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Abstract

The issue of mesh quality for the solution of problems with anisotropic solutions
on unstructured triangular and tetrahedral meshes is considered. A three dimen-
sional time-dependent problem from atmospheric dispersion is described and used
to motivate a discussion of mesh quality. A survey of recent research in the de-
velopment of finite element methods describes work on moving mesh methods, on
anisotropic meshing algorithms and on the provision of appropriate error estimates.
As such error estimates are presently not always available, one option is to use local
error estimates for transient problems. One such approach is described and is used
to decide how to adapt the mesh. A visualization system for identifying poor quality
elements is described and used to find the poor quality elements in the atmospheric
dispersion problem.

1 Introduction

The issue of what is an appropriate spatial mesh is as old as the finite element method
itself, but the increasingly complex nature of 3D applications may involve dealing with
multicomponent problems with time dependence, turbulence and anisotropy to name but
some of many possible complications.

A relatively simple example which is useful to illustrate the difficulties is the follow-
ing 3D advection-reaction problem. The example is a model of atmospheric dispersion
from a power station plume which is a concentrated source of NOx emissions, [31]. The
photo-chemical reaction of this NOx with polluted air leads to the generation of ozone at
large distances downwind from the source. An accurate description of the distribution of
pollutant concentrations is needed over large spatial regions in order to compare with field
measurement calculations. The present trend is to use models incorporating an ever larger
number of reactions and chemical species in the atmospheric chemistry model. The com-
plex chemical kinetics in the atmospheric model gives rise to abrupt and sudden changes
in the concentration of the chemical species in both space and time. These changes must
be matched by changes in the spatial mesh and the timesteps if high resolution is required,
[31]. This application is modelled by the atmospheric diffusion equation in three space
dimensions given by:
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Figure 1: Tetrahedral Mesh for Reacting
Flow P.D.E. Figure 2: Cross section of plume

where ¢, is the concentration of compound s , u, v and w, are constant wind velocities and
Ky is the sum of the wet and dry deposition velocities. F, describes the distribution of
emission sources for compound s and R, is the chemical reaction term which may contain
nonlinear terms in ¢,. D is the diffusion term which is set to zero here. For n chemical
species a set of n partial differential equations (p.d.e’s) is formed where each is coupled
to the others through the nonlinear chemical reaction terms.

The test case model covers a region of 300 km x 500 km and is a three-dimensional
form of that used by [31] and although far from detailed, does represent the main fea-
tures which would commonly be found in an atmospheric model including slow and fast
nonlinear chemistry, concentrated source terms and advection. Although the chemical re-
action terms involve only 7 species they still represent the main features of a tropospheric
mechanism, namely the competition of the fast inorganic reactions given by

O,

N02 — 03 + NO and NO + 03 — N02 + 02
organic compounds (VOC’s), which occurs on a much slower time-scale. This separation
in time-scales generates stiffness in the resulting equations. The reaction rate constants
and the background concentrations that form the initial conditions for the model are given
by Tomlin et al. [31]. These concentrations will then change diurnally as the chemical
transformations take place. The power station is taken to be the only source of NOx
and this source is treated by setting the concentration in the chimney set as an internal
boundary condition. In terms of the mesh generation this ensures that the initial grid
will contain more elements close to the concentrated emission source. The concentration
in the chimney corresponds to an emission rate of NOx of 400kghr=! with only 10% of
the NOx being emitted as NO,. A constant wind speed of 5ms~! in the x-direction with
y and z components of one tenth of this value is assumed.

Spatial discretisation of the model atmospheric diffusion equation on unstructured
tetrahedral meshes reduces the set of p.d.e’s in four independent variables to a system of
ordinary differential equations (0.d.e’s) in one independent variable: time. This system of
o.d.e’s can then be solved as an initial value problem. For advection-dominated problems
it is important to choose a discretisation scheme which preserves the physical range of
the solution [30]. The method used here is the cell-centered finite volume discretisation
scheme used by [30] which enables accurate solutions to be determined for both smooth
and discontinuous flows by making use of upwind techniques for the advective parts of
the fluxes.

