A SOLUTION BASED H! NORM TRIANGULAR MESH
QUALITY INDICATOR.

M. BERZINS*

Abstract. The issue of mesh quality measures for triangular (and tetrahedral)
meshes is considered. A new mesh quality measure is based both on geometrical and
solution information and is derived by considering the error in the H! norm when linear
triangular elements are used to approximate a quadratic function. The new measure is
then compared with the recent mesh quality measure based on the Lz norm. Simple
examples are used to show that the choice of norm is critical in deciding what is a good

triangulation.
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1. Introduction. The increasing use of p.d.e. solvers based on triangular and
tetrahedral meshes e.g [4] [14] raises the issue of whether the mesh is appropriate to
represent the solution. The best approach is to have computable error estimates for
each solution component. If such estimates are not available then the approach often
taken is to view mesh quality as being independent of the solution, [5,9]. A number
of authors have shown that it is both the shape of the elements and the local solution
behaviour that is important, particularly for highly directional low problems see [12,13]
and the analysis of Babuska and Aziz [2], who showed that the requirement for triangles
was that there should be no large angles.

This work has motivated recent work [3] in which a new mesh quality indicator
is derived. This indicator is based on the Ly norm of the error in a linear triangular
or tetrahedral element approximation of a quadratic function. The indicator has the
advantage that both solution and geometry based information is used to assess the
quality of the mesh. One possible disadvantage of this indicator is that in many finite
element calculations the error is estimated in the H! norm and as Dupont has noted,
[6], there are situations in which the convergence is not obtained in the H 1 norm but is
obtained in the Lo norm.

The aim in this paper is thus to derive an H 1 based mesh quality indicator and
to compare it with the Ly norm based indicator of Berzins [3]. The existing work will
de summarised in Sections 2 and 3 of this paper. The new indicator will be derived in
Section 4 and applied to two test cases in Section 5 . Thes results will show that the
situation can be worse than that suggested by Babuska and Aziz [2] and that a good
triangulation may depend critically on the choice of norm. The paper closes with the
derivation of a simple technique based on derivative jumps across edges to calculate
the quantities used in the mesh quality indicators when a non-quadratic solution is
approximated by linear elements.

2. Nadler’s Error Estimate for Triangles. The starting point for the deriva-
tion of a new mesh quality indicator is the work of Nadler [10] who derives a particularly
appropriate expression for the interpolation error when a quadratic function is approxi-
mated by a piecewise linear function on a triangle. Consider the triangle T defined by
the vertices v1,v2 and vs as shown in Figure 2.1 below. Let h; be the length of the edge

connecting v; and v;41 where v4 = v1 .
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F1c. 2.1. Babuska and Aziz Example Triangles.

Nadler [10] considers the case in which a quadratic function

1
(2.1) u(z,y) = EQT H z where z = [ z ]

is approximated by a linear function u;y (z, y) , as defined by linear interpolation based
on the values of u at the vertices. Denote the error by

(2.2) etin(%,9) = win(z,y) — w(z,y)
Nadler, [10] as quoted in Rippa [13], shows that

A
(2.3) /(6zm(l‘,y))2d$ dy = 705 [((d1 +d2 +d3)® +d® +dF + 3]
T

where A is the area of the triangle and d; = %('Ui+1 - vi)T H (vi41 —v;) is the derivative
along the edge connecting v; and v;+1.
Example 1 In the case when the matrix H is positive definite with diagonal entries p?

and ¢2 and symmetric off-diagonal entries pq then
di = (p Azi + g Ayi)? where vig1 — vi = [Azi, Ayi]T

In the case of the triangle in Figure 1 assuming that = and y are in the horizontal and
vertical directions respectively, the values of d; are dy = p2h? ,dy = h2( —(1=8)p +ag)?
and ds = h?(Bp — aq)? .

