
EXTENDING THE UINTAH FRAMEWORK THROUGH THE PETASCALE
MODELING OF DETONATION IN ARRAYS OF HIGH EXPLOSIVE DEVICES

MARTIN BERZINS∗, JACQUELINE BECKVERMIT†, TODD HARMAN ‡, ANDREW BEZDJIAN †, ALAN

HUMPHREY ∗, QINGYU MENG §, JOHN SCHMIDT∗, AND CHARLES WIGHT ¶

Abstract.
The Uintah framework for solving a broad class of fluid-structure interaction problems uses a layered task-

graph approach that decouples the problem specification as aset of tasks from the adaptove runtime system that
executes these tasks. Uintah has been developed by using a problem-driven approach that dates back to its inception.
Using this approach it is possible to improve the performance of the problem-independent software components to
enable the solution of broad classes of problems as well as thedriving problem itself. This process is illustrated by
a motivating problem that is the computational modeling of the hazards posed by thousands of explosive devices
during a Deflagration to Detonation Transition (DDT) that occurred on Highway 6 in Utah. In order to solve this
complex fluid-structure interaction problem at the requiredscale, algorithmic and data structure improvements were
needed in a code that already appeared to work well at scale. These transformations enabled scalable runs for our
target problem and provided the capability to model the transition to detonation. The performance improvements
achieved are shown and the solution to the target problem provides insight as to why the detonation happened , as
well as to a possible remediation strategy.

Key words. Uintah, software,detonation, scalability, parallel, adaptive, petascale

1. Introduction. The move to multi-petaflop and eventually exascale computing over
the next decade is seen as requiring changes in both the type of programs that written and
to how programs will make use of novel computer architectures in order to perform the
large-scale computational science simulations successfully. One approach that is seen as a
candidate for successful code at such scales uses a directedgraph model of the computation
to schedule work adaptively and asynchronously. The potential value of this methodology
is expressed by [23, 15]Exascale programming will require prioritization of critical-path
and non-critical path tasks, adaptive directed acyclic graph scheduling of critical-path tasks,
and adaptive rebalancing of all tasks with the freedom of notputting the rebalancing of non-
critical tasks on the path itself. Given such statements it is important to understand the value
of this the approach as used, for example, in the Uintah framework [33] when applied to
challenging large-scale computational problems. The development of the Uintah code has,
since its very inception been driven by such problems. This is possible as the graph-based
task approach provides a clean separation between the problem specifications that defines the
tasks and the runtime system that executes the tasks. Improvements to the runtime system
thus have a potential impact on all applications.

The aim in this paper is to illustrate this process and to showthat achieving scalable
real world science and engineering calculations, requirestwo essential approaches. One is to
develop a prototypical calculation that exercises the kernel calculations of the algorithm and
framework and the other is to use extremely large simulations to expose algorithmic and data
structure deficiencies in both the computational and communication methods. The motivat-
ing problem considered here is a hazard modeling problem involving energetic materials that
resulted in a potentially catastrophic event on Highway 6 inUtah in 2005 when a truck carry-
ing 36,000 pounds of seismic boosters overturned, caught fire, and within minutes detonated,
creating a crater 70 feet wide by 30 feet deep.

1SCI Institute, University of Utah, Salt Lake City UT 84112 , USA
2Department of Chemistry, University of Utah, Salt Lake City, UT, USA
3Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
4Google Inc
5Office of the President, Weber State University, Ogden, UT, USA

1



Energetic materials may be classified as either propellants, pyrotechnics or explosives.
The most prominent characteristic of these materials is therate at which they can release
energy, ranging from relatively slow and benign reactions to extremely fast and violent.
Specifically, the slow rate of combustion (deflagration) is characterized by wave speeds of
10s-100sm/s while a detonation combustion front moves at 1000sm/s. These modes have
been studied for single monolithic devices and are relatively well understood. What is less
known, and the focus of our research, is the cause of a Deflagration to Detonation Transition
(DDT) in large arrays of small energetic devices. These arrays are used in the mining industry
and are being transported on our nation’s highways. The openquestion is whether or not the
explosives could have been transported in a safer manner so as to prevent the detonation. The
goal of this research is to understand how DDT of multiple arrays of explosives can occur
in similar situations and to use computational models to help formulate a packaging config-
uration to suppress it. To address these questions we have developed a DDT model that has
shown great promise in simulating reactive fluid-structureinteractions. In parallel with this
development the underlying Uintah framework has been extended from our starting point of
scalability on DOEs Titan [32] and Mira [34] to the combination of fluid-structure interaction
and adaptive models needed for a broad class of problems. Onechallenge in undertaking this
extension is that algorithms that may have had hidden potentially problematic dependencies
with small constants at large core counts may only become visible at close to full machine
capacity. In order to address these problems required a fundamental rewrite of many of the
algorithms and data structures to improve their efficiency.After introducing new, more effi-
cient algorithms and data structures it was possible to demonstrate reasonable scalability on
700K cores on DOE’s Mira and NSF’s Blue Waters and to 512K cores on DOE’s Mira for the
real world, complex fluid-structure interaction problem focused on modeling DDT in large
arrays of explosives. This process is described as follows.In Section 2 the Uintah framework
and its unique runtime system is described in outline. A discussion of the Uintah problem
class and of the DDT modeling of a large array of explosive cylinders is presented in Section
3. Section 4 describes both the scalability challenges faced and the new algorithms and data
structures introduced to achieve a scalable simulation. InSection 5, the scalability and per-
formance results obtained will be given. Section 6 describes the computational experiments
with four DDT cases while Section 7 describes related work onother similar computational
frameworks.

Our conclusion is that these improvements have made it possible to model the detonation
calculation. The results from this model have shown that detonation does occur in a prototyp-
ical simulation and that it looks likely that a different explosive storage approach would have
helped prevent detonation. Furthermore the Uintah adaptive DAG-based approach provides
a very powerful abstraction for solving challenging multi-scale multi-physics engineering
problems on some of the largest and most powerful computers available today.

2. Uintah Infrastructure. The Uintah open-source software framework was originally
created at the University of Utah DOE Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) [14,38,37]. Uintah has since been usedto solve a variety of challenging
fluid, solid, and fluid-structure interaction problems froma variety of domains described
in [8], such as angiogenesis, tissue engineering, green urban modeling, blast-wave simulation,
semi-conductor design and multi-scale materials research.

The Uintah framework is based on the fundamental idea of structuring applications
drivers and applications packages as a Directed Acyclic Graph (DAG) of computational tasks,
belonging to Uintah components that access local and globaldata from adata warehousethat
is part of an MPI process and that deals with the details of communication. A runtime system
manages the asynchronous and out-of-order (where appropriate) execution of these tasks and

2



addresses the complexities of (global) MPI and (per node) thread based communication. Each
Uintah component implements the algorithms necessary to solve partial differential equations
(PDEs) on structured adaptive mesh refinement (SAMR) grids.The runtime system provides
a mechanism for integrating multiple simulation components and by analyzing the dependen-
cies and communication patterns between these components efficiently execute the resulting
multi-physics simulation. Four primary components have been developed and include: 1)
a low and high-speed compressible flow solver, ICE [24]; 2) a material point method algo-
rithm, MPM [45] for structural mechanics; 3) a fluid-structure interaction (FSI) algorithm,
MPMICE which combines the ICE and MPM components [21, 22]; and 4) a turbulent react-
ing CFD component, ARCHES [42] designed for simulation of turbulent reacting flows with
participating media radiation. These underlying components are essentially developed in an
agnostic communication free way as the framework was designed [38] to allow the developer
to focus solely on developing the tasks for solving the partial differential equations on a local
set of block structured grids without using any specific MPI calls. Uintah components are
primarily composed of C++ classes that follow a simple API toestablish connections with
other components in the system. The component itself is expressed as a sequence of tasks
where data dependencies (inputs and outputs) are explicitly specified by the developer. The
tasks along with the data dependencies are then compiled into a task-graph representation
(Directed Acyclic Graph) to express the parallel computation along with the underlying data
dependencies. The smallest unit of parallel work is a patch composed of a hexahedral cube
of grid cells. Each task has a C++ method for the actual computation and each component
specifies a list of tasks to be performed and the data dependencies between them [9]. The

