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Abstract.
The Uintah software framework for the solution of a broad class of fluid-structure interaction problems has

been developed by using a problem-driven approach that datesback to its inception. Uintah uses a layered task-
graph approach that decouples the problem specification as aset of tasks from the adaptive runtime system that
executes these tasks. Using this approach it is possible to improve the performance of the software components to
enable the solution of broad classes of problems as well as thedriving problem itself. This process is illustrated by a
motivating problem that is the computational modeling of the hazards posed by thousands of explosive devices during
a Deflagration to Detonation Transition (DDT) that occurredon Highway 6 in Utah. In order to solve this complex
fluid-structure interaction problem at the required scale,substantial algorithmic and data structure improvements
were needed to Uintah. These improvements enabled scalable runs for the target problem and provided the capability
to model the transition to detonation. The solution to the target problem from these runs provided insight as to why
the detonation happened, as well as demonstrating a possibleremediation strategy that may have avoided detonation.
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1. Introduction. The move to multi-petaflop and eventually exascale computing over
the next decade is seen as requiring changes in both the type of programs that written and how
those programs will make use of novel computer architectures in order to perform large-scale
simulations successfully. One approach that is seen as a candidate for successful codes at
such scales uses a directed graph model of the computation toschedule work adaptively and
asynchronously. The potential value of this methodology isexpressed by [25, 16]Exascale
programming will require prioritization of critical-pathand non-critical path tasks, adaptive
directed acyclic graph scheduling of critical-path tasks,and adaptive rebalancing of all tasks
with the freedom of not putting the rebalancing of non-critical tasks on the path itself. Given
such statements it is important to understand the value of this approach as used, for example,
in the Uintah framework [35] when applied to challenging large-scale computational fluid-
structure interaction problems. The development of the Uintah framework has, since its very
inception been driven by such problems. This is possible as Uintah’s task-graph based ap-
proach provides a clean separation between the problem specifications that defines the tasks
and the runtime system that executes the tasks. Improvements to the runtime system thus
have a potential impact on all Uintah applications.

The aim in this paper is to illustrate this application-driven process and to show that
achieving scalable real world science and engineering calculations requires three steps. The
first step is to develop a prototypical application code thatexercises the kernel calculations of
the algorithm and framework and the second step is to use thisprototypical code to exercise
the software in ways similar to the full application so as to expose algorithmic and data
structure deficiencies in both the computational and communication methods. The third step
is to run the full application itself. The motivating problem considered here is a hazard
modeling problem involving energetic materials that resulted in a potentially catastrophic
event on Highway 6 in Utah in 2005 when a truck carrying 36,000pounds of seismic boosters
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overturned, caught fire, and within minutes detonated, creating a crater 70 feet wide by 30
feet deep.

Energetic materials may be classified as propellants, pyrotechnics or explosives. The
most prominent characteristic of these materials is the rate at which they can release en-
ergy, ranging from relatively slow and benign reactions to extremely fast and violent ones.
Specifically, the slow rate of combustion (deflagration) is characterized by wave speeds of
10s-100sm/s while a detonation combustion front moves at 1000sm/s. These modes have
been studied for single monolithic devices and are relatively well understood. What is less
known, and is the focus of our research, is the cause of a Deflagration to Detonation Transition
(DDT) in large arrays of small energetic devices. These arrays are used in the mining indus-
try and are often being transported on highways. The open question is whether or not the
explosives could have been transported in a safer manner so as to prevent a detonation. The
goal of this research is to understand how DDT of multiple arrays of explosives can occur
and to use computational models to help formulate packagingconfigurations to suppress it.
In order to address these questions a DDT model has been developed in this work that has
shown great promise in simulating reactive fluid-structureinteractions. In parallel with this
development the underlying software framework has been extended from a starting point of
scalability on DOEs Titan [34] and Mira [36] to the combination of fluid-structure interaction
and adaptive mesh models needed for this broad class of problems. One challenge in under-
taking this extension is that algorithms that may have had hidden and potentially problematic
dependencies with small constants at large core counts may only become visible at close to
full machine capacity. In order to address these problems required a fundamental rewrite of
many of the algorithms and data structures in Uintah so as to improve their efficiency.

Th main contribution of this paper is to show that after introducing these new, more effi-
cient algorithms and data structures it was possible to demonstrate scalability on 700K cores
on DOE’s Mira and NSF’s Blue Waters for a realistic model problem and to 512K cores on
DOE’s Mira for a real world, complex fluid-structure interaction problem that models DDT
in a large array of explosives. This process is described as follows. In Section 2 the Uintah
framework and its unique runtime system is described in outline. A discussion of the Uintah
problem class and of the DDT modeling of a large array of explosive cylinders is presented
in Section 3. Section 4 describes the main novel technical contributions of the paper with
regard to the scalability challenges faced and the new algorithms and data structures intro-
duced to achieve a scalable simulation. These improvementsinclude a better AMR algorithm
for large scale fluid-structure problems by improving the methods used in particle creation,
task-graph compilation, load balancing and data copying after remeshing. In Section 5, the
benefits of these contributions are shown through scalability and performance results at scales
up to 700K cores. In Section 6 the principal computational science contribution is shown,
namely that in the computational experiments with four DDT cases, developing detonations
are demonstrated, as is the result that packing the explosives differently appears to make it
much more difficult for detonation to occur. Section 7 describes related work using other
similar computational frameworks.

Our conclusion in Section 8 is that these improvements have made it possible to model
the detonation calculation at realistic scales. The results from this model have shown that
detonation does occur in a prototypical simulation and thatit looks likely that storing the ex-
plosives differently would have helped prevent detonation. Given the frequency with which
explosives are transported by road, this is a potentially important result. In summary the
Uintah adaptive DAG-based approach provides a very powerful abstraction for solving chal-
lenging multi-scale multi-physics engineering problems on some of the largest and most pow-
erful computers available today.

