
Figure 1 shows the values of displacement velocity and Stress at the end of integration
after 100,000 steps in this case. Figure 2 shows the errors in U , the value of the stable
time steps given by equation (108) and the number of grid crossings with GIMP and
a time step of 1E-5. Figure 3 shows the same results with a time step of 1E-4. The top
part of Figure 3 shows the rapid increase in error at about 8500 steps at which point
the calculation fails. The middle sub figure shows that the projected stable step size
shrinks in response to the increased values of stress and velocity at that point. There
also appear to be more grid-crossing errors than if a smaller time step is used, as is
shown by comparing the bottom part of figures 2 and 3.

6 Summary

This approach addresses the non-linearity of the MPM method by deriving stability
bounds using the approach of Spigler and Vianello. The bounds, while clearly conser-
vative, do provide a reasonable limit for the time step to be used. The approach used
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Table 1 Accuracy and Stability

A=1.5e-2 E = 10000 A=5e-2 E =10000
dt Meth dt Stable Max Error dt Meth dt stable Max Error

MPM 9.0e-5 5.1e-5 MPM * *
1e-4 GIMP 4.8e-6 3.8e-5 1e-4 GIMP * *

MPM 8.6e-5 3.6e-4 MPM * *
1e-5 GIMP 4.e-6 5.1e-5 1e-5 GIMP 8.7e-7 1.7e-2

MPM 8.2e-5 6.4e-4 MPM * *
1e-6 GIMP 4.7e-6 5.5e-5 1e-6 GIMP 7.9e-7 1.0e-2

A=1.5e-2 E = 1000 A=5e-2 E =1000
dt Meth dt Stable Max Error dt Meth dt stable Max Error

MPM 4.2e-4 2.0e-4 MPM * *
1e-3 GIMP 3.8e-5 1.8e-4 1e-4 GIMP 8.6e-6 4.4e-3

MPM 4.2e-4 7.9e-5 MPM * *
1e-4 GIMP 3.9e-5 4.5e-5 1e-5 GIMP 8.6e-3 4.2e-2

MPM 4.2e-4 1.2e-4 MPM * *
1e-5 GIMP 3.9e-5 5.6e-5 1e-6 GIMP 8.8e-6 4.4e-2

MPM 4.2e-4 7.9e-5 MPM * *
1e-6 GIMP 3.9e-5 5.6e-5 1e-7 GIMP 8.6e-6 4.4e-2

A=1.5e-2 E = 256 A=5e-2 E =256
dt Meth dt Stable Max Error dt Meth dt stable Max Error

MPM 9.1e-4 6.2e-5 MPM * *
1e-3 GIMP 1.2e-4 5.2e-5 2.0e-3 GIMP 4.2e-5 2.4e-3

MPM 9.1e-4 6.7e-5 MPM 6.0e-4 9.0e-3
1e-4 GIMP 1.2e-4 2.2e-5 1e-3 GIMP 4.5e-4 2.4e-3

MPM 9.0e-4 1.0e-4 MPM 5.9e-4 6.8e-3
1e-5 GIMP 1.2e-4 2.3e-5 1e-4 GIMP 4.1e-5 2.9e-3

MPM 9.0e-4 8.2e-5 MPM * *
1e-6 GIMP 1.2e-4 2.3e-5 1e-5 GIMP 3.8e-5 2.8e-3

A=1.5e-2 E = 64 A=5e-2 E =64
dt Meth dt Stable Max Error dt Meth dt stable Max Error

MPM 1.8e-3 4.6e-5 MPM 1.4e-3 8.1e-3
1e-3 GIMP 3.6e-4 1.8e-5 2e-3 GIMP 1.5e-4 7.8e-4

MPM 1.8e-3 1.8e-5 MPM 1.4e-3 1.0e-2
1e-4 GIMP 3.7e-4 6.2e-6 1e-3 GIMP 1.5e-4 5.1e-4

MPM 1.8e-3 7.6e-5 MPM 1.4e-3 7.5e-3
1e-5 GIMP 3.7e-4 7.4e-6 1e-4 GIMP 1.5e-4 7.0e-4

MPM 1.8e-3 8.2e-5 MPM 1.3e-3 7.8e-3
1e-6 GIMP 3.7e-4 7.5e-5 1e-5 GIMP 1.4e-4 7.2e-4

A=1.5e-2 E = 16 A=5e-2 E =16
dt Meth dt Stable Max Error dt Meth dt stable Max Error

MPM 3.4e-3 4.3e-5 MPM 2.9e-3 5.0e-3
1e-3 GIMP 9.6e-4 9.1e-6 2e-3 GIMP 4.6e-4 1.5e-4

MPM 3.4e-3 5.7e-5 MPM 2.8e-3 1.0e-2
1e-4 GIMP 9.6e-4 6.0e-6 1e-3 GIMP 4.6e-4 1.0e-4

MPM 3.4e-3 6.2e0-5 MPM 2.8e-3 6.6e-3
1e-5 GIMP 9.6e-4 6.0e-6 1e-4 GIMP 4.6e-4 1.2e-4

MPM 3.4e-3 6.3e-5 MPM 2.7e-3 3.7e-3
1e-6 GIMP 9.6e-4 6.0e-6 1e-5 GIMP 4.6e-4 1.7e-4

A=1.5e-2 E = 4 A=5e-2 E = 4
dt Meth dt Stable Max Error dt Meth dt stable Max Error

MPM 5.7e-3 4.7e-5 MPM 5.0e-2 3.4e-3
1e-3 GIMP 2.2e-3 6.8e-6 1.2e-3 GIMP 1.2e-3 1.1e-3

MPM 5.7e-3 4.7e-5 MPM 4.0e-3 2.8e-3
1e-4 GIMP 2.1e-3 6.8e-6 1e-2 GIMP 1.0e-3 7.0e-4

MPM 5.7e-3 5.3e-5 MPM 5.0e-3 4.8e-3
1e-5 GIMP 2.1e-3 6.0e-6 1e-3 GIMP 1.2e-3 8.4e-5

MPM 5.7e-3 5.5e-5 MPM 4.8e-3 2.7e-3
1e-6 GIMP 2.1e-3 6.0e-6 1e-4 GIMP 1.2e-3 8.4e-5
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Fig. 1 1d Bar, Displacement velocity and stress for GIMP, dt=1E-5

Fig. 2 1d Bar, Error vs Time steps for GIMP, dt=1E-5
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Table 2 Approximate Number of Mesh Crossings For Different E values and Speed of Sound time step

E 4 16 64 256 1000 10000
A=1.5e-2 300 600 1300 2500 5000 15000
A=5.0e-2 1000 2000 4000 8000 16000 55000
dtsound 0.5 0.25 0.125 0.0625 0.03132 0.01

Fig. 3 1d Bar, GIMP Blowup with dt = 1E-4

here is quite general as it uses a quite general ODE form and only general informa-
tion about stencils. It is thus possible to extend the idea to other variants of MPM and
also to to more complex physical problems in more than one space dimension. For
example in early drafts of this paper similar analysis to that above led to the same sta-
bility bounds for the stress-first version of MPM, while noting that the conservation
properties of the methods are quite different [1].

As mentioned above the bounds derived here do not address the ringing instabil-
ity, though by excluding the original MPM method and by limiting the time step they
give rise to stable solutions for the model problem when instability does occur for
larger time steps. There is a need to address this issue in future work.
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