
This is page 1
Printer: Opaque this

SPRINT2D Software for
Convection Dominated PDEs

M.Berzins
S.V.Pennington
P.R.Pratt
J.M.Ware

ABSTRACT
SPRINT2D is a set of software tools for solving time-dependent partial
differential equations in two space variables. The software uses unstruc-
tured triangular meshes and adaptive error control in both space and time.
This chapter describes the software and shows how the adaptive techniques
may be used to increase the reliability of the solution procedure for a chal-
lenging combustion problem. The recent construction of a problem solving
environment (PSE) has partially automated the use of SPRINT2D. This
PSE consists of tools such as a visual domain specification tool, which
helps ease the input of complex geometries, and a visual problem specifi-
cation tool. After describing these components an evaluation will be made
of SPRINT2D and its associated PSE.

1 Introduction

Two important trends in the development of numerical software for partial
differential equations are to make numerical methods more reliable through
the use of adaptive error control, and to make the software easier to use
and its results easier to understand by embedding it in an interface layer.
The combination of this layer and the core numerical software is classified
as a Problem Solving Environment (PSE). The form of such a PSE is by
no means clear; PSEs have been defined as capable of solving problems by
communicating in the user’s own terms, [6]. Stetter, [13], looks at the wide
variety of scientific tools currently available and advocates the utilisation
and integration of such tools to form PSEs devoid of explicit programming.
A PSE can therefore be viewed as a collection of tools that provide a bridge
between the problem the user wishes to solve and scientific software. The
aim of a PSE is that it should enhance the solution process for example
by increasing the reliability of the solution or decreasing the time spent
from specification to solution. Adjerid and Flaherty et al. [1] identify eight
components of a successful PSE:

2 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

• A computer algebra interface to describe the PDE and data.

• A geometric modelling system to describe the domain.

• A mesh generator to create a computational mesh.

• A numerical solution procedure to solve the PDE.

• Error estimation procedures to give accuracy measures.

• Adaptive strategies to improve solution resolution when needed.

• Parallel solution capabilities for increased performance when needed.

• Visualisation tools to analyse and interpret results.

The aim of this chapter is to address the twin themes of mesh adaptation
and PSEs [10] in connection with the SPRINT2D software for convection-
dominated PDEs [14]. Sections 2 and 3 will consider the SPRINT2D nu-
merical PDE code. Section 4 looks at the software tools that are part of the
PSE surrounding the numerical code. Section 5 contains two case studies,
including and engineering example from combustion modelling, to show
how the software functions. Finally Section 6 evaluates the success of the
approach taken.

2 The SPRINT2D Software

The SPRINT2D software [14] solves time-dependent partial differential
equations by using the method of lines to discretise in space thus reducing
the PDEs to a system of ODEs (Ordinary Differential Equations) which
can then be integrated using existing software packages. This separation of
space and time and the use of ODE software makes it possible to combine
different combinations of spatial and temporal discretisation as required.
SPRINT2D uses a cell-centred finite volume method in which the PDE is in-
tegrated over an element and the divergence theorem applied to replace the
area integral for the fluxes by a line integral around the edge of the element.
The flux functions in the PDE are then used to calculate the numerical flux
between adjoining elements. Although the finite volume method may use
any form of spatial elements, the use of triangular elements allows complex
domains to be modelled, and when used in conjunction with spatial adap-
tivity provides a powerful modelling environment, [4]. This is particularly
true when temporal local error control and spatial error estimation and
control are used. The PDEs solved by SPRINT2D are:

β
∂U

∂t
+

∂

∂x
fx +

∂

∂y
fy =

∂

∂x
gx

(

∂U

∂x
,
∂U

∂y

)

+
∂

∂y
gy

(

∂U

∂x
,
∂U

∂y

)

+ S (1.1)

1. SPRINT2D Software for Convection Dominated PDEs 3

where all the functions β, fx, fy, gx, gy and S are allowed to depend on U
, x and t. For steady problems β is set to zero. The convective fluxes fx

and fy may give rise to wave-like structures in the solution U , and the
terms gx and gy define the diffusive fluxes. The source term S can be used
to add other processes such as reaction terms including chemical kinetics.
The three types of boundary conditions allowed by the package are Dirich-
let, Neumann and flux conditions in which the solution, normal deriva-
tives and fluxes are specified. Examples of the types of PDE problems that
SPRINT2D has been applied to are given in [3] and include atmospheric
dispersion problems, shallow water equations, combustion problems and
gas jets. A taxing combustion modelling problem is considered in Section
5.

