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Abstract

The conditions sufficient to ensure positivity and linearity preservation for a cell-centered finite volume scheme
for time-dependent hyperbolic equations using irregular one-dimensional and triangular two-dimensional meshes are
derived. The conditions require standard flux limiters to be modified and also involve possible constraints on the
meshes. The accuracy of this finite volume scheme is considered and is illustrated by two simple numerical examples.

1. Introduction

An important trend in numerical methods for the spatial discretization of partial differential
equations is the move towards using finite element and finite volume methods on unstructured
triangular or tetrahedral meshes. The reasoning underlying this trend is that such methods
offer one way of solving problems adaptively on general geometries. The finite volume methods
used may be split into cell-vertex methods (in which the solution values are positioned at mesh
points) and cell-centered methods (in which the solution variables are positioned at the
centroids of triangles). Cell-vertex methods have a clear advantage over cell-centered methods
in that there are fewer unknowns for a given mesh, but a possible disadvantage is that the area
(or volume) of each cell is larger. While both methods have their advocates what is clear is that
both classes of methods need to be well-understood. In this respect more work has been done
on the analysis and derivation of cell-vertex schemes, e.g. see Barth [1], Struijs et al. [17] and
van Leer [18] and the references therein. One of the early papers to make an important
advance in this area was that of Cockburn et al. [7] which proves a maximum principle for a
discontinuous Galerkin method of order k + 1 which may be interpreted as a finite volume type
scheme.

In the area of cell-centered schemes on triangles perhaps the first extension of successful
one-dimensional schemes to triangles was that of Venkatakrishnan and Barth [19). Subsequent
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modifications (e.g. by Lin et al. [11]) and independent developments (by Berzins et al. [3,6,20])
occurred shortly afterwards. These schemes all attempt to transfer successful regular one-di-
mensional and quadrilateral mesh two-dimensional schemes (e.g. [16]) to unstructured triangu-
lar meshes. The scheme of Durlofsky et al. [8] has similarities with these methods, except that
the limited upwind interpolants used are different. More recently Liu [12] showed that a
modified form of this method satisfies a maximum principle.

The intention in this paper is to show that the schemes of Ware and Berzins [20] and
Venkatakrishnan and Barth [19] satisfy the properties of linearity preservation and positivity.
These properties have been proposed by Struijs et al. [17] as being of importance for
multi-space dimensional schemes. The positivity analysis of such methods has often been
confined to regular mesh cases (e.g. Spekreijse [16]). The intention in this paper is to extend
Spekreijse’s analysis to the one-dimensional irregular mesh case and then to the unstructured
triangular mesh algorithm of Ware and Berzins [20]. This paper will show that the new scheme
has these properties under certain restrictions on the limiter function, the mesh and on the
interpolating functions used in the discretization method. The analysis is extended to time
integration using the Theta method in a method of lines approach, [2].

An outline of this paper is as follows. Section 2 describes the spatial discretization method
analyzed by Spekreijse. The extension of this method to irregular meshes is considered in
Section 3. The issue of positive time integration is considered in Section 4. Section 5 extends
the approach to unstructured triangular meshes and considers accuracy issues. Section 6
considers the linearity preservation and positivity of the scheme while Section 7 illustrates these
results using two simple numerical examples.

2. Spekreijse’s discretization method

Spekreijse [16] considers regular square meshes in two-space dimensions by splitting the
computation dimensionally. This makes it possible to consider the extension to irregular
meshes by looking at the scalar partial differential equation in one space dimension given by

u,+[f(u)], =0, (1)
where f(u) is the advective flux function which describes wave movements in the solution.
Spekreijse [16] assumes that this can be split into positive and negative parts:

f) =f,(u) +f(u), (2)
where
df,(u) df(u)
T >0, P <0. (3)

In this paper a slightly different set of conditions, due to Cockburn et al. [7], which restricts
only the numerical flux function will be used, see below. The analysis undertaken will apply
equally to both cases, however.