Figure 1 shows the plume developing with the adaptive mesh clustered around the
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developed portion of the solution. The visualisation was realised by running the parallel
code in conjunction with the SCIRUN system at the University of Utah, see [23]. The
main area of mesh refinement is along the plume edges close to the chimney. Using the
adaptive mesh, we can clearly see the plume edges and can easily identify areas of high
concentrations. The effects of the plume on the ozone concentration also provides some
interesting results. Close to the plume the concentration of Oz is much lower than that in
the background. Due to the high NOx concentrations the inorganic chemistry is dominant
in this region and ozone is consumed. As the plume travels downwind and the NOx levels
decrease, the plume gradually picks up emissions of VOC’s and leads to the production
of NO;, which in turn causes levels of ozone to rise above the background levels at quite
large distances downwind from the source of NOx.

The issue of whether the mesh is appropriate for this application is somewhat more
complex than for a simple linear problem. Strong local variations in solution component
values make it difficult to assess the quality of the mesh for each component without
somehow incorporating solution behaviour.

The importance of mesh refinement is shown by the 2D cross section in Figure 2 of
the plume close to its source, see Tomlin et al. [31, 32]. In this case the interplay between
mesh refinement and nonlinear chemistry produces a solution on the level 3 refined mesh
with peak values that differ by a factor of two from the coarse (level 0) mesh solution.
This example thus shows that when solving multi-component problems there is much to
be gained from making use of an appropriate mesh for the strongly directional model flow.

In the rest of this paper the issue of what a good mesh is for a flow problem is con-
sidered in the following way. In Section 2 a number of moving mesh methods are used to
demonstrate the many improvements possible when non-uniform meshes are used. Sec-
tion 3 will describe similar developments in three space dimensions. Although there is
much convincing computational evidence for the usefulness of stretched meshes error in-
dicators that explicitly combine solution information and mesh shape information are still
rare. Examples of such indicators are considered in Section 4 where a case is made for
using local error information. Finally in Section 5 a return is made to the motivating
problem and it is shown how local error estimates may be combined with advanced vi-
sualization techniques to provide the user with a good understanding of the quality of a
complex mesh. Much of the material in these notes is based on the work described in
1,9, 10, 11, 16, 22].

2 Mesh Movement in Two Space Dimensions

The idea that it is important for the shape of the elements to reflect local solution be-
haviour, particularly for highly directional flow problems, is well-known [5, 25]. There
are many approaches to generating such meshes. One of the earliest algorithms is that
of Gnoffo [19] which has been widely used since then. The algorithm, which is some-
times referred to as Laplacian smoothing, is cheap to implement and can be modified, as
described here, to work with an arbitrary error indicator, w, say, on an element. This
method seeks to position the nodes so that the estimated error is evenly distributed across
the mesh. However, rather than compute the new mesh globally it moves nodes locally in
an iterative fashion. The formula used to compute the updated position X,e of a node is

1 m
Xnew = m WeXe (2)

e=1



Figure 3: Local node movement, showing error estimates for each element.

Figure 4: The initial mesh for an overhanging cantilever beam with a vertical concentrated
load at the end of the cantilever.

where m is the number of surrounding elements, xi,..,X,, are the centroids of these
elements and wy, .., w,, are the error indicators on the surrounding elements. The result
of carrying out this procedure for each node is to place the node at the weighted average
of the centroids of the surrounding triangles as shown in Figure 3. In practice, all the
new node positions are computed prior to being updated (a Jacobi-type process), rather
than in a Gauss-Seidel fashion which is dependent upon the order in which the nodes
are updated. In order to avoid mesh tangling only a fraction of the movement indicated
by this algorithm is employed in practice, see [11] and Section 3.1 below. Examples of
meshes moved by using this algorithm will be shown in Sections 2.5 and 3.1. Although this
algorithm gives a simple way of moving the mesh it is natural to ask if it is not possible

to combine the calculation of the mesh and the solution in a single unified algorithm.

2.1 Moving Finite Element Method

The importance and attraction of the Moving Finite Element method is that it provides
such a single unified algorithm for calculating both the mesh and the solution simula-
taneously. The method was developed by Keith Miller and is described in detail in the
monograph of Baines [2]. The method has been used with great success on a number
of parabolic, elliptic and hyperbolic equations resulting in some cases in meshes (see [2])
that are highly distorted. One example of such a mesh is given by Jimack, [22], who
applies the MFE method to the case of an overhanging cantilever beam with a vertical
concentrated load at the end of the cantilever. The initial mesh is uniformly spaced as is
shown in Figure 4. The effect of local refinement coupled to the MFE method is shown
in Figure 5. The advantage of using the MFE method with coupled h refinement is that
not only does the mesh move to minimise the energy but also that h refinement can then
further improve the situation. Jimack points out that the stretched mesh gives a signifi-



Figure 5: The effect of local h-refinement on the steady MFE mesh for the overhanging
cantilever beam.