2.1 An Overview of SPRINT2D

The SPRINT2D software has the layered structured shown in Figure 1. The
top layer of the software consists of the PSE type interface tools- the Visual
Display Tool (VDS) and the Visual Problem Specification Tool (VPS).
An important part of the specification process for solution of two space
dimensional PDEs is the definition of the region over which the problem
is to be solved. Once this is done, either by hand or by the VDS tool,
this region can then be meshed to provide a suitable triangulation of the
domain for the numerical solution process. There are currently two mesh
generation software packages that can be used by SPRINT2D; the KSLA
mesh generator [5] and the GEOMPACK mesh generator [7]. Once the mesh
has been generated the user must either use the VPS tool to create a C
driver for SPRINT2D or write a driver program by hand. The SPRINT2D
package is implemented on top of two existing numerical packages: SPRINT
and NAESOL - all the codes being written in C. After applying spatial
discretisation to time-dependent problems, the resulting system of ODEs
is integrated in time by the SPRINT integrators.

Spatially discretising steady problems results in a system of non-linear
equations which are solved by the non-linear solver package NAESOL, [12],
but are not considered further here. The modular nature of the software
allows additional solution modules to be added to the package. The main
options are: dense sparse and iterative linear algebra modules; an operator
splitting module; and Theta and Backward Differentiation Formula time
integration methods. The TRIAD package provides the routines to perform
any spatial adaptivity using h–refinement.

The C driving program for SPRINT2D specifies the PDEs and the solu-
tion techniques to be used. The first part of the driver program must include
the relevant header files for the SPRINT2D package and modules that are
to be used. The user, in the driver program, needs to specify the following
information: a file containing a specification of the physical domain; relative
and absolute tolerances for the adaptivity routines; a Riemann solver for

4 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

MESH
GENERATORS

EQUATION
SPECIFICATION

BLAS AND COMMUNICATIONS LIBRARY

GEOMETRY
SPECIFICATION

ALGEBRA
SYSTEM

SPRINT

CONTROL
SYSTEM

2D
SPRINT
(TEMPORAL)

NAESOL
(STEADY)

TRIAD

UNSTRUCTURED
SPATIAL
ADAPTIVITY

ITERATIVE
& DIRECT
LINEAR
SOLVERS

UNSTRUCTURED
SPATIAL
DISCRETISATION
MODULES

SPATIAL & TIME
ERROR CONTROL

DRIVING PROGRAM IN ‘C’

SPRINT2D
X−based Graphical Interface

PARALLEL LOAD
BALANCING

VDS VPS MAPLE

FIGURE 1. Outline of Sprint Software

the advective fluxes fx, fy (see Section 2.2); a flux function for gx and gy; a
source term function S; boundary conditions; and initial conditions. These
functions have to follow a fixed interface in returning values to SPRINT2D.

2.2 Riemann Solvers and Boundary Conditions

For convection-dominated PDEs, correct specification of the flux and care-
ful space discretisation are essential to avoid unphysical oscillations in the
discrete solution. A standard approach to ensure a stable solution is to
place more emphasis on the information coming from the direction of the
flow (the upwind values) in discretising the advective parts of the PDE.
In order to maintain stable solution values upwinding is combined with a
non-linear scheme that changes order by limiting the numerical flux that
passes between cells, see [4, 9]. For simple problems, e.g. linear advection,
the choice of upwinding direction is obvious. However, for complex systems,