3. An L, Mesh Quality Indicator for Linear Triangular Elements. In this
section a summary will be given of the mesh quality indicator of Berzins [3] which is
based on the work of Nadler [10]. This indicator takes into account both the geometry
and the solution behaviour. The starting point for this indicator is equation (2.3): in
the case when the values of d; are all equal then each edge makes an equal contribution
to the error. However in order to take into account in a consistent way the fact that the
values of d; may be of different signs it is necessary to consider their absolute values.
With this in mind, the scaled form of the derivatives d; are defined by
(3.1) d; = il where dmaz = maz [|d1],|d2], |d3]]

mar
For notational convenience define
(3.2) id) = (di+do+ds)? +d2+d5 + 3
where i = [Jl ,da, Jg]T. A measure of the anisotropy in the derivative contributions to

the error is then provided by

(3-3) Qaniso = .

e
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The definitions of the coefficients d; in equation (3.1) results in the bounds
(3.4) 1/6 < ganiso < 1

Consider a triangle with only one edge contributing to the error. In this case ganiso = 1 /6
whereas if two edges contribute equally and the third makes no contribution q¢gnise = %
A consistent and related indicator based on geometry alone is given by [3]

_aw
QM(&) 16 \/g A
where A = [h1, h2, h3]T , has value 1 for an equilateral triangle and tends to the value
infinity as the area of a triangle tends to zero but at least one of its sides is constant. It
is easy to show, [3], that this is a linear combination of those of Bank [2] and Weatherill
[14]. The relationship between ganiso and the linear interpolation error is that when the
matrix H is positive definite, i.e. d; > 0, then

15
(3’5) Ganiso = > /(elm(x,y))Qdar dy,
A dfnar T

thus showing that the indicator is a scaled form of the interpolation error in this special
case.

4. Error Estimation in the H! Norm. The extension of to the case of the H?
norm is achieved by considering the case in which a quadratic function in equation (2.1)
is approximated by a linear function u;;, (z,y) defined by linear interpolation based on
the values of v at the vertices of a triangle T defined by the vertices v1,v2 and vs .

Let h; be the length of the edge connecting v; and v;41 where v4 = v and define

the vectors £, g, and 2 by
(4.1) vp=vi+& vs=v2+9y, vi=vs+2
and consequently

(4.2) g+9+2 = 0.

Zo N Jo R
] 5] e
Define a reference trangle, Ty, by the three nodal points:

(4.3) v; = (0,007 , v = (1,007 , va = (0,1)7

Then the mapping from the triangle, Trcy, to the triangle, T is given by, Nadler [10]:

where

2o
2

18>

(4.4) z=v1 + BZ

where B = [£,—2] , & is in the reference triangle . T,.5 and z is the equivalent point
in the original triangle 7 . The function u may then be expressed as

1 1 1 1
u(z,y) = EUfHU1+5UfH§+5§THv1+EQTBTHB§ where T = [Z]

(4.5)
is defined on Tyes. Ignoring the constant and linear terms and expanding out using

equation (4.4) gives
1 T 17
(46) u(wy) = 3 (ETHD + (-2"HD) 2oy + (T HAY' ], (,9) € Trey-

Interpolating this by a linear function u;n (#,y) defined on Tres by the nodal solution

values gives

(47) win(@,y) = 3 (@ HDo+ T HD ], (@9)  Tres
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and hence the linear interpolation error may be defined as as:
(4'8) elin(xs y) = ulin(xv y) - u(a:, y)

and written in terms of variables defined on Ty as
1 R B X . R
(49) ein(z.9) = 3 [(@THY)(z - 2?) - (2" HY)2oy + ETH(y - v%) ]

This in turn may be written as

1 A
(4.10) ctin(@,9) = 5 W d, (2,9) € Treg
where
WT = [5-22, —22y, y—v?] and d' = [8THE -2TH2 2 Hz |

4.1. Approximation in the H' Norm. The H! error norm is denoted by
[lerin (, y)||H1 where

(4.11) lerin(z,9)l13 = / (etin (2,9))? + (etin,2(2,¥)) + (etin,y (%, v))* dody
T

The integral of the first term on the righthand side is just equation (2.3) and so it
remains to estimate the two remaining partial derivative terms, ejin ; and ey;n,y with
respect to ¢ and y , which are expressed in terms of the partial derlvatlves elin,z and

elin,j on the reference triangle by

(4.12) [ Clin,z ] _ [B_l]T [ eh:n’::c ]