A spatial mesh, with constant spacing #, is defined by

X;p1=X;+h, i=1,...,n, x,=a,

and the midpoints by x,,,, =x; + 3h.
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Denote by U(t) the solution value U(x;, t) at the meshpoint x; at time ¢. Throughout the
paper it will be assumed that all solution values, derivatives and fluxes depend on the time ¢.
The semi-discrete form of (1) is

an fi+1/2"fi—1/2
MLV A 4
ot * h )

where f;,,, and f,_,, are the fluxes at the midpoints x,,,, and x,_;, respectively.
Spekreijse’s method [16fmakes use of an approximate Riemann solver such as the well-known
Roe or Osher solvers to calculate these fluxes. The flux calculated by this approximate
Riemann solver will be defined as

Fral U125 Ul 2) (5)
and, following Cockburn et al. [7], is assumed to satisfy:

o fram(u, w) = f(u);

o fra(u, v) is nondecreasing in u and nonincreasing in v;
e fru(*, *) is Lipschitz;

i me(u’ U) = —me(U’ u)'

In order to use this approach it is necessary to construct left, U5 , 2> and right, UY, ,,, solution
values at the midpoints x,,,,,. A standard first-order scheme uses U(¢) as the left value and
U, (t) as the right value. In Spekreijse’s second-order scheme the limited left and right
solution values at the cell interface x,,,,, are defined by

(]zil/z U+2(U U_)P(r,), (6)

1
Ui:-1/2=a+1_%(Ui+2_Ui+1)‘p(r )’ (7)
i+1

where U/, | , and U’ | 2 are the limited upwind solutions on the left and right respectively. The
ratio of gradients, 7;, and the limiter function, &(-), are defined as
Ui+1 - Uz ®(R R+ | R l g
V= ———" ) = T T A
where @(-) is van Leer’s harmonic limiter, [16].
The semi-discrete form of (1) now becomes
ol .
a_t = _[ me z+1/2’ Uz+1/z) +me( -1/2° Uir—l/Z)]’

where fi (U, U") denotes the flux value calculated by solving the approximate Riemann
problem with left and right states U¢ and U™ respectively.

Spekreijse splits the flux function, f, into its positive and negative parts as in (2) and uses the
forward Euler method with time step & to get the equations:

k
Ultysr) = Ult) + - [£(UL 1) = AU o) = £ (U 10) + 50 (U1 2)]

where i=1,...,nand ¢, ,=¢,+ k.
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3. One-dimensional variable mesh formulation

There are two alternative formulations that allow the one-dimensional flux limiter scheme
described above to be used on non-uniform meshes. One is a cell-vertex approach, as used in
the software of Pennington and Berzins [13], and the other is a cell-centered approach. The
cell-centered approach is closer to the two-dimensional case of interest and so will be
considered first. In this case the point x; is assumed to be at the center of a cell of width #,,
and so the spatial mesh is defined by

1 .
X1 =x;+5(h;+h,.), i=1,....n, X, =a,

and the midpoints by x,,, , =x,+ 3h,=x,,, — 3k ;.

Three new terms are introduced to cater for the irregular mesh. The first two are the linearly
extrapolated upwind values on the left and right of the cell interface: UL, ,2 and UR, ,2- The
third is the linearly interpolated centered value, U, ,2- These terms are defined as follows:

hi(Ui—U_y)

ljl+l/2 U h +h 4 (9)
i~1 i
hi 1(Ui+2_ ljz 1)
l]il}—l/z = (]i+1 - +h +h . ’ (10)
i+1 i+2
hi(Ui 1 Uz)
i i+1
hip(Uiy — U) (12)

= U —_— s
i hi+l + hi

where dependence of the solution values on the time ¢ has been omitted but is understood.

The limited upwind value on the left of the cell interface is given by a modified form of (6),
ie.