1. SPRINT2D Software for Convection Dominated PDEs 5

the direction may alternate, or a combination of both left and right values
maybe needed for a system of PDEs, see [9]. In this case an approximate
(sometimes exact) Riemann solver is used to calculate the advective flux
in the code using a combination of knowledge about the PDE and left and
right solution values, [9]. For example in the case of the knock problem
defined in Section 5.2 below, the fluxes fx and fy must be calculated given

left UL = (ρ, ρu, ρv, E, ρz)T
L and right UR = (ρ, ρu, ρv, E, ρz)T

R solution
values at the midpoint of each edge. This calculation is a nontrivial task,
see [4]. The Riemann solver is used to implement flux or derivative bound-
ary conditions. For example, the reflective boundary conditions in Section
5.2 are imposed by setting the exterior ‘normal’ velocity to be the opposite
sign to the normal velocity at the boundary from the interior. The values
of all the other variables on the ‘exterior’ being the same as the interior
values. All other ‘outside’ solution values are the same as the interior val-
ues. Although it may be possible to construct approximate Riemann solvers
automatically, there are many situations in which the user must specify the
Riemann solver.

3 Mesh Generation and Adaptivity

The main attraction of unstructured triangular meshes is that they can ap-
proximate arbitrary domains more easily than quadrilateral based meshes.
The initial meshes used in SPRINT2D are created from a geometry de-
scription using the KSLA [5] or GEOMPACK [7] mesh generators. GE-
OMPACK constructs the mesh by decomposing the input geometry into
simpler polygons and then meshing these polygons. As a semi–automatic
mesh generator GEOMPACK requires additional information at the begin-
ning of the specification file to accomplish this. This information provides
the user with the ability to control various aspects of the final mesh such
as desired number of triangles, mesh smoothness and the way in which
the geometry is decomposed into simpler polygons. These meshes are then
refined and coarsened by the TRIAD [14] adaptivity module which uses
data structures to enable efficient mesh adaptation. For the ith PDE com-
ponent on the jth triangle, a local error estimate ei,j(t) is calculated from
the difference between the solution using a first order method and that
using a second order method, see [4] for details. For time dependent PDEs
this estimate shows how the spatial error grows locally over a time step.
A refinement indicator for the jth triangle is defined by an average scaled
error (serrj) measurement over all npde PDEs

serrj =

npde
∑

i=1

ei,j(t)

atoli/Aj + rtoli × ui,j

, (1.2)

6 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

where atol and rtol are the user-supplied absolute and relative error tol-
erances. This formulation for the scaled error provides a flexible way to
weight the refinement towards any PDE error. An integer refinement level
indicator is calculated from this scaled error to give the number of times
the triangle should be refined or derefined.

In the refinement case, all the neighbouring triangles which share an edge
with a refined triangle are refined towards that shared edge. Similarly, all
triangles with a vertex in common with the original triangle are refined
towards that vertex. Finally Bank’s green rule is applied to ensure the
mesh is conforming, [1]. This is illustrated in Figure 2 in which a level 2
refinement is applied to the central triangle where dashed lines represent
the bisecting edges of green triangles.

0

0

00

0

0

0

0

2

0

FIGURE 2. Regular and Green Refinement

De-refinement is a reversal of the refinement process, that is, the four
children created through regular subdivision can be deleted, leaving the
parent. Only one level of de-refinement is allowed at any one remeshing
time and, in addition, all four children must be marked for deletion. De-
refinement will not be allowed if a triangle in the initial mesh, produced
by the mesh generator, is specified. The triangles created as a result of
application of the green rule may be of poor quality and so are removed
before any further mesh refinement takes place.

3.1 Time Integration

Although in many time dependent PDE codes a CFL stability condition
is used to control the timestep, the SPRINT2D Theta or Backward Dif-
ferentiation Formula codes with functional, Newton Krylov or operator
splitting methods allow automatic control of the local error. Efficient time
integration requires that the spatial and temporal errors are roughly the
same order of magnitude. The need for spatial error estimates unpolluted
by temporal error requires that the spatial error is the larger of the two
errors. The SPRINT2D software also has an option to use the strategy of
Berzins, see [4], which controls the local time error to be a fraction of the

1. SPRINT2D Software for Convection Dominated PDEs 7

growth in the spatial discretization error over a timestep.