Select Task &

Post MPI Receives

Select Task &

Execute Task

Check Records &

Find Ready Tasks

Comm

Records

Internal

Task Queue

External

Task Queue

Task

Graph

Post Task

MPI Sends

N
e
tw

o
rk

Data

Warehouse

(one per

node)

put

valid

send

get

recv

MPI_

ISend

MPI_

IRecv

MPI_

Test

Execution Layer

(runs on multiple cores)

Shared Objects

(one per node)

Data Management

FIG. 1. Uintah Architecture and Uintah Nodal Runtime System

underlying runtime system executes these tasks in a parallel way that is independent of the
actual application itself. This division of labor between the application code and the runtime
system allows the developers of the underlying parallel infrastructure to focus on scalability
concerns such as load balancing, task (component) scheduling, communications, including
accelerator or co-processor interaction. In addition, I/Ois handled at this level with a design
that facilitates the incorporation of efficient libraries such as PIDX [27]. The separation, of
user code and runtime system, as illustrated by Figure 1, andalso the runtime system that
is used on each compute node, see Figure 1, permits us to leverage advances in the runtime
system, such as scalability, to be immediately applied to applications without any additional
work by the component developer. The nodal component of the runtime system has an exe-

3



cution layer that runs on each core that also queries the nodal data structures in order to find
tasks to execute and works with a single data warehouse per multi-core node to access local
variables and and non-local variables through MPI communications. Each mesh patch that is
executed on a node uses a local task graph that is composed of the algorithmic steps (tasks)
that are stored along with various queues that determine which task is ready to run. Data
management including the movement of data between nodes along with the actual storage of
data in the Data Warehouse occurs on a per node basis. The actual execution of the various
tasks are distributed on a per core level. Communication between the task queues, the tasks
itself and the data warehouse occur on a nodal level and are shown in Figure 1. While this
separation of concerns and indeed even some user-code has been unchanged since the first re-
leases of Uintah, as systems have grown in complexity and scale, the runtime system has been
substantially rewritten several times [10] to ensure continued scalability for the largest com-
puter systems available to us. This scalability is achievedthrough several novel features in the
code. The Uintah software makes use of scalable adaptive mesh refinement [30, 31, 29] and
a novel load balancing approach [28], which improves on other cost models. While Uintah
uses a Directed Acyclic Graph approach for task scheduling,the use of dynamic/ out-of-order
task execution is important in improving scalability [34].For systems with reduced memory
per core, only one MPI process and only one data warehouse pernode are used. Threads are
used for task execution on individual cores. This has made itpossible to reduce memory use
by an order of magnitude and led to better scalability [32]. Additional details surrounding
Uintah’s runtime system can be found in [34]. However, even with this successful approach,
the applications developer must still write code that ensures that both the computational costs
and the communications costs are sufficiently well-balanced, in order to achieve scalability.
In the case where scaling is not achieved, Uintah’s detailedmonitoring system is often able
to identify the source of the inefficiency.

For example, Uintah scales well on a variety of machines including those with Intel or
AMD processors and Infiniband interconnects such as Stampede, the Cray machines such
as Titan and Blue Waters and the Blue Gene/Q machines like Mira, [34]. Extensions to
GPU and Xeon Phi machines are underway at present. The advantages of a separate runtime
system differentiated from the main component code allowedus to identify shortcomings,
(see Section 4) and improve the algorithms resulting in improved scalability (see Section 5)
at the largest problem sizes and core counts without changing any applications code.

3. Target Scenario and Modeling a DDT. When modeling DDT in solid explosives
there are three modes of combustion to consider, conductivedeflagration, convective deflagra-
tion and detonation. Conductive deflagration occurs on the surface of the explosive material at
low pressures and has a relatively slow flame propagation (onthe order of a fewcm/sec [43]).
To model conductive deflagration, Uintah has adopted the WSB burn model [47] which has
been validated over a wide range of pressures, temperaturesand grid resolutions against ex-
perimental data [40, 39]. The WSB model is a global kinetics burn model which allows
exothermic reactions to be represented at the macro-scale,enabling the use of coarser grid
resolutions without the loss of fidelity. This is essential when trying to simulate problems
requiring large physical domains.

Convective deflagration propagates at a much faster rate (a few hundredm/sec [6]) and
is seen as a very important combustion mode in the transitionto detonation. Convective
deflagration occurs when pressures are sufficient to decrease the flame stand off distance
allowing for the flame to penetrate into cracks or pores in thedamaged explosive [3]. This
increases the surface area available for burning, thus increasing the mass rate converted from a
solid to gas and the exothermic energy released, further increasing the pressure and burn rate.
We model this with an isotropic damage model (ViscoSCRAM [5]) to determine the extent of

4



cracking in the solid. The localized pressure and material damage is used to determine where
convective deflagration is occurring. The WSB burn model is then used to calculate the mass
converted to gas within the solid.

In order for an explosive to transition into a detonation, a pressure threshold must be
reached. For octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the explosive of inter-
est, this pressure is 5.3GPa [40]. Once the detonation pressure threshold is reached the
JWL++ reactive flow model [44] is used to model detonation. Oneof our hypotheses for a
DDT in an array of explosives is that inertial confinement anddeformation of the reacting
cylinders pressing together, forms a barrier that allows the local pressure to increase to that
needed for detonation.

3.1. Multi-material governing equations. The governing multi-material model equa-
tions are stated and described, but not developed, here. Their development and the methods
for solving them can be found in [20,25,21,22]. Here, we identify the 8 quantities of interest
and the equations (or closure models) which govern their behavior. Consider a collection of
N materials, and let the subscript r signify one of the materials, such thatr = 1, 2, 3, . . . , N .
In the simulation discussed in Section 6 two materials are used, a solid (PBX-9501) and a
gas (products of reaction). In an arbitary volumeV (x, t), the averaged thermodynamic state
of a material is given by the vector[Mr,ur, er, Tr, vr, θr,σr, p], where the elements are the r-
material mass,velocity, internal energy, temperature, specific volume, volume fraction, stress,
and the “equilibration” pressure. The r-material averageddensity isρr = Mr/V . The rate of
change of the state in a volume moving with the velocity of r-material is:

1

V

DrMr

Dt
=

N
P

s=1,n 6=r
Ss→r

ρ(3.1)

1

V

Dr(Mrur)

Dt
= θr∇ · σ+ ∇ · θr(σr − σ) + ρrg +

P

N
s=1Frs +

N
P

s=1,n 6=r
Ss→r

ρu(3.2)

1

V

Dr(Mrer)

Dt
= −ρrp

Drvr

Dt
+ θrτr : ∇ur − ∇ · jr +

P

N
s=1Qrs +

N
P

s=1,n 6=r
Ss→r

ρe(3.3)

Equations (3.1-3.3) are the averaged model equations for mass, momentum, and internal
energy of r-material, in whichσ is the mean mixture stress, taken here to be isotropic, so
thatσ = −pI in terms of the hydrodynamic pressurep. The effects of turbulence have been
omitted from these equations.