Figure 6: (a) Energy minimisation (b)Blue Refinement

cant improvement in the energy, but that this is achieved at the cost of much extra work
over a simple fixed mesh solution. The success of the moving finite element method has,
to some extent, been offset by the computational costs incurred and the implementation
difficulties that need to be overcome to stop meshes tangling. As a result there have been
many attempts to decouple the solution and mesh calculations while still obtaining the
stretched meshes characteristic of the method. One such example in Section 2.5 will use
the same combination of movement and h refinement.

2.2 Energy Minimising Methods

One example of a decoupled mesh and solution algorithm is described by Tourigny and
Baines [33], who investigate the construction of locally optimal piecewise polynomial fits
to data and produce meshes which vary from smooth to skewed, depending on the solution.
The idea dates back as far as Delfour et al. [12], and is further extended by Tourigny
and Hulsemann [34], who minimise an energy functional using a Gauss-Siedel method
locally to get similarly skewed meshes. Figure 6 shows the original and final meshes for
the example used in Section 6.2 of Delfour et al. in which the p.d.e. is given by
?u  Ju

w—l—a—w—kSG(l—x—y)G:O (3)

with zero Dirichlet boundary conditions. Rippa and Schiff, [27], present aigorithms for
constructing minimum energy triangulations by using local operations and also present
convincing results to show that these improve the quality of the solution. Jimack [22]
shows that the moving finite element method also minimises the error in the energy norm
for the class of problems he considered, thus underlining the connection between the
methods.



2.3 Blue Refinement

DA At anAd TTnAnman ary +ha +1hhn ana PP | +1 bl Anl o g and alan
L)ClllCll/ il INTULIC) lUJ move Cung he10) blldb bl y alc d;lléllCu Wll/ll SINOCK wWaves aild aisSo

define a blue directional refinement approach. For example in Figure 6(b) if the edges
€Ty, el are parallel and aligned with the flow direction then the pair of triangles is
replaced by four anisotropic triangles. Although the indicator used to guide refinement is
the gradient of the Mach number rather than an explicit error estimator, the results are
nevertheless impressive. A number of convincing demonstrations of the effectiveness of this
approach are given by Skalicky and Roos [29] who also show that dramatic improvements
in the rate of convergence may be made by using anisotropic mesh refinements.

2.4 Roe’s Mesh Optimisation Scheme with Edge Swopping

Roe presented a scheme for improving the solution of a two-dimensional convection equa-
tion on an unstructured triangular mesh, [28]. The scheme minimises a functional by
incrementing solution values and nodal coordinates based on a linear approximation of
the solution over the mesh. Consider a scalar variable u(x) on a mesh K of triangular
elements. Let @, be the element residual and @ be some positive weighting quantity. A
functional is defined by

1
F =) F, where F, = 5 @ Qi Py (4)

keK

An optimisation procedure is then developed based on minimising the functional F' by
computing the element functional F} and making adjustments to the unknowns z; on that
element to reduce the functional. Here an increment dz; is defined by following a steepest
descent approach, dz; = —% . Roe shows that this process is conservative. These local
increments to the nodes of the element can be summed at the nodes to define an update
of the mesh and solution in a relaxed Jacobi fashion.

Roe [28] mentions that edge swapping could be used to better align the mesh with
the characteristic direction, and so improve the performance of the optimisation scheme.
A badly aligned mesh will slow the convergence of the scheme and may even cause the
optimisation to fail to converge. Noting from equation (4) that the functional may be
decomposed into contributions from each element an alternative edge swapping scheme
considers the two possible orientations, shown in Figure 7 at each internal edge of the
mesh. Whichever choice leads to the minimum F* of the maximum of the two functional

values F' and F’ is chosen, where F' = maxz(Fy, F») and F' = maz(Fy, Fy).

