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Abstract 

The conditions sufficient to ensure positivity and linearity preservation for a cell-centered finite volume scheme 
for time-dependent hyperbolic equations using irregular one-dimensional and triangular two-dimensional meshes are 
derived. The conditions require standard flux limiters to be modified and also involve possible constraints on the 
meshes. The accuracy of this finite volume scheme is considered and is illustrated by two simple numerical examples. 

1. Introduction 

An important  t rend in numerical methods  for the spatial discretization of partial differential 
equations is the move towards using finite element  and finite volume methods  on unstructured 
triangular or tetrahedral  meshes. The reasoning underlying this trend is that such methods 
offer one way of  solving problems adaptively on general geometries.  The finite volume methods  
used may be split into cell-vertex methods  (in which the solution values are posit ioned at mesh 
points) and cell-centered methods  (in which the solution variables are posit ioned at the 
centroids of triangles). Cell-vertex methods have a clear advantage over cell-centered methods 
in that there  are fewer unknowns for a given mesh, but  a possible disadvantage is that the area 
(or volume) of  each cell is larger. While both methods  have their advocates what is clear is that 
both classes of  methods  need to be  well-understood. In this respect  more work has been done 
on the analysis and derivation of  cell-vertex schemes, e.g. see Barth [1], Struijs et al. [17] and 
van Leer  [18] and the references therein. One  of  the early papers to make an important  
advance in this area was that of Cockburn et al. [7] which proves a maximum principle for a 
discontinuous Galerkin method of  order  k + 1 which may be interpreted as a finite volume type 
scheme. 

In the area of  cell-centered schemes on triangles perhaps the first extension of successful 
one-dimensional  schemes to triangles was that of  Venkatakrishnan and Barth [19]. Subsequent  
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modifications (e.g. by Lin et al. [11]) and independent developments (by Berzins et al. [3,6,20]) 
occurred shortly afterwards. These schemes all attempt to transfer successful regular one-di- 
mensional and quadrilateral mesh two-dimensional schemes (e.g. [16]) to unstructured triangu- 
lar meshes. The scheme of Durlofsky et al. [8] has similarities with these methods, except that 
the limited upwind interpolants used are different. More recently Liu [12] showed that a 
modified form of this method satisfies a maximum principle. 

The intention in this paper is to show that the schemes of Ware and Berzins [20] and 
Venkatakrishnan and Barth [19] satisfy the properties of linearity preservation and positivity. 
These properties have been proposed by Struijs et al. [17] as being of importance for 
multi-space dimensional schemes. The positivity analysis of such methods has often been 
confined to regular mesh cases (e.g. Spekreijse [16]). The intention in this paper is to extend 
Spekreijse's analysis to the one-dimensional irregular mesh case and then to the unstructured 
triangular mesh algorithm of Ware and Berzins [20]. This paper will show that the new scheme 
has these properties under certain restrictions on the limiter function, the mesh and on the 
interpolating functions used in the discretization method. The analysis is extended to time 
integration using the Theta method in a method of lines approach, [2]. 

An outline of this paper is as follows. Section 2 describes the spatial discretization method 
analyzed by Spekreijse. The extension of this method to irregular meshes is considered in 
Section 3. The issue of positive time integration is considered in Section 4. Section 5 extends 
the approach to unstructured triangular meshes and considers accuracy issues. Section 6 
considers the linearity preservation and positivity of the scheme while Section 7 illustrates these 
results using two simple numerical examples. 

2. Spekreijse's discretization method 

Spekreijse [16] considers regular square meshes in two-space dimensions by splitting the 
computation dimensionally. This makes it possible to consider the extension to irregular 
meshes by looking at the scalar partial differential equation in one space dimension given by 

u , + [ f ( U ) ] x = O ,  (1) 

where f ( u )  is the advective flux function which describes wave movements in the solution. 
Spekreijse [16] assumes that this can be split into positive and negative parts: 

f(u)=L(u)+L(u), (2) 
where 

d f t ( u )  dfr(U) 
d----U-- >~ 0, d---~ ~< 0. (3) 

In this paper a slightly different set of conditions, due to Cockburn et al. [7], which restricts 
only the numerical flux function will be used, see below. The analysis undertaken will apply 
equally to both cases, however. 

A spatial mesh, with constant spacing h, is defined by 

Xi+l =Xi + h, i = 1  . . . .  , n ,  xl =a ,  
1 and the midpoints by Xg+l/2 = x  i + gh. 
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Denote by Ui(t) the solution value U(x  i, t) at the meshpoint x i at time t. Throughout  the 
paper it will be assumed that all solution values, derivatives and fluxes depend on the time t. 
The semi-discrete form of (1) is 

aG L+l /2  - -L-1 /2  
- - +  = 0 ,  (4) 
at h 

where fi+1/2 and f i -1 /2  are the fluxes at the midpoints Xi+l/2 and Xi_a/2  respectively. 
Spekreijse's method [16]makes use of an approximate Riemann solver such as the well-known 
Roe or Osher solvers to calculate these fluxes. The flux calculated by this approximate 
Riemann solver will be defined as 

t' r 
fRm(U/+ 1/2, U/+ 1/2) (5) 

and, following Cockburn et al. [7], is assumed to satisfy: 

• fRm(U, U ) = f ( u ) ;  
• fRm(U, V) is nondecreasing in u and nonincreasing in v; 
• fRm(' ,  " ) is Lipschitz; 
• fRm(U, U)=  --fRm(g, U). 

In order to use this approach it is necessary to construct left, Uie+ 1/2, and right, U/+ 1/2, solution 
values at the midpoints Xi+l/2. A standard first-order scheme uses Ui(t) as the left value and 
Ui+l(t) as the right value. In Spekreijse's second-order scheme the limited left and right 
solution values at the cell interface xi+ 1/2 are defined by 

1 
Vtf+l/2 = U/+  2 ( U i -  U/_l)@(ri)  , (6) (1) 

- 2 (  ,+2 <+1) @ (7) u r = Ui+l 1 U~ - i + 1/2 

where  g r G+1/2 and G+1/2 are the limited upwind solutions on the left and right respectively. The 
ratio of gradients, r i, and the limiter function, @(-), are defined as 

U,.+I - U i R +  IRI 
= , @ ( R )  = ( s )  

ri U / -  U/_ 1 1- -{- IR[ '  

where @(.) is van Leer's harmonic limiter, [16]. 
The semi-discrete form of (1) now becomes 

a G. 1 
at -- h [--fRm(<f+l/2 '  G+1/2) +fRm(g/f-1/2, G r l / 2 ) ] ,  

where fRm(U e, U r) denotes the flux value calculated by solving the approximate Riemann 
problem with left and right states U e and U r respectively. 

