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1 Introduction

This paper will describe the application of the SPRINT2D unstructured mesh
finite volume code to time-dependent environmental problems and show that
the combination of space and time adaptivity makes it possible to gain greater
insight into CFD problems. The code has been written through a joint Shell Re-
search Ltd (Thornton Research Centre) and Leeds University (School of Com-
puter Studies) Research programme. The key feature of the software is that
applications codes may be written which are based on a toolkit of robust nu-
merical routines. The paper outlines some of these routines and shows how
they have been applied to two example problems. Sections 2 and 3 describe the
finite volume discretization scheme and the mesh generation and adaptivity rou-
tines for unstructured triangular meshes. Section 4 covers the method of lines
time integration approach using a range of explicit and implicit time integration
methods for both stiff and nonstiff o.d.es. A simple spatial error estimate is
used to adapt the mesh, and controlled in conjunction with the time error to
balance the two errors. Sections 5 and 6 describe the numerical examples while
Section 7 contains a summary and outlines an extension of the approach to three
dimensional problems.

2 Finite Volume Method on Triangles

The discretization of two-dimensional p.d.e.s on unstructured triangular meshes
necessitates the use of a method which can handle complex flow problems in a
stable and accurate manner. For example, the Berzins and Ware [3] method
enables accurate solutions to be determined for both smooth and discontinuous
flows by making use of local Riemann solver flux techniques (originally devel-
oped for the Euler equations) for the convective parts of the fluxes, and centred
schemes for the diffusive part. To illustrate this method, consider the equation

Ur = (F(u,uz,uy) )z + (G(u,uz,uy) )y + S(u) ,te (0,2e], (z,9) eQ (2.1)
with appropriate boundary and initial conditions. A finite volume type approach

is adopted in which the solution value at the centroid of triangle 2, (z;,y), is U;
and the solutions at the centroids of the triangles surrounding triangle ¢ are U},
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order method and that using a second order method. For time dependent p.d.e.s
this estimate shows how the spatial error grows locally over a time step, [1]. A
refinement indicator for the jth triangle is defined by an average scaled error
(serr;) measurement over all npde p.d.e.s using supplied absolute and relative
tolerances

s %iff €i,i(?) (3.1)
R = :
] = atol; /Aj + rtol; x u; ;’

where atol and rtol are the absolute and relative error tolerances. This for-
mulation for the scaled error provides a flexible way to weight the refinement
towards any p.d.e. error. An integer refinement level indicator is calculated
from this scaled error to give the number of times the triangle should be refined
or derefined.

4 Time Integration

A method of lines approach with the above spatial discretization scheme results in
a system of o.d.e.s in time which are integrated using either a Theta method with
functional and/or Newton iteration or the DASSL method using Newton Krylov
methods [6]. Both codes allow automatic control of the local error. Berzins[1]
shows that a Courant stability condition is automatically satisfied if functional
iteration converges sufficiently fast.

In most time dependent p.d.e. codes either a CFL stability control is em-
ployed or a standard o.d.e. solver is used which controls the local error I, 1 (tn+1)
with respect to a user supplied accuracy tolerance. Efficient time integration
requires that the spatial and temporal errors are roughly the same order of
magnitude. The need for spatial error estimates, unpolluted by temporal error,
requires that the spatial error is the larger of the two errors. Berzins [1] has
developed a strategy which achieves this by controlling the local time error to be
a fraction of the growth in the spatial discretization error over a timestep. The
local-in-time spatial error, é(¢,41), for the timestep from t,, to tn41 is defined
as the spatial error at time ¢, given the assumption that the spatial error at
time ¢,, is zero. A local-in-time error balancing approach is then given by

| fagi(tasr) |l < €l &(tagr) [, O<e<1. (4.1)

In the case of a single p.d.e. the component of é(f,,41) on the j th triangle is
estimated by e; ;(t) as defined above.

5 Atmospheric Dispersion

Power station plumes are concentrated sources of NO, emissions, [7]. The photo-
chemical reaction of this NO; with polluted air leads to the generation of ozone
at large distances downwind from the source. This provides a stringent test of
whether adaptive gridding methods can lead to more reliable results for complex
multi-scale models. The transport of the plume and the chemical reactions are
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A calculation of the area under these curves shows a dramatic 30% difference
between the level 0 and the level 3 solutions. The reason is the nonlinearity in
the chemical reaction rates. Individual species concentrations on a refined mesh
will give rise to very different local production rates than those found from the
same concentrations averaged over a coarse mesh.

These preliminary results show key features which cannot be represented by
the coarse meshes generally used in regional scale models. Also coarse meshes can
also lead to inaccurate estimates of average or integrated concentration levels.
Adaptive methods thus appear to be of great importance for these problems.

6 Two-Dimensional Harbour Flow Problem

The environmental problems of harbour and river flooding and pollution disper-
sion as modelled by the shallow water equations similarly benefit from adaptive
meshes when resolving the complex natural geometries of rivers and estuaries.
While much work has been carried out on the accurate solution of the these
equations in recent years, e.g. Toro, [8] there has been little development in
the way of engineering codes. Existing models azc usually based on rectangular
grids and less sophisticated discretization methods. One exception has been the
model presented by Zhao et. al. [9] who have used the Osher Riemann solver
in a first order accuracy river model. The method used here is similar, but has
second order accuracy and spatial and temporal adaptivity.

A well-known problem is the harbour described by Falconer [4]. This is a
physical model of a harbour and the adjacent coastal region: measurements have
been taken of the flow and it has also been modelled numerically. Although there
is relatively little data in the open literature of the detail of the flow structure,
there is sufficient to compare against the results presented here. The initial data
for the numerical test was a flat water surface at a depth of 0.38m in the main
basin. The flow is driven from the open boundary in Fig.2 (left) by a specified
depth to simulate a tidal cycle. This varies sinusoidally from the starting depth,
initially increasing, and having an amplitude of 0.1m and a period of 702 seconds.

The two-dimensional shallow water equations, with source terms representing
frictional stress and momentum due to a sloping bed, may be written in the form
of equation (2.1) with U = (¢, ¢u, ¢v)” and

pu pv 0
E=| ¢u+1¢® | ,G= Puv ,S=| 98(Sfe + Soz) (6.1)
duv ¢v? + 142 9é(Sfy + Soy)

where u, v are the velocities in the & and y directions respectively, ¢ = gH, H is
the depth of flow, g is the acceleration due to gravity, So;,, are the bed slopes
in z and y and Sf,,, are the friction slopes in z and y. The latter can be found
using either the Manning or De Chezy formulae (which are equivalent):

_nfuvZ 4 0? u/l g2
= T eley s = Gaargys (62
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7 Summary and Future Work

The application of time dependent adaptive p.d.e solvers to environmental flow
problems has illustrated the potential of such codes to provide a greater degree of
detail than may otherwise be possible. The extension of this work to three space
dimensions is being addressed by the development of a fast 3D unstructured
tetrahedral mesh adaptivity algorithm. An example application is an inviscid
shock diffraction problem, modelled by the 3D Euler equations, for which the
shock diffracts around the 3D right angled corner formed between the two cuboid
mesh regions. Fig.3 shows a projection of the adaptive mesh onto the walls of the
structure. Full refinement/derefinement shock propagation tests show a scaling
behaviour of O(N'1*) in mesh size, with tetrahdera being generated at a rate
of 10* per second, which is encouraging for future applications.
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