As a numerical example the linear convection equation is solved with constant con-
vection velocity a = (2,1) on the domain (z,y) € [-1,1] x [0, 1]. At the inflow boundary
the continuous solution is prescribed as u(z) = 0 for x < —0.8 or z > 0.2 and u(z) = 1



for —0.4 < 2 < —0.2 with u varying linearly between these values. Figures 8(a)-(b) show
the initial mesh, a uniform discretisation of the domain with node spacing 0.1, and the
solution obtained if the mesh is kept fixed. Figure 9 shows the graph of the maximum
element functional on the mesh and it is clear that this is not converging when only the
solution values are updated on this mesh. Figures 8(c)-(d) show the mesh and solution
obtained if the previous solution is used as an initial guess but the nodes are also updated
using Roe’s algorithm. In this case the mesh is becoming aligned with the characteristic
direction but the distortion in the mesh prevents an exact representation of the solution.
The graph of the maximum element functional shows that the convergence stalls and fur-
ther improvement of the mesh is not possible. Figures 8(e)-(f) show the mesh and solution
obtained if the initial mesh and solution shown in Figures 8(a)-(b) are followed by the edge
swapping procedure described above, and then a further stage of Roe’s mesh and solution
optimisation algorithm. The swapping is implemented by repeatedly sweeping over the
whole mesh until no swaps are performed, which in this case requires 5 passes over the
mesh. It is seen that this procedure almost perfectly aligns the mesh with the character-
istic direction, and that the solution obtained is exact. The convergence of the functional
shown in Figure 9 shows that the initial value has been significantly reduced and that the
performance of the scheme is greatly enhanced by the swapping. Although the method
works well with linear convection problems it has not so far proved straightforward to
obtain the same success for nonlinear problems.

2.5 Combined h-r Refinement

Capon and Jimack [11] employ a Galerkin least-squares finite element method and use a
residual based error indicator to guide mesh refinement. Their approach combines Lapla-
cian smoothing mesh movement as described by equation (2) with uniform h refinement
of triangles into four. The problems considered by Capon and Jimack are compressible
flow calculations over airfoils. The meshes shown in Figures 10 and 11 are taken from an
airfoil calculation with a Reynolds number of 106, a ten degree angle of attack and a free
stream Mach number of 2 with a Naca0012 airfoil. Figure 10 shows the meshes obtained
by solely using h refinement based on (a) density gradient and (b) on the residual as an
error indicator. These meshes have 8360 and 8819 elements respectively. Figure 11 shows
the final meshes obtained by using coupled h-r refinement with the (a) residual and (b)
the density gradient as the error indicator. In this case the meshes have 4660 and 4801
elements respectively. The figures show that using h-r refinement based on the residual
provides a smoother mesh that varies more uniformly and has about half the elements
compared to the case in which h refinement alone is used. The approach thus seems highly
satisfactory in practice.

3 Mesh Redistribution and Movement in 3D

Although there is much work on anisotropic meshes in two space dimensions work on
mesh redistribution in 3D is less common. Freitag and Ollivier-Gooch [17] and liescu [21]
investigate interesting algorithms for splitting tetrahedra. In Iliescu’s approach pairs of
tetrahedra satisfying convexity and angle conditions related to the flow direction are split
into three tetrahedra so as to be aligned with the flow direction, see Figure (12). Freitag
and Ollivier-Gooch [17] also provide convincing evidence that mesh smoothing can have

beneficial consequences for the rate of convergence of the iterative solver. Tsukerman



(a) Fixed mesh

(c) Mesh after node movement

(e) Mesh after edge swapping
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(f) Solution contours
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Figure 9: Convergence of the maximum element functional value in each case

[35, 36] derives a condition which shows that it is the maximum eigenvalue of the element
stiffness matrix that characterises the impact of the shape of the element on the energy
norm of the error of the finite element approximation. Freitag and Knupp [18] use similar
information based on the condition number of the linear transformation between a physical
tetrahedron and an idealised model tetrahedron. Studies by Freitag and Knupp show that
Laplacian smoothing can be detrimental to the quality of tetrahedral meshes on complex
geometries. They also show that a smoother based on their new quality measure gives
better results than Laplacian smoothing.

3.1 A Case Study of 3D Anisotropic Refinement

In this section a simple example will demonstrate the practical use of anisotropic adap-
tation using an hr-refinement scheme in which the nodes are moved according to an
edge-based error indicator and compared against standard h-refinement results. The test
problem considered is the steady 3D hyperbolic equation a - Vu = 0, and a standard
SUPG finite element method is used, based on an unstructured tetrahedral mesh with
linear basis functions ¢;(x) and test functions ¢;(x) = ¢; + 7a - V¢, defined at each of
the Np nodes x;. The parameter 7 is defined as an element quantity, 7% = «ah/|a] for
some measure of the element length ¥, taken here to be the minimum element height.