Spekreijse splits the flux function, f ,  into its positive and negative parts as in (2) and uses the 
forward Euler method with time step k to get the equations: 

k 
U i ( t n + l )  = Ui ( tn )  + ~ - [ f r ( U / / - 1 / 2 ) - - f r ( U / / + l / 2 ) - f l ( u i r - 1 / 2 ) + f l ( U i + l / 2 ) ] ,  

where i = 1 . . . .  , n and t n+ 1 -D- tn + k. 
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3. One.dimensional variable mesh formulation 

There  are two alternative formulat ions that  allow the one-dimensional  flux limiter scheme 
described above to be used on non-uni form meshes.  One  is a cell-vertex approach,  as used in 
the software of Penning ton  and Berzins [13], and the o ther  is a cell-centered approach.  The  
cell-centered approach is closer to the two-dimensional  case of interest  and so will be 
considered first. In this case the point  x/ is assumed to be at the center  of a cell of width h/, 
and so the spatial mesh is def ined by 

1 
Xi+ 1 :X i 'q -  -~(hi-Fhi+l), i =  1 . . . .  , n ,  x 1 = a ,  

1 1 and the midpoints  by x/+1/2 = x  i + 2h i = x i +  1 - -~hi+ 1. 
Three  new terms are in t roduced to cater for the irregular mesh. The  first two are the linearly 

extrapolated upwind values on the left and right of the cell interface: E+I/2L and uRi+I/2. The  
third is the linearly interpolated centered  value, c E+l /2 .  These  terms are def ined as follows: 

h i ( U  i - Ui_l) 
L = (9) 

U,,+1/2 U/+ h i - 1  + h i  , 

hi+l(U/+2 - U/+I) 
n = _ (10) 

E + l / 2  E'+I hi+l +h i+  2 , 

hi(U/+ 1 -- U/) 
c = (11) 

E+1/2  E -F h i -F hi+ 1 

hi+l(U/+ 1 - U/) 
= E ' + I - -  ' (12)  

hi+ 1 + h i 

where dependence  of the solution values on the t ime t has been  omi t ted  but  is unders tood.  
The  l imited upwind value on the left of the cell interface is given by a modif ied form of (6), 

i.e. 

f ( E  -- U/ - I )  
E + I / 2 =  Ui + hi h i + h i _  1 c1)(rf+l/2) ' 

where the limiter function q)(.) may be def ined as in (8), and the ratio of gradients with left 
upwind bias is rie+l/2, ra ther  than ri, and will be def ined below. This equat ion can be rewrit ten 
using (9) as 

Eg+I/2 = E "~ Cl)(rf+ 1 / 2 ) ( E L I / 2 -  E ) "  (13) 

A similar process gives the l imited upwind value on the right, 
r R 

E'+ 1/2----- Ui+a --I- (/)(r[+ 1/2)(U/+ 1 / 2 -  U/+ 1). 

is 

(14) 

The  irregular mesh  equivalent of the ratio of the regular mesh  gradients r i as def ined in (8) 

r i + l / 2  = 1 . . . .  X 
2 ( h i  -[- h i +  1) 1 (-h- i~-~-/-  1 ) 
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which may be rewritten using (9)-(12) as 

C L ¢' .~_ [Ui+ l /2_  U/] x [< .+1/2_  U/] -1 Fi + 1/2 

Using a similar process on the right, the ratio of gradients is 

[ [ ,+2  +1]1 
r ir+l/2  = --  1 . . . .  X --  1 . . . .  ' 

~ ( h i + h i + , )  2 ( h i + l + h i + 2 )  

421 

Spekreijse's flux splitting approach leads to very similar coefficients: 

r u r r __ U r 
1 f e ( U i + l / e ) - f e ( i - 1 / 2 )  U/+1/2 i-I/2 

A7+1/2 - h i  U/+ 1 / 2 -  ori-1/2 Ui+l(tn) - U/(tn) ' 

Uf _ e 1 f r ( U i g + l / 2 ) - f r ( / - 1 / 2 )  ' U/- i/2 U/+ 1/2 
Bin_l~2 - h i  U/t+l/2-  U/{_l/2 U i ( t n )  - U/_l(in):" 

e r U e r 1 fnm(U~+~/2, U/+1/2)-fnm( i - ~ / 2 ,  U~+~/2) 
B n - 1 / 2  = h7  t - U f  f i+ 1/2 i - 1 / 2  

~1/2) r _ u r  , U/ U / + l / 2  , - 1 / 2  

Ui + l(tn) - U i ( t n ) '  

f g U/+I/2 - U/_I/2 
U/(t.)  - U / _ l ( t . ) "  

1 fRm(gi~l/2,  U/+l/2)--fRm(g/g_l/2 
n = _ _  

A i + 1 / 2  h i  U/~-1/2- []/51/2 

where 

0U~ 1 
_ _  -- r -{-fRm U/l 1/2 U/-1/2)] Ot h i  [--fRm(U/C+ 1/2, U/+ 1/2) ( "_ , r . 

U.e r Addition and subtraction of  the term fnm( i - 1 / 2 ,  U/+l/2) gives 

hi OU/ot = -- [ fRm(U/t+ 1/2, Ui+ 1/2) _ f R m ( r  gfi_l/2, gi+ l/2)]r 

U e ~ U e ~ . +[fRm(  i-1/2,  U/- l /2) - - fRm( i-1/2, Ui+l/2)] 

At a particular time t n this can now be written as 

0u/ 
0t = hn+l/2(U/+ 1(tn) - U i ( t n ) )  - B i  n- 1/2( U/(tn) - U i_  l(tn)),  (15) 

which may be again rewritten using (9)-(12) as 

r r + x / 2 =  [ C _ R _ g/+l/2 g/+l] X [g/+l/2 g/+l] -1. 

