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Abstract

The use of parallel processing for the solution of air pollution problems makes it
possible to solve problems in a fraction of the serial processor time. The parallel
solution of reacting flow problems arising from simple models of atmospheric air
pollution is described, using adaptive tetrahedral meshes in space and an explicit stiff
chemistry time integration algorithm. The scalability and performance of the algorithm
is considered and the performance of load balancing algorithms assessed. The difficulty
of coding and debugging such applications is addressed by considering the use of high-
level abstractions and shared abstract data types.

1 Introduction

The application of parallel computers to models of atmospheric air pollution makes it
possible to generate solutions in a fraction of the normal time. In this paper an example
code based upon adaptive tetrahedral meshes is considered and its parallel implementation
described. This code is applied to an example problem consisting of a single plume arising
from a power station with a simplified chemistry scheme involving seven species and a
passive tracer, [10].

It is shown in [10] that the use of adaptive meshes in two dimensions can effectively
increase resolution (and thence solution quality) while retaining acceptable solution times.
In three dimensions adaptive mesh techniques can pick out the plume, but in order to obtain
solutions with good spatial and temporal resolution serial computing times are prohibitive.
The use of parallel adaptive meshes however gives a much faster solution time.

The parallel version of the code is written in a combination of ANSI C and the message
passing standard MPI. The design of the code and its scalability for non-reacting flow
problems are discussed in (7, 8]. The code is both robust and portable. A key issue is that
of load-balancing the constantly evolving spatial mesh. Existing parallel load-balancing
tools such as Jostle[12] and Metis[3] are used and an assessment made of their effectiveness
for adaptive transient calculations. A key issue in the development of efficient scalable
codes for such applications is the ease of writing portable programs. The paper concludes
with a brief discussion of how high-level abstractions can be used with shared abstract data
types to achieve this.
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2 Atmospheric Diffusion Equation Example

The application considered here is taken from a model of atmospheric dispersion from
a power station plume - a concentrated source of NOx emissions, [10]. The photo-
chemical reaction of this NOx with polluted air leads to the generation of ozone at
large distances downwind from the source. An accurate description of the distribution
of pollutant concentrations is needed over large spatial regions in order to compare with
field measurement calculations. The present trend is to use models incorporating an ever
larger number of reactions and chemical species in the atmospheric chemistry model. The
complex chemical kinetics in the atmospheric model gives rise to abrupt and sudden changes
in the concentration of the chemical species in both space and time. These changes must
be matched by changes in the spatial mesh and the timesteps if high resolution is required,
[10]. The difference in time-scale between the reaction of these species leads to stiff systems
of equations which require implicit numerical solvers and special linear equations solvers
[1]. The requirement is thus to use a parallel unstructured adaptive mesh code with the
capability of handling stiff source terms.

The power plant plume application is modelled by the atmospheric diffusion equation
in three space dimensions given by:
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where ¢, is the concentration of the s’th compound, u,v and w, are wind velocities, K,
and K, are diffusivity coefficients and k15 and Kys are dry and wet deposition velocities
respectively. E; describes the distribution of emission sources for s’th compound and
R, is the chemical reaction term which may contain nonlinear terms in c;. D() is the
diffusion term, which is set to zero here. For n chemical species an n-dimensional set of
partial differential equations (p.d.e’s) is formed where each is coupled through the nonlinear
chemical reaction terms.

The simple test case model covers a region of 300 x 500 km. and is a three-dimensional
form of that used by [10] and hence represents the main features which would commonly be
found in an atmospheric model including slow and fast nonlinear chemistry, concentrated
source terms and advection. The chemical mechanism contains only 7 species but still
represents the main features of a tropospheric mechanism, namely the competition of the
fast inorganic reactions, [10], with the chemistry of volatile organic compounds (VOC’s),
which occurs on a much slower time-scale. This separation in time-scales generates stiffness
in the resulting equations. The reaction rate constants, the photolysis rates and the
background concentrations listed by [10] are used in the model. The power station is taken
to be the only source of NOx and this source is treated by setting the concentration in the
chimney as an internal boundary condition. In terms of the mesh generation this ensures
that the initial grid will contain more elements close to the concentrated emission source.
The concentration in the chimney corresponds to an emission rate of NOx of 400kghr~!
and only 10% of the NOx to be emitted as NO,. We have assumed a constant wind speed
of 5ms~! in the x-direction with y and z components of one tenth of this value.

Computational runs are typically carried out over a period of up to 48 hours so that
the diurnal variations can be observed. Figure 1 shows the plume developing with the
adaptive mesh clustered around the developed portion of the solution. The visualisation
was realised by running the parallel code in conjunction with the SCIRUN system at the
University of Utah, see [2]. The main area of mesh refinement is along the plume edges close
to the chimney. Using the adaptive mesh, we can clearly see the plume edges and can easily
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FiGg. 1. Ezample Tetrahedral Mesh for Reacting Flow problem.

identify areas of high concentrations. The effects of the plume on ozone concentrations also
provides some interesting results. Close to the plume the concentration of O3 is much lower
than that in the background. Due to the high NOx concentrations the inorganic chemistry
is dominant in this region and ozone is consumed. As the plume travels downwind and
the NOx levels decrease, the plume gradually picks up emissions of VOC’s and leads to
the production of NOy which pushes the above reaction in the reverse route. The levels
of ozone can therefore rise above the background levels at quite large distances downwind
from the source of NOx.