€lin,y €lin,y

where B is the matrix defined in equation (4.4) and where
(4.13) Clin,2 ] =Dd.

| €lin,§
in which the matrix D is defined by

1 [1-22 -2y 0
D‘E_ 0 -2z 1—2y]

Hence from equations (4.10) , (4.11) and (4.12)
AT _ . T ~
(414)  einz(@¥)? + (ainy(@y)® = 4 DT [B7'] [B7] ' D4
Define the matrix B* by
« _ | b b2 _ -1 -11T
(4.15) B_[b2 b4}_[B][B]

In the case of B as in equation (4.4) let

& =%
then
B* = 1 [ . E j—f% élﬁl:lz- 503:38 ]
(Det)? | 2121 + Z0%0 7+
where De; = (—&0%1 + £120) = 2A where A is the area of the triangle. Hence from

equation (4.10)

(4.16) / tin,a (@ ¥))? + (etin y(2,9))? dody = 24 / " DTB*D d dady
ref
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where A is the area of the triangle and where

DTB*D =
(1 — 2z)2b, (4z — 2)(bry + b2z) (1 — 2z)(1 — 2y)bo
= | (42 =2)(bry +baz) 4(b1v® + (b1 + b2 )y + bs?)  (dy — 2)(b2y + baz)
(1 —2y)(1 — 2z)be (4y — 2)(b2y + bax) (1 —2y)%b,

This may then be written as

(4.17) /( elin,:r(xvy))z + (elin,y(x,y))z dr dy = 24 iT Mi
T

where the components [M];; of the matrix M are defined in terms of the integrals of the
i,J th components of the matrix DT B*D on the reference triangle. A straightforward

but lengthy calculation gives

1 by —by 0
M = — —by bs —by
24 0 —by b4

where be = 2(b1 + b2 + bs) It is now necessary to express the vector i in terms of the
vector of second directional derivatives along edges defined by

d" = -~ [2"Hz, §THy, THZ|.

This is achieved by use of the vector identities defined by equation (4.2). For instance
9THy = &+ 27 H (2+2)

and on expanding the righthand side of this we get
1 1 1
~t"Hi= -¢"Ho+ 2Hz--g"HY .

From these identities and the definitions of the vectors d and d it follows that

. 2 0 0
d = Nd, where N = 1 -1 1
0 o 2

Using this to substitute for _Li in equation (4.17) gives
(4‘18) / elin,x(xvy))z + (elin,y(xyy))2 dedy = 2 A QT NT M Nd .
T

Define the matrix product NTMN by

1 bs 2b1 - bs 2b2
NTMN = — | 2b —bs bs 2by — by
24 2bs by — bs bs
Further define
(4.19) Fd) = 24dT NTMNJ

and expand out equation (4.18) in terms of the components of d which are the three
directional derivatives along the edges to get:

(4.20) F(d) = bs(di —da+d3)? + 4b1(ds — d3)dy + 4bs(dy — da)d3
This expression may be rewritten by noting that:
1 . . .
bs = —— 12113 + 13113 + 11213]

(24)?
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1 = & e
2 —be = oo [ =N21E — 91 + N2l ]
1 N = .
2oy ~bs = sy [ 1213~ 11gl — 11215 ]
1 ~112 ~(12 2112
%2 = g | MRl + 1l - 110 ]

where [|2]]3 = #7% and similarly for the other terms. On combining these expressions
in equation (4.20) we get

. 1 " : .
(4.21) "d) = oz [ 23D} + 1915 D3 + (12113 D3]
where
Dy = (=di+dz2+d3), Dy = (dy —dz +d3) and D3 = (dy + d2 — d3)
Hence on combining equations (2.3) (4.20) and (4.21)
AT 1
) P — - -
(4.22) lein(e. i, = 35 | 1500 + 7@ |

4.2. H1 norm Triangular Mesh Quality Indicator . The results in the pre-
vious section make it possible to define the mesh quality indicator in the same way as
in Section 2 in that a scaled form of the error is used. Rewrite 7 as