The limiter function @(-) is assumed to be unchanged for the moment. 
Using the values L n c U~+1/2, U~+I/e and U~+I/2, the scheme devised by Spekreijse can be 

extended to the irregular mesh case. Substituting the values defined by (13) and (14) into (4) 
enables the scheme to be written as 
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Applying the forward Euler method with time step k gives: 

Ui( tn +1 ) = U / ( tn )  q- kZn+ 1/2( Ui + 1(tn)  - Ui ( tn) )  -- k n i  n- 1/2( U/( t~ ) - U/_ 1(tn)). 

The definition of positivity, [17], requires that every new value U/(tn+ 1) can be written as a 
convex combination of old values: 

n 

U/( tn  + 1) = E c j U j ( t n )  Vcj>~O,  ( 16 )  
j = l  

while Y'.cj = 1 for consistency. This guarantees, [17], a maximum principle for the discrete 
steady state solution thus prohibiting the occurrence of new extrema and imposing stability on 
the explicit scheme. From this definition the requirement on the coefficients AT+ 1/2 and Bi  n 1/2 
is that 

An+l/2 >t 0, Binl/2 >~ 0, 1 -- kAn+ 1/2 - kBn_l/2 >~ O. 

Application of the mean value theorem to the definitions of the coefficients An+l/2 and 
Bn_l/2 and use of either Spekreijse's flux function splitting properties defined in (2), or the 
Riemann solver properties defined in (5), show that this requires that 

U/+ 1/2 U/r- 1/2 t' - O f  -- Ui+ 1/2 i -1 /2  
> 0 ,  >0 .  

U / + l ( t n )  - Ui( tn) Ui( tn) - U / _ l ( t n )  

Consider the right-hand term for example. Substituting from (13) and (9) gives 

e -- U f  h i h i_  1 tI)(rig_l/2) 
U/+ 1/2 i-1/2 = 1 + crp(rf+ 1/2) hi + hi-1 ri e- 1/2 

U/(t~) - Ui_l(t.) hi+hi_ l  

Following Spekreijse, this is positive if 

h i h i_  1 1 
1 + hiWhi_lt71)(R) h i+hi -1  -~cI)(S)>O VR,S. (17) 

From this equation and Spekreijse's equation (2.13) in [16] it follows that 

2 h  i 2hi_ 1 qb(R) 
a <~ crp(R) <<. M, - M  <~ <~ 2 + a, 

h i - k -h i_  1 h i + h i _  1 R 

where a ~ [ - 2 ,  0] and M is a positive constant. In other words the standard limiter q)(R) in 
Spekreijse's equation (2.13) is replaced by the limiter ~ (R)  multiplied by 2hi / (h  i +hi_ l ) .  A 
slight rearrangement of Eq. (17) gives: 

hi ( l + t b ( R ) ) +  1 > 0  VR,S. 
h i + h i _  1 h i + h i _  1 S 

Consideration of extreme mesh ratios in this equation shows that the limiter must satisfy 

1 
- 1  ~< qb(R) ~<M, -M~< ~qb(S) ~< 1 VR,S. (18) 
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This shows that standard limiters may need to be modified for the irregular mesh case. For 
example the van Leer  limiter as defined in (8) may be replaced by one which satisfies (18) with 
M = 2, i.e. 

R+IRI 
q~(R) = 1 + max(1,l R I)" (19) 

This new limiter will henceforth be referred to as the modified van Leer  limiter in the 
remainder  of this paper. 

Remark.  In the case when the mesh cells are defined by 

X i + l = X i W h i ,  i = 1  . . . .  , n ,  x l = a  , 
1 and the midpoints by Xi+l/2 = x  i + 2hi, as in the software of Pennington and Berzins [13], a 

similar analysis to that above leads to an equivalent equation to (17) given by 

h i 1 
2 + h--~_a q~(R) - ~q~(S)  >~ 0 V R , S .  

From this it follows that the van Leer  limiter may be used without modification in a cell-vertex 
scheme but other  limiters that allow negative values when the mesh ratio h i / h  i_ 1 is large will 
need to be modified to preserve positivity. For example, if the van Albeda limiter used by 
Spekreijse and Venkatakrishnan and Barth [19] and defined by 

R + R  2 
• ( R ) -  1 + R 2 (20) 

1 and a mesh ratio value of hi~hi_ l 10 will result is used and R = -0 .5 ,  then @(-0 .5 )  = - ~ = 
in the positivity condition being violated. 

3.1. Systems o f  equations 

The present  proof extends to systems of equations without difficulty providing flux vector 
splitting is used to decompose the flux function into positive and negative fluxes (see Roe [14]). 
The extension to using the Roe and Osher type approximate Riemann solvers is beyond the 
scope of this paper. 

4. Time integration 

The above spatial discretization scheme results in a system of differential  equations, each of 
which is of the form of  Eq. (4). This system of equations can be written as the initial value 
problem: 

( J = F N ( t ,  U(t ) ) ,  U(0) given, (21) 



424 M. Berzins, J.M. Ware/Applied Numerical Mathematics 16 (1995) 417-438 

where the N-dimensional vector, U(t), is defined by 

v(t) = [U (x l ,  t ) ,  U(x2,  t)  . . . .  ,U(XN, t)] T. 
The point x i is the center of the ith cell and U~(t) is a numerical approximation to u(xi, t). 
Although Section 3 showed that the discretization scheme is positive when used with the 
forward Euler method it is necessary to extend this analysis to the method of time integration 
used by Berzins and Ware [6] and Berzins [2]. Numerical integration of (21) provides the 
approximation, V(t), to the vector of exact PDE solution values at the mesh points, u(t): 

V(t )  = [V(x l ,  t) ,  V(x2 ,  t ) , . . . , V ( x  N, t)] T. 