3 Numerical Solution Techniques.

Spatial discretization of the model atmospheric diffusion equation on unstructured tetra-
hedral meshes reduces the set of eight p.d.e’s in four independent variables to a system of
ordinary differential equations (o0.d.e’s) in one independent variable -time. This system of
o.d.e’s can then be solved as an initial value problem, [1]. For advection dominated prob-
lems it is important to choose a discretization scheme which preserves the physical range
of the solution [9] and so a cell-centered, finite volume discretization is used in conjunction
with spatial mesh adaptation based upon hierarchical refinement. The time integration ap-
proach adopted is that an implicit theta method is coupled to a spatial iteration in which a
Gauss-Seidel scheme is used to solve the equations arising from the chemistry source terms
[1].

Once the p.d.e’s have been discretized in space we are left with a large system of coupled
o.d.e’s of dimension m x n where m is the number of mesh points, and n the number of
species. These equations may now be written for a single species as

(2) U= Fy (t U®)) , U0) given,

where U(t) = [U(21,91,21,1),-, U(2N, UN, 2N, 1) ]T . The point z;,y;, z; is the centroid
of the ¢ th cell and U;(¢) is a numerical approximation to the exact solution to the
p.d.e. evaluated at the centroid i.e. wu(z;,¥yi, 2i,t) . The time integrator computes an
approximation, V (1), to the vector of exact p.d.e. solution values at the mesh points. This
numerical solution at t,41 = t, + k, where k is the time step size, as denoted by V(tn+1),



is computed from
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in which ¥(t,) and V(t,) are the numerical solution and its time derivative at the previous
time ¢, and 8§ = 0.55 . The equations to be solved for the correction to the solution AV for
the p + 1 th iteration of the modified Newton iteration used with the Theta method are:
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and 7 (th ;) = —V(th) +V(tn) + (1 = 0)kV (tn) ~ 0k F n(tny1, Y(t5,1)). The solution of
this system of equations is the major computational task of the calculation. The cpu times
are excessive unless special solution techniques such as splitting the nonlinear equations
[1] into a set of flow terms and a reactive source term are employed. Consider the o.d.e.
function Fp (¢, U(t) ) defined by equation (4) and decompose it into two parts:

(5) Fny(U®)) = EL @1 U®) + Ex(t, U®))

where E}({ (t, U(t) ) represents the discretization of the convective flux terms f and g in
equation (1) and Fj (¢, U(t) ) represents the discretization of the of the source term A in
the same equation. The splitting approach used, [1], is to employ the iteration
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where AV* is an approximation to AV. The advantage of this is that each block of
equations corresponding to a tetrahedral element may be solved separately using the Gauss-
Seidel based method of Verwer see [1]. The Jacobian matrix [I — kvJ;] is split into L, the
strictly Lower triangular, D, the Diagonal and U the strictly Upper triangular matrices.
and the equation rearranged to get

(7) (I —vkD —ykL)AV; o1 = YEUAV S + (28 ,4).

The matrix I — k8J, is the Jacobian of the discretization of the time derivatives and the
chemistry source terms and is thus composed of independent diagonal blocks with as many
block as there are tetrahedra. Each block has as many rows and columns as there are
p.d.e.s. and each block’s equations may be solved independently in parallel. Unlike operator
splitting, this approach of splitting the nonlinear equations introduces no additional error,
providing that the iteration converges, [1].

4 Mesh Generation and Adaptation

The initial mesh inside a rectangular bounding box was generated with either approximately
5000 or 38000 elements. This results in elements with side lengths of 10-50km For a
power plant plume with a width of approximately 20km, it is impossible to resolve the
fine structure within the plume using grids of this size,[10], hence our use of adaptive grids.
Close to the chimney the mesh was refined to elements as small as 500m as this ensured
that the mesh would be refined to a reasonable resolution in this region of steep gradients.

These meshes are then refined and coarsened by the parallel version (P)TETRAD [9]
mesh adaptation module which is based on the refinement of tetrahedra into 8 tetrahedra
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with appropriate adjustments to ensure that the mesh is conforming at the edges. Edges
are first marked for refinement/de-refinement (or neither) according to some estimate or
indicator. Elements with all edges marked for refinement are refined regularly into eight
children. The remaining elements which have one or more edge to be refined use so-called
“green” refinement. This places an extra node at the centroid of each element and is used
to provide a link between regular elements of differing levels of refinement. The types of
refinement are illustrated in Figure 2. Green elements are not refined furthef as this may
adversely affect mesh quality, but are first removed and then uniform refinement is applied
to the parent element.

Mesh de-refinement takes place immediately before the refinement of a mesh and only
when all edges of all children of an element are marked for de-refinement and when none
of the neighbours of an element to be deleted are green elements or have edges which have
been marked for refinement. This restriction is to prevent the deleted elements immediately
being generated again at the refinement stage which follows. TETRAD utilises a tree-based
hierarchical mesh structure, with a rich interconnection between mesh objects. Figure 2
indicates the TETRAD mesh object structures in which the main connectivity information
used is ‘element to edge to node to element’ and a complete mesh hierarchy is maintained
by both element and edge trees.

The criterion for the application of the adaptivity used in this work is based on refining
or coarsening the mesh based on the magnitude of solution gradients of the key chemical
species NO and NO; across the faces of the tetrahedror, see [9]. For applications such
as atmospheric modeling the maximum level of refinement is here limited to two or three
levels to prevent excessive mesh adaptation close to point sources.

