
Uintah - a scalable framework for hazard analysis

Martin Berzins
Scientific Computing and

Imaging Institute
University of Utah

Salt lake City, UT 84112 USA
mb@sci.utah.edu

Justin Luitjens
Scientific Computing and

Imaging Institute
University of Utah

Salt lake City, UT 84112 USA
luitjens@cs.utah.edu

Qingyu Meng
Scientific Computing and

Imaging Institute
University of Utah

Salt lake City, UT 84112 USA
qymeng@cs.utah.edu

Todd Harman
Department of Mechanical

Engineering
University of Utah

Salt lake City, UT 84112 USA
T.Harman@utah.edu

Charles A. Wight
Department of Chemistry

University of Utah
Salt lake City, UT 84112 USA
Chuck.Wight@utah.edu

Joseph R. Peterson
Department of Chemistry

University of Utah
Salt lake City, UT 84112 USA
Joseph.R.Peterson@utah.edu

ABSTRACT
The Uintah Software system was developed to provide an environ-
ment for solving a fluid-structure interaction problems on struc-
tured adaptive grids on large-scale, long-running, data-intensive
problems. Uintah uses a novel asynchronous task-based approach
with fully automated load balancing. The application of Uintah to
a petascale problem in hazard analysis arising from “sympathetic”
explosions in which the collective interactions of a large ensem-
ble of explosives results in dramatically increased explosion vio-
lence, is considered. The advances in scalability and combustion
modeling needed to begin to solve this problem are discussed and
illustrated by prototypical computational results.

Keywords
Uintah, scalability, parallel, adaptive, energetic materials

1. INTRODUCTION
The risks of manufacturing, transporting and storing energetic

materials (explosives, propellants and pyrotechnics) are in most
cases well understood. Devices containing such materials undergo
extensive testing for hazard classification prior to transportation
and deployment so that appropriate protocols can be implemented.
This testing is most often done with single articles, or with a small
number (for testing sympathetic detonation). However, there is now
reason to believe that the behavior of large ensembles of explosive
devices may be fundamentally different, and more dangerous.

This hazard is illustrated by an accident that took place on Au-
gust 11, 2005 when a truck carrying 35,500 pounds of Pentolite
explosives in Utah’s Spanish Fork Canyon overturned and caught
fire. Within 3 minutes the truck unexpectedly detonated, leaving
behind a 70’ wide x 30’ deep crater. The normal response of ener-
getic materials to heating from a fire is to undergo a thermal explo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TeraGrid’10 TeraGrid10, August 25, 2010, Pittsburgh
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

sion (deflagration), in which the rate of reaction is limited by heat
transfer. In a deflagration, only a small fraction of the material is
consumed during the explosion resulting in a low violence explo-
sion. The other limiting mode of combustion is detonation, which
is driven by pressure rather than heat transfer, so reaction rates are
typically many orders of magnitude faster resulting in more of the
explosive material being consumed during the combustion process.
Thus, the violence of explosion from a detonating energetic ma-
terial is orders of magnitude higher than the same material defla-
grating. Normally, detonations can only be initiated by a strong
shock wave generated from a primary detonator or booster charge.
In the accident it is believed that the reaction was initially a defla-
gration that transitioned to a detonation. This mode of combustion,
deflagration-to-detonation transition (DDT) represents one of the
most dangerous and least understood potential hazards involving
energetic materials [1] and one of the foci of this research.

It is well known that damaged energetic materials have a propen-
sity to undergo DDT because of the increased porosity and the abil-
ity to sustain convective burning inside of the material. This raises
the possibility that large ensembles of individual explosive devices
may undergo convective burning and DDT when damaged. By
understanding the physical processes of this behavior and through
simulation science it may be possible to design better methods of
packing energetic materials that prevent convective burning and a
catastrophic detonation in the event of a transportation accident.

We will address this problem through petascale simulation sci-
ence. The target simulation scenario is an array of explosive de-
vices (100’s) that are heated non-uniformly as a result of a fire. The
intention, and challenge, is to eventually predict the violence of ex-
plosion (as characterized by fragment velocities, pressures, etc.)
and explosive yield (percentage of devices exploded) for common
shipping configurations. This simulation capability will guide de-
sign improvements to shipping configurations that will mitigate the
possibility of a DDT event in a transportation accident.

This goal requires advances in a) the computational infrastruc-
ture, b) the models used for the mechanical and reactive properties
of the explosives, and c) the fluid-structure methodology. In this
paper we describe, specific improvements including new sub-grid
reaction models for the energetic materials, and continued evolu-
tion of the load-balancing and runtime components that facilitates
exploiting adaptive multiple scales of parallelism within Uintah.