3.2 Visualisation

The driver program also allows the user to extract information about the
numerical solution each time it changes or is updated. This is achieved
by the user providing a monitor routine which SPRINT2D calls at regular
intervals with a large amount of solution information. For example, each
triangle has a solution value, a spatial error value and, for time-dependent
problems, a temporal error value. The code can also provide a large quan-
tity of spatial information about the unstructured mesh such as areas of
triangles, lengths of edges, unit normals to edges etc. This information
is used by the visualisation package which complements the SPRINT2D
solver. This visualisation package is developed in IRIS GL and runs on a
local host whilst SPRINT2D runs on a computationally intensive platform
elsewhere. Solution frames are sent across the network to the visualisation
package within which the user can interrogate the solution whilst the next
frame is being calculated. An example of this is the frame shown in Figure 5
for the knock problem described above. The visualisation package displays
the solution values for each triangle in the spatial mesh or error estimates
in space and time. This information is not used to steer the calculation
directly, but has proved to be invaluable for users learning how to apply
adaptivity to their applications.

In displaying the numerical solution values for convection-dominated
problems great care must be taken to avoid introducing physically unreal
values not already present in the numerical solution. For example physical
values of density should always be positive. The solution to convection-
dominated PDE problems may have shocks and discontinuities present.
Numerical PDE solvers take great care to preserve, say, the positivity of
the solution. However, such discontinuities may lead to numerical under-
shoot and overshoot if standard interpolation techniques are used. This can
mislead the user. In [11] a triangular based interpolant is described which
achieves the desired properties by bounding the values it produces to be
between the maximum and minimum values used to define it. This inter-
polant provides a more reliable and natural way for the user to view the
solution.

4 A PSE for SPRINT2D

In designing a visually based PSE, the need for portability makes it de-
sirable to use tools that are either industry standard or are as de-facto
standards. Such tools are the X Window System and associated Widget
sets which are high level X toolkits. A widget is defined as an X window

8 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

with associated manipulation procedures for the window and data struc-
tures. One such set is the The Open Software Foundation (OSF) Motif
Widget Set which has a distinctive look and style, and was used to con-
struct the X interfaces for the PSE described here. It is also necessary to
convert the user’s information into C functions; this is done by using the
Maple system which was chosen because of its wide availability, robustness,
and because it provides C and TEX output.

4.1 A Visual Domain Specification Tool

The Visual Domain Specification (VDS) tool aids the key task of specifying
the initial domain so that it can be meshed, thus reducing the time spent
on the problem specification process. The tool must provide a convenient
way for the user to specify and manipulate the geometry and allow for the
user to visualise a coarse mesh defined over the domain.

The VDS tool uses an internal data structure to construct the geome-
try. This information is then transferred to mesh generation software via
a postprocessing routine. This intermediate step allows the separation of
the visual specification process and the creation of the numerical domain
specification file, although these two processes are closely linked.

Initially an interface was constructed to the fully automatic KSLA mesh
generator [5], as used in SPRINT2D. In addition to this, an option to
construct output files for the GEOMPACK and PLTMG mesh generators
[7] [2] was added to demonstrate the generic nature of the tool. Overall the
VDS tool is split into three main components: a drawing canvas where the
user can specify the geometry using the mouse; a display canvas that shows
the mesh generated from the user specified geometry; and a control panel
containing buttons and labels which allows the user to control the tool.

As well as the visual components of the tool a suitable internal data struc-
ture needs to be defined. The problem faced is to design a data structure
that fits around the requirements for final output format and allows flexi-
bility for the input requirements. The description of the geometry adopted
is hierarchical in that each level is built up from the lower levels, com-
posed of vertices, lines or arcs, and regions respectively. The ability of the
data structure to store geometries in a tree structure, where more complex
elements are constructed from simpler elements, is one which has proved
successful as it allows top-down and bottom-up manipulation of the in-
formation stored in the data structure. The structure made it possible to
provide geometry output in a form suitable for GEOMPACK.