5 The Parallel Adaptation of Unstructured 3D Meshes

Parallel TETRAD was implemented using ANSI C with MPI due to the need for portability.
The resulting code has been tested on a variety of platforms including Cray T3D and
T3E, an SGI PowerChallenge, an SGI Origin 2000 and on a workstation network of SGI
02s. Communications are nearly always coalesced (to minimise latency and maximise
bandwidth) and are performed by using nonblocking MPI functions to avoid deadlock
and allow a degree of overlap with computation. The parallel computation of adaptive
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unstructured 3d meshes is typically based around distinct phases of execution, marked by
the timesteps of the updated solution values, the mesh adaptation points, and the possible
redistribution of the mesh elements. For PTETRAD, the grid is partitioned at the root
or coarsest level, rather than at the leaf level, see [8]. Once the data is partitioned, the
parallel version of the solver is straightforward to code due to the face data structure that
exists within the adaptation software. The use of halo elements ensures that the owner
of each face has a copy of all of the data (e.g. edges, nodes etc) required to complete the
space discretization calculations provided the halo data is updated accordingly. These halo
elements are used to reduce communications overheads, see [8]. In order to prevent data
inconsistencies halo elements have one definitive owner. '

5.1 Load Balancing

An equal work load for each processor is achieved initially through appropriately parti-
tioning the original finite volume tetrahedral mesh across the processors then it is clear
that the use of parallel adaptation for transient problems will cause the quality of the par-
tition to deteriorate as the solution develops. Hence a parallel load-balancing technique
is required which is capable of modifying an existing partition in a distributed manner.
Parallel versions of Metis [3] and Jostle [12] are used to compute these new partitions; a
comparison between these and a more recent algorithm for PTETRAD is given in [11]. All
the algorithms produce partitions of similar quality.

5.2 Scalability

There are many factors that affect the scalability of the complete adaptive solution of
a PDE. These include the number of remeshes required, the effectiveness of the remesh,
the amount of work per adaptation step and the total depth of refinement. The solver
effectively utilises explicit time integration and so scales well. Remeshing itself does not
scale particularly well, and the costs associated with redistribution of the mesh can be quite
high. An analysis of the scalability of the adaptivity is not straightforward but may be
summarised by stating that relatively few processors are involved in refining elements and
subsequently distributing relatively large amounts of data. Figure 3 gives a comparison of
scaling for the final adaptation, repartitioning and computation phases in a gas dynamics
calculation on a mesh with 34,560 base elements and 2 levels of refinement, see [8].

The solver clearly scales well, as would be expected for an explicit finite-volume scheme.



Case | P | Sol T. | Nremesh | Mesh | Halo | T.Steps
2 70.6 249 55.4 2.5 20.8
4 35.4 274 58.3 6.6 23.0
A 8 | 22.8 357 73.0 | 18.1 30.0
16 8.0 298 83.2 | 30.1 25.1
8 17.5 73 249 | 31.8 5.8
B 16 8.5 59 269 | 61.2 4.6
32 7.0 73 384 146 5.7
TABLE 1

Cases A and B: Summary Statistics.

The adaptation and repartitioning scale at a similar rate to each other, but much more
poorly than the solver. This is not surprising as they are far more communication intensive
and do not have the work involved evenly distributed. It is interesting to note that in this
case the repartitioning scales smoothly (this is not universally the case) while the adaptation
is is rather oscillatory. This is likely to be a consequence of how well the partition happens
to suit adaptation. In some cases (those with higher levels of refinement) the adaptation
and repartitioning scale less well again due to the further increased communications and
repetition of work involved in adapting the halos. Selwood and Berzins [8] also found that
scalability improves as the amount of work per remesh is increased. The next step is to
consider if this approach is suited to the atmospheric reacting flows describedﬁ above.

5.3 Analysis of the Reacting Flow Calculation

In order to explore the performance of the reacting flow application two cases are considered.
Case A is a two day run with a small initial mesh of 4800 elemnts while Case B is a half-day
run with an initial coarse mesh of 38,400 elements. In both cases remeshing takes place
after a fixed number of timesteps.

Time in the time in thousands of seconds, Mesh is the number of tetrahedra in thousands
(including halo elements), Halo is the total number of halo tetrahedra in thousands, Sol.T,
is the solver time for the next 80 timesteps(until the next remesh), Rem.T is the remesh
time, Redist is the redistribution time, NmaxP is the maximum number of elements sent
by a processor (in thousands of tetrahedra) in the redistribution phase.

Case A uses ParJostle, [12] with a coarsening threshold of 300. Good parallel speedup
is seen for this case apart from some anomalous behaviour in the case of 8 processors. The
speed-up did not however carry across to the 32 processor case. In order to investigate this
a shorter time run with a larger initial mesh, Case B, was conducted. In this case the clear
lack of speed-up between 16 and 32 processors is seen. An important indicator for this is
the different numbers of timesteps and the different numbers of remeshings/redistributions
(Nremesh) in each case. In order to investigate this further, Table 2 shows statistics for Case
B, the larger initial mesh case, at five points in the integration. In this case redistribution
is performed on the basis of information supplied by PMetis with the RepartMLRemap
option. In Table 2 the maximum amount of data moved by any processor is shown by
Nimazp. Many edges and nodes are also moved (in proportion to the number of elements
moved). Both Selwood and Berzins, [8] and Oliker and Biswas [4] show that there is
a reasonably good correspondence between the maximum number of elements that any
processor has to move and the time taken for data redistribution (Redist). In contrast it is



Time | P | Mesh | Halo | Sol.T | Rem.T | Redist | NmaxP

8 92 15 123 4.7 3.5 7.9
5 16 | 107 29 60 3.9 4.2 9.4
32 | 152 69 48 4.8 3.1 7.0

8 | 155 25 231 7.9 9.4 20.2
10 16 | 173 46 146 5.0 6.0 11.7
32| 260 | 117 89 6.0 3.7 10.1
8 | 192 28 298 6.2 12.1 31.5
15 16 | 222 54 173 5.8 7.0 16.4
32| 351 157 | 116 8.0 4.2 9.3
8 | 245 31 254 8.6 14.2 28.9
20 16 | 262 62 166 6.1 8.7 18.1
32| 405 | 171 107 8.2 4.2 4.7
8 | 247 33 253 10.7 - -
25 16 | 268 61 173 6.4 9.4 19.1
32| 390 | 153 100 7.2 4.5 6.0

TABLE 2
Case B: Statistics at Five Time Levels.

more difficult to generalise about the remeshing time. It is interesting to note that dynamic
graph repartitioning algorithms minimise the total data moved rather than the maximum
for a single processor, which this analysis suggests would be the more relevant metric.