In Eq. (3.2) the term
∑N

s=1 Frs signifies a model for the momentum exchange among
materials and is a function of the relative velocity betweenmaterials at a point. For a two
material problem we useF12 = K12θ1θ2(u1 − u2) where the coefficientK12 determines
the rate at which momentum is transferred between materials. Likewise, in Eq. (3.3),
∑N

s=1 Qrs represents an exchange of heat energy among materials. For atwo material prob-
lemQ12 = H12θ1θ2(T2 − T1) whereTr is the r-material temperature and the coefficientHrs

is analogous to a convective heat transfer rate coefficient.The heat flux isjr = −ρrbr∇Tr

where the thermal diffusion coefficientbr includes both molecular and turbulent effects(when
the turbulence is included).

The temperatureTr, specific volumevr, volume fractionθr, and hydrodynamic pressure
p are related to the r-material mass density,ρr, and specific internal energy,er, by way of

5



equations of state. The four relations for the four quantites (Tr, vr, θr, p) are:

er = er(vr, Tr)(3.4)

vr = vr(p, Tr)(3.5)

θr = ρrvr(3.6)

0 = 1 −
P

N
s=1ρsvs(3.7)

Equations (3.4) and (3.5) are, respectively, the caloric and thermal equations of state. Equation
(3.6) defines the volume fraction,θ, as the volume of r-material per total material volume, and
with that definition, Equation (3.7), is referred to as the multi-material equation of state. It
defines the unique value of the hydrodynamic pressurep that allows arbitrary masses of the
multiple materials to identically fill the volumeV . This pressure is called the “equilibration”
pressure [26].

A closure relation is still needed for the material stressσr. For a fluidσr = −pI + τr

where the deviatoric stress is well known for Newtonian fluids. For a solid, the material stress
is the Cauchy stress. The Cauchy stress is computed using a solid constitutive model and may
depend on the rate of deformation, the current state of deformation (E), the temperature, and
possibly a number of history variables:

(3.8) σr ≡ σr(∇ur,Er, Tr, . . . )

Equations (3.1-3.8) form a set of eight equations for the eight state vector with components
[Mr,ur, er, Tr, vr, θr,σr, p], for any arbitrary volume of spaceV moving with the r-material
velocity. This approach uses the reference frame most suitable for a particular material type.
The Eulerian frame of reference for the fluid and the Lagrangian for the solid. There is no
guarantee that the arbitrary volumes will remain coincident for the two materials. This prob-
lem is addressed by treating the specific volume as a materialstate which is integrated forward
in time from the initial conditions. The total volume associated with all of the materials is
given by:

Vt =
P

N
r=1Mrvr(3.9)

where the volume fraction isθr = Mrvr/Vt (which sums to one by definition). An evolution
equation for the r-material specific volume has been developed in [25] and is stated here as:

1

V

Dr(Mrvr)

Dt
= fθ

r ∇ · u +
[

vrS
s→r
ρr

− fθ
r

P

N
s=1vsS

s→r
ρs

]

+

[

θrβr
DrTr

Dt
− fθ

r

P

N
s=1θsβs

DsTs

Dt

]

.(3.10)

wherefθ
r = θrκ̂r

P

N
s=1θsκ̂s

, andκ̂r is the r-material bulk compressibility,β is the constant pressure

thermal expansivity.
The evaluation of the multi-material equation of state (Eq.(3.7)) is required to determine

an equilibrium pressure that results in a common value for the pressure, as well as specific
volumes that fill the total volume identically.

3.2. Reaction Model. In Eq. (3.1)Ss→r
ρ is the rate of mass converted from s-material,

or solid reactant, into r-material, gaseous products. Similarly, in Eqs. (3.2) and (3.3),Ss→r
ρu

is the momentum andSs→r
ρe the energy converted between the s and r materials. These are

simply the mean values of the donor material (PBX-9501) in the volume. The model for the
mass conversion or mass burn rate is discussed below with full details provided in [4].

6



Our reaction model uses a simplified two phase chemistry model, in which the solid ex-
plosive (A) is converted to gas phase intermediates (B) which react to form the final products
(C). A(solid)→ B(gas)→ C(gas). Therefore only two phases of the combustion are mod-
eled; the condensed and gas phases. The melt layer present inmany explosives is assumed to
have little impact on the overall combustion and is therefore ignored. This model has a large
pressure dependence associated with the conductive heat transfer; as mentioned before, this
greatly affects the rate of gas phase reactions. The mass burn rateSs→r

ρ , whereρ is density,
is computed using Eqs. 3.11 and 3.12,

(3.11) Ss→r
ρr

=

[

κsρsAsR(T̂s)
2exp(−Es/RT̂s)

CpEs[T̂s − T0 − Qs/2Cp]

]1/2

(3.12) T̂s = T0 +
Qs

Cp
+

Qr

Cp(1 + xr(mb,P )
xs(mb)

)

whereT0 is the initial bulk solid temperature,κ is the thermal conductivity,E is the activation
energy,R is the ideal gas constantCP is specific heat,Q is the heat released andxr, xs are
physical lengths [4].T̂s is a sub-scale surface temperature, not to be confused withTr or Ts

in Eqs. (3.4, 3.5, 3.8, 3.10). Equations 3.11 and 3.12 are solved iteratively until a convergence
criteria is met. For use in Uintah, this model has been modified to include three dimensional
effects by including the Burn Front Area of a cell, BFA, [49],and evaluated over a given time,
∆t, see Equation 3.13. This model has been validated against experimental data for a wide
range of pressures at initial solid temperatures of 273K, 298K and 423K [40].

(3.13) MB = ∆t ∗ BFA ∗ Ss→r
ρr

The reaction model utilizes the crack propagation results from the ViscoSCRAM consti-
tutive evaluation to model the transition into convective deflagration as defined by Berghout
[7]. The ViscoSCRAM constitutive model was developed for the explosive PBX-9501 to de-
scribe crack development and the formation of hot spots in damaged materials. This model
has been fit to match experimental relaxation times as determined by the visco-elastic re-
sponse [5]. More information about Uintah’s validated reaction and material models can be
found at [40].

4. Adaptive Mesh Refinement Challenges & Improvements.Modern, large-scale
simulations such as our target problem (Section 3) require the use of massive parallelism
and adaptive mesh refinement (AMR). It is well known that achieving a high degree of scal-
ability for AMR based simulations is challenging due to poorscalability associated with the
changing grid. In order to change the grid in response to a solution evolving in time, a number
of steps must occur that do not occur in a fixed mesh calculation. These steps generally in-
clude regridding, load balancing and scheduling [29], as AMR requires that the grid and task
schedule be recreated whenever regridding occurs. Poor performance in any of these steps
can lead to performance problems at larger scales [29]. As wehave gained access to larger
and more diverse computational environments, we have greatly extended the scalability of
the Uintah framework, necessitating continual improvements in the in the framework itself.