Figure 1 shows a preliminary simulation of the target scenario
in which one exploding container (lower left) has caused a sym-



Figure 1: An array of 64 explosive cylinders ignited in the lower
left corner.

pathetic explosion in the surrounding 64 containers. In this sim-
ulation only the deflagration mode of combustion was modeled.
This low resolution prototyical simulation was run using the Uin-
tah Software, a product of the University of Utah Center for the
Simulation of Accidental Fires and Explosions (C-SAFE) [9]. C-
SAFE, a Department of Energy ASC center, focused on provid-
ing science-based tools for the numerical simulation of accidental
fires and explosions, capable of running on 4K processors. Uin-
tah has now been released as software1 and extended to run on
98K processors through additional DOE and NSF funding. The
benchmark C-SAFE problem was a multiphysics, large deforma-
tion, fluid-structure problem; a small cylindrical steel container
filled with a plastic bonded explosive (PBX9501) subjected to con-
vective and radiative heat fluxes from a fire. The incident heat flux
caused the PBX to rapidly decompose into a gas above a critical
temperature. The solid-to-gas reaction pressurized the interior of
the steel container causing the shell to rapidly expand and eventu-
ally rupture. The gaseous products of reaction formed a blast wave
that expanded outwards along with pieces of the container and un-
reacted PBX.

In order to solve complex multiscale multiphysics problems, such
as this one, Uintah makes use of a component design that has also
allowed it to excel as a research platform. Components enforce
separation between large entities of software and can be swapped in
and out, allowing them to be developed and tested within the entire
framework, without affecting other components. This has led to a
highly flexible simulation package that has been able to simulate a
wide variety of problems including shape charges, stage-separation
in rockets, the biomechanics of microvessels [13], the properties of
foam under large deformation [6], and the evolution of large pool
fires caused by transportation accidents [17], in addition to the ex-
ploding container described above.

Uintah currently contains three main simulation algorithms, or
components, that are capable of using Adaptive Mesh Refinement
(AMR): i) the ICE compressible multi-material CFD formulation,
ii) the particle-based Material Point Method (MPM) for structural
mechanics, and iii) the combined fluid-structure interaction algo-
rithm MPMICE [12]. In addition, Uintah integrates numerous sub-
components including equations of state, constitutive models, and
reaction models for deflagration and detonation.

ICE is a “multi-material" CFD algorithm that was originally de-
veloped by Kashiwa and others at LANL [16]. This technique can
be used in both the incompressible and compressible flow regimes,

1see http://www.uintah.utah.edu

which is necessary when modeling fires and explosions. This method
conserves mass, momentum, energy, and the exchange of these
quantities between materials and is used here on adaptive struc-
tured mesh meshes consisting of hexahedral patches often of 83

or 163 cells [18]. The Material Point Method is a particle method
that is used to evolve the equations of motion for the solid materi-
als. MPM is a powerful technique for computational solid mechan-
ics, and has found favor in many applications involving complex
geometries [13], large deformations [6], and fracture. Originally
described by Sulsky, et al., [27], MPM is an extension to solid me-
chanics of the well-known particle-in-cell (PIC) method for fluid
flow simulation, that uses the ICE mesh as a computational scratch-
pad. The fluid-structure methodology is a combination of the MPM
and ICE [12, 25].

The Uintah component approach allows the application develop-
ers to only be concerned with solving the partial differential equa-
tions on a local set of block-structured adaptive meshes, without
worrying about explicit message passing calls or notions of paral-
lelization or load balancing. This approach also allows the develop-
ers of the underlying parallel infrastructure to focus on scalability
concerns including load balancing, task (component) scheduling
and communications. This component based approach to solving
complex problems allows improvements in scalability to be imme-
diately applied to applications without any additional work by the
applications developer. The rest of this paper follows this philoso-
phy in that the improvements in the parallel infrastructure are con-
sidered before the developments in combustion science.

Our experience with previous C-SAFE simulations of a single
exploding container have shown that approximately 2K to 4K pro-
cessors are required. To simulate our target scenario, 100 energetic
devices, at a sufficient grid resolution will require petascale com-
putations. It is thus important that the parallel infrastructure (load
balancing, task/component scheduling and communication be able
to scale to 98K cores and beyond. Sections 2-6 of this paper pro-
vide an overview of the improvements in load balancing and task
scheduling needed to get closer to this goal. Despite the separa-
tion of components in Uintah, in Section 7 we describe a subtle
example of how a mildly inefficient application code resulted in re-
duced scalability. Finally in Section 8 we describe the development
of a DDT combustion model needed to begin to address our target
simulation. The paper thus shows how computer science and com-
bustion science combine to help to begin to address the challenge
of modeling developing detonations in energetic materials.