The Theta method code of Berzins and Furzeland [4] used here selects functional iteration 
automatically for the non-stiff ODEs resulting from convection-dominated problems. The 
numerical solution at tn+ 1 = t n + k, where k is the time step size, as denoted by V(tn+l), is 
defined by 

V( tn+ 1) = V( tn) + (1 - 0)kl)(tn) Jr- OkeN( tn+ 1, V( t .+  a)), 

in which V(t n) and l.:'(t,) are the numerical solution and its time derivative at the previous time 
t,. The value of 0 used is bounded by 0.5 ~< 0 < 1.0, and may be chosen by the user or 
automatically varied to increase the time step, [4]. Values of 0 close to 0.5 (e.g. 0.55) give the 
benefits of almost second-order accuracy plus added stability (see [4] for a detailed discussion 
of this matter). The time step k is chosen to satisfy a local error control which may be modified 
to reflect the spatial error present, [2]. The system of equations (4) is solved using functional 
iteration (see [2]), 

v(m+ l)( tn+ l) = V( t ,)  + (1 - O )kl)( t , )  + OkFu( t,+ a, v(m)( tn+ l) ), (22) 

where m = 0, 1 , . . . ,  generally less than 3 and using a second-order predictor or with a 
predictor based on the forward Euler method: 

V(°)(tn+l) = V(tn)  + keN( t , ,  V(tn) ). (23) 

Berzins [2] shows that one adavantage of using functional iteration is that a Courant number 
type stability condition is automatically satisfied if functional iteration converges sufficiently 
fast. The more difficult issue of positivity will be considered below. 

Remark. It is possible for the user to select 0 = 0.5 and to allow only one corrector iteration to 
be performed in which case the method is the second-order positivity-preserving Runge-Kut ta  
method used by Shu and Osher [15]. 

In order to show that the coupling of this time integration scheme with a spatial discretiza- 
tion method is positive, the precise form of the ODE system must be stated, i.e. 

Fi( tn, V( tn) ) = - a i V i (  tn) -t- S~i(V( tn) ) (24) 

where S i N ( V ( t n ) )  = E cijVj(tn), 
j4:i 
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and where from Eq. (15) the coefficients ci, j are zero except for 

_ _  n = " -- " " (25) Ci,i+l - A i + l / 2 ,  Ci,i-a B i -a /2 ,  ai - A i + l / 2  + B i - 1 / 2 ,  

thus making Siu(V(tn)) a positive function for positive values of V(tn). 
Applying the predictor to the ith equation gives 

i + 1) = ( 1  - k a i ) V / ( t n )  + kSN(V(tn)). 
Substituting this value in the corrector gives 

V/(1)( tn + 1) = V / ( t n )  -- aikO[ (1 - kai)Vi( t , )  + kSiu(V( tn) )] 

+ kOS~v(V(°)(tn+l)) + k(1 - O ) [ - a i V i ( t n )  + siu(V(tn))],  

which may be written as 

V//(1)(tn + 1) = V/(tn)[1 - ka i -t- Ok2a 2] 4- k[1 - 2kOai] SN(V( tn) ) + 20SiN( siN(V( tn) ) ). 

The next corrector iterations may be analyzed by noting that the solution at the mth  iteration 
has the form: 

m + l  
rn i l 

v i (m) ( tn+l )=eonVi ( tn )  + k E Pt (SN)  ( V ( t n ) ) ,  ( 2 6 )  
l = l  

where the superscript on (S~) indicates repeated evaluations of the function, e.g. the last term 
in the previous equation. Substituting this expression into (22) gives rise to the following 
recurrence relations between the polynomial coefficients, Pt m, 

e ~ n + l  = l _ a i  k +aiOk(  1 _p~n),  

e?+l=k(1-O(1 +aie~n)+ONo), 
e j m + l : k O ( e j m _  1 - -a i e jm) ,  j =  2 , . . . , m  + 1, 

eO = 1 - kai, pO = k.  

All these coefficients must be positive for the method to be positive. Evaluation of these 
coefficients using an algebraic manipulation package shows that the critical condition is that 
the coefficient Pm ~ is positive where 

p m = k m O m - l ( 1 - m k O a i ) .  (27) 

This shows that although the CFL number  decreases with increased iterations the magnitude of 
the terms is multiplied by successive powers of k. From Eq. (24) the predictor will preserve 
positivity if 

1 -- ka i >~ O, 

while for the ruth corrector iteration to preserve positivity 

1 
1 - Omka i >1 0 o r  ka i ~ - -  

Om 
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Combining the last two equations and substituting from (25) gives a CFL-like condition 

k(A'i+l/2 + Bi~_l/2) <~ Min 1, . 

In practice rn is no higher than three and often one or two. 

(28) 

5. Triangular mesh discretization method 

Although the two-dimensional method considered below was developed for systems of 
equations, for ease of exposition, consider the class of scalar PDEs: 

i~u ¢3f 8g 
- - + - - + - - = 0 ,  (29) 
0t 0x 0y 

where f = f ( x ,  y, u) and g = g ( x ,  y, u) are the flux functions in x and y respectively and with 
appropriate boundary and initial conditions. 

The cell-centered finite volume scheme described here uses triangular elements as the 
control volumes over which the divergence theorem is applied. The finite volume representa- 
tion of a solution is formally piecewise constant within each control volume and is not 
associated with any particular position. To allow the construction of high-order schemes 
however the centroid of the triangle is defined as the nodal position and the solution value is 
associated with that point. In Fig. 1 for example, the solution at the centroid of triangle i is U~, 

U r tD Um 0, 
, (X2 ,Y2) ",, 

'"' / ' ~ X  "e Us 

Une l ,Y1 ) 

. . . . .  Uq 

Up 
Fig. 1. Construction of interpolants. • centroid solution values; 0 interpolated solution values; ~ midpoints of 
edges. 
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the solutions at the centroids of the triangles surrounding triangle i are U t, U: and U~ and the 
next level of centroid values used by the discretization method on the ith triangle are: U m, U n, 
Up, Uq, U r and U s. The mesh point at which a solution value, say U s, is defined is denoted by 
(xs, ys). 