(4.23) #(d) = r1(d)+ ra(d) + ra(d)
where
r(d) = —= IEED2, ra(d) = —— [GIEDZ, ra(d) = — (12202,
442 '~ 442 = 442 '~

Define
Tmaz = ma.z'(rl (d), T2(d)’ T3 (d))

In a similar way to as in Section 3 scale the Ly part of the error by 0.8 d2,,, and the
term 7(d) by 3rmaz, thus giving two quantities that are one if d; = dmqy and r; = Tmax
. The weighted sum of these quantities is then obtained by then multiply the Ly term
by 0.8 dfmw and the remaining term by 37mae» and divide everything by the sum of
these terms to get

(4.24) 3@ = (59D +7@ |/ [0.880s +3rmas]

where d = [|d1], [d2], |da [].
5. Numerical Experiments.

5.1. Babuska and Aziz’s Example. The first problem consideredis the example
used in the seminal paper of Babuska and Aziz [2] in which triangles of the form of that
in Figure 2.1 are used to model a flow with a horizontal component 4y, = 1 and no
other non-zero components uzy = 0 and uyy = 0. In the notation of Babuska and Aziz

H = oh in figure 1 and the cases 3 =1 and 8 = % are considered. Hence U(z,y) = %xz
and Up;p,(z,y) = %73 + B(8 - 1)y/(2c) and so

el'in,a:(wvy))z + (elin,y(x’y))2 = (.’L‘— %)2 + (:8(:8—1)/(20‘)2

thus showing a potential source of large errors for small values of o .
For a general value of 8, dy = A%,dy = (1 — B)2h2?,d3 = 82 K2,

12z = p* 1315 = #? [o®+ (1= 8)%], |25 = A% [o® + 67 .
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Hence
(5.1) D; = h?28(1-p), D2 = h?28, D3 = h?2(1 - ().
Hence from equation (2.3)
(5.2) 9(@) =h* [(1+B8%+ (1= B8)2) +(1-6)* +1+ 6]
2 2

(53) r(d) = 44 ["’ﬁ(—ﬁ)) + (-6 + ﬁ"’]

o?
In the case when 8 =1

2

(5'4) A(elin(xvy))zdx dy = %6h4 and ganiso = %

thus that only two edges contribute to the error, whereas in the case when 3 = %—

ah? 54 9
(5'5) (elin(x’ y))2d-73 dy = _—h4 and ganiso = —
T 180 1 32

Thus showing that the error in the L, norm is slightly less when 8 = % and from the
anisotropy indicator value of 9/32 showing that one edge contributes significantly more
to the error than the other two. In the case of the H! norm when 8 =1 ,

F(d) = 4h? | Tmaez = 4h?,

and

h2 12 60+6h2
5.6 (9% = O‘—[ Rt 4h2] d = ————
(5.6) llewin (2, 9) |1 T and Qr 180 + 12h2)

Hence as & | 0 the value of the indicator tends to 1/3, thus showing that one edge is
primarily responsible for the error.
In contrast when 8 = %

_ o 3 1] 2[ 1 1]
— - maz = 4h 1
Fd) = 4h [16a2 3 o T6a? T2
el = O[Sy g 3]
(5.7) levn(z: s = 5 |50 + 4 (16 2t 3)
and
ih2+
(5.8) Qp = (402 d

Bh+ (5 +3)

Hence as o | 0 the value of the indicator tends to 1 thus showing that all three edges
contribute to the error. These results are interesting because they show that in the L,
norm (3 = -;— is more accurate whereas in the H! norm for o < 0.4629 , 8 = 1 is more
accurate. In particular in the case when

(5.9) a=hP,p>0

as h | 0 thenif 0 < 8 < 1 the error in the H! normis h1=P and ! for f=1or3=0.
This indicates a considerably worse situation than that indicated by Babuska and Aziz
who considered the same example but with o = AP with p > 5.
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F1G. 5.1. Boundary Layer Flow Example Triangles.