2. THE UINTAH TASK-GRAPH
The heart of Uintah is a sophisticated computational framework

that can integrate multiple simulation components, analyze the de-
pendencies and communication patterns between them, and exe-
cute the resulting multi-physics simulation, [25]. The design of
Uintah builds on the DOE Common Component Architecture (CCA)
component model. Components are implemented as C++ classes
that follow a very simple interface to establish connections with
other components in the system. Uintah utilizes an abstract rep-
resentation (called a task-graph) of parallel computation and com-
munication to express data dependencies between multiple physics
components. The task-graph is a directed acyclic graph of tasks.
Each task consumes some input and produces some output (which
is in turn the input of some future task). These inputs and outputs
are specified for each patch in a structured AMR grid. Associated
with each task is a C++ method which is used to perform the actual
computation. Each component specifies a list of tasks to be per-
formed and the data dependencies between them. The task-graph
approach of Uintah shares many features with the migratable ob-



ject philosophy of Charm++ [15]. A scheduler component in Uin-
tah sets up MPI communication for data dependencies and then
executes the tasks that have been assigned to it. When a task com-
pletes, its outputs are sent to other tasks that require them.

These features allowed parallelism to be integrated between mul-
tiple components while maintaining overall scalability. The task-
graph allows the Uintah runtime to analyze the structure of the
computation to automatically enable load-balancing, data commu-
nication, parallel I/O, and checkpoint/restart.

A load balancer component is responsible for assigning each
patch to a processor. Uintah’s load balancer utilizes space-filling
curves in order to cluster patches together [19]. In addition, it uti-
lizes a cost-model associated with each patch to predict the work-
load which is then balanced across all processors.

After recent improvements in memory management and load
balancing algorithms, Uintah has been shown to scale to tens of
thousands of processors [20]. In scaling beyond this number of
cores there are four main areas in which parallel performance has
to be improved: (i) efficiency of task-graph execution, (ii) load bal-
ancing for fluid structure interaction problems, (iii) efficient scal-
able adaptive mesh refinement and (iv) elimination of algorithmic
coding inefficiencies with regard to scalability. These areas will be
addressed in turn in the following sections.

3. EFFICIENT TASK-GRAPH EXECUTION
Results from preliminary scaling studies on Kraken 2, showed

that there was a substantial increase in MPI communication time at
larger numbers of cores. We discovered that the time spent waiting
for communication was due to dependencies between computing
tasks distributed to different processors. In Uintah, the task sched-
uler component is responsible for a) computing the dependencies
of tasks, b) determining the order of execution and c) ensuring that
the correct inter-process communication is performed.

The Uintah task scheduler compiles all of the tasks and vari-
able dependencies into a task-graph. Dependency edges are added
between tasks based on the supplied variable dependencies. The
computed dependency edges can be either internal or external. In-
ternal dependencies are between patches on the same processor and
external dependencies are between patches on different processors.
Thus internal dependencies imply a necessary order where external
dependencies specify required communication. The compilation
process also combines external dependencies from the same source
or to the same destination, thus coalescing messages.

Originally, Uintah used a static scheduler in which tasks were
executed in a pre-determined order. This sometimes caused the
simulation to sit idle when a single task was waiting for a message.
Measurements showed that this type of delay was nearly 80 percent
of total MPI waiting time in Uintah. The new dynamic scheduler
changes the task order during the execution to overlap communica-
tion and computation, [22]. This scheduler required a large amount
of development to support the out-of-order execution, which pro-
duced a significant performance benefit in lowering both the MPI
wait time and the overall runtime. The dynamic scheduler utilizes
two task queues: an internal ready queue and an external ready
queue. If a task’s internal dependencies are satisfied, then that task
will be put in the internal ready queue where they will wait until
all required MPI communication has finished. A counter of out-
standing MPI messages is tracked for each task. When this counter
reaches zero the communication is complete and the task is ready to
be executed. At that point it is placed in the external ready queue.

2Kraken is an NSF supercomputer located at the University of Ten-
nessee with 99,072 cores.

512 1024 2048 4096

0

10

20

30

40

50

60

70

80

90

100

T
im

e 
R

ed
uc

ed
 (

P
er

ce
nt

)

Processors

ICE Dynamic vs Static Scheduling (TACC Ranger)

 

 
Avg. Task Wait
Total Execution

Figure 2: Reductions in Wait and Total Time from Dynamic
Scheduling

When scheduling a task the scheduler chooses a task in the external
ready queue based on a priority algorithm.

As long as the external queue is not empty, the processor always
has tasks to run. This can help to overlap the MPI communication
time with task execution. This approach reduces MPI wait times
significantly. Figure 2 shows the percent reduction of both wait
time (which is as high as 90% in some cases) and total execution
time on a fixed mesh ICE problem on Ranger 3. The example prob-
lem used is a two material compressible Navier Stokes type prob-
lem that models the movement of one material through another at
high speed. 24,578 patches of 163 elements were used to solve this
problem, [18].

Tasks that require a global communication, i.e., computation of
the total mass of the system, require a specialized scheduling mech-
anism [22]. These tasks (which will be referred to as global tasks)
are scheduled once per processor and execute on all patches as-
signed to that processor as opposed to once per patch. Due to
the limitations of the MPI library, global communication requires a
synchronization point, thus every processor must execute a global
task at the same time. If global tasks are run out-of-order, a dead-
lock may occur.