Integration of (29) on the ith triangle gives: 

~u (Of~g)~___x ~ fA,-ff da = -fA, + 00) 

where A; is the area of triangle i and O is the integration variable defined o n  A i. The area 
integral on the left-hand side of (30) is approximated by a one-point quadrature rule. The 
quadrature point is the centroid of triangle i. By using the divergence theorem, the area 
integral on the right-hand side is replaced by a line integral around the triangular element: 

Ai Ot = - q ) - ( f ' n x ~ - g ' n Y )  a s '  -c t 

where C i is the circumference of triangle i and S is the integration variable along that 
circumference. The line integral along each edge is approximated by using the midpoint 
quadrature rule. The numerical flux is evaluated at the midpoint of the edge: 

~u 1 
0-7 = A i ( f / k A y 0 ' l  -- gikAXo ' l  +f i jAy l ' 2  -- g i jAXl '2  +fi;AY2'° -- g i lAX2 ' ° ) '  

where Axi,  j = x  r - x  i, A y i , j = y  r --Yi and fir and gij a r e  the fluxes in the x and y directions 
respectively evaluated at the midpoint of the triangle edge separating the triangles associated 
with U,. and U r. 

The fluxes fir and gir are evaluated by using approximate Riemann solvers fRm and gRm 
respectively. At the midpoint of each edge one-dimensional Riemann problems are solved in 
the cartesian directions with the left solution value being defined as that internal to triangle i 
and the right solution value being defined as that external to triangle i: 

~u 1 
---- Ai  ( f Rm(Ui:k, U/~c)Ay0,1--gRm(U/~, Ui~)Ax0,1 0--~- 

+fRm(U/:, U/~)Ayl,2--gRm(U/:, Uij)mXl,2 

+fRm(Ui/t', r t: r f/l)AY2,0--gRm(Uil, Uil)mx2,0), (31) 

where U/: is the internal solution, with respect to triangle i, at the midpoint of the edge 
between U i and Uj. and U/~ is the external solution, with respect to triangle i, on edge j. Note 
that U/,~ = U~( j,, as a consequence of this notation. The approximate Riemann solver satisfies that 
same conditions as in the one-dimensional case (see Eq. (5)), except that the first condition is 
replaced by the conditions 

gRm(U, U ) = g ( u ) ,  fRm(U, U ) = f ( u ) .  (32) 



428 M. Berzins, J.M Ware/Applied Numerical Mathematics 16 (1995) 417-438 

Consider for example the two-dimensional advection equation: 

0u 0u 0u 
- - + a - - + b - - = 0 ,  
Ot ~x Oy 

where a and b are positive constants for example. The discrete form (see Eq. (31)) is--assum- 
ing that the triangle is aligned to the characteristic directions as in Fig. 1 and given that the 
solution to the Riemann problem is the product of the upwind value and either a or b--given 

OU~ 1 

Ot A i 
[(aU/e)A Y0,1 - -  (bU/~)Axo, 1 

+ (aU/~)A y 1,2 - (bU/~)Ax 1,2 + (aU/~)A Y2,0 - -  ( b V / / t ' ) ~ X 2 , o ] .  

by 

(33) 

A standard first-order scheme uses the piecewise constant solution on either side of the edge as 
the upwind values, e.g. 

5-- u,,  u/; = uj. 

Although this scheme results in numerical solutions with no undershoots or overshoots the 
amount of numerical diffusion introduced is often not acceptable. Nevertheless Kroner and 
Rokyta [10] have very recently proved rigorous convergence results which could probably be 
extended to the method described here. 

5.1. Limited interpolants in two dimensions 

The approach of using limited linear upwind values to create left and right values for the 
Riemann solver will now be used on unstructured meshes. In this approach the internal and 
external values at the cell interface of two triangular elements, U/~ and U/j, in (31) are replaced 
with the limited linearly interpolated values defined by 

Uij _e_ f i  + cl)(ri~ )(Ui L -- Ui) , (34) 

U/~ = U i + @(r/~.)(U/R - Ui), (35) 

where U/L is the internal linear upwind value, U/R is the external linear upwind value, ri~ is the 
internal upwind bias ratio of gradients and r~ is the external upwind bias ratio of gradients. 
The internal and external ratio of linear gradients are defined in a similar manner to that in 
Section 3 by 

e U~ c - U~ r/) - U/c - Uj (36) 
r i j -~ Vi L -  V i ' Vi R -  Vj ' 

where U/7 is the linear centered value at the cell interface. The choice of limiter function is left 
open at this point. Eqs. (34), (35) and (36) describe the unstructured flux limiter scheme but in 
terms of new, and as yet undefined, interpolated and extrapolated values: U/T, U/~ and U/c. 

In a similar way to Spekreijse, ~L and U/R are defined using linear extrapolation but on the 
unstructured mesh. The value U,.j is constructed by forming a linear interpolant using the 
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solution values U/, U k and U t at the three centroids. An alternative interpretation is that linear 
extrapolation is being used based on the solution value U/ and an intermediate solution value 
(itself calculated by linear interpolation) Utk which lies on the line joining the centroids at 
which U t and U k are defined (see Fig. 1), i.e. 

v/- 
Ui L = U i + dij,i di,lk , (37)  

where the generic t e r m  da, b denotes the positive distance between points a and b, so for 
example dij,i denotes the positive distance between points ij and i (see Fig. 1) as defined by 

de,it = ( (  x i  - X i j )  2 q- ( Yi - Yi j )  2 ' (38) 

where ( x i j ,  Yij) a r e  the coordinates of U/j. The value U/R is defined in a similar way using the 
centroid values Uj, U s and U r. This also may be viewed as linear extrapolation based on the 
solution value Uj and an intermediate solution value (itself calculated by linear interpolation) 
Urs which lies on the line joining the centroids at which U r and U s are defined (see Fig. 1), i.e. 

u iR  = uj  --}- d i j j U] - Urs (39) 
' dj,rs 

For certain meshes the three centroid points may be collinear in which case it is not possible 
to define a linear interpolant. In this case the immediate upwind centroid value will be used: 
internally U~ or externally Uj. 