One feature immediately evident from Table 2 is that the number of Halo elements has
increased by a factor of three when moving from 16 to 32 processors. The time Sol.T shows
the effect of this increase, but the total performance decrease is still not accounted for by
this factor alone. Table 1 supplies the answer in that the code remeshes 59 times for 16
processors but 73 times for 32 processors. The solution is thus firstly to look at the PMetis
partitions and also to debug the solver to find out why it is using 25 percent more timesteps
and remeshes with 32 processors than with 16.

6 The Need for High-Level Programmming Abstractions

The debugging problem posed in the previous section is not attractive due to the low-level
nature of the message passing code. The low-level implementation is not ideal for the
complex irregular data-structures and large amounts of communication involved in parallel
adaptation. This type of application is poorly supported by libraries and compilers however
and message passing is the only real option. The main difficulty of working at the message
passing level is that it is very difficult to maintain consistency between mesh objects and
their copies, leading to tiresome and low-level debugging.

The need to improve the ease of programming such applications in parallel has led to the
development of a two layered approach based on a high-level interface SOftware Prefetch
Halo Interface Abstraction or SOPHIA which allows the halo data to be prefetched when
it is needed, [8]. This interface in turn makes use of Shared Abstract Data Types. In
contrast to abstract data types ADTs which support information sharing between different
components of a serial application, SADTs can support sharing within an application
executing across multiple processors. An SADT supports the clear distinction between
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functionality and implementation, allowing its performance to be maximised on a given
platform while preserving portability. The approach has led to the environment shown
in Figure 4(b), with global mesh consistency supported by a set of SADTs, and local
mesh access supported by a library of mesh routines. An SADT makes used of a small
communications harness for data exchange, and alternative harnesses can be easily linked
in on a given platform. Currently, MPI and the Cray/SGI SHMEM libraries are supported.
The SOPHIA interface takes the form of the following primitives:

SOPHIA Fetch(local_data, shared._data) This establishes a halo and its related commu-
nication patterns based on the distributed data and the required sharing. A fuﬁ]l local copy
of the required remote data is made to enable local computations to be made exactly as
they would be in serial. In order for the fetch to be made, it is required that data on
interprocess boundaries, together with off-processor connectivity, is specified at the initial
partition stage. This connectivity is then stored either as a processor-pointer pair (for dis-
tributed memory machines) or just as a pointer (for shared memory) in order that the data
structures under consideration may be traversed in order to complete the halo prefetch.
SOPHIA Update(shared.data, data_field) This updates the given shared data with the
current values of the specified data fields. By using knowledge of the application, only
the necessary specified data fields are updated rather than the whole halo and thus
communications can be minimised.

SOPHIA Invalidate(shared.data) This removes a given halo from local memory. Careful
use of invalidation followed by a new fetch enables e.g. changing the order of a solver
partway through a CFD simulation.

This interface allows us to lift the abstraction above that of explicit messages passing,
but with careful implementation, as shown below, the performance benefits of message
passing should not be lost. It is particularly suited to applications, such as mesh adaptation,
with irregular, complex data that varies significantly over time due to the ability to change
the halos held by use of invalidation. Moreover the users knowledge of the application can
be harnessed to ensure that halo updates are efficient.

An important SADT implements the SOPHIA function SOPHIA Update(shared data,
data_field) in which the data field part of halo information located on neighbouring
mesh partitions must be maintained in a consistent state. Table 3 shows the performance
of this SADT on mesh redistribution phase on 4 processors of the Origin 2000. The
imbalance is reduced from 34% to 2%, with the repartitioning by Jostle taking around
1.15 secs in both cases. The redistribution of the mesh data is reduced by 10% in the new
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imbalance | repartition | redistribute | imbalance
PTETRAD 34% 1.15 secs 3.73 secs 2%
SADT version 34% 1.16 secs 3.37 secs 2%
TABLE 3

PTETRAD Original Version and Using SADTs

implementation, due to the subsequent tuning of both the local mesh access methods and
the MPI communications strategies.
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Abstract. The parallel implementation of unstructured adaptive tetra-
hedral meshes for the solution of transient flows requires many com-
plex stages of communication. This is due to the irregular data sets and
their dynamically changing distribution. This paper describes the use
of Shared Abstract Data Types (SADTs) in the restructuring of such a
code, called PTETRAD. SADTSs are an extension of an ADT with the
notion of concurrent access. The potential for increased performance and
simplicity of code is demonstrated, while maintaining software portabil-
ity. It is shown how SADTSs can raise the programmer’s level of abstrac-
tion away from the details of how data sharing is supported. Performance
results are provided for the SGI Origin2000 and the Cray T3E machines.

1 Introduction

Parallel computing still suffers from a lack of structured support for the desigr
and analysis of code for distributed memory applications. For example, the MPI
library supports a portable set of routines, such that applications can be more
readily moved between platforms. However, MPI requires the programmer to
become involved in the detailed communication and synchronisation patterns
which the application will generate. The resulting code is hard to maintain,
and it is often difficult to determine which code segments might require further
attention in order to improve performance. In addition, a portable interface does
not imply portable performance - different MPI codes may have to be written
to obtain good performance on new platforms.