( i i 1)
Uzil/z U +h; h+h,_, ¢(ril+1/2)’

where the limiter function @(-) may be defined as in (8), and the ratio of gradients with left
upwind bias is r/, /2> rather than r;, and will be defined below. This equation can be rewritten
using (9) as

Uz+1/2 U, + ¢( z+1/2)(Uz+1/2 Uz) (13)
A similar process gives the limited upwind value on the right,
Uzil/z U:+1+(p( 1+1/2)(l]i]}~1/2—(]i+1)‘ (14)

The irregular mesh equivalent of the ratio of the regular mesh gradients r; as defined in (8)

is
, Ui =U | [ U=Us i
T2 T ) | S ) |
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which may be rewritten using (9)-(12) as
-1
rit;l/z:[Uigl/z’Ui] [ i+172 7 i]
Using a similar process on the right, the ratio of gradients is

Ui+1_U' ] Ui+2_Ui+1

-1

=~ B ’
w2 [ %(hi+hi+l) %(hi+l+hi+2)

which may be again rewritten using (9)-(12) as

rir+1/2 = [Ui(4:—1/2 - Ui+1] X [Uiliuz - (Ji+1]_

The limiter function @(-) is assumed to be unchanged for the moment.

421

Using the values UY, ., UY,, and US, ., the scheme devised by Spekreijse can be

H

extended to the irregular mesh case. Substituting the values defined by (13) and (14) into (4)

enables the scheme to be written as
aU

i

at

[ me z+1/2, Uz+1/2) +me( -1/2> Uir—l/Z)]'

Addition and subtraction of the term fp (U’ | ,, UY, ) gives
Y
-8—1‘— = _[me(Uiil/z’ Uir+1/2) _me((Jil—l/Z’ Uiil/z)]

¢
+[me -1/2 Uir—l/z) _me(l]i—l/Z’ Uir+1/2)]-
At a particular time ¢, this can now be written as

oU
o =A?+1/2(l]i+l(tn) Ult, )) B 1/2(Ui(t")_q‘1(t"))’

h;

where
47 _ 1me( ~1/22 1+1/2) me( 1/2’Uir—1/2) Utr+1/2_Uir—1/2
i+1/2
el hi l]i+l/2_ Ui—1/2 Ui+1(tn) - [Ji(tn) ’
B 1 me( i+1/2> 1+1/2) me( 1/2’Uzr+1/2) [Jiil/z_l]i{—l/Z
i— 1/2

hi Uz+1/2 Ui/—1/2 ) Ui(tn) - l]i—l(tn) .

Spekreijse’s flux splitting approach leads to very similar coefficients:

P _lft’(lji:—l/z) —f(Ul12) US1)p—USip
i+1/2 h, lj;:—l/2 — Uir_l/2 L]H—l(tn) — U,-(t,,) ’

Br . = 1 fr((]i{i-l/Z) —fr(l]/_l/z) Ufr s = Ubr s
i—1/2 h,- U','i1/2_ljil—1/2 (Ji(tn)_lji_l(tn)'.

(15)
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Applying the forward Euler method with time step k gives:
Ulty1) = Ul(t,) + kA7 o(Urio(2,) = Ui(8,)) = kB o(Udt,) — Ui_i(2,))-

The definition of positivity, [17], requires that every new value U(¢,, ;) can be written as a
convex combination of old values:

U(t,s1) = Zc (t,) Ve >0, (16)

while Yc; =1 for consistency. This guarantees, [17], a maximum principle for the discrete
steady state solution thus prohibiting the occurrence of new extrema and imposing stability on
the explicit scheme. From this definition the requirement on the coefficients A7, , and B | ,
is that

Al 220, B ,,>0, 1 kA, — kB ,,>0.
Application of the mean value theorem to the definitions of the coefficients A47,,,, and

B, and use of either Spekreijse’s flux function splitting properties defined in (2), or the
Riemann solver properties defined in (5), show that this requires that

Uir+1/2_Uir—1/2 S lJti—l/Z Ul 1/2
l]i+l(tn) - l/;(tn) ’ Uvi(tn) 1(t )