4.1. Standard Benchmark Problem.To understand and continually improve the scal-
ing characteristics of Uintah and key components like MPMICE for each successive gener-
ation of machine, we have developed and used a standard benchmark problem with varying
resolutions that simulates a moving solid through a domain filled with air to represent key fea-
tures of the MPMICE algorithm and the Uintah framework. In this work we will refer to two

7



separate resolutions for our benchmark problem,resolution-A(1923 cells) andresolution-B
(3843 cells). This benchmark is shown usingresolution-Ain [32] and [34], is representative
of the detonation problem that is the focus of this work, exercises all of the main features of
AMR, ICE and MPM, and also includes a model for the deflagration of the explosive along
with the material damage model ViscoSCRAM. Forresolution-A, three refinement levels are
used for the simulation grid with each level being a factor offour more refined than the pre-
vious level. This problem has a total of 3.62 billion particles, 518 million cells and 277,778
total patches created on three AMR levels. While our benchmark problem withresolution-A
achieved excellent scalability to 512K cores on the DOE Mirasystem [34], We observed a
significant breakdown in scaling at 768K cores due to there being less than 0.3 patches per
core and hence devised a much larger resolution problem,resolution-B(3843 cells) by dou-
bling the resolution in each direction resulting in nearly an order of magnitude increase in
problem size. This problem,resolution-Buses a grid utilizing three refinement levels with
each level being a factor of four more refined than the previous level, has a total of 29.45 bil-
lion particles, 3.98 billion cells created on three AMR levels, and 1.18 million total patches.
As has been witnessed in the past, with each significant increase in problem size and succes-
sive generation of machine, we have discovered algorithmicchallenges within the underlying
framework that limit the scalability at some level. The scaling challenges faced in this work
have only become apparent by running this large of a problem at such high core counts, as it
has stressed areas of infrastructure code in ways never before seen. In this case it has required
a near fundamental reworking of core algorithms (see Section 4.2), with extensive work on
Uintah’s task-graph compilation phase, load balancer and regridder. To achieve good scal-
ing at high resolutions for our benchmark and detonation problem at high core counts on the
DOE Mira system has required 3-4 man-months of work and millions of compute hours in
debugging and testing at large scale.

To provide a better perspective on the amount of time and level of difficulty involved in
debugging the problems described above, we mention here thefirst issue faced in improving
Uintah’s AMR capabilities on our standard benchmark problem with resolution B. Within the
MPM particle creation routines (see Section 4.2.1), the lowest core count we were able to
initially reproduce the bug we encountered was 64K cores. This turned out to test the limits
of the large-scale commercial debugger Allinea DDT [12] on Mira. At these core counts on
Mira, IO nodes ran out of memory causing racks of the machine to crash. This was resolved
only by the creation of special debug queues by ALCF staff that helped us to resolve this
difficult, large-scale debugging issue.

4.2. Improvements. The Uintah framework has been improved to support the resolu-
tion required by (and hopefully beyond) this detonation problem, particularly in its particle
system, load balancer and AMR infrastructure code. In orderto identify key performance
and scalability issues, we have employed Uintah’s built-inmonitoring functions to locate
components needing improvement. Third-party profiling tools such the Google Performance
Tools [19] and HPCToolkit [41] were then used to localize theexact code consuming the most
CPU time. We also utilized manually inserted timers to confirm profiling results and to verify
the improvement once changes were made. The following four major areas of Uintah in-
frastructure code are discussed here to illustrate the scaling deficiencies we discovered when
running our standard benchmark problem usingresolution-B(see Section 4.1) at extreme
scale and how these problems were addressed. Some of these points are found somewhat
commonly in practice, and the techniques used here differ with each case.

4.2.1. Particle Creator. As higher resolutions are now being used in the MPMICE
simulation (Section 4.1), we first observed a dramatic slow down during the initializa-
tion timestep. After resolving the large-scale debugging issues described in Section 4.1,

8



TABLE 1
Particle Creator Improvement: Strong Scaling

Cores 8K 16K 32K 64K 128K 256K 512K

Before (Average) 2977.2 1475.9 705.9 332.5 147.6 55.9 15.7
Before (Maximum ) 3339.6 1652.2 793.1 375.8 170.0 67.9 21.6

After (Average) 424.5 224.6 118.8 63.1 33.1 17.3 5.4
After (Maximum) 524.8 283.4 148.2 78.9 44.1 22.6 7.3

we were able to localize the problem source. By then enablingUintah’s internal reporting
for task execution times, we quickly discovered this performance issue originated from the
MPM::actuallyInitialize task. This task is designed to create particles and initialize particle
data. By using the profiling methods described above, we discovered the particle creator code
to be the primary source of this slow down. In Uintah, particles on each patch are created in-
ternally by the framework via a particle creator component.There are many internal variables
defined within the particle creator component’s global scope. Each time the particle creator
processes a new patch, these temporary variables were beingoverwritten. The particle creator
component was originally written ten years ago and worked well when using an MPI-only ap-
proach; the only approach available within Uintah at that time. When multi-threaded support
was recently added [33], Pthread mutexes were added to protect these globally defined vari-
ables and generated significant overhead due to contention for the locks when particles are
created on multiple patches concurrently.

To resolve this issue, we redesigned data structures withinthe particle creator code. This
was accomplished by separating those variables that were globally defined into two cate-
gories; 1.) read-only variables that must remain globally defined and used by all patches, and
2.) local variables which can be separated from one another and can be concurrently accessed
without the need for locks. This is a typical problem when using locks on legacy data struc-
tures (from an MPI-only approach), whereby unnecessary shared data must be separated to
get better performance. Table 1 shows the particle creationtiming results, comparing strong
scaling runs from 8K cores to 512K cores. After redesigning these legacy data structures to
work in a multi-threaded environment, we observed 3X to 7X speedup in this portion of the
code.

TABLE 2
Resource Assignment Improvement: Weak Scaling

Cores 128 1K 82K 64K 512K

Before (Avg.) 0.039 0.269 2.39 18.25 60.96
After (Avg.) 0.010 0.011 0.010 0.009 0.009

4.2.2. Resource Assignment.Another component that showed significant performance
degradation at large scale with high resolution was Uintah’s load balancer. As described
in Section 2, the load balancer partitions the simulation grid by using a history data-based
forecast model. Tasks are then created on patches assigned to a local node. The profil-
ing results obtained here revealed scaling issues were centered around the load balancer’s
AssignResourcesmethod. This method assigns each patch in the grid with a rankID. This
rank information is then used for subsequent, automatic MPIcommunication generation be-
tween tasks on different nodes. From the weak scaling timingresults as shown in thebefore
row of Table 2, the cost ofAssignResourcesgrows when the number of patches per node stays

9



constant. This implies an algorithm issue to be addressed. The original code looped though
all the patches in the grid to assign a resource to it. This algorithm runs on anO(n) complex-
ity, wheren is the number of patches. However as the MPI communications only happens
locally in MPMICE, only the tasks that will communicate withthe local tasks matter. Hence,
we should be able to restrict this method to only assign patches in the neighborhood of the
local node. The new algorithm runs on anO(n/p) complexity, wheren/p is the number
of patches in the neighborhood. For weak scaling tests,n/p is constant as the workload per
node stays the same. The scaling results shows in theafter rowof Table 2 confirms the perfect
weak scaling result and up to 6800X speedup when using this new algorithm.

4.2.3. Copy Data Timestep.In the following two subsections, we will discuss how the
performance and scalability of Uintah’s AMR infrastructure code has been vastly improved.
As mentioned above, the efficiency of the regridding operation is very important for solving
the detonation problem. The entire AMR regridding procedure includes three steps: 1) gen-
erating a new grid based on the refinement flags computed by thesimulation component, 2)
a copy-data timestep to determine differences between the old and new grid. For an already
refined area, this means copying data from existing fine leveldata. For a newly refined area,
this step calls a user provided refine task to compute fine level data from coarse level data,
and 3) compile a new task graph on the new grid for future simulation timestep. We originally
measured about 98% overhead for a single regridding operation on 512K core if regridding
were to occur every 50 to 60 timesteps. Profiling and timing measurements were obtained for
the regridding operations to locate performance and scaling issues.