8 12 16 20 24
0

10

20

M
P

I W
ai

t T
im

e(
se

c.
)

21.2 9.4 3.5 2.3 1.6
Patch Size
Patches/Core

ICE Wait Time and Task Ready Queue Length 

 

 

0

5

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Avg. Ready Queue Length
Task Wait Time(Max/Mean)

Figure 3: Queue length effects on wait times

3Ranger is an NSF supercomputer located at the University of
Texas with 62,976 cores.



The Uintah dynamic scheduler uses the methods described in [22]
to solve this problem. The tasks are divided into different phases
where each phase contains only one global task. The scheduler
only executes the global task if all of other tasks in its phase have
completed. In addition, the scheduler allows non-global tasks to be
executed in an earlier phase but not a later phase.

Uintah’s patch design allows users to easily change the size and
data layout so as to improve performance. Figure 3 shows that
when running with the ICE component on 24K cores on Kraken, as
the number of patches per core decreases so does the queue length
of patches waiting to be executed, leading to an increase in the time
spent waiting. When there are more patches-per-core the average
length of the external ready queue is larger, creating an opportunity
to reduce wait times and to overlap communications. Finally, Fig-
ure 4 shows that with smaller patches, the task wait time is small,
but the overhead of regridding, data copying and scheduling is rela-
tively large. As a result, the minimum overall execution time occurs
when both wait time and regridding overhead are both relatively
low.

8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

Patch Size

M
ea

n 
T

im
e 

P
er

 T
im

es
te

p 
[s

ec
.]

ICE with different patch sizes (Kraken, with 24K cores)

 

 
Total Execution
Task Wait
Regrid & Copydata
Scheduling

Figure 4: Granularity effects on execution time

4. EXPONENTIAL SMOOTHING LOAD BAL-
ANCER

Accurate workload prediction within Uintah is problematic with
adaptive meshes. The complexity of the underlying physics com-
plicates the process of deriving an accurate cost model. For exam-
ple, MPM simulations have added load balancing complexity over
ICE, because large numbers of computationally expensive parti-
cles move throughout the domain which may cause the workload
to change at every timestep. To address this imbalance a new tech-
nique has been developed which uses forecasting methods to pre-
dict the cost of each patch based on observations made at runtime.
During task execution, the time to complete each task is recorded
and used to update a simple forecasting model which is then used
to predict the time to execute on each patch in the future. This
provides a mechanism to accurately predict the cost of each patch
while requiring little information from the user or component de-
veloper.

One forecasting method used in Uintah is a simple exponential
smoothing method [24], that has been used in a wide variety of
applications because of its accuracy and simplicity. The model
from [18] combines current core timing measurements and predic-
tions as follows:

Wr,t+1 = αEr,t + (1− α)Wr,t, (1)

where α = 2.0
Ts+1

and where Wr,t is the predicted weight at timestep
t for region r. Er,t is the actual execution time at timestep t for
region r and α is a weighting factor in the range [0,1] which repre-
sents the rate of decay of past data. This method can also be viewed
as a weighted moving average where the weight on past observa-
tions decreases exponentially. A smaller value for α places more
weight on recent observations causing the forecast to respond more
quickly to changes in the actual value but also causes the forecast to
become more susceptible to noise. A larger value for α will cause
that data to be smoother, thus eliminating noise but will also cause
the forecast to react more slowly to changes in the actual value. The
parameter α can be defined in terms of the size of a moving aver-
age window using the formula for α in equation (1), where Ts is
the number of timesteps that will contain 99.9% of the total weight
in the weighted average [24]. Uintah uses a default value of 20 for
Ts. Further details of the algorithm are given in [18]. While mea-
surement based load balancing has been used by others (e.g. by
Charm++ [5]) our feedback mechanism appears to be novel.

5. A SCALABILITY METRIC FOR UINTAH
When attempting to scale codes that run well at small numbers

of cores to large numbers of cores, such as the 98K cores available
on Kraken, it is important to consider the efficiency and scalability
of the code. Suppose that the problem execution time is defined by
a function T (n, p) where n is a measure of the problem size and p
is the number of cores. The efficiency of a run of problem size of n
running on p cores relative to execution on the smallest number of
cores that the problem will fit on, say p0, is given by the formula

E(n, p0, p) =
T (n, p0)p0

T (n, p)p
, (2)

where 0 < E(...) ≤ 1 unless there is superlinear speedup. Con-
stant efficiency implies ideal strong scalability when the compute
time for a fixed problem size is reduced by a factor of P when
solved on p times as many cores. Weak scalability is defined by
constant values of Ws(n0, p0, p) where

Ws(n0, p0, p) =
T (n0p0, p0)

T (n0p, p)
, (3)

and where n0 is the problem size per core and p0 is the lowest
number of cores used with n0p0 being the total problem size on
p0 cores. Analysis of scalability and efficiency in [21] shows that
The system, is perfectly scalable if and only if the application has
a linear computational complexity. By perfect scalability we mean
both strong and weak scalability. This may be measured by the
product