Abstract Data Types (ADTs) have been used in serial computing to support
modular and re-usable code. An example is a Queue, supporting a well-defined
interface (Enqueue and Dequeue methods) which separates the functionality of
the Queue from its internal implementation.

Whereas an ADT supports information sharing be-
tween the different components of an application, a
Shared ADT (SADT) (6, 1, 3] can support sharing
between applications executing across multiple pro-
cessors. High performance in a parallel environment
is supported by allowing the concurrent invocation of
the SADT methods, where multiple Enqueue and De-
queue operations can be active across the processors.

Parallel Machine |




The clear distinction between functionality and implementation leads to
portable application code, and portable performance, since alternative SADT
implementations can be examined without altering the application. The poten-
tial to generate re-usable SADTs means that greater degrees of investment, care
and optimisation can be made in the implementation of an SADT on a given
platform. For example, the implementation of a Queue on the Cray T3D [5]
can support an increase in performance of 110, when the number of processors
increase by a factor of 128. This was achieved by providing very high levels of
fine-grain concurrency within the SADT implementation. In contrast, a more
typical (lock-based) implementation has a performance ceiling of around 20.

In addition, an SADT can be parameterised by one or more user serial func-
tions, in order to tailor the functionality of the SADT to that required by the
application. For example, a shared Accumulator SADT [2] can produce a result
based on the combined inputs supplied by each processor. A user function can
be supplied which then determines the format of the inputs, and how those in-
puts are combined. The simplest case may be to sum an integer value at each
processor. A more complex example is for each processor to submit a vector,
and for the combining action to sum only the positive elements selected from
each vector. This user parameterised form of the SADT is particularly useful in
dealing with different parts of complex data structures in different ways.

This paper describes work ! investigating the use of SADTs in a parallel
computational fluid dynamics code, called PTETRAD [7, 8, 9]. The unstruc-
tured 3D tetrahedral mesh, which forms the basis for a finite volume analysis, is
partitioned among the processors by PTETRAD. Mesh adaptivity is performed
by recursively refining and de-refining mesh elements, resulting in a local tree
data structure rooted at each of the original base elements. The initial mesh
partitioning is carried out at this base element level, as is any repartitioning and
redistribution of the mesh when load imbalance is detected.

A highly interconnected mesh data structure is used by PTETRAD, in order
to support a wide variety of solvers and to reduce the complexity of using un-
structured meshes. Nodes hold a one-way linked list of element pointers. Nodes
and faces are stored as a two-way link list. Edges are held as a series of two-way
linked lists (one per refinement level) with child and parent pointers. In addi-
tion, frequently used remote mesh objects are stored locally as halo copies, in
order to reduce the communications overhead. The solver, adaptation and re-
distribution phases each require many different forms of communication within
a parallel machine in order to support mesh consistency (of the solution values
and the data structures), both of the local partition of the mesh and the halos.
PTETRAD currently uses MPI to support this.

In this paper it will be shown how parts of PTETRAD may be used in
SADTs based on top of MPI and SHMEM, instead of MPI directly, thus leading
to software at a higher level of abstraction with a clear distinction between the
serial and parallel parts of the code. Section 2 describes an SADT which has
been designed to support the different mesh consistency protocols within an

' Funded by the EPSRC ROPA programme - Grant number GR/L73104
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Fig.1. (a) The SADT update method; (b) The new PTETRAD structure

unstructured tetrahedral mesh. A case study in Section 3 will describe the use
of the SADT in supporting the mesh redistribution phase. A brief overview of
the implementation techniques for the SADT will be given in Section 4, together
with performance results for the SADT and for PTETRAD. The paper concludes
by pointing to some current and future work.

2 An SADT for Maintaining Data Partition Consistency

The SADT described in this paper has focused on the problem depicted in
Figure 1(a). A data set has been partitioned among p processors, with each
processor holding internal data (the shared area), and overlapping data areas
which must be maintained in a consistent state after being updated. PTETRAD,
maintains an array of pointers to base and leaf elements, which can be used
to determine the appropriate information to be sent between partitions. For
example, after mesh adaptation, any refined elements will require that their halo
copies also be refined. Also, in the redistribution phase, the base element list can
be used to determine which elements need to be moved between partitions. In
constructing an SADT for this pattern of sharing, four basic phases of execution
can be identified. The SADT contains a consistency protocol which specifies
these phases of execution, with the generic form:

void Protocol (in, out) /* Protocol interface with input... */
{ /* and output data lists. */
int send[p], recvlpl; /* Counters used in communications. */
pre-processing; /* Initialisation of internal data. */
communications preamble; /* Identifying how much data will... */
/* be exchanged between partitions. */
data communications; /% Exchanging and processing the... */
/% new data between the partitions. */
post-processing; /* Format the results. */

¥

The protocol is called with a set of user-supplied input and output data
lists (in and out), for example the lists of element pointers described above,
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Fig. 2. The SADT communications stages

and each phase requires the user to supply a number of application-specific
serial functions. The SADT is thus parameterised by these user functions which
allow the communications phases to be tuned by evaluating various condition
functions, for example to determine whether a data item is to be communicated
to a given partition (if it has been refined or needs to be redistributed). The
SADT also contains basic functions to pack/unpack selected fields of data items
to/from message buffers, and to process the new data items which are received.
Figure 2 shows an example of the operation of the protocol. All processors will
be performing the same phases of execution, but only the operation of processor
0 is shown here, for reasons of clarity (the pre-processing and post-processing
phases are also removed). The protocol can make use of a communications library
for global communications operations (denoted by Comms Function), and may
require one or more user-defined serial functions (denoted by User Function).