Consider the right-hand term for example. Substituting from (13) and (9) gives
(Ji/+1/2 - Ui’—l/z —1+ h; @(r[ ) _ hi_ ‘p(ri,—l/z)

U(t,) = U_y(1,) hi+h;_, e hi+h;_, "il—l/z '

Following Spekreijse, this is positive if

h, 1
1+ ——cp(R)— SP(5)>0 VRS. (17)

h,+h,_ h+h,1

From this equation and Spekreijse’s equation (2.13) in [16] it follows that

d(R)< M, < it P(R) 2
< - =x < + ]
(R) Sh+h_. R *

1

h+h,1

where o €[—2, 0] and M is a positive constant. In other words the standard limiter @(R) in
Spekreijse’s equation (2.13) is replaced by the limiter @(R) multiplied by 2h;,/(h, +h;_,). A
slight rearrangement of Eq. (17) gives:

i 1 d)R hi—l (1 @(S)
U — + —
h,+h 1( T ¢ (R)) h,+h,_ S

i i— i
Consideration of extreme mesh ratios in this equation shows that the limiter must satisfy

) >0 VR,S.

1
—-1<P(R)<M, -M< §¢(S)<l VR,S. (18)
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This shows that standard limiters may need to be modified for the irregular mesh case. For
example the van Leer limiter as defined in (8) may be replaced by one which satisfies (18) with
M=2 ie.

R+ |R|

PR = max(L1R])

(19)

This new limiter will henceforth be referred to as the modified van Leer limiter in the
remainder of this paper.

Remark. In the case when the mesh cells are defined by
X;p1=x;+h;, i=1,...,n, x,=a,

and the midpoints by x;,, , =x,+ 3h,, as in the software of Pennington and Berzins [13], a
similar analysis to that above leads to an equivalent equation to (17) given by

i

2+
hi_y

1
O(R)— <P(5)>0 VR.S.

From this it follows that the van Leer limiter may be used without modification in a cell-vertex
scheme but other limiters that allow negative values when the mesh ratio 4, /h,_, is large will
need to be modified to preserve positivity. For example, if the van Albeda limiter used by
Spekreijse and Venkatakrishnan and Barth [19] and defined by

O(R)= —— (20)

is used and R = —0.5, then &(—0.5) = — 1 and a mesh ratio value of h;/h,_, = 10 will result
in the positivity condition being violated.

3.1. Systems of equations

The present proof extends to systems of equations without difficulty providing flux vector
splitting is used to decompose the flux function into positive and negative fluxes (see Roe [14]).
The extension to using the Roe and Osher type approximate Riemann solvers is beyond the
scope of this paper.

4. Time integration

The above spatial discretization scheme results in a system of differential equations, each of
which is of the form of Eq. (4). This system of equations can be written as the initial value
problem:

U=Fy(t,U(t)), U(0) given, (21)
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where the N-dimensional vector, U(t), is defined by
T
U(t) = [U(xy, t), U(xy, t),...,U(xy, 1)] -

The point x; is the center of the ith cell and U(¢) is a numerical approximation to u(x;, ¢).
Although Section 3 showed that the discretization scheme is positive when used with the
forward Euler method it is necessary to extend this analysis to the method of time integration
used by Berzins and Ware [6] and Berzins [2]. Numerical integration of (21) provides the
approximation, V(¢), to the vector of exact PDE solution values at the mesh points, u(¢):

V(t)=[V(xy, ), V(x5, 1),...,V(xn, )]

The Theta method code of Berzins and Furzeland [4] used here selects functional iteration
automatically for the non-stiff ODEs resulting from convection-dominated problems. The
numerical solution at ¢, , =t, + k, where k is the time step size, as denoted by V(¢,, ), is
defined by