The current regridding algorithm has a linear complexity. The regridder timing is shown
in Figure 2 -Regridder. The solid line shows timing result interms of weak scaling. The
dotted line shows a linear model thatT = αp whereα = 2.75 × 10−4 andp are number
of processors for the weak scaling runs. For the copy data timestep, the original algorithm
computed the difference between the old and new grid by simply looping though the new grid
patches and querying the related old grid patch. This algorithm runs in anO(n log(n)) com-
plexity, wheren is the number of patches, as a bounding volume hierarchy (BVH) tree is used
for querying a patch from the grid. Each query of this BVH treecostsO(log(n)). It is impor-
tant to have a consistent grid across all processors, so every node performs this computation.
The cost of this copy data timestep is very small. It accountsfor less than 0.2% of the total
overhead on small scale runs, e.g. less than 10K CPU cores. However, the overhead of this
operation grows significantly when running with 512K CPU cores. To improve the scalability
while keeping the grid consistent across all the nodes, we now compute the difference of the
old and new grids and then gather all locally computed differences to obtain the difference
across the entire grid. This new algorithms involves a parallel and a collective portion for
the overall operation. The complexity for the parallel computing portion isO(n log(n)/p).
When running weak scaling tests,n/p is constant. We then have approximatelyO(log(p))
complexity for the new code. The complexity for combining the individually computed por-
tions together isO(p). Figure 2-Copy Data shows the timing comparison between thenew
and old algorithms. A model ofT = α log(p)+βp whereα = 1.60, β = 6.69×10−6 for the
new algorithm is shown in the dotted line. These results showabout 10X speedup for copy
data timestep when using our new algorithm. This is clear evidence that a sub-optimal algo-
rithm will become a significant performance issue at large scale, even when its cost appears
negligible at small scale.

4.2.4. Task Graph Compile. After new data has been copied to or refined for the new
grid, the simulation needs to continue with this new gird. With Uintah’s DAG based design,
when the grid layout or its partition changes, a new task graph needs be to compiled and
new MPI message tags are then generated by the framework. Task graph compilation is

10



128 1K 8K 64K 512K

10
−1

10
0

10
1

10
2

10
3

Cores

T
im

e 
(s

ec
on

d)

Regridder

 

 
Before
After
Model

128 1K 8K 64K 512K

10
−1

10
0

10
1

10
2

10
3

Copy Data

128 1K 8K 64K 512K

10
−1

10
0

10
1

10
2

10
3

TaskGraph Compile

128 1K 8K 64K 512K
10

0

10
1

10
2

10
3

Total AMR

FIG. 2. AMR Improvement Breakdown: Weak Scaling

a complex operation with multiple phases, including creation of tasks themselves on local
and neighboring patches, keeping a history of what these tasks are to compute, setting up
connections of tasks (edges in the DAG), and finally assigning MPI tags to dependencies.
Originally, Uintah used a static scheduler where tasks weretopologically sorted to compute
a valid task execution order. This topological sort code also ensured the global reduction
was called in a determined order across all the processors. However, this original code was
written for a relatively small grid. When the sorting function decides which task should
be executed before another task, it takes the union of a particular task’s patches and then
compares the union of patches from another task to determinethe overlap. This is anO(n2)
complexity, however it costs less than 0.2% of the total overhead and hence, was unnoticed
until running at extreme scales as in this work. With the dynamic task scheduler, this sorting is
no longer necessary. We have decoupled the global reductionordering portion of this sorting
which has a constant cost regardless of the number of processors or problem size, ultimately
eliminating this computation completely. As shown in Figure 2-TaskGraph Compile, the
task graph compiling code, we observed a 42X speedup when running with 512K cores.
The dotted line in this graph shows a constant scaling model.The overall AMR regridding
cost including all three steps has improved by about 10X and its overhead is less than 10%
percent when running with 512K cores. The comparison of before timing , after timing and
model results are shown in Figure 2-Total AMR. After these significant development efforts,
ultimately making this detonation problem scalable, the tiled regridder itself now contributes
the most overhead of all three steps. Further improvements to this component are now under
consideration.

5. Scaling Results.In this section, we will show the scalability results for theAMR
MPMICE simulations for both our standard benchmark problem(on both Mira and Blue
Waters) usingresolution-Aandresolution-B(as defined in Section 4.1), as well as the actual
detonation configuration for the array of multiple explosive devices (Mira only).

We define strong scaling as a decrease in execution time when afixed size problem is
solved on more cores, while weak scaling should result in constant execution time when more
cores are used to solve a correspondingly larger problem.

Figure 3 demonstrates the overall strong scaling for our standard AMR MPMICE bench-
mark problem described in detail in section 4.1 using bothresolution-Afrom [34], [32] and

11



resolution-Bdeveloped in this work. These tests were run on Blue Waters and Mira with
up to 704K (Blue Waters) and 768K cores (Mira) and with 16 (Mira) and 32 (Blue Waters)
threads per MPI node. It is interesting to observe that with the larger core count per node
for Blue Waters (32 vs 16) the scaling more closely aligns with the idealized scaling. We
attribute this to the reduction in global communication. The strong scaling efficiency relative
to 256K cores for Blue Waters on 704K cores is 89% and for Mira on 768K cores is 71%
when running the benchmark problem ofresolution-B.

In order to obtain scaling results shown, we tested and determined the optimal patch
configuration for our AMR MPMICE benchmark problem variations should fit the following
two requirements. 1) The number patches on each level shouldbe tuned as close as possible
but not exceed the number of cores on the largest run. 2) The patch size should be at least
8x8x8. The second requirement overrides the first one in that, without enough patches in a
particular level for all CPU cores, we cannot further dividepatches beyond 8x8x8. For patch
sizes smaller than 8x8x8, the cost of a patch’s MPI messages begins to exceed the cost of its
computation, and hence the runtime system cannot overlap computation with communication.
This lower bound on patch size should be considered as machine dependent, and clouds
potential change on future machines. In addition to choosing a good patch size for different
AMR levels, it is also important to line up patch boundaries in finer levels to patch boundaries
in coarser levels. An easy way to achieve this is to choose a finer level patch size that can
evenly divide coarser level patch size in each dimension. For example, when coarse level
patch size is 8x8x8, it is better to have a finer level patch size of 16x16x8 than 12x12x12.
We have observed that the latter choice of patch size leads toa greater MPI communication
imbalance.

8K 16K 32K 64K 128K 256K 512K 768K

10
0

10
1

Processing Units (Cores)

M
ea

n 
T

im
e 

P
er

 T
im

es
te

p(
se

co
nd

)

 

 

Titan (resolution−A)
Mira (resolution−A)
Mira (resolution−B)
Blue Waters (resolution−B)
Ideal Scaling

FIG. 3. AMR MPMICE Strong for the Benchmark Problem:resolution-Awith 1923 cells andresolution-B
with 3843 cells

5.1. Strong Scaling of MPMICE for Benchmark Problem. In our standard bench-
mark problem for bothresolution-Aandresolution-B, the simulation grid changes once every
50 to 60 timesteps as the same as reported on [29]. The grid changes once its finest level
patches can no longer hold all the particles in them. The overhead of this regridding process,
including creating the new grid, compiling a new task graph and moving old grid data to the
newly created grid, accounts for less than 3% of the overall execution time withresolution-A
and 10% withresolution-Bwhen running with 512K cores. This is a result of the improve-
ments described in Section 4.2 that have been made to reduce the cost of regridding process
for AMR MPMICE simulations.

12



5.2. Weak and Strong Scaling of MPMICE for Detonation Problem. Using our
benchmark problem (see Section 4.1) to understand the scaling characteristics of Uintah and
its simulation components (namely MPMICE), we have developed engineering guidelines to
ensure scalability at the largest core counts of interest. In particular, we have found that the
patches should have sufficient resolution, minimally 512 cells per patch. There should be
approximately one patch per core. During the strong scalability performance runs, the to-
tal number of patches and resolution were fixed while the corecount was increased. At the
largest core count run, it was necessary to adjust the numberof patches for the finest level
such that the total count did not exceed the number of cores. In fact, we observed excellent
strong scaling characteristics even when the number of patches was approximately 85% of
the total core count.