(i) The communications preamble is given by:

(a) Comms_CounterCompute: For each data item, User CounterCondition
decides if it is to be communicated, and User CounterIndexing will
update the associated values in the counters send[] and recv[].

(b) Comms_A11ToAll: An all-to-all communication is executed, in which the
other processors note the expected number of items to be received from
processor ¢ in recv[i] (if Comms_CounterCompute is able to determine
the counter values in recv[] then this communication can be avoided).

(ii) The actual data communications phase is given by Comms Multicast:

(a) For each input item and each processor in turn, User_SendCondition
decides if the item should be sent to the processor. User PackDatum will
choose the selected fields of the data item to send, and place them in
a contiguous memory block, so that it can be copied into the message
buffer for that processor (User DatumSize allows the system to allocate
the required total send and receive buffer space).

(b) Once the buffers have been communicated between the processors, each
item is removed in turn, using User UnpackDatum, and the local data
partition is updated, based on this item, with User ProcessDatum.



3 Case Study: Mesh Redistribution

The new structure of PTETRAD [9] is shown in Figure 1(b). At the application
level, local mesh access is supported by a library of mesh routines. The mesh
repartitioning strategy is handled by linking in parallel versions of either the
Metis or Jostle packages. The global mesh cousistency is handled by making calls
to the SADT, which also performs local mesh updates through the mesh library.
The coordination between processors is supported by a small communications
library which supports common traffic patterns, from a simple all-to-all exchange
of integer values, up to the more complex packing, unpacking and processing of
data buffers which are sent to all neighbouring mesh partitions.

The new SADT-based approach makes use of MPI, so that it may be run on
both massively parallel machines and on networks of workstations, and also uses
the Cray/SGI SHMEM library, to exploit the high performance direct memory
access routines present on the SGI Origin 2000 and the Cray T3D/E. The use
of an alternative communications mechanism is simply a matter of writing a
new communications library (typically around 200 lines of code), and linking
the compiled library into the main code.

The operation of the redistribution phase can be divided into four stages:

— Repartition: Compute the new mesh partitions at the base element level,
using the parallel versions of Metis or Jostle.

— Assign owners: Update the local and halo owner fields for elements, edges,
nodes and faces.

— Redistribute: Communicate the data to be moved and the new halo data.,

— Establish links: Destroy any old communications links between local and
halo mesh objects, and create the new links.

The following examples focus on the second stage of assigning the new owners
for edges in the partitioned mesh, in which the halo edges must be updated with
the new owner identifiers. PTETRAD maintains an array of edge lists, with each
list holding the edges at a given level of refinement in the mesh. An edge stores
pointers to the halo copies which reside on other processors. This array is used
as the input to the SADT protocol, with the user functions processing each edge
list in turn.

3.1 The counter-related SADT functions

Refering back to the SADT protocol stages in Section 2, Figure 3 describes the
main user-supplied function required for the Comms CounterCompute procedure.
This relates to the computation of the send counter values, which describe the
amount of actual data which will follow. For reasons of clarity, the other functions
have been omitted here.

User CounterIndexing will take the given edge list, and traverse the list of
halos associated with each edge. The identifier of the processor holding each
halo item, given by halo — proc, will result in the increment of the asso-
ciated send counter. This supports the computation of the counters within



Update the counters

void User_CounterIndexing (
PTETRAD_Edge *edge, /* a list of mesh edges */
int *send, *recv) /* the SADT data counters */

PTETRAD _EdLnk *halo;  /* edge halo pointer */

while (edge) { /* inspect each edge */
halo = edge — halo; /¥ inspect the halos of the edge */
while (halo) { /* for each edge halo */

send[halo — proc]++; /* the halo resides on processor halo — proc */
halo = halo — next; /* go on to the next halo */
}
edge = edge — next; /¥ go on to the next edge */
}
}

Fig. 3. SADT counter-related user function

Comms_CounterCompute. The Comms_A11ToAll call then initiates the commu-
nication of the counters. At this stage, each processor now has access to the
amount of data which it will be receiving from the other processors, and the
amount that it will send to them.

3.2 The data transmission SADT functions

Figures 4 and 5 provides a description of the user functions requireﬁd for the
Comms Multicast procedure in the SADT consistency protocol. This relates to
the packing, communication, unpacking and processing of the actual mesh edges.
Once again, only the key user functions are given, for reasons of clarity.

Figure 4 shows the initial packing stage. User DatumSize returns the size of
the “flattened” data structure, which forms the contiguous memory area to be
communicated. In this case, it is an address of a halo edge on a remote processor,
and the new owner identifier to be assigned to it. These details are held in the
variable C'omm. For a particular processor, User PackDatum is used to search a
list of edges at a given mesh refinement level, and determine if any edge halos
are located on that processor. Those halos are packed into a contiguous buffer
area, ready for communication. The “Pack” function is a standard call within
the SADT library, which will copy the data into the communication buffer. At
this stage, the data buffers have been filled, and Comms Multicast will carry out
the communication between the processors.

3.3 The data reception SADT functions

Figure 5 shows the unpacking and processing stage. once the data has been
exchanged. User _UnpackDatum will transfer the next data block from the com-
munications buffer into the EdgeOwner variable. User ProcessDatum will use
the ed field to access the halo edge, and set its owner identifier to the new value.