V(ty1) = V(1) + (1= 0)kV(1,) + 0kFy (1,11, V(1,.1)),

in which ¥(z,) and V(¢,) are the numerical solution and its time derivative at the previous time
t,. The value of 6 used is bounded by 0.5 <6< 1.0, and may be chosen by the user or
automatically varied to increase the time step, [4]. Values of 0 close to 0.5 (e.g. 0.55) give the
benefits of almost second-order accuracy plus added stability (see [4] for a detailed discussion
of this matter). The time step k is chosen to satisfy a local error control which may be modified
to reflect the spatial error present, [2]. The system of equations (4) is solved using functional
iteration (see [2]),

VO (e, ) =V(t,) + (1= 0)kV(1,) + 0kFy(t,.1, VO (1,,1)), (22)
where m=0,1,..., generally less than 3 and using a second-order predictor or with a
predictor based on the forward Euler method:

V(O)(trH-l) =V(tn) +kFN(tn’ V(tn)) (23)

Berzins [2] shows that one adavantage of using functional iteration is that a Courant number
type stability condition is automatically satisfied if functional iteration converges sufficiently
fast. The more difficult issue of positivity will be considered below.

Remark. It is possible for the user to select # = 0.5 and to allow only one corrector iteration to
be performed in which case the method is the second-order positivity-preserving Runge—Kutta
method used by Shu and Osher [15].

In order to show that the coupling of this time integration scheme with a spatial discretiza-
tion method is positive, the precise form of the ODE system must be stated, i.e.

F(t,, V(t,)) = —aV(t,) + Sy (V(1,)) (24)
where Sy (V(z,)) = X c;;¥(t,),

J#i
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and where from Eq. (15) the coefficients c; ; are zero except for
Cii+l =A§’+1/2, Cii-1 =Bi"—1/2’ aizA;l+1/2+Bin—l/2’ (25)

thus making S4,(¥(¢,)) a positive function for positive values of ¥(¢,).
Applying the predictor to the ith equation gives

ViO(t, 1) = (1 —ka,Vi(1,) + kSy(V(2,))-
Substituting this value in the corrector gives
ViO(t,11) = Vi(ta) = aik[(1 = ka,)Vi(1,) + kSy (¥(1,))]
+ KOS (VO(1,,1)) + k(1= 6)[ —a¥(1,) + Sk (V(1,)],
which may be written as
Vi (tyir) =Vilt,)[1 — ka, + 6k%a?] + k[1 = 2k0a,] S (V(1,)) + K0S} (S (V(1,)))-

The next corrector iterations may be analyzed by noting that the solution at the mth iteration
has the form:

m+1

Vi (tn) = PEVi(8) +k 2 Pr(S4) (V(1,)), (26)

where the superscript on (S%,) indicates repeated evaluations of the function, e.g. the last term
in the previous equation. Substituting this expression into (22) gives rise to the following
recurrence relations between the polynomial coefficients, P/,

Pyt =1—ak+a,0k(1—PJ),
PPl =k(1—-6(1+a,P")+6P})),
Pjerl =k6(Pj’f1 —a,-Pj’"), i=2,....m+1,
P)=1—ka,, P)=k.
All these coefficients must be positive for the method to be positive. Evaluation of these

coefficients using an algebraic manipulation package shows that the critical condition is that
the coefficient P is positive where

Pr=k™0" (1 —mkba,). (27)
This shows that although the CFL number decreases with increased iterations the magnitude of
the terms is multiplied by successive powers of k. From Eq. (24) the predictor will preserve
positivity if

1—ka, >0,
while for the mth corrector iteration to preserve positivity

1
1—6mka; >0 or ka,<—.
om
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Combining the last two equations and substituting from (25) gives a CFL-like condition

6m

In practice 1 is no higher than three and often one or two.

1
k(A% 1+ By )s) <Min(1,———). (28)

5. Triangular mesh discretization method

Although the two-dimensional method considered below was developed for systems of
equations, for ease of exposition, consider the class of scalar PDEs:
ou of og

+ —+—=0, (29)
ot ax ay

where f=f(x, y, u) and g =g(x, y, u) are the flux functions in x and y respectively and with
appropriate boundary and initial conditions.