In order to compare the two adaptive algorithms being considered, standard finite
element h-refinement, as shown in Figure 13, is driven by solving a problem with a known
solution and using the L! norm of the eract error e(x) on each element. The total L*
error, e, may then be split into its contributions eX from each of the Ny elements. To
achieve a final L! error of e* the error in each cell is reduced to below ¢* /Ny using nested
isotropic h-refinement of an initial unstructured tetrahedral base mesh.

As well as using local mesh refinement, the h-refinement algorithm makes use of a
simple node movement scheme designed to steer nodes towards regions of sharp variation
in the solution. This is motivated by recent work of Berzins, [8, 9], in which the inter-
polation error is estimated by assuming that the exact solution can be approximated in
a locally quadratic form on each tetrahedral element and then considering the difference
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between this quadratic function and the linear finite element interpolant:

/
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where V¥ is the volume of element K. Here, d, denotes the directed edge second derivative
for an edge s = s(x;,x;) that connects the nodes x; and x;. It is given by
ds = (VU,(XJ - VU,(X])) . (X,; — Xj) . LZ_]2 with L” = ”Xz — X]” . (6)

The Laplacian smoothing node movement scheme of Section 2 is then used with the edge
second derivatives (6) as the weights, e.g.

v > Lijlds|x;
‘ > Lijlds]

The nodal position is updated by x; — (1 — ;)x; + ;x$” where ~; is a safety factor at
each node x; that prevents the mesh from becoming tangled. Several such iterations are
performed at each r-refinement stage (which is undertaken prior to h-refinement).
Further details of the test problem are shown in Figure 14 (a 2D form of the problem is
also included to aid comprehension). At the inflow boundary, where a-n < 0, the imposed
solution is defined to have a thin vertical layer across which u varies linearly from 1 to 0.
The solution within the domain is therefore defined by the convection of this layer in the
direction a, as illustrated. Here, a = (2,1, 1) and the layer has thickness 0.025 on a unit
cube domain. The initial mesh is a uniform 11% discretisation of the unit cube, with each

with s = s(x;,x;) . (7)

u=1

u=0

Figure 14: Model steady solution of the 3D convection equation

sub-cube divided into six similar tetrahedra. Figure 15 compares the total error for the
h- and hr-refinement schemes. The hr-refinement scheme significantly reduces the error
on a given grid, leading a similar level of error with approximately 20000 nodes to that
requiring over 100000 nodes using isotropic h-refinement. Figure 16 shows two tetrahedra
from the final hr-refined mesh in the region (z,y, z) € [0.3,0.4] x [0.7,0.8] x [0.1,0.2]. It is
seen that the upper tetrahedron is aligned with the layer, although large internal angles
have been produced. In contrast, the lower tetrahedron is less well-aligned.

The same approach can be further extended in a very simple way with standard 1:8 h-
refinement of a tetrahedron shown in Figure 13. In this refinement there is some freedom
in that division of each face of a tetrahedron into four leaves a central octahedron volume,
with nodes a,b,c,d,e,f as shown in Figure 13, consisting of two pyramids to be decomposed
into four tetrahedra. There are three ways of doing this as is shown in Figure 17. It is
natural to ask if one of these is to be preferred over the others. The obvious choice is to
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Figure 17: Refinement options for obtaining four tetrahedra from a single octahedron

choose the interior diagonal so that the resulting tetrahedra are aligned with the flow. The
alternative is to choose this value geometrically. The graph in Figure 18 shows the effect
of both these strategies. As expected aligning the interior edge with the flow direction
has immediate benefits.

4 FError Estimators with Explicit Geometry Depen-
dence

A common feature of all the methods listed in the previous section is that although the
mesh is improved in some sense, the criterion used is only indirectly related to the error.
Recent work in error estimation is starting to reveal the explicit dependence of the error
on both solution derivatives and on the mesh. This work shows great promise but is still in
its early stages. Apel, Kunert and Dobrowolski [1, 13] have developed promising estimates
for Poisson-type problems which explicitly indicate mesh and solution dependence.