SWs(n0, p0, p) = Ws(n0, p0, p
∗)E(p∗n0, p

∗, p)× 100% (4)

for which a value of 100% implies perfect scalability with respect
to the reference point of T (n0p0, p0) and where T (p∗n0, p

∗) is
an intermediate weak scaling value with p∗ processors. By using
equations (2) and (3) this measure may be re-written as:

SWs(n0, p0, p) =
T (n0p0, p0)p

∗

T (n0p∗, p)p
× 100% (5)

The generalization of this is that a measure of the total scalability
of a workload of n0β on p processors with respect to a workload
of n0p0 on p0 processors is given by:

SWs(n0, p0, p) =
T (n0p0, p0)β

T (n0β, p)p
× 100%, p0 ≤ β ≤ p. (6)



This metric has the advantage that it is possible to quantify weak
and strong scalability with only two runs of a problem. Calculat-
ing the exact workload n0β used on p cores may not always be
easy for an adaptive mesh calculation, however. One requirement
for achieving strong scalability is that the algorithms cannot have
global data structures or operations that depend on the total number
of cores p. Such restrictions and the need for linearity play a key
role in the scalability of Uintah, see below.

6. SCALABLE AMR ALGORITHM
Uintah’s task-graph structure of the computation makes it possi-

ble to improve scalability through adaptive self-tuning. However,
the changing nature of the task-graph from adaptive mesh refine-
ment poses extra challenges for scalability, [20].

Recent improvements within Uintah to the regridder and load
balancer component have led to substantial improvements in the
scalability of AMR. Previously, Uintah utilized the widely-used
Berger-Rigoutsos algorithm, [4], to perform regridding. However,
when using a large number of cores this algorithm performed poorly,
requiring a new approach. The new regridder defines a set of fixed-
sized tiles throughout the domain. Each tile is then searched, in par-
allel, for refinement flags without the need for communication. All
tiles that contain refinement flags become patches. This regridder is
advantageous at large scales because cores only communicate once
at the end of regridding when the patch sets are combined, [18].

The scalability of Uintah’s AMR infrastructure was tested in
both the weak and strong sense using a test problem that required a
dynamic grid with a constant total size, e.g., constant velocity, two
material Navier Stokes calculation. The tests were run on Kraken
and the time to complete 50 timesteps of the full AMR simulation
was recorded. With 98K cores there are only one or two patches
with 4096 cells per core. Experience suggests this is the point at
which scalability begins to break down. This problem contained
three mesh levels with each level being a factor of four more re-
fined than the coarser level. Patches were uniformly sized with 163

cells in each patch. Regridding and load balancing were performed
as needed and occurred around 5 times in each problem. The per-
formance was tested for five problem sizes with each problem size
containing approximately four times as many cells as the previous
problem. The smallest problem contained 1.7 million cells and the
largest problem contained 435 million cells. The numerical values

12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304

10
1

10
2

M
ea

n 
T

im
e 

P
er

 T
im

es
te

p 
[s

ec
.]

Processors

AMR−ICE Scaling

 

 

Strong

Weak

Figure 5: AMR Scaling Results for ICE

show that the rightmost set of results do not scale as well as the oth-

ers. The weak and strong scaling results for up to 98,304 cores for

Weak Strong Run 3 Strong Run 4 Strong Run 5
Run Cores SWs Cores SWs Cores SWs
1 768 100 1536 99 3072 87
2 1536 98 3072 97 6144 85
3 3072 100 6144 98 12288 82
4 6144 92 12288 89 24576 67
5 12288 80 24576 78 49152 55
6 24576 59 49152 50 98304 33

Table 1: ICE with AMR SWs Metric values

ICE can be found in Figure 5 which shows six weak scaling sets of
timings (horizontal dashed lines) and five strong scaling diagonal
lines, [18]. Table 1 shows the SWs metric for the three rightmost
strong scaling runs and for the rightmost parts of the six weak scal-
ing runs. The elimination of inefficiencies within Uintah and im-
provements to the load balancer have led to marked improvements
in scalability. Good strong scaling occurred for every problem size
tested. In each test scaling occurred down to approximately one
patch per core. In the final run (rightmost solid line) (Strong 5)
the scaling degenerates somewhat for large core counts. Using the
data from [18], simple manipulation shows that the timings for the
Strong 5 run follow the approximate formula

T (P ) ≈ T0(P0)
P0

P
+ log

„
P

P0

«
,

where the starting number of cores is P0 = 3072 and T0(P0) =
105.8. The origin of the logarithmic term is not clear at present.

7. SCALABLE DATA STRUCTURES
One hurdle to scalability in AMR codes is a potential depen-

dency on global meta-data, i.e. data that is replicated across the
entire domain. Examples of this include the grid layout and the
load balance information. Currently, every process must know the
extents of every patch and which processors own which patches.
As the number of patches grow the size of this global meta-data
will also increase along with the time to create the data. This will
eventually grow and become a significant problem.