2



2. Uintah Infrastructure. The Uintah software framework originated in the University
of Utah DOE Center for the Simulation of Accidental Fires andExplosions (C-SAFE) [15,
40, 39]. Uintah has since been used to solve a variety of challenging fluid, solid, and fluid-
structure interaction problems from a variety of domains described in [9], such as angio-
genesis, tissue engineering, green urban modeling, blast-wave simulation, semi-conductor
design and multi-scale materials research. Uintah’s open-source license (MIT License) en-
courages community development and contributions from a variety of discplines for both
non-commercial and commercial areas.

The Uintah framework is based on the fundamental idea of structuring applications
drivers and applications packages as a Directed Acyclic Graph (DAG) of computational tasks,
belonging to Uintah components that access local and globaldata from adata warehousethat
is part of an MPI process and that deals with the details of communication. A runtime system
manages the asynchronous and out-of-order (where appropriate) execution of these tasks and
addresses the complexities of (global) MPI and (per node) thread based communication. Each
Uintah component implements the algorithms necessary to solve partial differential equations
(p.d.e.s) on structured adaptive mesh refinement (SAMR) grids. The runtime system provides
a mechanism for integrating multiple simulation components and after analyzing the depen-
dencies and communication patterns between these components efficiently executes the re-
sulting multi-physics simulation. Four primary components have been developed and include:
1) a low and high-speed compressible flow solver, ICE [26]; 2)a Material Point Method al-
gorithm, MPM [47] for structural mechanics; 3) a fluid-structure interaction (FSI) algorithm,
MPMICE which combines the ICE and MPM components [23, 24]; and 4) a turbulent react-
ing CFD component, ARCHES [44] designed for simulation of turbulent reacting flows with
participating media radiation.

Uintah components allow the developer to focus solely on developing the tasks for solv-
ing the partial differential equations on a local set of block structured meshes without using
any specific MPI calls [40]. Such components are composed of C++ classes that follow a
simple API to establish connections with other components in the system. The component
itself is expressed as a sequence of tasks where data dependencies (inputs and outputs) are
explicitly specified by the developer. For example in a standard p.d.e. stencil computation
the component specifies the number of ghost-cell layers thatare needed by a task. The tasks
along with their data dependencies are then compiled into a DAG representation to express
the parallel computation along with the underlying communications to satisfy the data needed
by those tasks. The smallest unit of parallel work is a patch composed of a hexahedral cube
of grid cells. Each task has a C++ method for the actual computation and each component
specifies a list of tasks to be performed and the data dependencies between them [10]. Uintah
executes these tasks in parallel by using a runtime system that is largely independent of the
actual application itself. Each task is only ready for execution when the data it needs has
arrived as a result of the automated communications system managed by the runtime system.
As a single data warehouse per multi-core node is used to provide access to local variables
and non-local variables through automatically instantiated MPI communications, the task it-
self only has to acquire the data from a local data warehouse on each compute node. The task
then puts its results into a new data warehouse for the next time step. The new data warehouse
at the end of one step becomes the old data warehouse for the next time step.

This division of labor between the application code and the runtime system allows the
developers of the underlying parallel infrastructure to focus on scalability concerns such as
load balancing, task (component) scheduling, communications, including accelerator or co-
processor interaction. In addition, I/O is handled at this level with a design that facilitates the
incorporation of efficient libraries such as PIDX [29].
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FIG. 1. (a) Uintah Architecture and (b) Uintah Nodal Runtime System

The separation between the application physiscs code and the runtime system is illus-
trated by Figure 1(a). The runtime system that is used on eachcompute node is shown in
Figure 1(b). Overall this structure generally permits advances in the runtime system, such
as scalability, to be immediately applied to applications without any additional work by the
component developer. The nodal component of the runtime system has an execution layer that
runs on each core and that queries the nodal data structures in order to find tasks to execute.

Each mesh patch that is executed on a node uses a local task graph that is composed of the
algorithmic steps (tasks) that are stored along with various queues that determine which task
is ready to run. Data management including the movement of data between nodes together
with the storage of data in the data warehouse occurs on a per-node basis. The execution
of the various tasks is distributed on a per-core level. Communications between the task
queues, the tasks themselves and the data warehouse occur ona nodal level and are shown in
Figure 1(b).

While this separation of concerns and indeed even some user-code has been unchanged
since the first releases of Uintah, as computer systems have grown in complexity and scale, the
runtime system has been substantially rewritten several times [11] to ensure continued scala-
bility on the largest DOE, NSF and DOD computer systems available to Uintah. This scala-
bility is achieved through several novel features in the code. The Uintah software makes use
of scalable adaptive mesh refinement [32, 33, 31] and a novel load balancing approach [30],
which improves on other cost models. While Uintah uses a DAG approach for task schedul-
ing, the use of dynamic out-of-order task execution is important in improving scalability [36].
For systems with reduced memory per core, only one MPI process and only one data ware-
house per node are used. Threads are used for task execution on individual cores. This has
led to much improved memory use and better scalability [34].Additional details surrounding
Uintah’s runtime system can be found in [36].

Even with this successful approach, however, the applications developer must still write
code that ensures that both the computational and communications costs are sufficiently well-
balanced, in order to achieve scalability. In the case wherescaling is not achieved, Uintah’s
detailed monitoring system is often able to identify the source of the inefficiency, as will be
illustrated in Sections 4.1 and 4.2.1 below.

Overall Uintah scales well on a variety of machines including those with Intel or AMD
processors and Infiniband interconnects such as Stampede, the Cray machines such as Titan
and Blue Waters and the Blue Gene/Q machines like Mira, [36].Parts of Uintah also run on
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GPU and Xeon Phi machines at present as part of an ongoing development activity. The sep-
arate runtime system that is clearly differentiated from the main component code allowed us
to identify shortcomings at this level, (see Section 4) and so allowed us to improve the prob-
lematic algorithms thus resulting in better scalability (see Section 5) at the largest problem
sizes and core counts without changing any applications code.