Bank and Smith [3], in error analysis for the method used in the PLTMG code, show
how the error can be written using the second derivatives of the solution along edges,
d;, and Bank’s mesh quality estimate g, (see [8] ) as a quotient of solution and geometry
information: PR
[19 et g)lde = TEELD ®

¢

This somewhat simpler form than the expressions in [9] comes about because Bank and
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Smith consider only the diagonal terms in a matrix to arrive at their approximation.
While this error estimator only applies to steady problems, Lang [25] considers transient
problems and explicitly includes both solution derivative and geometry information in the
error estimates he derives. For 2D reaction-diffusion p.d.e.s modelling highly-directional
phenomena such as flame propagation, Lang proves the error estimate:

1/2
llewn(z, 9l < 5(277%) (9)

TeTy

where the local error estimator n2 = C?(7,A\,T) D2U and DZU is a computed approx-
imation to the seminorm |uly of the second derivatives of the solution. The constant
C(7, A\, T) is defined by

1
C(1,\,T) = (1 + |A| + X*)*h*[0.2587(1 + =)A?
T
1
+P(1 + Al + 23] (10)

where A = tan(w/2 — ), 6 is one of the interior angles adjacent to the longest edge of
the triangle, A is the longest edge and 7 is the timestep. This estimate thus precisely de-
scribes the effect of both the geometry and the solution on the error and enables decisions
regarding directional refinement to be taken. The same approach of explicitly defining
the relationship between the geometry and the error is also investigated by Barnette [4]
in the context of finite difference/volume schemes for simple models of the Navier-Stokes
equations.

4.1 Finite Volume Methods for Hyperbolic Equations.

The transport part of the atmospheric dispersion problem outlined in Section 1 may be
modelled by the simple 3D advection equation

Ui+ aU, +bU, + cU, = 0. (11)



Suppose that the numerical method employed is a first order accurate, conservative cell-
centred finite volume scheme. The numerical solution in element ¢ at time ¢, is denoted
by «7', and is an approximation to the exact element averaged volume integral of the
solution, 30|, over V; the volume of element i, and is usually regarded as being positioned
at the element centroid for cell centred schemes. The numerical solution at the next time
level t**! may be written as:

ultt = u} — 6tFi(t,,u) where Fi(t,,U) ZAka ny (12)

and where the sum is over the k faces of the element 7. The n; are the outward face
unit normal vectors and A; are the face areas. The fluxes F; represent the numerical
flux function for each element face, termed the element face fluxes, and are determined
by the scheme. In the case of the Godunov scheme these element face numerical fluxes
are constructed from the solution of the local element Riemann Problem (RP) at each
element face, see [‘m]

A standard method for choosing the timestep in the numerical solution of p.d.e.s is to
use a CFL condition. Although such a condition may ensure stability it may be imprecise
as an accuracy control, particularly when complex chemistry source terms are present
in the p.d.e. problem. It is important to use an error control which reflects the spatial
and temporal contributions to the error incurred. These are the local time integration
error, the underlying mesh approximation error, the error in constructing face values using
(limited) interpolation and the quadrature errors due to approximating the face integrals
and source term contributions. In particular, face orientation in flow problems is critical
as error may not be convected through faces aligned with the flow.

While reliable error estimators for finite volume unstructured mesh solvers exist for
simple problems, e.g. Kroner and Ohlberger [24], there are no such estimators for problems
with complex source terms, such as the atmospheric dispersion problem in Section 1.
Consequently for such problems we are forced to rely instead on local error indicators.
One such indicator is described by Berzins, [7], who estimates the local-in-time growth
of the spatial error by the difference between high and low order computed solutions at
the end of a timestep. For problems without source terms the estimate of Kroner and
Ohlberger may be adapted to estimate this local-in-time space error. Let é(¢) be the local-
in-time spatial error computed on a timestep then, combining the estimates of Corollary
(2.14) of [24] and the ideas of Berzins [7], gives

/// é(tni1)dT =a 0t h* Q +2/bc ot h2 Q (13)
14

where a,b,c are constants, see [24]. For an evenly spaced mesh with spacing h and
timestep d0t, the value of ) is given by

Q=> hlul —uP[+L Y (5t+h)ul —up, (14)

jeNT EeNT

where L is a constant, u is the solution value associated with the jth tetrahedron out of a
mesh of NT tetrahedra with edges EeNT at time t,,. The important feature of this error

estimator is that, apart from the constants, the only solution information used consists
of solution jumps across faces i.e. (u} —u}!) and solution changes in time (u]*! — u7)

on a particular tetrahedron. It is also easy to see the effect of mesh refinement on the
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Figure 19: Graphs of local space and time errors for 1D advection.

error estimate. Refinement of two tetrahedra sharing a common face will not change the
solution jump between them but will change the multiplying constant.

Although the forward Euler method is being used for timestepping, it is not immedi-
ately clear how the error estimate involving the jump in the error over a timestep relates
to the standard forward Euler local error estimate, see [7]. The explanation is that the
jump in the solution over a timestep provides a bound on the local error over the timestep.