Uintah has begun to reduce the amount of global meta-data used
by using two methods. The first (and preferred) method is to elim-
inate the global dependency where possible. This has been done
within the task-graph. Each core only creates tasks that are within
its neighborhood, making the task-graph completely local. The sec-
ond method has been to reduce the size of the data structures. For
example, the patch data type has been divided into a light-weight
and heavy-weight data type. When patches are being generated
and communicated the light-weight data type is used. This data
type only contains the coordinates of the low and high point of
the patch. This allows the patches to be copied and communicated
quickly. However, once the patch set has been finalized the light-
weight patch data is turned into heavy-weight patch data, which
include extra information that is required for the computation. Us-
ing this light-weight data structure helps minimize communication
across the network. In addition, we have reduced the size of the
heavy-weight patch data as much as possible. While this second
method works well it is clear that it will insufficient when the num-
ber of patches is greater than, say, 100M. At this point we will have
to move to either hierarchical or local algorithms.

In investigating the complexities of scaling with large numbers
of cores it is important to realize that sometimes scaling fails be-



cause of quite innocent coding inefficiencies. For example Fig-
ure 6 shows the weak and strong scalability of the fixed mesh ICE

24 48 96 192 384 768 1.5K 3K 6K 12K 25K 49K 98K
10

−1

10
0

10
1

10
2

M
ea

n 
T

im
e 

P
er

 T
im

es
te

p 
[s

ec
.]

Cores

Single Level ICE Scaling

 

 

Pre−Fix
Post−Fix

Figure 6: Before and after scaling results for static ICE

component for three problems sizes. Using profiling techniques we
identified the cause of the poor scalability in the results labeled Pre-
Fix as a query to the spatial extents of a level. This query would
iterate through all Np patches on the level and compute the spa-
tial extents with a complexity of O(Np). This query itself is not a
problem. However, an application developer was performing this
query inside of a patch loop leading to an overall complexity of
O(N2

p ). These performance problems were resolved by computing
and storing the spatial extents of a level at construction time mak-
ing the query time O(1). The results of this change can been seen
in the Post-Fix results in Figure 6. At smaller numbers of proces-
sors this code was not detrimental to scalability but as the number
of patches increased it quickly became one. In order to clarify the
situation we apply the SWs metric as defined by equation (6). the

ICE Pre-Fix Strong and Weak Efficiency
Weak Strong Run 3 Strong Run 4 Strong Run 5
Run Cores SWs Cores SWs Cores SWs
1 24 100 192 97 1536 68
2 48 97 384 92 3072 59
3 96 94 768 92 6144 52
4 192 96 1536 89 12288 48
5 384 94 3072 86 24576 42
6 768 80 6144 72 49152 34
7 1536 78 12288 72 98304 29

ICE Post-Fix Strong and Weak Efficiency
Weak Strong Run 3 Strong Run 4 Strong Run 5
Run Cores SWs Cores SWs Cores SWs
1 24 100 192 96 1536 91
2 48 99 384 95 3072 88
3 96 94 768 93 6144 87
4 192 98 1563 93 12288 85
5 384 96 3072 86 24576 74
6 768 81 6144 81 49152 74
7 1536 87 12288 79 98304 52

Table 2: Static mesh ICE with pre and post-fix SWs values.

metric values in Table 2 shows clearly that although scalability has

greatly improved that there is still some way to go. This is a little
less clear from Figure 6. This example shows the improvements
that come from careful algorithmic analysis. We, and others, have
observed that any doubling in the numbers of cores leads to having
to either fix scaling inefficiencies or to make algorithmic changes.
The above example suggests that there may be such problems in
the AMR code close to 98K cores when there is comparatively lit-
tle work per core.

8. PETASCALE SIMULATION OF SYMPA-
THETIC EXPLOSIONS.

An important goal of our NSF PetaApps project is to develop
a science-based model of the deflagration-to-detonation transition
(DDT) in high explosives. This transition from slow, thermally
activated combustion to a fast pressure-driven detonation accounts
for the majority of violent explosions in transportation accidents. It
is therefore an essential component of our petascale simulations to
enhance transportation safety.

In our recent work, we have combined the two validated Uintah
combustion models for deflagration [10] and detonation [26] into a
single model with a rudimentary switch to simulate the DDT. This
model has been validated against impact experiments for PBX9501
conducted at Los Alamos [14] with generally good results. How-
ever, this model fails to capture much of the basic physics and
mechanics of DDT, which relies on damage, porosity, convective
burning and inertial confinement. The next stage of algorithm de-
velopment will be to build these characteristics into the DDT model
in ways that can be validated by existing experimental results. Re-
sults from [14] as well those of [8] are the main experimental data
to be validated against.

Uintah incorporates reaction models that convert mass from en-
ergetic materials (e.g., the plastic-bonded explosive PBX9501) to
product gases, with the appropriate release of heat. From a com-
putational point of view, the models simply represent mass sources
and sinks that take place on the Eulerian grid.