Although we have spent considerable effort characterizingour benchmark problem at
varying resolutions, the real interest is to improve Uintahsuch that real engineering problems
of interest can perform at the scales necessary to provide meaningful results as quickly as
possible. Scaling of benchmark problems has little value ifthe real problems do not. With
that in mind, we have have taken a configuration of the detonation problem described in
Section 3 and using the insight gained from our benchmark characterizations to demonstrate
the scalability up to 512K cores on DOE Mira. Figure 4 shows the strong and weak scaling
results for this calculation, run for ten timesteps (without AMR, as this was exercised at scale
in the previous case) but with a mesh that had three refinementlevels were used with four
different grid resolutions for the real detonation calculation. For the largest case, there were
446,880 patches and 1.37 billion cells and 7.75 billion particles.

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512k
5

10

20

30

40

50
60
70
80
90

100

M
ea

n 
T

im
e 

P
er

 T
im

es
te

p 
(s

)

Cores

Detonation MPMICE: Scaling on Mira BGQ

 

 

Strong
Weak

FIG. 4. AMR MPMICE Strong and Weak Scaling for the Detonation Problem

6. Computational DDT Modeling Results. In order to model the thousands of explo-
sive devices, in our motivating platform, the grid resolution of the domain must be small
enough to resolve the physical phenomena occurring in the three different modes of com-
bustion. The domain must also be large enough to ensure that the explosives are far away
from the boundaries, to minimize any non-physical interactions with the numerical bound-
ary conditions. To address the length scales (mm-m), Adaptive Mesh Refinement was used
with three levels and a refinement ratio of 4 between each level. The results shown here are
from simulating 1280 explosive cylinders packed 4x5 to a crate in a configuration similar to

13



FIG. 5. The initial set up of the three simulations. The large black box outlines the large 3D simulation, the
yellow region shows the smaller 3D domain and the blue 2D slice shows the location of the 2D simulation plane.

FIG. 6. Preliminary results for the deflagration progression in thelarge 3D simulation. The full physical
domain is shown. The light blue represents unburnt explosive cylinders and the red and yellow show the two modes
of deflagration.

the packing of the 2005 transportation accident. The explosives are 54mm in diameter and
0.33m long and are ignited by hot gas along a confined boundary. Two of the boundaries
(x−, y−) are symmetric, the other four boundaries are “open”, allowing product gases and
particles to flow freely through them, similar to what would happen when exposed to open
air. The “open” boundaries are 1m from the explosives in thex+, y+, z+, andz− directions
to minimize the boundary interactions (Figures 5 and 6). Thedomain for this simulation is
12 m3 resulting in 350 million cells (2mm cell spacing on the finest level) and 980 million
particles to represent the explosives. Figure 6 shows the progression of burning within the
cylinders. The light blue represents unburnt explosive cylinders, the red shows convective
deflagration and yellow represents where conductive deflagration is occurring.

14



FIG. 7. Top figure show the progression of deflagration through the explosives (light blue). The dark blue
shows where the pressure slice (shown below) was taken. The bottom is a pressure profile of a DDT over time.
Detonation can be seen at 0.710msec

6.1. 2D and Axi-symmetric 3D Simulations.To investigate the possible mechanisms
of DDT in an array of explosives, smaller 2D and 3D simulations were run. In these simula-
tions the initial cylinder distribution was the same as the large 3D scenario described above,
with 4x5 cylinders packaged in a “box” with 10mm gaps, representing the spacing of the
packing boxes. The main difference between all of the computational domains was the length
in the z direction. A 2D simulation was run with 320 explosive cylinders and four highly
confined boundaries. The location of the slice in thez direction is shown in Figure 5 by the
blue slice. This numerical experiment demonstrated that a DDT was possible in this packing
configuration when highly confined. One proposed mechanism for this DDT is the inertial
confinement created from the damaged cylinders forming a barrier that prevents the flow of
product gases from exiting the domain, creating a pocket of high pressure and transitioning
to detonation. Another possible mechanism is that the impact of the colliding cylinders in the
high pressure environment produces a shock to detonation transition in the deflagrating ma-
terial. Since this is a 2D simulation, the reacting gases andcylinders are artificially confined
in thez direction, so no conclusions can be made and further tests are required in three space
dimensions.

A smaller 3D simulation, shown in Figure 5 by the yellow region, with gaps in all direc-
tions allowed product gases to escape causing an increase inthe time to detonation. Four of
the boundaries were symmetric so gas could only escape out ofthex+ andy+ boundaries.
Figure 7 shows the burning modes and pressure distribution for a deflagration to detonation
transition in the smaller 3D simulation. The top figure showsthe progression of burning

15



through the unburnt cylinders (light blue). The yellow represents conductive deflagration,
the red shows convective deflagration and the dark blue sliceshows where the pressure pro-
file is taken. The lower contour plot shows the pressure distribution of a DDT in the array.
Detonation occurred at0.710 msec, and by0.716 msec the detonation had consumed a large
chunk of the explosive. It took approximately 40 microseconds longer for the smaller 3D
simulation to detonate than the 2D simulation. This is the result of the product gases having
more paths to escape in the 3D simulation.

6.2. Full 3D Simulations. In the case of the full 3D simulation, 64K cores were used
in a calculation that ran from May 2014 until November 2014, with regular checkpointing
and consumed about 30M cpu hours on Mira. While this simulation was not run at the full
scales made possible by the scaling improvements shown aboove, it was not possible with the
Mira allocation available to move to the next problem size up. Figure 8 shows the maximum
pressure trends for the 2D, smaller 3D and the large 3D simulations. The smaller array
simulations give insight into the possible physical mechanisms. These mechanisms have been
validated in the large 3D simulation, which also detonates,giving us a better understanding of
how to suppress the transition to detonation in future transportation accidents. A first attempt

FIG. 8. Maximum pressure on the finest level over time for the different simulations. Detonation occurs at 5.3 GPa.

at modeling this was made by changing the packing configuration of the detonator boxes
to intersperse one empty box between two full ones in a checkerboard configuration. The
results for a full 3D simulation of this case are shown in Figure 9. While it was not possible
to run the simulation to completion, this preliminary result shows much lower pressures and
suggests that this alternate packing approach may show promise as a means of more safely,
but expensively, transporting the explosives. In this casethe simulation was run on 200K
cores on Mira and then on 16K Stampede cores.

7. Related Work. There are several computational frameworks that use SAMR that are
leveraged by application codes to solve similar types of problems that Uintah was originally
developed. These frameworks, including Uintah, are surveyed in a recent paper [16].

BoxLib [1] is a framework for building massively parallel SAMR application described
by time-dependent PDEs, CASTRO [2] uses the BoxLib softwarefor fully compressible
radiation-hydrodynamics, while MAESTRO also uses BoxLib for low Mach number astro-
physical calculations. Chombo [13] is an offshoot of the BoxLib framework that originated in

16



FIG. 9. Maximum pressure on the finest level over time for the alternate packing configuration simulation. No
detonation occurs.

1998. Chombo has diverged from BoxLib in its implementationof data containers, but a num-
ber of applications build upon the framework including MHD,compressible CFD, CFD+EM,
fluid-structure interaction, etc. Cactus [18] is a general-purpose software framework for high-
performance computing with AMR as one of its features. Astrophysical simulations involving
general relativity used the framework. The Einstein toolkit is the most prominent application.
Enzo [36] is an astrophysical code that makes use of AMR for high resolution space and
time requirements. A wide range of hydrodynamics and magneto-hydrodynamics solvers,
radiation/diffusion and radiation transport have been incorporated. FLASH [17] was orig-
inally designed for simulation astrophysical phenomenon dominated by compressible reac-
tive flows. Due to multiple physical scales, AMR was implemented using the octree-based
PARAMESH packages. FLASH has undergone infrastructure improvements such that other
applications including high energy physics, CFD and fluid-structure interactions leverage the
FLASH framework. What distinguishes Uintah from other frameworks is the development
of a runtime environment with a DAG based taskgraph and application layer that makes it
possible to achieve scalability at very large core counts.