4.2 A Visual Problem Specification System

The creation of the SPRINT2D driver program can be a lengthy process.
The user must first define the PDE problem and the spatial domain. The

1. SPRINT2D Software for Convection Dominated PDEs 9

SPRINT2D modules to be used must be initialised by calling the appropri-
ate command. The VPS system aims to provide an easy and natural way
for the user to visually specify the information required by SPRINT2D.
The aim is to decrease the time taken to create a valid driver program,
guide the user to provide all the information needed by SPRINT2D and to
avoid the need for explicit programming wherever possible.

The information needed to specify the problem may be split into: the
mesh information (including boundary and initial conditions); the equa-
tion specification and finally the error control information. The VPS sys-
tem uses this information to create a suitable driver program for the nu-
merical software via the postprocessing step. At the end of each stage of
this user specification process, the information supplied is stored so that
the postprocessing subsystem can use it to create the driver program. For
continuity, this information is used as the new default values for the user
interfaces when next invoked. Although the time saved by this visual inter-
face is important, the interface also ensures that all information is input,
that sensible defaults are chosen, and that user errors are reduced.

The user defines the mesh in two stages; first, information concerning
the number of boundary conditions and the mesh file is supplied. An out-
line of the boundary is then displayed and the boundary edges are named
with unique integers. The second stage of the interface extracts and repro-
duces the geometry to allow the specification of the boundary conditions.
The boundary conditions (Neumann, Dirichlet or Flux) are specified using
Maple and mapped onto edges by placing conditions on consecutive lists
of edges. The PDE functions in equation (1) and the initial conditions are
also specified using Maple syntax which is then converted into the func-
tions required by the driver program. Figure 3 shows these functions for
the case study of Section 5.1. The adaptivity interface allows the user to se-
lect values for the maximum number of triangles, and to set the adaptivity
and visual states to either on or off. If the adaptivity is set to on the user
is prompted for the absolute and relative spatial tolerance values. Finally
the user is asked to specify the integrator module (BDF or Theta) and the
linear algebra module to be used (sparse, iterative or operator splitting).

4.3 Construction of the Driver Program

The information provided by the users and encoded by the interfaces is
then passed to the postprocessing subsystem responsible for creating the
SPRINT2D driver program. The approach used is that of fitting informa-
tion into a template program. The postprocessing subsystem first provides
a visual summary of the information so that the user may easily validate the
problem definition and then trigger the creation of the driver program. The
final output of the postprocessing subsystem is a valid C driver program
which can be compiled and linked to run the numerical software.

The driver program starts by including the relevant header files for the

10 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

solution modules used. The initial conditions, the boundary conditions and
the appropriate functions required for the finite volume method are then
defined. The user may provide a monitor routine which provides a means of
examining the numerical solution. This is then followed by a set of routines
to instruct the numerical code where to find the previously defined functions
it requires and which software packages to use. The driver program then
starts the solution process by calling SPRINT2D.

The driver program, as well as having the ability to execute the numer-
ical software, must also be easy to understand, well-structured and well-
documented to allow possible user modifications. One example where this
is important is the Riemann solver function required by the finite volume
method. The default solver supplied by the system uses the average of the
‘left’ and ‘right’ values in the flux calculation, see Section 2.3. The user
must specify the approximate Riemann solver if flow directionality has to
be taken into account, see Section 5.1 for example.

5 Case Studies

This section will demonstrate the use of the tools by two case studies in-
volving time dependent PDEs; other problems are in Pratt [10].

5.1 Convection-Dominated PDE – Burgers’ Equation

The first problem is a Burgers’ equation given by

∂u

∂t
+

∂

∂x

(

u2

2

)

+
∂

∂y

(

u2

2

)

= p
∂2u

∂x2
+ p

∂2u

∂y2

where p is a constant defined as 0.01. The Dirichlet boundary conditions

and the initial conditions on the square domain are u(x, t) = (1+e
x+y−t

p)−1

this time dependent problem is solved with the Theta integration module
and iterative linear algebra. The start time is 0.15 with 15 output points
and a step between output points of 0.10. Spatial adaptivity is used with
absolute and relative spatial tolerance of 0.05 and a maximum number
of 10,000 triangles. This example demonstrates the construction of the
approximate Riemann solver by the postprocessing subsystem for the driver
program. The routine from the driver program for the averaging Riemann
solver is given below; its use results in negative solution values close to the
wave front.