The numerical model for deflagration in energetic materials is
based on a two-step global chemistry model described by Ward,
Son and Brewster (WSB) [28]. As originally formulated, this model
predicts the steady combustion rate of energetics as a function of
pressure and initial temperature of the solid material. We extended
the 1-D WSB analytic model to 3-D and validated the parameters
against the experimental strand burner measurements of Atwood et
al. [2]. Good agreement was obtained for the pressure-dependence
of the burn rate as well as the dependence on initial (bulk) temper-
ature of the PBX9501 [10].

The detonation component of the reaction model is adapted from
Souers’ JWL++ model [26]. The ignition and growth parame-
ters of the model were adjusted to produce the desired detona-
tion velocity (8800 m/s) and detonation pressure (35 GPa) appro-
priate for PBX9501. The constitutive model for PBX9501 uses
the ViscoSCRAM formulation developed at Los Alamos National
Laboratory [3]. The Murnaghan equation of state uses parame-
ters published by Gibbs and Papolato [11]. Detonation product
gases are modeled using a JWL equation of state using published
parameters [23]. The detonation model was validated against low-
amplitude impact test data (Steven’s Test) [7,14]. The results showed
excellent agreement between simulation and experiment when the
detonation threshold pressure was set to 5 GPa. This value also
gives good agreement for aluminum flyer plate shock detonation
tests [8]. Run-to-detonation lengths were on the lower bound of
the experimental values, but the slopes of the experiment and sim-
ulated Pop plots are identical to within experimental error.



Figure 7: Montage of a 2-D steel container filled with a energetic material that is experiencing a detonation reaction.

One of the advantages of using the ViscoSCRAM constitutive
model is that the crack radius is a temporally evolving quantity that
is accessible by the reaction models. We are currently utilizing this
variable as a method of allowing convective burning in the ener-
getic material as it suffers damage due to stresses and strains that
are imposed externally as well as caused by reaction and pressur-
ization.

Figures 7 and 8 illustrate our current code capabilities. Figure 7
shows a 2-D simulation of a 4 inch diameter steel container initially
filled with an energetic material undergoing a detonation reaction.
To initiate the reaction a projectile (shown on the right) traveling
at 500m/s collided with the steel shell creating a shock wave in-
side of the energetic material. This shock wave started a detonation
reaction which moved from left to right rapidly pressurizing the
container and contents. The container was modeled using MPM
particles that are colored by the magnitude of the velocity of the
particles. The contour plot inside of the container is colored by
the pressure field. The top image shows the detonation wave ap-
proaching the left container wall. In the middle image the wave has
reflected off of the left wall, focused to a point and is expanding as
it travels to the right. In the rightmost image the wave is nearing
the impact zone. A variable scale color map was used to accentuate
the wave pattern. Figure 8 show a 3-D visualization of the scenario
described above. In this image the steel case MPM particles are
color coded by the temperature.

Figure 8: 3-D steel container filled with an energetic material
experiencing a detonation reaction

These preliminary results require further work on both the com-

bustion models and on the scalability in order for this scenario to
be simulated with sufficient resolution and with multiple containers
on 200-300K cores. Achieving this level of fidelity and scalability
is the next challenge of this PetaApps project.

9. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation

under subcontract No. OCI0721659. Uintah was written by the
University of Utah’s Center for the Simulation of Accidental Fires
and Explosions (C-SAFE) and funded by the Department of En-
ergy, subcontract No. B524196. We would like to thank TACC and
NICS for access to large numbers of cores.

10. REFERENCES
[1] B. W. Asay. Shock Wave Science and Technology Reference

Library, Volume 5, Non-shock initiation of explosives.
Springer-Verlag, Berlin, 2010.

[2] A. I. Atwood, T. L. Boggs, P. O. Curran, T. P. Parr, D. M.
Hanson-Parr, C. F. Price, and J. Wiknich. Burning rate of
solid propellant ingredients, part 1: Pressure and initial
temperature effects. Journal of Propulsion and Power,
15:740–747, 1999.

[3] J. G. Bennett, K. S. Haberman, J. N. Johnson, and B. W.
Asay. A constitutive model for the non-shock ignition and
mechanical response of high explosives. Journal of the
Mechanics and Physics of Solids, 46(12):2303–2322, 1998.

[4] M. Berger and I. Rigoutsos. An algorithm for point
clustering and grid generation. IEEE Trans. Systems Man
Cybernet., 21(5):1278–1286, 1991.

[5] A. Bhatelé, L. V. Kalé, and S. Kumar. Dynamic topology
aware load balancing algorithms for molecular dynamics
applications. In Proceedings of the 23rd international
conference on Supercomputing, pages 110–116. ACM, 2009.

[6] A. D. Brydon, S. G. Bardenhagen, E. A. Miller, and G. T.
Seidler. Simulation of the densification of real open–celled
foam microstructures. J. Mech. Phys. Solids, 53:2638–2660,
2005.

[7] S. K. Chidester, R. Garza, and C. M. Tarver. Low amplitude
impact testing and analysis of pristine and aged solid high
explosives. Technical report, UCRL-JC-127963, Lawrence
Livermore National Laboratory (LLNL), Livermore, CA,
1998.