There has been much related detonation work in the form of numerical modeling and
experimental research on gas phase DDTs e.g. [35], but little is known about DDTs in a
large collection of solid explosives. Significant amounts of experimental work has been done
over the decades, on small scales, to better understand the role of convective deflagration
in the transition into detonation for solid explosives [3].Due to the hostile environment,
the extreme pressures, temperatures and short time scales in a DDT, experiments have been
relatively small scale (a fewcm) [50,11]. Other groups are modeling the transition to examine
DDT mechanism which can not be seen experimentally [46,48].These mesoscale simulations
have yet to produce a clear physical mechanism. Though theseresults will be beneficial to
understanding the underlying mechanisms in a single monolithic device it will still be unclear
how a DDT occurs in an unconfined array of explosives. To the best of our knowledge we
are unique in using the approach described here to understand DDT in a large collection of
explosive devices, especially on this scale.

8. Conclusions and Future Work. We have demonstrated that to improve the scalabil-
ity of a complex DDT calculation in order for it run efficiently at scales up to full machine

17



capacity on the largest supercomputers, required the removal of deficiencies that prevented
scalability and that were not readily apparent at smaller orincremental changes in resolution.
Discovering these key shortcomings in the runtime system algorithms and improving their
overall algorithmic complexity has resulted in dramatic improvements to the overall scala-
bility for a very challenging fluid-structure interaction benchmark problem. The immediate
benefits to the runtime system resulted in our ability to demonstrate scalability for challenging
complex fluid-structure interaction problems at at nearly the full machine capacity of Mira.
This in turn made it possible to run a series of calculations that showed promise in improving
our understanding of the detonation in the full highway 6 accident.

The general lessons from this work are that even when a substantial amount of work has
been done to improve the scalability of a complex software framework, there are always chal-
lenges when trying to move to significantly larger problems and machines. Furthermore these
challenges will often, in our experience and from the anecdotal evidence of others, involve
technical innovation at the level of the algorithms, data structures and software architectures
with a level of scale-related difficulty that is often uniqueto those scales.

9. Acknowledgments. An award of computer time was provided by the Innovative
and Novel Computational Impact on Theory and Experiment (INCITE) program. This re-
search used resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of theU.S. Department of Energy
under contract DE-AC02-06CH11357. This research is part ofthe Blue Waters sustained-
petascale computing project, which is supported by the National Science Foundation (award
number ACI 1238993) and the state of Illinois. Blue Waters isa joint effort of the University
of Illinois at Urbana-Champaign and its National Center forSupercomputing Applications.
This work was supported by the National Science Foundation under subcontracts No. OCI0721659,
the NSF OCI PetaApps program, through award OCI 0905068. Thesupport of the NSF
XSEDE network is also acknowledged, particularly the team at TACC who also provided a
Director’s discretionary allocation to enable the final runto be made.

REFERENCES

[1] BoxLib, 2011. https://ccse.lbl.gov/Boxlib.
[2] A. A LMGREN, J. BELL , D. KASEN, M. L IJEWSKI, A. NONAKA , P. NUGENT, C. RENDLEMAN ,

R. THOMAS, AND M. Z INGALE, Maestro, castro, and sedona–petascale codes for astrophysical ap-
plications, arXiv preprint arXiv:1008.2801, (2010).

[3] B. W. ASAY, S. F. SON, AND J. B. BDZIL , The role of gas permeation in convective burning, International
Journal of Multiphase Flow, 22 (1996), pp. 923–952.

[4] J. BECKVERMIT, T. HARMAN , A. BEZDJIAN, AND C. WIGHT, Modeling Deflagration in Energetic
Materials using the Uintah Computational Framework, Accepted in Procedia Computer Science, (2015).

[5] J. G. BENNETT, K. S. HABERMAN , J. N. JOHNSON, B. W. ASAY, AND B. F. HENSON, A Constitutive
Model for the Non-Shock Ignition and Mechanical Response ofHigh Explosives, Journal of the
Mechanics and Physics of Solids, 46 (1998), pp. 2303–2322.

[6] H. L. BERGHOUT, S. F. SON, L. G. HILL , AND B. W. ASAY, Flame spread through cracks of PBX 9501 (a
composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosive), Journal of Applied Physics,
99 (2006).

[7] H. L. BERGHOUT, S. F. SON, C. B. SKIDMORE, D. J. IDAR, AND B. W. ASAY, Combustion of Damaged
PBX 9501 Explosive, Thermochimica Acta, 384 (2002).

[8] M. B ERZINS, Status of release of the Uintah Computational Framework, Tech. Report UUSCI-2012-001,
Scientific Computing and Imaging Institute, 2012.

[9] M. B ERZINS, J. LUITJENS, Q. MENG, T. HARMAN , C.A. WIGHT, AND J.R. PETERSON, Uintah - a scal-
able framework for hazard analysis, in TG ’10: Proc. of 2010 TeraGrid Conference, New York, NY,
USA, 2010, ACM.

[10] M. BERZINS, J. SCHMIDT, Q. MENG, AND A. HUMPHREY, Past, present, and future scalability of the
uintah software, in Proceedings of the Blue Waters Extreme Scaling Workshop 2012, 2013, p. Article
No.: 6.

18



[11] P. B. BUTLER AND H. KRIAR, Analysis of deflagaration to detonation transition in hight-energy solid pro-
pellants, annual technical report, University of Illinois at Urabana-Champaign, September 1984.

[12] ALLINEA SOFTWARE. WEBSITE BY VERSANTUS, Allinea Web Page, 2014. http://www.allinea.com/.
[13] P. COLELLA , D. GRAVES, T. LIGOCKI, D. MARTIN , D. MODIANO, D. SERAFINI, AND B. VAN

STRAALEN, Chombo software package for AMR applications: design document.
[14] J. D. DE ST. GERMAIN , J. MCCORQUODALE, S. G. PARKER, AND C. R. JOHNSON, Uintah: A massively

parallel problem solving environment, in Ninth IEEE International Symposium on High Performance
and Distributed Computing, IEEE, Piscataway, NJ, November 2000, pp. 33–41.

[15] D.L.BROWN AND P.MESSINA ET AL., Scientific grand challenges: Crosscutting technologies for computing
at the exascale, Tech. Report Report PNNL 20168, US Dept. of Energy Report from the Workshop on
February 2-4, 2010 Washington, DC, 2011.

[16] A. DUBEY, A. ALMGREN, JOHN BELL , M. BERZINS, S. BRANDT, G. BRYAN , P. COLELLA , D. GRAVES,
M. L IJEWSKI, F. LFFLER, B. OSHEA, E. SCHNETTER, B. VAN STRAALEN , AND K. WEIDE, A survey
of high level frameworks in block-structured adaptive meshrefinement packages, Journal of Parallel and
Distributed Computing, (2014).

[17] B. FRYXELL , K. OLSON, P. RICKER, F. X. TIMMES, M. ZINGALE , D. Q. LAMB , P. MACNEICE,
R. ROSNER, J. W. ROSNER, J. W. TRURAN, AND H. TUFO, FLASH an adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes, The Astrophysical Journal Supplement Series,
131 (2000), pp. 273–334.

[18] T. GOODALE, G. ALLEN , G. LANFERMANN, J. MASSO, T. RADKE , E. SEIDEL, AND J. SHALF, The
Cactus framework and toolkit: Design and applications, in Vector and Parallel Processing VECPAR
2002, Lecture Notes in Computer Science, Berlin, 2003, Springer.