void problem_rs(TRIAD_Line *line, int npde, double x,

double y, double t, int sub_name,

double norm_x, double norm_y, double u_l[],

double u_r[], void *users_data, double nf[])

1. SPRINT2D Software for Convection Dominated PDEs 11

{ /* Burgers eqn: crude averaging Riemann solver */

double u = (u_l[0] + u_r[0]) / 2.0 ;

double f_x, f_y;

f_x = 0.5*u*u;

f_y = 0.5*u*u;

nf[0] = f_x * norm_x + f_y * norm_y;

} /* Riemann solver */

The negative values vanish when Roe’s Riemann solver, see [9] is imple-
mented by inserting the code:

/* Burgers eqn: Roe fix to averaging Riemann solver */

if u > 0.0 u = u_l[0];

else u = u_r[0];

before the assignment to f_x . This example shows that although the
VPS tool does not know how to produce a correct Riemann solver for a
general problem, the code it does produce may be easily modified by the
user.

5.2 Combustion Knock-Modelling Problem

A challeng test problem is a combustion model relating to the modelling of
‘knock’ in car engines, see [8]. The model is used to investigate the effects
of autoignition in end gases in an idealised car engine cylinder. The onset
of ‘knock’ is seen when large pressure pulses interact with the edges of
the cylinder. Mathematically the problem is specified by a system of five
PDEs representing conservation of mass, momentum and energy together
with a species equation. The functions in equation (1.1) are defined by:

U = (ρ, ρu, ρv, E, ρz)
T
, and

fx =













ρu
ρu2 + p

ρuv
u[E + p]

ρuz













, fy =













ρv
ρuv

ρv2 + p
v[E + p]

ρvz













, S =













0
0
0
0

−ρz k(T)













and k(T) = exp(β̂
(

1 −
1
T

)

) , T = P/ρ and β̂ = 20.0. The variables
ρ, u, v, p are the density, the velocities in the x and y dimensions and the
pressure respectively. The variable z represents the scaled fuel concentra-

tion. The energy E is defined by the equation of state E = p

(γ−1)+
ρu2+ρv2

2 +

αρz where γ = 1.2 and α = 8.0 . The geometry of the problem is shown
in Figure 4 in which the irregular solid line represents the initial position
of the flame front, as taken from experimental data. The area to the left
of this front contains unburnt fuel while that to the right is one in which
the fuel has burnt. The dotted concentric circles indicate temperature hot

12 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

F
IG

U
R

E
3
.
S
u
m

m
a
ry

W
in

d
ow

fo
r

B
u
rg

ers’
P

ro
b
lem

1. SPRINT2D Software for Convection Dominated PDEs 13

1

3unburnt
fuel fuel

burnt

2

4

FIGURE 4. Diagram of Knock Model.

spots which will lead to autoignition and pressure pulses travelling across
the cylinder to cause ’knock’. Points numbered 1 to 4 are the four pressure
transducers at which experimental time histories of pressure are available.

The initial conditions are as follows. The initial velocities u and v are
zero; the pressure has the value p = 1; the fuel concentration z is zero in
the burnt region and one in the unburnt region. The scaled temperature t is
0.75 in the unburnt region except at the hot spots where it rises to one and
in the burnt region it has value 1 + α(γ − 1)/γ, ρ = p/T . The quantities
E, γ and α are defined by above equation of state. The implementation of
the reflective boundary conditions is described in Section 2.2.

Although fixed mesh solutions to this problem are given in [4], the focus
here will be on the effect of adaptivity and the PSE on the solution process.
The problem is non-standard in that the initial conditions cannot be spec-
ified by a mathematical function but are specified on a triangle by triangle
basis from camera data and read in from a data file. Soon after integration
starts the complex flow patterns for this problem mean that heavy mesh
refinement occurs. Thus it is useful to let the user refine the mesh a priori.
To allow this the adaptivity module was modified to allow user specified
mesh refinement around a specific location.