3. Target Scenario and Modeling a DDT. When modeling DDT in solid explosives
there are three modes of combustion to consider, conductivedeflagration, convective deflagra-
tion and detonation. Conductive deflagration occurs on the surface of the explosive material at
low pressures and has a relatively slow flame propagation (onthe order of a fewcm/sec [45]).
To model conductive deflagration, Uintah has adopted the WSB burn model [49] which has
been validated over a wide range of pressures, temperaturesand grid resolutions against ex-
perimental data [42, 41]. The WSB model is a global kinetics burn model which allows
exothermic reactions to be represented at the macro-scale,enabling the use of coarser grid
resolutions without the loss of fidelity. This is essential when trying to simulate problems
requiring large physical domains.

Convective deflagration propagates at a much faster rate (a few hundredm/sec [7]) and
is a very important combustion mode in the transition to detonation. Convective deflagration
occurs when pressures are sufficient to decrease the flame stand-off distance allowing for the
flame to penetrate into cracks or pores in the damaged explosive [3]. This deflagration process
increases the surface area available for burning, thus increasing the mass rate converted from
a solid to gas and the exothermic energy released, further increasing the pressure and burn
rate. We model this process with an isotropic damage model (ViscoSCRAM [6]) to determine
the extent of cracking in the solid. The localized pressure and material damage is used to
determine where convective deflagration is occurring. The WSB burn model is then used to
calculate the mass converted to gas within the solid.

In order for an explosive to transition into a detonation, a pressure threshold must be
reached. For octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the explosive of inter-
est, this pressure is 5.3GPa [42]. Once the detonation pressure threshold is reached the
JWL++ reactive flow model [46] is used to model detonation. Oneof our hypotheses for a
DDT in an array of explosives is that inertial confinement anddeformation of the reacting
cylinders pressing together, forms a barrier that allows the local pressure to increase to that
needed for detonation.

3.1. Multi-material governing equations. The governing multi-material model equa-
tions are stated and described, but not developed, here. Their development and the meth-
ods for solving them can be found in [22, 27, 23, 24]. The 8 quantities of interest and the
equations (or closure models) which govern their behavior may now be identified. Consider
a collection ofN materials, and let the subscript r signify one of the materials, such that
r = 1, 2, 3, . . . , N . In the simulation discussed in Section 6 two materials are used, a solid
(PBX-9501) and a gas (products of reaction). In an arbitary volumeV (x, t), the averaged
thermodynamic state of a material is given by the vector[Mr,ur, er, Tr, vr, θr,σr, p], where
the elements are the r-material mass,velocity, internal energy, temperature, specific volume,
volume fraction, stress, and the “equilibration” pressure. The r-material averaged density
is ρr = Mr/V . The rate of change of the state in a volume moving with the velocity of
r-material is:
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Equations (3.1-3.3) are the averaged model equations for mass, momentum, and internal
energy of r-material, in whichσ is the mean mixture stress, taken here to be isotropic, so
thatσ = −pI in terms of the hydrodynamic pressurep. The effects of turbulence have been
omitted from these equations.

In Eq. (3.2) the term
∑N

s=1 Frs signifies a model for the momentum exchange among
materials and is a function of the relative velocity betweenmaterials at a point. For a two
material problem we useF12 = K12θ1θ2(u1 − u2) where the coefficientK12 determines
the rate at which momentum is transferred between materials. Likewise, in Eq. (3.3),
∑N

s=1 Qrs represents an exchange of heat energy among materials. For atwo material prob-
lemQ12 = H12θ1θ2(T2 − T1) whereTr is the r-material temperature and the coefficientHrs

is analogous to a convective heat transfer rate coefficient.The heat flux isjr = −ρrbr∇Tr

where the thermal diffusion coefficientbr includes both molecular and turbulent effects(when
the turbulence is included).

The temperatureTr, specific volumevr, volume fractionθr, and hydrodynamic pressure
p are related to the r-material mass density,ρr, and specific internal energy,er, by way of
equations of state. The four relations for the four quantites (er, vr, θr, p) are:

er = er(vr, Tr)(3.4)

vr = vr(p, Tr)(3.5)

θr = ρrvr(3.6)

0 = 1 −
P

N
s=1ρsvs(3.7)

Equations (3.4) and (3.5) are, respectively, the caloric and thermal equations of state. Equation
(3.6) defines the volume fraction,θ, as the volume of r-material per total material volume, and
with that definition, Equation (3.7), is referred to as the multi-material equation of state and
so defines the unique value of the hydrodynamic pressurep that allows arbitrary masses of
the multiple materials to identically fill the volumeV . This pressure is called the “equilibra-
tion” pressure [28]. and is solved using a cell-wise iterative scheme. The initial guess for
the dependent variablesvr, P, comes from the previous timestep and the thermal equation of
state is evaluated convergence, see equation (9) in [24].

A closure relation is still needed for the material stressσr. For a fluidσr = −pI + τr

where the deviatoric stress is well known for Newtonian fluids and whereτr is the viscous
shear stress tensor. For a solid, the material stress is the Cauchy stress. The Cauchy stress
is computed using a solid constitutive model and may depend on the rate of deformation, the
current state of deformation (E), the temperature, and possibly a number of history variables:

(3.8) σr ≡ σr(∇ur,Er, Tr, . . . )

Equations (3.1-3.8) form a set of eight equations for the eight state vector with components
[Mr,ur, er, Tr, vr, θr,σr, p], for any arbitrary volume of spaceV moving with the r-material
velocity. This approach uses the reference frame most suitable for a particular material type.
The Eulerian frame of reference for the fluid and the Lagrangian for the solid. There is no
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guarantee that the arbitrary volumes will remain coincident for the two materials. This prob-
lem is addressed by treating the specific volume as a materialstate which is integrated forward
in time from the initial conditions. The total volume associated with all of the materials is
given by:

Vt =
P

N
r=1Mrvr(3.9)

where the volume fraction isθr = Mrvr/Vt (which sums to one by definition). An evolution
equation for the r-material specific volume has been developed in [27] and is stated here as:

1

V

Dr(Mrvr)

Dt
= fθ

r ∇ · u +
[

vrS
s→r
ρr

− fθ
r

P

N
s=1vsS

s→r
ρs

]

+

[

θrβr
DrTr

Dt
− fθ

r

P

N
s=1θsβs

DsTs

Dt

]

.(3.10)

wherefθ
r = θrκ̂r

P

N
s=1θsκ̂s

, andκ̂r is the r-material bulk compressibility,β is the constant pressure

thermal expansivity.
The evaluation of the multi-material equation of state (Eq.(3.7)) is required to determine

an equilibrium pressure that results in a common value for the pressure, as well as specific
volumes that fill the total volume identically.