[8] S. K. Chidester, D. G. Thompson, K. S. Vandersall, D. J.
Idar, C. M. Tarver, F. Garcia, and P. A. Urtiew. Shock



Initiation Experiments on PBX 9501 Explosive at Pressures
below 3 GPa with Associated Ignition and Growth Modeling.
In Shock Compression of Condensed Matter- 2007:
Proceedings of the Conference of the American Physical
Society Topical Group on Shock Compression of Condensed
Matter(2007 APS SCCM) Part Two, volume 955, pages
903–906, 2007.

[9] J. D. de St. Germain, J. McCorquodale, S. G. Parker, and
C. R. Johnson. Uintah: A massively parallel problem solving
environment. In Ninth IEEE International Symposium on
High Performance and Distributed Computing, pages 33–41.
IEEE, Piscataway, NJ, November 2000.

[10] E. G. Eddings and C. A. Wight. Science based simulation
tools for hazard assessment and mitigation. In Advancements
in Energetic Materials and Chemical Propulsion, pages
921–937, 2008.

[11] T. R. Gibbs and A. Popalato, editors. LASL Explosive
Property Data. University of California Press, 1980.

[12] J. E. Guilkey, T. B. Harman, and B. Banerjee. An
eulerian-lagrangian approach for simulating explosions of
energetic devices. Computers and Structures, 85:660–674,
2007.

[13] J. E. Guilkey, J. B Hoying, and J. A. Weiss. Modeling of
multicellular constructs with the material point method.
Journal of Biomechanics, 39:2074–2086, 2007.

[14] D. J. Idar, R. A. Lucht, J. W. Straight, R. J. Scammon, R. V.
Browning, J. Middleditch, J. K. Dienes, C. B. Skidmore, and
G. A. Buntain. Low amplitude insult project: Pbx 9501 high
explosive violent reaction experiments. Technical Report
LA-UR–98-3366, Los Alamos National Laboratory, Los
Alamos, 1998.

[15] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and
G. Zheng. Programming petascale applications with
Charm++ and AMPI. Petascale Computing: Algorithms and
Applications, 1:421–441, 2007.

[16] B. A. Kashiwa. A multifield model and method for
fluid-structure interaction dynamics. Technical Report
LA-UR-01-1136, Los Alamos National Laboratory, Los
Alamos, 2001.

[17] G. Krishnamoorthy, S. Borodai, R. Rawat, J. P. Spinti, and
P. J. Smith. Numerical modeling of radiative heat transfer in
pool fire simulations. In ASME International Mechanical
Engineering Congress (IMECE), Orlando, Florida, 2005.

[18] J. Luitjens and M. Berzins. Improving the performance of
Uintah: A large-scale adaptive meshing computational
framework. In Proceedings of the 24th IEEE International
Parallel and Distributed Processing Symposium (IPDPS10),
2010.

[19] J. Luitjens, M. Berzins, and T. Henderson. Parallel
space-filling curve generation through sorting: Research
articles. Concurr. Comput. : Pract. Exper.,
19(10):1387–1402, 2007.

[20] J. Luitjens, B. Worthen, M. Berzins, and T. Henderson.
Petascale Computing Algorithms and Applications, chapter
Scalable parallel amr for the Uintah multiphysics code.
Chapman and Hall/CRC, 2007.

[21] I. Martin and F. Tirado. Relationships between efficiency and
execution time of full multigrid methods on parallel
computers. IEEE Transactions on Parallel and Distributed
Systems, 8(6):562–573, 1997.

[22] Q. Meng, J. Luitjens, and M. Berzins. Dynamic task
scheduling for scalable parallel AMR in the Uintah

framework. SCI Technical Report UUSCI-2010-001,
University of Utah, 2010.

[23] R. Menikoff and T. D. Sewell. Complete equation of state for
beta-HMX and implications for initiation. Shock
Compression of Condensed Matter, pages 157–160, 2004.

[24] D. C. Montgomery, L. A. Johnson, and J. S. Gardiner.
Forecasting and time series analysis. McGraw-Hill, 1990.

[25] S. G. Parker, J. Guilkey, and T. Harman. A component-based
parallel infrastructure for the simulation of fluid-structure
interaction. Engineering with Computers, 22:277–292, 2006.

[26] P. C. Souers, R. Garza, and P. Vitello. Ignition & Growth and
JWL++ Detonation Models in Coarse Zones. Propellants,
Explosives, Pyrotechnics, 27(2):62–71, 2002.

[27] D. Sulsky, S. Zhou, and H. L. Schreyer. Application of a
particle-in-cell method to solid mechanics. Computer
Physics Communications, 87:236–252, 1995.

[28] M. J. Ward, S. F. Son, and M. Q. Brewster. Steady
deflagration of hmx with simple kinetics: A gas phase chain
reaction model. Combustion and flame, 114(3-4):556–568,
1998.