TaBLE 5.1
Mesh Quality Indicator Values Lo Norm

o Case (a) | Case (b) | Case (c) | Error Ratio a/c | Error Ratio b/c
1.0 0.49 0.49 0.29 1.8 1.70
0.1 0.42 0.42 0.35 1.8 1.40
0.038 0.35 0.34 0.53 1.7 1.00
0.02 0.30 0.29 1.00 1.5 0.71
0.01 0.28 0.30 0.68 1.3 0.44
0.001 0.42 0.29 0.50 1.0 0.47
0.0001 0.49 0.28 0.50 1.0 0.55

5.2. Boundary Layer Flow Example. The performance of this indicator may be
illustrated by considering anisotropic flow, such as that in a viscous boundary layer,
in which the three triangles defined as Case(a), Case(b) and Case(c) in Figure 5.1 are
used to model a flow with a weak horizontal component uz; = 1 an intermediate cross
derivative uzy = 100 and and a strong vertical component uyy = 10000. Case(a) is
representative of a triangle thought to be especially suitable for such flows while Case(b)
is closer to the type of triangles produced by unstructured mesh generators. Berzins [3]
obtained the results in Table 5.1 which show the values of @aniso for the three triangles
as the height of the triangles o is varied. Also shown is the ratio of the Ly errors for
Case (a) and Case (b) divided by the error in Case(c). The table shows that in the case
when o < 0.04 triangles such as that in Case(c) are best. These results are explained
by the Indicator values and the values of dynaz which are (1 + 100a)2 (0.5+4100¢)2 and
(1 + 50a)? for cases (a) (b) and (c) respectively. For very small values of o anisotropy
is not a key factor as the effective dominant flow direction is the horizontal one.

In the case of the Ly norm triangles of the type in Case (b) give the smallest error
for small values of «. Table 5.2. shows the corresponding results in the H! norm , in
which case however such Case (b) triangles are the worst of the three. In this case the
mesh quality indicator is 1 indicating that all edges need to be refined. In contrast the
mesh quality indicators for cases (a) and (c) have values close to 0.5 thus indicating that
the error is distributed along two edges. This example shows that the triangle which
appears to be best in the Ly norm is by far the worst in the H! norm for small values

of «.

6. Extensions to Tetrahedra. The above method for deriving a mesh quality
indicator extends naturally to tetrahedra. The approach closely follows that defined
above but with the obvious extensions described by Berzins [3] In this case the matrix
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TABLE 5.2
Mesh Quality Indicator Values H! Norm

o Case (a) | Case (b) | Case (c) | Error Ratio a/c | Error Ratio b/c

1.0 0.34 0.34 0.65 1.5 1.50

0.1 0.34 0.34 0.67 24 2.00
0.038 0.35 0.35 0.67 3.3 2.10

0.02 0.37 0.39 0.67 5.1 2.00

0.01 0.42 0.70 0.67 10. 2.40
0.001 0.61 0.69 0.68 430 3700
0.0001 0.66 0.96 0.50 10% 108

Bx* has the form

by b2 b3
B* = by by bg
b7 bg b

It is not however possible, in general to compute the entries of B* in closed form,
though with extended manipulation it may be possible to derive expressions similar to
those above. The matrix D is now has the form

1-2x -2y 0 -2z 0 0
D = 0 -2z 1-2y 0 -2z 0
0 0 0 —-2r -2y 1-2z

The remaning matrices etc are given by Berzins [3].

7. Extensions to Non-Quadratic Functions. The extension to te case of nomn-
quadratic functions may be considered by assuming that the exact solution is locally
quadratic. Bank [4] uses such an approach for example inside PLTMG and calculates
estimates of second derivatives . Adjerid, Babuska and Flaherty (1] use a similar ap-
proach based on derivative jumps across edges to estimate the error. An alternative is
approach is to use the ideas of Hlavacek et al. [8] to estimate nodal derivatives and

hence second derivatives.

8. Conclusions. The H! norm-based mesh quality indicator discussed here allows
the quality of the mesh to be assessed in a away that combines solution and geometry
properties. The numerical examples considered here show that the choice of norm can
be critical when assessing the mesh and reinforce the view that mesh quality cannot be
considered independently of the solution error or the norm used to measure it.
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