3.2. Reaction Model. In Eq. (3.1)Ss→r
ρ is the rate of mass converted from s-material,

or solid reactant, into r-material, gaseous products. Similarly, in Eqs. (3.2) and (3.3),Ss→r
ρu

is the momentum andSs→r
ρe the energy converted between the s and r materials. These are

simply the mean values of the donor material (PBX-9501) in the volume. The model for the
mass conversion or mass burn rate is discussed below with full details provided in [4].

Our reaction model uses a simplified two phase chemistry model in which the solid ex-
plosive (A) is converted to gas phase intermediates (B) which react to form the final products
(C). A(solid)→ B(gas)→ C(gas). Therefore only two phases of the combustion are mod-
eled; the condensed and gas phases. The melt layer present inmany explosives is assumed
to have little impact on the overall combustion and is therefore ignored. This model has a
large pressure dependence associated with the conductive heat transfer; as mentioned before,
this greatly affects the rate of gas phase reactions. The mass burn rateSs→r

ρ , whereρ is the
density, is computed using equations 3.11 and 3.12,

(3.11) Ss→r
ρr

=

[

κsρsAsR(T̂s)
2exp(−Es/RT̂s)

CpEs[T̂s − T0 − Qs/2Cp]

]1/2

(3.12) T̂s = T0 +
Qs

Cp
+

Qr

Cp(1 + xr(mb,P )
xs(mb)

)

whereT0 is the initial bulk solid temperature,κ is the thermal conductivity,E is the activation
energy,R is the ideal gas constantCP is the specific heat,Q is the heat released andxr, xs are
physical lengths [4].T̂s is a sub-scale surface temperature, not to be confused withTr or Ts

in Eqs. (3.4, 3.5, 3.8, 3.10). Equations 3.11 and 3.12 are solved iteratively until convergence.
This model for the mass burned (MB) has been modified to include three dimensional effects
by including the Burn Front Area of a cell, BFA, [51], and evaluated over a given time,∆t,
see Equation 3.13. This model has been validated against experimental data for a wide range
of pressures at initial solid temperatures of 273K, 298K and423K [42].

(3.13) MB = ∆t ∗ BFA ∗ Ss→r
ρr
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The reaction model utilizes the crack propagation results from the ViscoSCRAM consti-
tutive evaluation to model the transition into convective deflagration as defined by Berghout
[8]. This model has been adjusted to match experimental relaxation times as determined by
the visco-elastic response for PBX-9501 [5] At a pressure of5.3 Gigapascals (GPa) or higher
Uintahs DDT model switches from deflagration to detonation.This pressure threshold of 5.3
GPa for HMX and PBX-9501 was chosen for three main reasons. First, this threshold gave
reasonable results for the run distance to detonation for aluminium impact experiments [42].
Second, it is well known that the reaction rate increases with increasing pressure. It was dis-
covered there is a discontinuity in this increase at 5 GPa, and the reaction rate exhibits a large
increase at this pressure. At pressures above 5 GPa the reaction rate continues to increase
with pressure, but more dramatically than it did at pressures below the discontinuity [42,18].
Third, the internal energy produced by the reversible adiabatic compression of solid HMX to
5.3 GPa is 138.9 kJ/mol . This amount of energy is relatively close to the activation energy
found for HMX, which lies between 140 and 165 kJ/mol [42] and slightly higher for PBX-
9501. More information about Uintah’s validated reaction and material models can be found
in [42].

4. Adaptive Mesh Refinement Challenges & Improvements.Modern, large-scale
simulations such as our target problem (Section 3) require the use of massive parallelism
and adaptive mesh refinement (AMR). It is well known that achieving a high degree of scal-
ability for AMR based simulations is challenging due to poorscalability associated with the
changing grid. In order to change the grid in response to a solution evolving in time, a number
of steps must occur that do not occur in a fixed mesh calculation. These steps generally in-
clude regridding, load balancing and scheduling [31], as AMR requires that the grid and task
schedule be recreated whenever regridding occurs. Poor performance in any of these steps
can lead to performance problems at larger scales [31]. As wehave gained access to larger
and more diverse computational environments, we have greatly extended the scalability of
the Uintah framework, necessitating continual improvements in the framework itself.

4.1. Standard Benchmark Problem.To understand and continually improve the scal-
ing characteristics of Uintah and key components like MPMICE for each successive genera-
tion of machine, we have developed and used a standard benchmark problem that simulates
a moving solid through a domain filled with air to represent key features of our benchmark
problems as modeled using the MPMICE algorithm in the Uintahframework. In this work we
will refer to two separate resolutions for our benchmark problem, resolution-A(1923 cells)
andresolution-B(3843 cells). This benchmark is shown usingresolution-Ain [34] and [36],
is representative of the detonation problem that is the focus of this work, exercises all of the
main features of AMR, ICE and MPM, and also includes a model for the deflagration of the
explosive along with the material damage model ViscoSCRAM.For resolution-A, three re-
finement levels are used for the simulation grid with each level being a factor of four more
refined than the previous level. This problem has a total of 3.62 billion particles, 518 million
cells and 277,778 total patches created on three AMR levels.While our benchmark problem
with resolution-Aachieved excellent scalability to 512K cores on the DOE Mirasystem [36],
We observed a significant breakdown in scaling at 768K cores due to there being less than
0.3 patches per core and hence devised a much larger resolution problem,resolution-B(3843

cells) by doubling the resolution in each direction resulting in nearly an order of magnitude
increase in problem size. This problem,resolution-Buses a grid utilizing three refinement
levels with each level being a factor of four more refined thanthe previous level, has a total of
29.45 billion particles, 3.98 billion cells created on three AMR levels, and 1.18 million total
patches. As has been witnessed in the past, with each significant increase in problem size
and successive generation of machine, we have discovered algorithmic challenges within the
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underlying framework that limit the scalability at some level. The scaling challenges faced in
this work have only become apparent by running this large problem at high core counts that
have stressed sections of infrastructure code in ways neverbefore seen.