The cell-centered finite volume scheme described here uses triangular elements as the
control volumes over which the divergence theorem is applied. The finite volume representa-
tion of a solution is formally piecewise constant within each control volume and is not
associated with any particular position. To allow the construction of high-order schemes
however the centroid of the triangle is defined as the nodal position and the solution value is
associated with that point. In Fig. 1 for example, the solution at the centroid of triangle i is U,

Fig. 1. Construction of interpolants. ® centroid solution values; O interpolated solution values; & midpoints of
edges.
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the solutions at the centroids of the triangles surrounding triangle i are U, U, and U, and the
next level of centroid values used by the discretization method on the ith triangle are: U, U,,
U,, U,, U, and U;. The mesh point at which a solution value, say U,, is defined is denoted by
(xg, ¥

Integration of (29) on the ith triangle gives:

ou of @
f—d(z=—f(—f+—g)dn, (30)
A, ot A, ox ay

where A, is the area of triangle i and (2 is the integration variable defined on A,. The area

integral on the left-hand side of (30) is approximated by a one-point quadrature rule. The

quadrature point is the centroid of triangle i. By using the divergence theorem, the area

integral on the right-hand side is replaced by a line integral around the triangular element:
o,
v —gsc(f-nx+g'ny) ds,

where C; is the circumference of triangle i and S is the integration variable along that

circumference. The line integral along each edge is approximated by using the midpoint
quadrature rule. The numerical flux is evaluated at the midpoint of the edge:

ou

1
ot == Z(fikAyO,l _gikAxO,l +fijAyl,2 —giijl,Z +filAy2,O —gﬂsz,o)’

!

where Ax; ;=x;,—x,, Ay, ;=y,—y, and f;; and g,; are the fluxes in the x and y directions
respectively evaluated at the midpoint of the triangle edge separating the triangles associated
with U; and U..

The fluxes f;; and g,; are evaluated by using approximate Riemann solvers fy and gg,
respectively. At the midpoint of each edge one-dimensional Riemann problems are solved in
the cartesian directions with the left solution value being defined as that internal to triangle i
and the right solution value being defined as that external to triangle i:

ou 1
ot == Z(me(Uii’ (]ilrc)AyO,l *ng(Uii’ (]ilrc)Axo,l

+frm(Uf> US)AY 2 — 8ol U, Uif)Ax,
+fra(Ufs Ui )Ay20 = 8rm(Ufs Uf)Axy), (31)

where Uif is the internal solution, with respect to triangle i, at the midpoint of the edge
between U; and U; and Uj; is the external solution, with respect to triangle i, on edge j. Note
that U, = Uj’; as a consequence of this notation. The approximate Riemann solver satisfies that
same conditions as in the one-dimensional case (see Eq. (5)), except that the first condition is
replaced by the conditions

Bru(t> u) =8(u),  frm(u, u)=f(u). (32)
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Consider for example the two-dimensional advection equation:

ou ou ou

—+a—+b— =0,

ot ox dy
where a and b are positive constants for example. The discrete form (see Eq. (31)) is—assum-
ing that the triangle is aligned to the characteristic directions as in Fig. 1 and given that the
solution to the Riemann problem is the product of the upwind value and either a or b—given
by

ol

f 1
ot = - ;1_ (ani)Ay(u - (b[‘[ilrc)AxO,l

+ (anf)A)’Lz - (bUif)Axl,z +(aUj)Ay,o— (bUi{)AxZ,O] . (33)

A standard first-order scheme uses the piecewise constant solution on either side of the edge as
the upwind values, e.g.

Ui=U. Uj=U.

i
Although this scheme results in numerical solutions with no undershoots or overshoots the
amount of numerical diffusion introduced is often not acceptable. Nevertheless Kroner and

Rokyta [10] have very recently proved rigorous convergence results which could probably be
extended to the method described here.