The centered value, U/c, is constructed from the six values: U/, Uj, Uk, U t, U s and U r by a 
series of one-dimensional linear interpolations. Three linear interpolations onto the edge being 
considered are performed using o p p o s i n g  pairs of centroid values (see Fig. 1). Ulr, Uij and Uks 
are found using the pairs U t and Ur, U,. and Uj and U k and U s respectively. If the midpoint of 
the edge lies between Uks and U/j, then the centered value is found by linear interpolation 
using these two values. Otherwise the values U~r and U/j are used to compute the centered 
value at the midpoint by using linear interpolation. 

5.2. I n t e r p o l a t i o n  errors  

Assuming that all the centroid values are exact, the interpolation errors associated with the 
linear interpolants defined by (37) and (39) above may be determined by lengthy but straight- 
forward Taylor's series analysis. Denote  the interpolation e r r o r  Ei L by 

Ei  L = u L - U. .L,j , (40) 

where u L. is the left exact value (allowing for possible discontinuities in the exact solution) at 
the midpoint  of the edge and it is assumed that the centroid values used to form U~ L are exact. 
Standard results for linear interpolation then give 

1 [ di ij ] 
EiL ---- -2 [ dij,idij,lk(Unn)iJ + ~ d k , l k d l , l k ( U ~ ) l k  I '  

i,lk J 
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where ~7 is a local coordinate along the line through points Ik, i and ij and ~" is a local 
coordinate defined along the line through points l, lk and k. 

Hence  (uss)~j is the second derivative of u with respect to s evaluated at the point ij. In the 
same way, denote  the interpolation error Eir~ by 

EiR = ll R -  Vi R , (41) 

where u/~ is the right exact value at the midpoint of the edge and it is assumed that the 
centroid values used to form U/R are exact. Standard results for linear interpolation then give: 

1 [ dj ij ] 
Ei R =  2 [diJ'jdij'rs(Um~)iJ + ~ d r , r s d s , s r ( t l v v ) l k l ,  

j,rs _] 

where /z is a local coordinate along the line through points rs, j and ij and v is a local 
coordinate defined along the line through points r, rs and s. 

Thus from (38) both interpolation errors are second-order  in the mesh spacing distances 
d**. 

Remark.  Consider the case of a degenera te  triangle in which the three points, say, i, k, l are 
almost collinear. The distances dk,lk and dl,lk m a y  be as much as a factor of  10 larger than di,lk. 
Suppose further  that, say, dij,l k = 2diL r The expression for Ei L given above then reads: 

giL-~d2,i[(unn)ij + 50(b/~%r)lk ] • 

In experiments we do not appear to have observed a loss of accuracy due to this source of 
error. Venkatakrishnan and Barth [19] have suggested a modification to the method stencil that 
overcomes this difficulty. 

5.3. Spatial truncation error 

The above results on interpolation errors may be combined with standard results for the 
effect of  quadrature  errors (see [9]) to show that the underlying method is second-order  
accurate when the limiter is not used. Consider Eq. (33) and note that the spatial truncation 
error in the flux derivative approximations for the ith triangle, as denoted by TE i is, after 
ignoring the second-order  quadrature  error, a combination of the interpolation errors defined 
in Section 5.1, i.e. 

1 
T E i -  A i [ ( a E L ) A Y o , l - ( b E R ) A x o , a  

+ ( aEiL )A y x,2 - ( bEiL )A x1,2 + ( aEi  )a Y2,0- ( bEi  )A x2,o] , 

where the individual errors are defined in (40) and (41) and where  it is assumed that the limiter 
is set to one. From the results in Section 5.1 it is possible to extract a constant second-order  

2 factor, say dmin, depending on the minimum of the distances, dab , as defined in (38), from each 
of the errors in this equation. Assuming that the individual errors all have the form 

E iLk _ 2 L -- dmineik , 
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the expression for the t runcat ion error  may be rewrit ten as: 

d2min 
TE~ 

A i  
- -  [ ( a e ~ ) A  Yo,a -- ( be~ )AXo, , 

+(ae~j)Ayl ,2-  (beL)Axl,e + (ae~)AYe, o - (be~)AXe,o]. 

It is now possible to define two linear functions on the i th triangle El(x ,  y) and Eg(x, y) such 
that  E (x, y) has values eL, eL and R f , ell at the midpoints  ik, ij and il and Eg(X ,  y) has values 

R eL and e L at the midpoints  ik, ij and il. From the linearity of these functions and the eik~ 
divergence theorem it follows that  

and 

OEf 1 
Ox -- Ai [e~AyO'I +eLAYl'2+eiI~AY2"°] 

OEg 1 
-- [e/~Ax0,1 + eLAxl,2 + e/t/Ax2,0]. 

Oy A i 

Hence  the t runcat ion error  (ignoring the quadra ture  error  due to the use of the midpoin t  rule) 
may be wri t ten as 

OEf OEg ] 
TE i = d 2in a --~- x + b -~y . 

The  error  due to the use of the quadra ture  rule is derived by Jeng and Chen [9], The  extension 
to handle  the case when  the limiters are used is as described by Spekreijse [16] and results in 
observed convergence rates of be tween one and two (see Section 7 and Durlofsky et al. [8]). 

6. Analysis  of  discretization method 

This section will consider  whe ther  or not  the new scheme has the proper t ies  of linearity 
preservation and positivity, as p roposed  in recent  work by Struijs et al. [17]. 

6.1. Linearity-preserving methods 

A linearity-preserving spatial discretization me thod  is def ined by Struijs et al. [17] as one 
which preserves the exact steady state solution whenever  this is a linear function of the space 
coordinates  x and y, for any arbitrary tr iangulat ion of the domain.  This is equivalent  to 
second-order  accuracy on regular  meshes  (see [17]). The  simplest way to prove a spatial 
discretization scheme is l inearity-preserving is to show that  the residual t runcat ion error  will be 
zero when  an arbitrary linear solution is substi tuted. 