In this case the desire to solve this benchmark problem has required a substantial re-
working of core algorithms (see Section 4.2), with extensive work on Uintah’s task-graph
compilation phase, load balancer and regridder. To achievegood scaling at high resolutions
for our benchmark and detonation problem at high core countson the DOE Mira system has
required 3-4 man-months of work and millions of compute hours in debugging and testing at
large scale.

In order to provide a better perspective on the amount of timeand level of difficulty in-
volved in debugging the problems described above, the first issue faced in improving Uintah’s
AMR capabilities on our standard benchmark problem withresolution Bis described. Within
the MPM particle creation routines (see Section 4.2.1), thelowest core count we were able
to reproduce the bug we encountered at large scale was 64K cores. This turned out to test
the limits of the large-scale commercial debugger Allinea DDT [13] on Mira. At these core
counts on Mira, I/O nodes ran out of memory causing racks of the machine to crash. This
was resolved only by the creation of special debug queues by Argonne staff that helped us to
resolve this difficult and large-scale debugging issue.

4.2. Improvements. The Uintah framework has been improved to support the resolu-
tion required by (and hopefully beyond) this detonation problem, particularly in its particle
system, load balancer and AMR infrastructure code. In orderto identify key performance
and scalability issues, Uintah’s built-in monitoring functions to locate components needing
improvement was used. Third-party profiling tools such the Google Performance Tools [21]
and HPCToolkit [43] were then used to localize the exact codeconsuming the most CPU
time. Manually inserted timers were also used to confirm profiling results and to verify the
improvement once changes were made. The following four major areas of Uintah infrastruc-
ture code are discussed here to illustrate the scaling deficiencies that were discovered when
running the benchmark problem usingresolution-B(see Section 4.1) at extreme scale and
how these problems were addressed.

TABLE 1
Particle Creator Improvement: Strong Scaling

Cores 8K 16K 32K 64K 128K 256K 512K

Before (Average) 2977.2 1475.9 705.9 332.5 147.6 55.9 15.7
Before (Maximum ) 3339.6 1652.2 793.1 375.8 170.0 67.9 21.6

After (Average) 424.5 224.6 118.8 63.1 33.1 17.3 5.4
After (Maximum) 524.8 283.4 148.2 78.9 44.1 22.6 7.3

4.2.1. Particle Creation. As higher resolutions are now being used in the MPMICE
simulation (Section 4.1), a dramatic slow down was observedduring the initialization timestep.
After resolving the large-scale debugging issues described in Section 4.1, it was possible to
localize the problem source. By enabling Uintah’s internalreporting for task execution times,
it was found that this performance issue originated from theMPM::actuallyInitialize task.
This task is designed to create particles and initialize particle data. By using the profiling
methods described above, the particle creator code was found to be the primary source of this
slow down. In Uintah, particles on each patch are created internally by the framework via
a particle creator component. There are many internal variables defined within the particle
creator component’s global scope. Each time the particle creator processes a new patch, these
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temporary variables were being overwritten. The particle creator component was originally
written ten years ago and worked well when using an MPI-only approach; the only approach
available within Uintah at that time. When multi-threaded support was recently added [35],
Pthread mutexes were added to protect these globally definedvariables and generated signif-
icant overhead due to contention for the locks when particles are created on multiple patches
concurrently.

This issue was resolved by redesigning the data structures within the particle creator
code. This was accomplished by separating those variables that were globally defined into
two categories; 1.) read-only variables that must remain globally defined and used by all
patches, and 2.) thread-local variables which can be separated from one another and can
be concurrently accessed without the need for locks. This isa typical problem when using
locks on legacy data structures (from an MPI-only approach), whereby unnecessary shared
data must be separated to get better performance. Table 1 shows the particle creation timing
results, comparing strong scaling runs from 8K cores to 512Kcores. After redesigning these
legacy data structures to work in a multi-threaded environment, a 3X to 7X speedup in this
portion of the code was observed.

TABLE 2
Resource Assignment Improvement: Weak Scaling

Cores 128 1K 82K 64K 512K

Before (Avg.) 0.039 0.269 2.39 18.25 60.96
After (Avg.) 0.010 0.011 0.010 0.009 0.009

4.2.2. Resource Assignment.Another component that showed significant performance
degradation at large scale with high resolution was Uintah’s load balancer. As described
in Section 2, the load balancer partitions the simulation grid by using a history data-based
forecast model. Tasks are then created on patches assigned to a local node. The profiling
results obtained here revealed that scaling issues were centered around the load balancer’s
AssignResourcesmethod. This method assigns each patch in the grid with a rankID. This
rank information is then used for subsequent, automatic MPIcommunication generation be-
tween tasks on different nodes. From the weak scaling timingresults as shown in thebefore
row of Table 2, the cost ofAssignResourcesgrows when the number of patches per node
stays constant. This timings show that there is an algorithmissue that has to be addressed.
The original code looped though all the patches in the grid toassign a resource to it. This
algorithm has anO(n) complexity, wheren is the number of patches. However as the MPI
communications only happens locally in MPMICE, only the tasks that will communicate with
the local tasks need be considered. Consequently, it was possible to restrict this method to
only assign patches in the neighborhood of the local node. The new algorithm has anO(n/p)
complexity, wheren/p is the number of patches in the neighborhood. For weak scaling tests,
n/p is constant as the workload per node stays the same. The scaling results shown in the
after rowof Table 2 confirm the improved weak scaling and also show up to6800X speedup
when using this new algorithm.