[19] GOOGLE PROJECT HOSTING GOOGLE, Google Performance Tools Web Page, 2014.
https://code.google.com/p/gperftools/wiki/GooglePerformanceTools.

[20] J.E. GUILKEY, T.B. HARMAN , AND B. BANERJEE, An eulerian-lagrangian approach for simulating explo-
sions of energetic devices, Computers and Structures, 85 (2007), pp. 660–674.

[21] J. E. GUILKEY, T. B. HARMAN , A. X IA , B. A KASHIWA , AND P. A. MCMURTRY, An Eulerian-Lagrangian
approach for large deformation fluid-structure interaction problems, part 1: Algorithm development, in
Fluid Structure Interaction II, Cadiz, Spain, 2003, WIT Press.

[22] T. B. HARMAN , J. E. GUILKEY, B. A KASHIWA , J. SCHMIDT, AND P. A. MCMURTRY, An eulerian-
lagrangian approach for large deformationfluid-structureinteraction problems, part 1:multi-physics
simulations within a modern computationalframework, in Fluid Structure Interaction II, Cadiz, Spain,
2003, WIT Press.

[23] J.ANG AND K.EVANS ET AL, Workshop on extreme-scale solvers: Transition to future architectures, Tech.
Report USDept. of Energy, Office of Advanced Scientific Computing Research. Report of a meeting held
on March 8-9 2012, Washington DC, 2012.

[24] B.A. KASHIWA AND E.S. GAFFNEY., Design basis for CFDLIB, Tech. Report LA-UR-03-1295, Los Alamos
National Laboratory, 2003.

[25] B. A. KASHIWA, A multifield model and method for fluid-structure interaction dynamics, Tech. Report LA-
UR-01-1136, Los Alamos National Laboratory, 2001.

[26] B. A. KASHIWA AND R. M. RAUENZAHN, A multimaterial formalism, Tech. Report LA-UR-94-771, Los
Alamos National Laboratory, Los Alamos, 1994.

[27] S. KUMAR , A. SAHA , J. SCHMIDT, V. V ISHWANATH , P. CARNS, G. SCORZELLI, H. KOLLA , R. GROUT,
R. ROSS, M. PAPKA , J. CHEN, AND V. PASCUCCI, Characterization and Modeling of PIDX for
Performance Prediction, in Proceedings of SC13: International Conference for HighPerformance
Computing, Networking, Storage and Analysis, ACM, 2013, pp.96:1–96:11.

[28] J. LUITJENS AND M. BERZINS, Improving the performance of Uintah: A large-scale adaptive meshing
computational framework, in Proc. of the 24th IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS10), 2010.

[29] J. LUITJENS AND M. BERZINS, Scalable parallel regridding algorithms for block-structured adaptive mesh
refinement, Concurrency and Computation: Practice and Experience, 23 (2011), pp. 1522–1537.

[30] J. LUITJENS, M. BERZINS, AND T. HENDERSON, Parallel space-filling curve generation through sorting,
Concurrency and Computation:Practice and Experience, 19 (2007), pp. 1387–1402.

[31] J. LUITJENS, B. WORTHEN, M. BERZINS, AND T. HENDERSON, Petascale Computing Algorithms and
Applications, Chapman and Hall/CRC, 2007, ch. Scalable parallel amr for theUintah multiphysics code.

[32] Q. MENG AND M. BERZINS, Scalable large-scale fluid-structure interaction solversin the Uintah framework
via hybrid task-based parallelism algorithms, Concurrency and Computation: Practice and Experience,
(2013).

[33] Q. MENG, M. BERZINS, AND J. SCHMIDT, Using hybrid parallelism to improve memory use in Uintah, in
Proceedings of the Teragrid 2011 Conference, ACM, July 2011.

[34] Q. MENG, A. HUMPHREY, J. SCHMIDT, AND M. BERZINS, Investigating applications portability with the
Uintah DAG-Based runtime system on PetScale supercomputers, in Proceedings of SC13: International

19



Conference for High Performance Computing, Networking, Storage and Analysis, ACM, 2013, pp. 96:1–
96:12.

[35] T. OGAWA , E. ORAN, AND V. GAMEZO, Numerical study of flame acceleration and DDT in an inclined
array of cylinders using an AMR technique, Computers and Fluids, 85 (2013), pp. 63–70.

[36] B. O’SHEA, G. BRYAN , J. BORDNER, M. NORMAN, T. ABEL, R. HARKNESS, AND A. K RITSUK,
Introducing Enzo, an amr cosmology application, in Adaptive Mesh Refinement - Theory and
Applications, vol. 41 of Lecture Notes in Computational Science and Engineering, Berlin, Heidelberg,
2005, Springer-Verlag, pp. 341–350.

[37] S. G. PARKER, A component-based architecture for parallel multi-physics PDE simulation., Future
Generation Computer Systems, 22 (2006), pp. 204–216.

[38] S. G. PARKER, J. GUILKEY, AND T. HARMAN , A component-based parallel infrastructure for the simulation
of fluid-structure interaction, Engineering with Computers, 22 (2006), pp. 277–292.

[39] J. R. PETERSON, J. BECKVERMIT, T. HARMAN , M. BERZINS, AND C. A. WIGHT, Multiscale modeling of
high explosives for transportation accidents, in XSEDE ’12: Proceedings of 2012 XSEDE Conference,
New York, NY, 2012, ACM.

[40] J. R. PETERSON AND C. A. WIGHT, An eulerian-lagrangian computational model for deflagration and
detonation of high explosives, Combustion and Flame, 159 (2012), pp. 2491–2499.

[41] RICE UNIVERSITY * R ICE COMPUTER SCIENCE, HPCToolkit Web Page, 2014.
http://hpctoolkit.org/index.html.

[42] P. J. SMITH , R. RAWAT, J. SPINTI, S. KUMAR , S. BORODAI, AND A. V IOLI , Large eddy simulation
of accidental fires using massively parallel computers, in 18th AIAA Computational Fluid Dynamics
Conference, June 2003.

[43] S. F. SON AND H. L. BERGHOUT, Flame spread across surfaces of PBX 9501, in American Institute of
Physics Conference Proceedings, 2006, pp. 1014–1017.

[44] P. C. SOUERS, S. ANDERSON, J. MERCER, E. MCGUIRE, AND P. VITELLO, JWL++: A simple reactive
flow code package for detonation, Propellants, Explosives, Pyrotechnics, 25 (2000), pp. 54–58.

[45] D. SULSKY, Z. CHEN, AND H. L. SCHREYER, A particle method for history-dependent materials, Computer
Methods in Applied Mechanics and Engineering, 118 (1994), pp. 179–196.

[46] W. A. TRZCINSKI, Numerical analysisis of the deflagration to detonation transition in primary explosives,
Centeral European Journal of Energetic Materials, 9 (2012), pp. 17–38.

[47] M. J. WARD, S. F. SON, AND M. Q. BREWSTER, Steady deflagration of HMX with simple kinetics: a gas
phase chain reaction model, Combustion and Flame, 114 (1998), pp. 556–568.

[48] L. WEI, H. DONG, H. PAN , X. HU, AND J. ZHU, Study on the mechanism of the deflagration to detoantion
transition process of explosive, Journal of Energetic Materials, 32 (2014), pp. 238–251.

[49] C. A. WIGHT AND E. EDDINGS, Science-Based Simulation Tools for Hazard Assessment and Mitigation,
International Journal of Energetic Materials and Chemical Propulsion, 8 (2009).

[50] T. ZHANG, Y. L. BAI , S. Y. WANG, AND P. D. LIU, Damage of a high-energy solid propellant and its
deflagration-to-detonation transition, Propellants, Explosives, Pyrotechnics, 28 (2003), pp. 37–42.

20