Data type for communication The size of the data type
int User_DatumSize ()

{

return (sizeof(struct Comm_type));

struct Comm_type {
PTETRAD_Edge *ed;
int own;

} Comm;

Pack the datum into a buffer

void User PackDatum (
PTETRAD Edge *edge, /* a list of mesh edges */

char *buf, int *pos, /¥ storage space is available at buf[*pos] */
int pe) /* inspect all halo edges located on processor pe */
PTETRAD_EdLnk *halo; /* edge halo pointer */
int size = User_DatumSize(); /* the amount of storage required */
while (edge) { /* inspect each edge */
halo = edge — halo; /* inspect the halos of the edge */
while (halo) { /* for each edge halo */

if (Edge_HaloHome (halo, pe)) { /* is the halo on processor pe ? */
/¥ PACK THE HALO */
Comm.ed = halo — edge; /* note the halo’s local address... */
Comm.own = edge — owner; /* on processor pe, and the owner */
Pack (&Comm, size, buf, pos);/* pack this into the buffer area */

}
halo = halo — next; /* go on to the next halo */
}
edge = edge —next; /* go on to the next edge */ :

t

}

Fig. 4. SADT data communication functions: sending side

3.4 Comments

The use of SADTs to support the consistency of distributed mesh data has a
number of advantages. The programmer is no longer concerned with how the
communication of the data buffers takes place; a set of serial functions need
only be defined in order to specify the particular mesh consistency procedure. In
restructuring the redistribution phase of PTETRAD, the amount of code has also
been substantially reduced (see Section 4.1). Additional reductions in code are
available when SADT templates are used (see Section 5), which enable further
simplification of the user functions. Since all sharing is carried out through the
SADTs, the communications harness can be readily changed, without altering
the application code (see the next section).



Unpack the datum from a buffer Update the local mesh partition

void User_UnpackDatum ( void User-ProcessDatum (
void *in, char *buf, int *pos) void *in, void *out)
{
Unpack (&Comm, (Comm.ed) — owner =
User_DatumSize(), buf, pos); Comm.own;

Fig. 5. SADT data communication functions: receiving side

Original PTETRAD version:

Repartition +|Redistribute 4| Total

assign owners | establish links
Appl. 1,780 / 53 7,300 / 216 19,080/269
SADT PTETRAD version: SADT libraries:

Repartition +|Redistribute +| Total Update SADT [200 / 6

assign owners | establish links Exchange SADT| 25 / 1
Appl. 230/ 8 300/ 9 530/17 MPI Library 220 / 6
SADTs| 440/ 11 1,660 / 40 |2,100/51 SHMEM Library| 170 / 5
Mesh 2,590/74

TOTAL: 15,220/142|| I TOTAL 615 / 18

Table 1. A summary of the source code requirements (lines / KBytes)

4 Implementation Details and Performance Results

4.1 A summary of the source code requirements

Table 1 summarises the amount of source code in the original and new PTE-
TRAD versions, for the mesh redistribution phase. The amount of code which
the programmer must write has been reduced from 9,080 to 5,220 lines. A dras-
tic reduction in the amount of application code has been achieved by supporting
the stages of global mesh consistency as SADT calls, and implementing the mesh
access operations within a separate library. The mesh access library is also being
re-used during the restructuring of the solver and adaption phases. As a typical
example, the code for the communication of mesh nodes during redistribution is
reduced from 340 lines to 100 lines, with only around 20 of these lines performing
actual computation.

Within the SADT library, the main Update SADT, for maintaining mesh
consistency, contains 200 lines of code, and an Ezchange SADT (for performing
gather/scatter operations) contains 25 lines. The MPI and SHMEM communica-
tions harnesses each have their own library which support the Comms Function
operations (see Section 2 and below). New libraries can easily be written to ex-
ploit new high performance communications mechanisms, without any changes
to the application code.
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Fig. 7. Comms Multicast: (a) MPI on Cray T3E; (b) SHMEM on both machines

Origin 2000:

L5

Adaption|Imbalance|Repartition| Redistribute|lmbalance|Solve
PTETRAD (4) 7.00 30 % 1.55 3.29 11 % 1.60
SADT-MPI (4) 6.97 30 % 1.52 3.03 11% |1.60
SADT-COLL (4) 8.01 30 % 1.52 3.04 1% |1.60
SADT-SHMEM (4) 6.96 30 % 1.53 3.01 11 % 1.60
PTETRAD (32) 3.01 26 % 0.49 1.74 13% |[0.20
SADT-MPI (32) 3.04 26 % 0.48 1.72 13 % 0.20
SADT-COLL (32) 3.02 26 % 0.47 1.74 13 % 0.20
SADT-SHMEM (32)| 3.02 26 % 0.47 1.73 13 % 0.20
Cray TSE:

Adaption|Imbalance|Repartition| Redistribute|lmbalance|Solve
PTETRAD (4) 5.87 9% 0.99 3.26 1% |1.23
SADT-MPI (4) 5.88 19 % 0.98 3.04 11 % 1.23
SADT-COLL (4) 5.89 19 % 0.98 3.10 1% |[1.23
SADT-SHMEM (4) 5.86 19 % 0.97 2.78 11 % 1.23
PTETRAD (32) 110 26 % 0.38 2.12 1% |0.20
SADT-MPI (32) 4.38 26 % 0.38 1.92 11% [0.20
SADT-COLL (32) 4.45 26 % 0.37 1.92 11 % 0.20
SADT-SHMEM (32)| 4.44 26 % 0.37 1.96 11% |0.20

Table 2. PTETRAD gas dynamics performance results (timings in seconds)




4.2 The SADT communications library

The communications operations employed by an SADT are supported by a small
communications library, as outlined in Section 2 and above. This contains oper-
ations such as an all-to-all exchange (Comms A11ToAll), and the point-to-point
exchange and processing of data buffers representing new or updated mesh data
(Comms Multicast).