The SPRINT2D code was employed with the Theta and operator split-
ting options as in [4]. Runs were performed with fixed triangular meshes
with 2048 and 8192 elements respectively and adaptive meshing with the
maximum number of triangles set to 8192 and 32768 respectively. These
modes are referred to in the results table as FIXED and ADAPT respec-
tively. The SPRINT2D code was used with standard local error control with
absolute tolerances of 10−4 for all the PDE variables except the species con-
centration z for which 10−5 is used. A maximum stepsize of 5.0×10−4 was

14 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

TABLE 1.1. Transducer 1 Pressure Spike

Code Mesh MODE TIME PEAK
LUMAD 10000 CFL 32.08 5.87

SPRINT2D 2048 FIXED 41.09 4.44
SPRINT2D 8192 FIXED 28.59 5.61
SPRINT2D 8192 ADAPT 28.63 5.59
SPRINT2D 32768 ADAPT 27.12 6.45

imposed during the initial combustion phase in order to prevent unphysical
solution values being passed into the Riemann solver. The geometry of the
problem and the solution shortly after the start of integration are shown
in Figure 5, which shows the output the user sees from SPRINT2D.

In contrast, the fixed timestep regular square mesh code LUMAD, [4],
uses an ad-hoc Riemann solver approach to determine the flux values.
Timestepping is done using the forward Euler method with only a CFL
condition to control the timestep. In order to obtain results consistent with
SPRINT2D and to resolve the reaction transients, LUMAD must use a
square regular mesh with 100x100 mesh points and 40,000 timesteps giv-
ing a CFL number of 0.01.

The entries marked TIME show the time of the peak pressure pulse
at pressure transducer 1. PEAK indicates the values of this peak. The
physical significance of the PEAK value is that it indicates the strength
of the pressure pulse that causes ’knock’ while the TIME value indicates
when this occurs. Correct computation of these values is thus important if
the mathematical model is to be validated against experiments.

The results in Table 1 show a consistent trend with those of [4]. Moreover
by the time the adaptive run has encountered the maximum pressure spike
the mesh has about 24,000 triangles, with the finest mesh in the region of
the pressure spikes. In this case the spatial refinement tolerances are 10−4

for density and 10−2 for the other PDE variables and hence refinement is
biased towards the density errors. It is worth stating that a poor choice of
tolerances can lead to inappropriate refinement.

One of the challenging aspects of this problem is that of writing a good
physically realistic Riemann solver [4]. For this problem the Riemann solver
function within the driver program is approximately 650 lines of code and
comments and took an expert user of SPRINT2D about 5 days to write
and debug.

The table shows that unless great care is taken with the choice of time
step and spatial mesh, over-large pressure pulses at incorrect times may
be recorded. In particular the use of adaptivity enables the mesh to be
concentrated where it is needed.

1. SPRINT2D Software for Convection Dominated PDEs 15

FIGURE 5. SPRINT2D Solving the Knock Problem

16 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

6 Conclusions

The aim in this paper has been to show how SPRINT2D and its associated
PSE together from a powerful and semi-automatic way of solving time-
dependent PDEs. The software fits into the PSE framework described in
Section 1 by using Maple to describe the PDEs, the VDS tool to model the
geometry and GEOMPACK to generate the mesh. The SPRINT2D finite
volume scheme and associated error indicators are used to compute the
solution and adapt the mesh, with the visual module and IRIS Explorer
being used to display the results. Although not described here a prototype
distributed parallel version of the code exists, [15]. The overall approach
has proved successful for a broad range of convection-dominated problems
with complex geometries needing adaptivity. The modularity of the soft-
ware does make it possible to devise efficient components for particularly
important and/or difficult problems; one example of this being the operator
splitting iterative scheme used in [4].

The combination of end-users and the developers of SPRINT2D and
its PSE has helped to construct a package with numerical reliability, has
eased the solution process, reduced the time spent and provided a more
natural and convenient way to solve the PDEs. The users were enthusiastic
about the VDS and VPS tools and about how easy it was to generate
working code. The benefit of this however must be balanced against the
many months of effort spent on the knock problem experimenting with
different meshes, tolerances, Riemann solvers and initial conditions.