Suppose that we have values u and u”“L1 at times ¢, and ¢,,1 . The standard time local

error estimate of the forward Euler estimate is L k2

dt? . Suppose that we use the standard
1

finite difference approximation, but with an unknown value u?+§ and assume that this

value is bounded by the values «” and u"“

7 In other words

u?+% =auf+(1-a)ujt, 0<a<l (15)
Hence .
uy — 2 u?+§ + u?“ = (1-2a) (uj — u;‘“) (16)
and so in this case .
W =20+ < () - ult)] (17)

and so the change in the solution over the timestep, when multiplied by a constant,
provides an upper bound on the estimate of the time local error.

4.2 A simple 1D advection equation example

It is of interest to evaluate the error estimation approaches on a similar simple 1D version
of Problem 4 (linear advection) in [7]. The local-in-time error is measured about halfway
across the domain. Figure 19 shows the spatial distribution of the error é(t) with the solid
line being the true error and the values * showing the error estimate defined by Berzins
[7] and the values + showing the time local error. The peaks in the error graph occur
where the scheme smears the top and bottom of the discontinuity. The figure shows that
the error estimator does a good job of estimating the structure and the magnitude of the
local-in-time spatial error, particularly as the cfl number is reduced, [7]. Table 1 shows
the values of the error indicators for different values of the CFL number. The results show

that both error estimators do a sood 1nh of estimat thv I.1 norm of the error.
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5 Visual Mesh Quality Analysis

Although all the above methods make it possible to move the mesh and/or estimate the
error there still remains the challenge, especially in three space dimensions of under-



Table 1: Comparison of L1 error norm for error indicators

CFL Number 0.96 0.48 0.24 0.12 0.06 0.03

True € 1.17e-2 3.35e-2 1.46e-3 6.12e-4 2.8le-4 1.33e-4
Berzins eqn(6) 4.53e-2  4.18e-2 1.42¢-3 6.23e-4 2.73e-4 1.26¢-4
Kroner eqn(7) 1.15e-1 8.13e-2 2.55e-3 8.42e-4 2.85e-4 9.90e-5

&

Figure 20: (a) Wire frame mesh and (b) visualization of poor elements

standing precisely how the numerical scheme and mesh quality conspire together with the
solution to produce large numerical errors. It is in order to investigate this relationship
between the error and the mesh that the user interface developed by Durbeck [14] was
used. Durbeck’s interface serves as a visual debugger for unstructured tetrahedral mesh
solvers. Consider the advection of a simple one-dimensional discontinuity moving from
left to right in a 3D channel, as defined by equation (12) with a = 1,6 =c¢ = 0. A typical
example of a 3D unstructured mesh with 16,000 elements is shown in Figure 20a.

The mesh is shown in wire frame, with all the nodes and their attachments shown,
and has been refined about the discontinuity. For a mesh such as this Durbeck’s system
presents analytic information about the mesh geometry and error indicators so that the
user can deduce the potential causes for poor quality elements. A view of the mesh,
reduced via the debugger to its poorest elements, is shown in Figure 20b. The elements
are displayed as solids, with lighting and shading effects. The colour assigned to each
tetrahedron corresponds with its relative error indicator value. The poorest elements
are roughly aligned and occur near the leading edge of the area refined to represent the
discontinuity.

The visual debugger also provides closeups used for analysis of a specific error indicator.
The worst element depicted in Figure 20b is shown in closeup view in Figure 21, along
with all neighbouring elements which may contribute to its error value. The information
presented in this view is intended to correspond closely with the error indicator: in our
case, an element’s poor quality can be a combination of its shape, orientation and precise
vertex locations within the mesh. The same inquiry continues outward to its neighbours
and, to a lesser extent, the next level outward as well, as they contribute to the element
in question. The worst element and its direct neighbours are displayed as shaded solids
and the (less important) next level outward in wire frame. Graphical representations of
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Figure 21: (a) In place (b) exploded (c) rotated closeup
views of worst element and its neighbours

power station chimney, a point source of several of the chemicals in the model.

each element are annotated with the element number, error indicator value, and solution
value. Colour also provides relative error indicator values. As shown in Figure 21b and
21c, the closeup can be rotated about, and exploded outward from the central element in
order to better view all the tetrahedra. As seen in Figure 21, the two main contributors
to the central element’s high error value appear to be its orientation, which causes two
faces to be close to perpendicular to the flux, and the wedge shape of the element, which
causes these two faces to be relatively wide. Thus the user has been able to easily identify
the cause of poor mesh quality in a complex mesh.