4.2.3. Copy Data Timestep.The following two subsections will describe how the per-
formance and scalability of Uintah’s AMR infrastructure code has been greatly improved. As
mentioned above, the efficiency of the regridding operationis very important for solving the
detonation problem. The entire AMR regridding procedure includes three steps: 1) gener-
ating a new grid based on the refinement flags computed by the simulation component, 2) a
copy-data timestep to determine differences between the old and new grid. For an already
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refined area, this means copying data from existing fine leveldata. For a newly refined area,
this step calls a user-provided refine task to compute fine level data from coarse level data,
and 3) compile a new task graph on the new grid for future simulation timesteps. Originally
there was about 98% overhead for a single regridding operation on 512K cores if regridding
were to occur every 50 to 60 timesteps. Profiling and timing measurements were obtained for
the regridding operations to locate performance and scaling issues.

The current regridding algorithm has a linear complexity. The regridder timing is shown
in Figure 2 -Regridder. The solid line shows timing results in terms of weak scaling. The
dotted line shows a linear model thatT = αp whereα = 2.75 × 10−4 andp are number of
cores for the weak scaling runs. For the copy data timestep, the original algorithm computed
the difference between the old and new grid by simply loopingthough the new grid patches
and querying the related old grid patch. This algorithm runsin anO(n log(n)) complexity,
wheren is the number of patches, as a bounding volume hierarchy (BVH) tree is used for
querying a patch from the grid. Each query of this BVH tree costs O(log(n)). It is impor-
tant to have a consistent grid across all processors, so every node performs this computation.
The cost of this copy data timestep is very small. It accountsfor less than 0.2% of the total
overhead on small scale runs, e.g. less than 10K cores. However, the overhead of this op-
eration grows significantly when running with 512K cores. Toimprove the scalability while
keeping the grid consistent across all the nodes, the difference between the old and new grids
is computed and then all locally computed differences are gathered to obtain the difference
across the entire grid. This new algorithms thus has two parts. The cost of the individually
computed portions isO(n log(n)/p) . When running weak scaling tests,n/p is constant.
We then have approximatelyO(log(p)) complexity for the new code. The complexity for
combining the individually computed portions together isO(p). Figure 2-Copy Data shows
the timing comparison between the new and old algorithms. A model ofT = α log(p) + βp
whereα = 1.60, β = 6.69 × 10−6 for the new algorithm is shown in the dotted line. These
results show about 10X speedup for the copy data timestep when using the new algorithm.
This is clear evidence that a sub-optimal algorithm will become a significant performance
issue at large scale, even when its cost appears negligible at low core counts.

4.2.4. Task Graph Compile. After new data has been copied to the new grid, the sim-
ulation needs to continue with this new grid. With Uintah’s DAG based design, when the
grid layout or its partition changes, a new task graph needs be to compiled and new MPI
message tags are then generated by the framework. Task graphcompilation is a complex
operation with multiple phases, including creation of tasks themselves on local and neigh-
boring patches, keeping a history of what these tasks are to compute, setting up connections
of tasks (edges in the DAG), and finally assigning MPI tags to dependencies. Originally
Uintah used a static scheduler where tasks were topologically sorted to compute a valid task
execution order. This topological sort code also ensured the global reduction was called in
a determined order across all the processors. However, thisoriginal code was written for a
relatively small grid. When the sorting function decides which task should be executed before
another task, it takes the union of a particular task’s patches and then compares the union of
patches from another task to determine the overlap. This is an O(n2) complexity, however it
costs less than 0.2% of the total overhead and hence, was unnoticed until running at extreme
scales as in this work. With the dynamic task scheduler, thissorting is no longer necessary.
The global reduction ordering portion of this sorting whichhas a constant cost regardless of
the number of processors or problem size was thus ultimatelyeliminated. As is shown in
Figure 2-TaskGraph Compile, the task graph compiling code,there is a 42X speedup when
running with 512K cores. The dotted line in this graph shows aconstant scaling model. The
overall AMR regridding cost including all three steps has improved by about 10X and its
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FIG. 2. AMR Improvement Breakdown: Weak Scaling Timings for 128K to512K Mira Cores

overhead is less than 10% percent when running with 512K cores. The comparison of before
and after timing and model results are shown in Figure 2-Total AMR. After these significant
development efforts, the tiled regridder itself now contributes the most overhead of all three
steps. Further improvements to this component will also be needed in the future.

5. Scaling Results.This section shows the scalability results for the AMR MPMICE
simulations for both the standard benchmark problem (on both Mira and Blue Waters) using
resolution-Aand resolution-B(as defined in Section 4.1), as well as the actual detonation
configuration for the array of multiple explosive devices (Mira only).

Strong scaling is defined as a decrease in execution time whena fixed size problem is
solved on more cores, while weak scaling should result in constant execution time when more
cores are used to solve a correspondingly larger problem.

Figure 3 demonstrates the overall strong scaling for the standard AMR MPMICE bench-
mark problem described in detail in Section 4.1 using bothresolution-Afrom [36], [34] and
resolution-Bdeveloped in this work. These tests were run on Blue Waters and Mira with
up to 704K (Blue Waters) and 768K cores (Mira) and with 16 (Mira) and 32 (Blue Waters)
threads per MPI node. It is interesting to observe that with the larger core count per node
for Blue Waters (32 vs 16) the scaling is closer to being ideal. This can be attributed to the
reduction in global communication. The strong scaling efficiency relative to 256K cores for
Blue Waters on 704K cores is 89% and for Mira on 768K cores is 71% when running the
benchmark problem ofresolution-B.

In order to obtain scaling results shown, the optimal patch configuration was determined
for our AMR MPMICE benchmark problem as needing to satisfy the following two require-
ments. 1) The number patches on each level should be tuned as closely as possible but should
not exceed the number of cores on the largest run. 2) The patchshould have at least 8x8x8
cells. The second requirement overrides the first one in that, without enough patches in a
particular level for all CPU cores, it is not possible to further divide patches beyond 8x8x8.
For patch sizes smaller than 8x8x8, the cost of a patch’s MPI messages begins to exceed the
cost of its computation, and hence the runtime system cannotoverlap computation with com-
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munication. This lower bound on patch size should be considered as machine-dependent. In
addition to choosing a good patch size for different AMR levels, it is also important to line up
patch boundaries in finer levels to patch boundaries in coarser levels. An easy way to achieve
this is to choose a finer level patch size that can evenly divide coarser level patch size in each
dimension. For example, when coarse level patch size is 8x8x8, it is better to have a finer
level patch size of 16x16x8 than 12x12x12. In fact the latterchoice of patch size has been
seen to lead to a greater MPI communication imbalance.