The  following is an outl ine proof  that  the uns t ruc tured  flux limiter scheme is linearity-pre- 
serving for a general  nonl inear  scalar partial differential  equation.  Consider  the discrete form 
given by (31) with the internal  and external values def ined by (34), (35) and (36). Consider  the 
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first time step. The centroid values will be point samples of the initial linear profile. Since U/~, 
U/~ and U/c are all created by linear interpolation or extrapolation they will be exact also and 
ryj = r/~. = 1. Define the limiter function q,(-) to have the standard property @(1) = 1 (see [16]). 
The upwind values used in the Riemann solver U/s e. and U,.~ are now U,J: and U~ since (34) and 
(35) simplify. Since U/~- and U/~ are exact they must be the same value, U/j. The discrete 
equation is now 

A i  Ot _ _  = --fRm(U/k ,U/k)Ay0,1 + gRm(Vik, f/k)AX0,1 

- - fRm(f / j ,  U/j)Ayl,2 +gRm(U/j ,  Uij)Ax1,2 

--/Rm(U//, Uit)Ayz,o + gRin(U/l, U//)Ax2,0. 

Using the property of the Riemann solver defined by (32) and noting that the midpoint 
quadrature rule used along the edges is exact for linear data ensures that the discrete 
approximation for the line integral is exact. The above equation then simplifies to 

Ai Ot = - ~ ) - [ f ( U ) ' n x + g ( U ) ' n v ]  dS. 
" C  

z 

The one-point area quadrature rule used on the left-hand side is exact for linear data 
provided the quadrature point is at the centroid. Converting the line integral around the 
circumference Ci into an area integral using the divergence theorem gives 

0 4  0 0 
fa. Ot dO = - f , xf(V) + -~yg(U) dO, 

l 

and therefore 

ow,. o o 
Ot + -~x f ( U )  + ~ y g ( U )  = 0, 

which is equivalent to the original differential equation (29). The initial linear solution will thus 
be preserved providing that sufficient accuracy is used in the time integration method. 

6.2. Positivity 

The definition of positivity, [17], requires that every new value can be written as a convex 
combination of old values (see Eq. (16)). The approach of Spekreijse, already used in Section 3, 
uses linearization and the mean value theorem via the definition of the coefficients A and B as 
in (15), to reduce the nonlinear case to what is effectively a linear advection equation. The 
same approach is implicitly used here in restricting attention to the linear advection equation as 
defined by (5) and its discrete form, Eq. (33). Note the Axia and Ayi, J. go anticlockwise around 
the triangular element so 

AXo, 1 + AX1, 2 + AX2, 0 ---- AYo, 1 + Ayl ,  2 + Ay2, 0 ---- 0. 
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This enables Eq. (33) to be rewritten as 

- A i " ~  -3U/ = a(U/e - f / l r ) A  Y0,1 - b(U/e - U i: ) A x 2 ,  0 

+ a (g /5  -- U/~) A y 1,2 - b(U/5 - g/~c)A x 1,2. 

From Eqs. (34) and (35) it can be seen that these internal and external values at the cell 
interface are a combination of the centroid values and linear upwind values. Without loss of 
generality, and by using a similar approach to Section 3 and Spekreijse [16], consider the term 
a(U/e - U~)AY0, r For positivity it is sufficient to prove that 

Ui[k -- Uirl = "ZiG - "ZIUI - "Zig - "ZnUn - "zkUk, (42) 

for positive multipliers "zi, "Zt, "Zj, "Zn and "Zk thus giving an ODE system of the form of Eq. (24). 
Thus the intention is to show that for the ith ODE all multipliers of solution coefficients other 
than U~ are positive and the multiplier of U~ is negative. Using the notation of (37) and (39) the 
left-hand side of (42) may be written as 

Vi q- dik'i  -~i,17 ~) -u~iLk ~ - Ul - di"l  d 7 2  CI) Oi7  UII " 

After noting that 

dl,mn -dmtl,; Uic - uI ' 

this may be rewritten as 

v -v, s ' 

where 

R = U/L - U/ S a i k ,  = 

Ui c Ui ' Ui c Ut ' ' di , , j  

The centered value Uu c is formed by linear interpolation, i.e. 

V, ~ =  &(a , tV,  + (1 - a/,)V/) + (1 - & ) ( a ~ n V n  + (1 -- a~n)G)  

for 0 < Otil,akn,flil <-~ 1. 

Similarly 

(43) 

~ j = a , j U t + ( 1 - a o ) U  j f o r O < a i , < l .  (44) 

It is worth noting that the need to have positive multipliers in these two linear interpolants 
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effectively restricts the mesh that can be used. A similar restriction is also used by Lin et al. 
[11]. Using these last two equations to substitute in (43) gives 

Ui(l +Sik,lj~(R ) cI9~) ~it(1--ai l))--Uj~ik, tJ~(R)(1-ail)-  gk(1--~it)(1--akn) 

( ) 4p(S) cI2(S) (1-¢iloli,) --Un(1--fli,)akn g (45) X T U l 1 + aik,tjoe,~cla(R) + S 

which is of the form specified by (42). 
Inspection of this equation shows that the Positivity Condition is that the limiter ~b(.) must 

be positive and must satisfy @(S)/S ~< 1 as in Eq. (18). One such limiter is the modified van 
Leer limiter defined by Eq. (19). 

6.3. Alternative schemes and limiters 

The schemes of Venkatakrishnan and Barth [19] and Lin et al. [11] both use the same 
upwind interpolants as that considered above but different limiters--which may now be 
assessed in the light of the above results. 

In many situations it is reasonable to expect that the edge midpoint value lies almost halfway 
1 between the centroids on either side of the edge and consequently that /3it ~ 1 and ail ~ 2" In 

this case the positivity condition may be relaxed, for example, to cb(S)/S <<, 1.2, as is satisfied by 
the van Albeda limiter and defined by Eq. (20) used by Venkatakrishnan and Barth [19]. The 
proof above also applies to the case in which Ul~. is replaced by a positive combination of two 
other centroid values and  dlj,i is modified appropriately. Thus the method devised by 
Venkatakrishnan and Barth [19] for dealing with degenerate upwind triangles also fits into the 
same framework. The limiter used by Lin et al. [11] differs from the Ware and Berzins scheme 
in that the limited upwind values U,.~ and U~ are defined by 

U/f= U~ + minmod(U/~- U/, k . ( U ~ -  U,.)), 

U~ = Uj + minmod(U/R - Uj, k .  (U,.- Uj)), 

b 

Fig. 2. Demonstration of nonlinearity preserving nature. 
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where k is some arbitrary constant k >t 0.5, the function minmod is defined by 

= [ m i n ( l a l ,  I b I)" sign(a), if sign(a) = sign(b), 
minmod(a ,  b) 

0, otherwise, 

and U~ and Uj are defined as in Section 5. This definition of the limiter function leads to a loss 
of linearity preservation. Consider the situation in Fig. 2 where the current solution is some 
linear function of y only, say u(x,  y) =y.  Although the solution is smooth the limiter will not 
allow the full upwind value to be used at the midpoint of the edge ab as the term k .  (Uj - U/) 
will be zero. In an attempt to overcome this deficiency other similar limiters are defined by Lin 
et al. for different triangulation cases in [11]. Lin et al. also proved their scheme satisfies the 
local maximum principle for certain triangulations. 