Figure 22 shows a SCIRun visualization [23] of the plume developing with the adaptive
mesh clustered around the developed portion of the solution. The main area of mesh
refinement is along the plume edges close to the chimney. Using the adaptive mesh,
we can clearly see the plume edges and can easily identify areas of high concentrations.
For this atmospheric diffusion model, the meshes and means of obtaining them are more
fully described in [23]. The error indicators were again derived from a simple first-order
calculation based on gradients. The same formula (14) of Kroner and Ohlberger [24] was



Tigiira 92,
riguic 2o.

as flagged by a specific indicator.

(NNAahal vicew shawineg the w
iUudl VICW BI1IUWILILE Liid

Figure 24: Comparison of the elements flagged by 3 different indicators (for NO, SNGN
and a tracer) used for the atmospheric model. In each figure, all elements within 98%
of the maximum error value are drawn. The same shading map is used for all ranges.
The spatial distribution of error is visibly different, as is the numeric distribution of error
values.

applied to obtain separate error indicators for each separate chemical species as well as
for a sum of the main NOx species.

The issue of whether the mesh is appropriate for this application is somewhat complex
as strong local variations in solution component values make it difficult to assess the qual-
ity of the mesh for each component without somehow incorporating solution behaviour.
Results are presented in Figure 24 from interactively investigating the differences among
the error indicators and from analyzing one particularly bad mesh element.

5.1 Analysis of the atmospheric example

Not surprisingly, the set of “bad” elements depends on which species’ error indicator is
used. The superlative “worst” is conferred onto different elements by the different indica-
tors, as shown in Fig. 23 and 24. Figure 23 shows the “worst” few elements as defined by
the union of the “worst” elements flagged by each of the indicators. At a broader level,
the distribution of error also varies depending on the error indicator, as shown in Fig
24, which contrasts the sets of imperfect elements from three different indicators, those

for NO, SNGN and a simple nonreacting tracer showing the wind direction. Generating



these images from the user interface was straightforward, and the results give the user
immediate evidence of the effect of choice of indicator. Which indicator to pay attention
to is unclear, but the potential impact of ignoring certain chemicals can be hypothesised
and tested by going back to the mesh adaptation software and recalculating solution and
error information, then visualizing the new results. For instance, it may be beneficial to
remesh regions where any of the indicators are large.

One element near the chimney was flagged by several indicators. In this case, this poor
quality element is surrounded by good quality elements, as was also true in the simple
advection example. This implies that its error is not a simple function of a single face
or vertex; otherwise, one neighbour would also have a nonzero error value. Comparison
of solution values across the mesh, also visible in the text displayed in the local view,
reveals that there is a large jump in the solution value across one face. Abrupt changes in
solution component values are expected with this atmospheric model. In that sense, the
location of this element puts it at risk. Its volume is above average for the subregion of
the mesh around the chimney and in particular is larger than the volume of surrounding
elements. The error value associated with this element would obviously be reduced by
further refinement. The orientation, shape, and size of the offending face appear to be
factors in the solution jump, and therefore factors in this element’s poor quality.

6 Conclusions

There are a number of conclusions that can be drawn from the work we have described
above.

e Complex multicomponent transient p.d.e.s on unstructured meshes pose formidable
problems as regards the issue of mesh quality. One such problem area is turbulent
combustion which may involve the interaction between many chemical species and
complex fluid flows.

ms and mesh adaptation procedures in two space di-

e The many moving mesh algorithr
perlmental evidence for th ﬁectlveness of stretched

11
mensions provide a wealth of ex
meshes.

e Although there is less work in three space dimensions and as yet very few computable
error estimates for anisotropic meshes, it is clear that there will be more work in the
future. It is also the case that the availability of such error estimates will perhaps
always lag behind the problems being solved by practitioners.

e All the evidence also suggests that for problems with anisotropic solutions appro-
priately stretched meshes will represent the solution better and may also have an
effect on the rate of convergence in the iterative solvers employed. At present there
are examples of both positive and negative effects and this is clearly an area for
further research.

(and vianalizatian ave
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a mesh may be poor.

The overall conclusion is that the only really satisfactory approach would seem to be to
use an error estimator based on both solution and geometry information to modify the
mesh. This would appear to be true for strongly directional fluid flows for which highly
distorted meshes appear to be very effective.
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