8K 16K 32K 64K 128K 256K 512K 768K
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FIG. 3. AMR MPMICE Strong Scaling for the Benchmark Problem:resolution-A with 1923 cells and
resolution-Bwith 3843 cells

5.1. Strong Scaling of MPMICE for Benchmark Problem. In the standard bench-
mark problem for bothresolution-Aandresolution-B, the simulation grid changes once every
50 to 60 timesteps as in [31]. A regridding operation occurs once the perticles reach the edge
of the fine grid. The overhead of this regridding process, including creating the new grid,
compiling a new task graph and moving old grid data to the newly created grid, accounts for
less than 3% of the overall execution time withresolution-Aand 10% withresolution-Bwhen
running with 512K cores. This is a result of the improvementsdescribed in Section 4.2 that
have been made to reduce the cost of regridding process for AMR MPMICE simulations.

5.2. Weak and Strong Scaling of MPMICE for Detonation Problem. Using the bench-
mark problem (see Section 4.1) to understand the scaling characteristics of Uintah and its
MPMICE simulation component, engineering guidelines to ensure scalability at the largest
core counts of interest have been developed. In particular,it was determined that the patches
should have sufficient resolution, minimally 512 cells per patch and that there should be ap-
proximately one patch per core. During the strong scalability performance runs, the total
number of patches and resolution were fixed while the core count was increased. At the
largest core count run, it was necessary to adjust the numberof patches for the finest level
such that the total count did not exceed the number of cores. In fact, good strong scaling was
observed even when the number of patches was approximately 85% of the total core count.

Although considerable effort was spent characterizing ourbenchmark problem at varying
resolutions, the real interest is to improve Uintah’s performance on real engineering problems
of interest. Scaling of benchmark problems has little valueif the real problems do not scale.
With that in mind, an example of the detonation problem described in Section 3 was used
with the insight gained from our benchmark characterizations to demonstrate the scalability
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up to 512K cores on DOEs Mira. Figure 4 shows good strong scaling, through the four solid
lines for four problem sizes (each a factor of eight larger than the last) and reasonable weak
scaling (the four dashed lines) showing slightly increasing execution time as the workload
per core is constant across the same four increasing problemsizes. The problem was only run
for ten timesteps (without AMR, as this was exercised at scale in the previous case) but with
a mesh that had three refinement levels were used with four different grid resolutions for the
real detonation calculation. For the largest case, there were 446,880 patches and 1.37 billion
cells and 7.75 billion particles.
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FIG. 4. AMR MPMICE Strong and Weak Scaling for the Detonation Problem

FIG. 5. The initial set up of the three simulations. The large black box outlines the large 3D simulation, the
yellow region shows the smaller 3D domain and the blue 2D slice shows the location of the 2D simulation plane.

6. Computational DDT Modeling Results. In order to model the thousands of explo-
sive devices, the grid resolution of the domain must be smallenough to resolve the physical
phenomena occurring in the three different modes of combustion. The domain must also be
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FIG. 6. Preliminary results for the deflagration progression in thelarge 3D simulation. The full physical
domain is shown. The light blue represents unburnt explosive cylinders and the red and yellow show the two modes
of deflagration.

large enough to ensure that the explosives are far away from the boundaries, to minimize
any non-physical interactions with the numerical boundaryconditions. To address the length
scales (mm-m), Adaptive Mesh Refinement (AMR) was used with three levels and a refine-
ment ratio of 4 between each mesh level. The results shown here are from simulating 1280
explosive cylinders, packed 4x5 to a crate, in a configuration similar to the packing of the
2005 transportation accident. The explosives are 54mm in diameter and 0.33m long and
are ignited by hot gas along a confined boundary. Two of the boundaries (x−, y−) are re-
flective, the other four boundaries are “open”, allowing product gases and particles to flow
freely through them. The “open” boundaries are 1m from the explosives in thex+, y+,
z+, andz− directions to minimize the boundary interactions (Figures5 and 6). The domain
for this simulation is 12m3 resulting in 350 million cells (2mm cell spacing on the finest
level) and 980 million particles to represent the explosives. Figure 6 shows the progression of
burning within the cylinders. The light blue volume represents unburnt explosive cylinders,
the red volume shows convective deflagration and yellow volume shows where conductive
deflagration is occurring.

6.1. 2D and Axi-symmetric 3D Simulations.To investigate the possible mechanisms
of DDT in an array of explosives, smaller 2D and 3D simulations were run. In these simula-
tions the initial cylinder distribution was the same as the large 3D scenario described above,
with 4x5 cylinders packaged in a “box” with 10mm gaps, representing the spacing of the
packing boxes. The main difference between all of the computational domains was the length
of the domain in thez direction. A 2D simulation was run with 320 explosive cylinders
and four highly confined boundaries. The location of the slice in thez direction is shown in
Figure 5 by the blue slice. This numerical experiment demonstrated that a DDT was possible
in this packing configuration when the explosive was highly confined. One proposed mecha-
nism for this DDT is the inertial confinement created from thedamaged cylinders forming a
barrier that prevents the flow of product gases from exiting the domain, creating a pocket of
high pressure and transitioning to detonation. Another possible mechanism is that the impact
of the colliding cylinders in the high pressure environmentproduces a shock-to-detonation
transition in the deflagrating material. Since this is a 2D simulation, the reacting gases and
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FIG. 7. Top figure show the progression of deflagration through the explosives (light blue). The dark blue
shows where the pressure slice (shown below) was taken. The bottom is a pressure profile of a DDT over time.
Detonation can be seen at 0.710msec

cylinders are artificially confined in thez direction, so no conclusions can be made and further
tests are required in three space dimensions.