Figure 6(a) shows the performance of Comms_A11ToAll for the platforms be-
ing studied. On the Origin, the difference between using MPI send-receive pairs
and the collective routine M PI_Alltoall is quite small. Pairwise communication
performs better up to around 8 processors. Collective communications take 2, 300
psecs on 32 processors, as opposed to 2,770 psecs for the pairwise implemen-
tation. On the T3E, pairwise communication performs very similarly, but the
collective communications version performs quite substantially better in all cases
(eg 258 psecs down from 1377 psecs on 32 processors), outperforming the Origin
version. For both platforms, it can be seen that the pairwise implementation be-
gins to increase greater than linearly, due to the p? traffic requirement, whereas
the collective communications version stays approximately linear. A third imple-
mentation, using the SHMEM library, outperforms pairwise communication by
at least an order of magnitude, due to its very low overheads at the sending and
receiving sides, taking 30 psecs on 32 processors for the T3E, and 110 usecs on
the Origin. In PTETRAD, this stage of communication represents a small frac-
tion of the overall communications phase. so it is not envisaged that alternative
implementation approaches will have any real impact on performance.

Figures 6(b) and 7 show the performance of Comms Multicast, in which each
processor i exchanges N words with its four neighbours i — 2, ¢ — 1, i+ 1 and
i +2 (in the case of p < 4, exchange occurs between the p — 1 neighbours) (the
user (un)packing and processing routines are null operations). On the Origin,
performance reaches a ceiling of around 20 MBytes/sec for N = 1000 or larger
using MPI, and 33 MBytes/sec using SHMEM, across the range of processors.
For very small messages, the overheads of MPI begin to have an impact as
the number of processors increase. On the T3FE, the achievable performance
using MPI was significantly higher, supporting 88 MBytes/sec on 32 processors,
for large messages. Using SHMEM, this increases to 103 MBytes/sec, as well
as improving the performance for smaller messages. Since this benchmark is
measuring the time for all processors to both send and receive data blocks, the
bandwidth results can be approximately doubled in order to derive the available
bandwidth per processor. PTETRAD typically communicates messages of size
10K — 100K words, by using data blocking, and the above results show that this
should make effective use of the available communications bandwidth.

4.3 PTETRAD performance results

A number of small test runs were performed using the original version of PTE-
TRAD, and the SADT version of the redistribution phase, using pairwise MPI,
collective MPI communication and SHMEM. A more comprehensive description



of the performance of PTETRAD can be found in [8, 9]. Table 2 shows some
typical results on the Origin and T3E, for a gas dynamics problem described in
[9], using 4 and 32 processors.

The results for the Origin show an 8% reduction in redistribution times on
4 processors, and 4% for 32 processors. The use of the SHMEM library doesn’t
improve performance any further in this case, since the high level of mesh imbal-
ance mean that local computation is the dominant factor. Thus, the performance
improvements when using the SADT approach originate from the tuning of the
serial code. The other timings are approximately equal, pointing to the fact that
the improved redistribution times are real, rather than due to any variation in
machine loading. The T3E results show a reduction in times of between 7% and
10% using MPI, and a reduction of 15% on 4 processors by linking in the SHMEM
communications library. The lower initial mesh imbalance, coupled with the very
high bandwidths available using SHMEM, result in this significant performance
increase. The slight increase in time on 32 processors using SHMEM seems to
be due to a conflict between SHMEM and MPI on the T3E. When the complete
PTETRAD code is restructured using SADTs, it is envisaged that this conflict
will be removed.

The results show how performance can be improved using three complemen-
tary approaches. The use of an existing communications library, such as MPI,
can be examined, to determine if alternative operations can be used, such as col-
lective communications. Different communications libraries, such as SHMEM,
can also be linked in. Finally, due to the clear distinction between the parallel
communications and local computation, the serial code executing on each pro-
cessor can also be more readily tuned. In the case of PTETRAD, the routines tof
determine the mesh data to redistribute were updated, to reduce the amount of
searching of the local mesh partition. This shows up in the performance results
by an immediate increase in performance when moving to the SADT version
which still uses the MPI pairwise communications.

5 Conclusions and Future Work

This paper has described the use of shared abstract data types (SADTs) to
structure parallel applications. This approach leads to a number of advantages:

— The resulting software is at a higher level of abstraction than, for example,
message passing interfaces, since all explicit data sharing and synchronisation
is encapsulated within an SADT.

— The clear distinction between the serial and parallel parts of the code allows
greater scope for both the optimisation of the local computations and the
performance tuning of an SADT on specific platforms.

In the case of the restructuring of the PTETRAD parallel CFD code described
in this paper, some of the local data access methods were optimised, providing
increased performance. In addition, the use of the Cray/SGI SHMEM commu-
nications library has allowed high performance SADT implementations on the
Cray T3E platform. The amount of code has also been significantly reduced,



since the SADT used to support mesh consistency can be re-used in many parts
of the code.

Currently, the mesh redistribution phase has been completed, with the solver
and adaption stages due for completion in the near future. The redistribution
phase has also made use of SADT templates, for further simplification. A tem-
plate specifies many of the details of the User Function operations, described in
Section 2, given some assumptions about the input data set to be processed. In
the case of the redistribution phase, the actual data to be redistributed is held
as an array of processor identifier and local address pointer pairs, rather than
having to traverse the mesh to determine the data. These increasingly higher
levels of abstraction are aimed at eventually supporting the proposed SOPHIA
applications interface [8, 9], which provides an abstract view of a mesh and its
halo data, based around the bulk synchronous approach to parallelism [4].
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