Perhaps the largest problem faced with automatically producing a driver
program capable of giving a valid solution is that of the Riemann solver.
In the case of problems with source terms the best Riemann solver may
not even be known. However, as understanding in this area increases, PSEs
can develop alongside the numerical code.

This work has shown that it is possible to utilise current scientific com-
puting technology to build software tools and packages that when combined
form an easy-to-use layer surrounding complex computational code. This
layer can help both novice and experienced users to better utilise their
time, efforts and knowledge, even if the layer provides only partial help for
difficult problems and specialised modules may still need to be written.
Acknowledgements

Thanks are due to L.E. Scales of Shell Research and J.G.Pan and C.G.W.
Sheppard of the Mechanical Engineering Dept. at Leeds. This research was
supported by EPSRC and Shell Research UK.

7 References

[1] S Adjerid, J E Flaherty, P K Moore, and Y J Wang. High-order adap-
tive methods for parabolic equations. In J M Hyman, editor, Exper-

imental Mathematics: Computational Issues in Non-Linear Science,

1. SPRINT2D Software for Convection Dominated PDEs 17

Physics D 60 1-4, pages 94–111. North-Holland, 1992.

[2] R E Bank. PLTMG: A Software Package for Solving Elliptic Partial

Differential Equations Users’ Guide 7.0, SIAM, Philadelphia,1995.

[3] M Berzins, P H Gaskell, A Sleigh, W Speares, A Tomlin, and J M
Ware. An adaptive CFD solver for time dependent environmental
flow problems. pp.311-318 in Numerical Methods for Fluid Dynamics
V, Eds K.W.Morton and M.J.Baines, Clarendon Press, Oxford 1995.

[4] M Berzins and J M Ware. Solving convection and convection reaction
problems using the M.O.L. Appl. Num. Math. , 20:83–99, 1996.

[5] R M Furzeland, P C Rem, and R F Van der Wijngaart. General
purpose software for multi-dimensional partial differential equations.
Tech. Rep., Shell Research Amsterdam, 1989.

[6] E Gallopoulos, R Houstis, and Rice J R. Future directions in prob-
lem solving environments for computational science. Technical report,
NSF Workshop on Research Directions in Integrating Numerical Anal-
ysis, Symbolic Computing, Computational Geometry and Artificial In-
telligence for Computational Science, Washington, D.C., April 1991.

[7] B Joe. GEOMPACK - a software package for the generation of meshes
using geometric algorithms. Adv. Eng. Soft., 13(5/6):325–331, 1991.

[8] J. Pan and C.G.W. Sheppard, A theoretical and experimental study
of the modes of end gas autoignition leading to knock in an SI engine.
S.A.E. paper 94-2060 (1994). S.A.E., Warrendale, PA 15096, USA

[9] S V Pennington and M Berzins. New NAG library software for first-
order partial differential equations. ACM Transactions on Mathemat-

ical Software, 20(1):63–99, March 1994.

[10] P R Pratt. Problem Solving Environments for the Numerical Solution
of P.D.E.s Ph.D. Thesis, University of Leeds, 1995.

[11] P R Pratt and M Berzins. Shock Preserving Quadratic Interpolation
for Visualisation on Triangular Meshes. Comput. and Graphics, 20(5)
1996.

[12] L E Scales. NAESOL: User’s guide. Internal report, Shell Research
Ltd, Chester, 1993.

[13] H J Stetter. Tools for scientific computation. Zeitschrift für Ange-

wandte Mathematik und Mechanik ZAMM, 73(12):335–348, 1993.

[14] J M Ware. The Adaptive Solution of Time-Dependent Partial Dif-

ferential Equations in Two Space Dimensions. PhD thesis, School of
Computer Studies University of Leeds, 1993.

18 M.Berzins, S.V.Pennington, P.R.Pratt , J.M.Ware

[15] C M Walshaw and M Berzins. Dynamic load balancing for PDE solvers
on adaptive unstructured meshes. Concurrency Practice and Experi-

ence 7:7-28, 1995.