A smaller 3D simulation, shown in Figure 5 by the yellow region, with gaps in all direc-
tions allowed product gases to escape causing an increase inthe time to detonation. Four of
the boundaries were symmetric so gas could only escape out ofthex+ andy+ boundaries.
Figure 7 shows the burning modes and pressure distribution for a deflagration to detonation
transition in the smaller 3D simulation. The top figure showsthe progression of burning
through the unburnt cylinders (light blue). The yellow volume represents conductive defla-
gration, the red volume shows convective deflagration and the dark blue slice shows where
the pressure profile is taken. The lower contour plot shows the pressure distribution of a DDT
in the array. Detonation occurred at0.710 msec, and by0.716 msec the detonation had con-
sumed a large portion of the explosive. It took approximately 40 microseconds longer for the
smaller 3D simulation to detonate than the 2D simulation. This is the result of the product
gases having more paths to escape in the 3D simulation.

6.2. Full 3D Simulations. In the case of the full 3D simulation, 64K cores were used
in a calculation that ran from May 2014 until November 2014, with regular checkpointing
and consumed about 30M CPU hours on Mira. While this simulation was not run at the full
scales made possible by the scaling improvements shown above, it was not possible with the
Mira allocation available to move to the next problem size up. This is solely due to the extra
CPU hours needed beyond our allocation and the elapsed time needed beyond our alloca-
tion period. Figure 8 shows the maximum pressure trends for the 2D, smaller 3D and the
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large 3D simulations. The smaller array simulations give insight into the possible physical
mechanisms. These mechanisms have been validated in the large 3D simulation, which also
detonates, giving us a better understanding of how to suppress the transition to detonation in
future transportation accidents. A first attempt at modeling this was made by changing the

FIG. 8. Maximum pressure on the finest level over time for the different simulations. Detonation occurs at 5.3 GPa.

packing configuration of the detonator boxes to intersperseone empty box between two full
ones in a checkerboard configuration. The results for a full 3D simulation of this case are
shown in Figure 9. While it was not possible to run the simulation to completion, this pre-
liminary result shows much lower pressures and suggests that this alternate packing approach
may show promise as a means of more safely, but expensively, transporting the explosives. In
this case the simulation was run on 200K cores on Mira and thenon 16K Stampede cores.

FIG. 9. Maximum pressure on the finest level over time for the alternate packing configuration simulation. No
detonation occurs.

7. Related Work. There are several computational frameworks that use SAMR that are
leveraged by application codes to solve similar types of problems as those for which Uintah
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was originally developed. These frameworks, including Uintah, are surveyed in a recent
paper [17].

BoxLib [1] is a framework for building massively parallel SAMR application described
by time-dependent PDEs, CASTRO [2] uses the BoxLib softwarefor fully compressible
radiation-hydrodynamics, while MAESTRO also uses BoxLib for low Mach number astro-
physical calculations. Chombo [14] is an offshoot of the BoxLib framework that originated
in 1998. Chombo has diverged from BoxLib in its implementation of data containers, but
a number of applications build upon the framework includingMHD, compressible CFD,
CFD+EM, fluid-structure interaction, etc. Cactus [20] is a general-purpose software frame-
work for high-performance computing with AMR as one of its features. The Einstein toolkit
is the most prominent application. Enzo [38] is an astrophysical code that makes use of
AMR for high resolution space and time requirements. A wide range of hydrodynamics and
magneto-hydrodynamics solvers, radiation/diffusion andradiation transport have been incor-
porated. FLASH [19] was originally designed for simulationof astrophysical phenomena
dominated by compressible reactive flows. Due to multiple physical scales, AMR was imple-
mented using the octree-based PARAMESH packages. FLASH hasundergone infrastructure
improvements such that other applications including high energy physics, CFD and fluid-
structure interactions leverage the FLASH framework. What distinguishes Uintah from other
frameworks is both its underlying programming model and thedevelopment of a runtime en-
vironment with a DAG based taskgraph and application layer that makes it possible to achieve
scalability at very large core counts.

There has been much related detonation work in the form of numerical modeling and
experimental research on gas phase DDTs e.g. [37], but little is known about DDTs in a large
collection of solid explosives. Significant amounts of experimental work has been done over
the decades, on small scales, to better understand the role of convective deflagration in the
transition into detonation for solid explosives [3]. Due tothe hostile environment, the extreme
pressures, temperatures and short time scales in a DDT, experiments have been relatively
small scale (a fewcm) [52, 12]. Other groups are modeling the transition to examine DDT
mechanism which can not be seen experimentally [48, 50]. These mesoscale simulations
have yet to produce a clear physical mechanism. Though theseresults will be beneficial
to understanding the underlying mechanisms in a single monolithic device it will still be
unclear how a DDT occurs in an unconfined array of explosives.To the best of the authors
knowledge, the approach described here is a unique and novelattempt to understand DDT in
a large collection of small explosive devices, especially on this scale.

8. Conclusions and Future Work. The main conclusion from this paper is that improv-
ing the supercomputer scalability of a complex DDT calculation required the removal of defi-
ciencies that prevented scalability and that were not readily apparent at smaller or incremental
changes in resolution. Discovering these key shortcomingsin the runtime system algorithms
and improving their overall algorithmic complexity resulted in dramatic improvements to the
overall scalability of a challenging fluid-structure interaction benchmark problem. The im-
mediate benefits to the runtime system resulted in our ability to demonstrate scalability for
challenging complex fluid-structure interaction problemsat at nearly the full machine capac-
ity of Mira. This in turn made it possible to run a series of calculations that showed promise
in improving our understanding of the detonation in the fullhighway 6 accident.

The general lessons from this work are that even when a substantial amount of work
has been done to improve the scalability of a complex software framework, there are always
challenges when trying to move to significantly larger problems and machines. Furthermore
it is generally accepted by those working on the largest computers that these challenges will
often involve technical innovation at the level of the algorithms, data structures and software

18



architectures with a level of difficulty that is often uniqueto those scales.
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