7. Numerical examples 

The following viscous Burgers' equation will be used to illustrate the theoretical results 
obtained above 

- - + - -  + ----Pl + ] ' 

(x, y, t) ~ [0, 1] x [0, 11 x (0,1.251 

with an exact solution of 

U(X, y, t) = (1 + exp((x + y  -- t ) / p ) )  -1 

The value of p is chosen to be 0.0001 so that the partial differential equation is convection- 
dominated and the boundary and initial conditions are given by the exact solution. From the 
exact solution it can be seen that the computed solution should lie in the range [0, 1]. At every 
time step the computed solution is examined triangle by triangle and the maximum absolute 
overshoot or undershoot  outside the range [0, 1] is noted. 

The solution was first computed using Mesh A shown in Fig. 3 but regularly subdivided to 
contain 2048 triangular elements. The Riemann solver used was the Engquis t -Osher  solver for 
the inviscid Burgers' equation. Using the standard van Leer limiter the maximum under /over -  

Mesh A Mesh B 

Fig. 3. Meshes used in numerical experiments. 
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shoot recorded was 0.0. This shows that the unmodified limiter can be used to provide 
oscillation-free solutions in certain circumstances. 

The computation was repeated  but now using Mesh B shown in Fig. 3 regularly subdivided to 
contain 2816 triangular elements. The maximum unde r /ove r shoo t  is now 7.3369e-3 with the 
van Leer  limiter. No overshoot was observed with the new limiter or the van Albeda limiter on 
ei ther mesh. 

The accuracy of the schemes on this problem above is more difficult to assess due to the 
shock-like behaviour of the solution. In this case Mesh A is used with regular refinement.  ONE 
is the first-order method,  VL is the van Leer  limiter, MVL is the modified limiter and VA is 
the van Albeda limiter. 

The results in Table 1 show that on a shock problem for which many first-order elements are 
used (i.e. a flat solution or a zero limiter), all the limiters give only first-order accuracy but that 
the notionally second-order  methods are more accurate by a factor of two. These results are 
consistent with those obtained by Berzins [2] on regular quadrilateral meshes. 

In the light of the above results the accuracy of the method on a problem without shock-like 
features must be studied. Consider the solution of the linear conservation law 

u,+ux+uy=O, (x,y,t)~[O, 1]X[O, 1]X(O,O.75] (46) 

with exact solution 

u(x, y, t)  = sin(2rrx - t) sin(2rry - t ) ,  (47) 

which is used to specify the initial and boundary conditions. This equation was solved on Mesh 
A in Fig. 3 using the first-order scheme, original scheme and modified scheme. The L1 error, 
weighted by e lement  areas, was evaluated at times 0.1 to 1.0 in steps of 0.1 and these then 
averaged. The smallest mesh used contained 200 elements with a 0.1 mesh spacing and the 
largest mesh used contained 18200 elements with a 0.0125 mesh spacing. The results of these 

t~ 

.5 

LI  Error against  mesh  spacing for different  l imiters 
. . . . . . .  i 

0.1 modi f i ed  v.l. 
, ~  van albeda 

,,,,;,;,,c';; van leer 

,~ : :"  

0.01 

0.1301 , , , , , ~ , ,  I 
0.001 0.01 

mesh  spacing,  I 

Fig. 4. Log-log graph of error versus mesh spacing. 
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Table 1 
L1 error norms x 1000 for Burgers' equation 

437 

Mesh Time ONE VL MVL VA 

9 x 9 0.26 0.81 0.69 0.69 0.69 
0.69 4.58 2.80 2.89 2.90 
1.30 5.45 2.85 2.88 3.22 

27 x 27 0.26 0.48 0.40 0.41 0.41 
0.69 1.70 0.86 0.87 0.97 
1.30 1.83 1.13 1.16 1.17 

81 x 81 0.26 0.21 0.17 0.18 0.17 
0.69 0.66 0.39 0.39 0.43 
1.30 0.60 0.31 0.32 0.33 

expe r imen t s  are  p lo t t ed  in a log-log g raph  shown in Fig. 4. T h e  resul ts  show that  the  s ch em e  
with the  or iginal  l imi ter  has  a conve rgence  ra te  of  1.80 and  tha t  with the  new l imiter  has a 
conve r ge nc e  ra te  o f  1.75. T h e  conve rgence  ra te  with the  van A l b e d a  l imi ter  is 1.76 (see Tab l e  

1). 

8. Summary 

This  p a p e r  has shown tha t  s t anda rd  flux l imi ter  schemes  may n e e d  to be  mod i f i ed  w h en  used  
with ce l l - cen t e red  finite vo lume  schemes  on  i r regu la r  one -d imens iona l  m esh es  and uns t ruc-  
t u r ed  t r i angu la r  meshes  in two-space  d imensions .  A new modi f i ed  fo rm of  the  van L e e r  l imi ter  
was i n t r o d u c e d  t o g e t h e r  with addi t iona l  bu t  s t ra igh t fo rward  condi t ions  on  the  in t e rpo lan t s  in 
the  case o f  t r i angula r  meshes .  This  combina t ion  was shown to en su re  b o th  theore t i ca l ly  and  
expe r imen ta l ly  tha t  the  new modi f i ed  s cheme  of  W a r e  and  Berz ins  [6,20] for  u n s t r u c t u r e d  
mes he s  is posi t ive and  l inear i ty-preserv ing  for  a m o d e l  p rob lem.  
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