5.1. Limited interpolants in two dimensions

The approach of using limited linear upwind values to create left and right values for the
Riemann solver will now be used on unstructured meshes. In this approach the internal and
external values at the cell interface of two triangular elements, Uiff and U}, in (31) are replaced
with the limited linearly interpolated values defined by

Uj = U+ 9(rf ) (U} = U, (34)
Us = U+ @(r) (Ut ~ Uy), (35)

where U;; is the internal linear upwind value, U} is the external linear upwind value, r,ﬁ is the
internal upwind bias ratio of gradients and r;; is the external upwind bias ratio of gradients.
The internal and external ratio of linear gradients are defined in a similar manner to that in
Section 3 by
Uc-u Uc-U.
rh=—2t—0-", rh=——2 36
15 (]J_, _ l], ij l]l}l _ [J] ( )
where U is the linear centered value at the cell interface. The choice of limiter function is left
open at this point. Egs. (34), (35) and (36) describe the unstructured flux limiter scheme but in
terms of new, and as yet undefined, interpolated and extrapolated values: U;R, U} and U
In a similar way to Spekreijse, U,-]'-~ and U,.}1 are defined using linear extrapolation but on the
unstructured mesh. The value Ui}‘ is constructed by forming a linear interpolant using the
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solution values U, U, and U, at the three centroids. An alternative interpretation is that linear
extrapolation is being used based on the solution value U, and an intermediate solution value
(itself calculated by linear interpolation) U, which lies on the line joining the centroids at

which U, and U, are defined (see Fig. 1), i.e.
U — Uy

l

L
Uj=U+d,;,
d; i

, (37)
where the generic term d,, denotes the positive distance between points @ and b, so for
example d;; denotes the positive distance between points ij and i (see Fig. 1) as defined by

d;, ;= \/Gi _’Cij)2 + (¥ _yij)z , (38)

where (x;;, y;;) are the coordinates of U;. The value UR is defined in a similar way using the
centroid values U, U, and U,. This also may be viewed as linear extrapolation based on the
solution value U; and an intermediate solution value (itself calculated by linear interpolation)
U,, which lies on the line joining the centroids at which U, and U, are defined (see Fig. 1), i.e.

U -,
J rs
U =U+d,, = —

Jsrs

(39)

For certain meshes the three centroid points may be collinear in which case it is not possible
to define a linear interpolant. In this case the immediate upwind centroid value will be used:
internally U, or externally U.

The centered value, UY, is constructed from the six values: U;, U, Uy, U, U, and U, by a
series of one-dimensional linear interpolations. Three linear interpolations onto the edge being
considered are performed using opposing pairs of centroid values (see Fig. 1). U,, U;; and U,
are found using the pairs U, and U,, U, and U, and U, and Uj respectively. If the midpoint of
the edge lies between U, and U, then the centered value is found by linear interpolation
using these two values. Otherwise the values U, and U;; are used to compute the centered
value at the midpoint by using linear interpolation.

5.2. Interpolation errors

Assuming that all the centroid values are exact, the interpolation errors associated with the
linear interpolants defined by (37) and (39) above may be determined by lengthy but straight-
forward Taylor’s series analysis. Denote the interpolation error E,% by

L__,L L
Ej=u;—Uy, (40)
where u,.Lj is the left exact value (allowing for possible discontinuities in the exact solution) at
the midpoint of the edge and it is assumed that the centroid values used to form U,-jL are exact.
Standard results for linear interpolation then give
iif

1
L
E;= P dij,idij,lk(unn)ij+ d_lkdk,lkdl,lk(u{{)lk 3
i,
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where 7 is a local coordinate along the line through points Ik, i and § and ¢ is a local
coordinate defined along the line through points /, [k and k.

Hence (u,,);; is the second derivative of u with respect to s evaluated at the point jj. In the
same way, denote the interpolation error Ei‘} by

Ef=u}-UR

ij

(41)

where uR is the right exact value at the midpoint of the edge and it is assumed that the

centroid values used to form Uj; R are exact. Standard results for linear interpolation then give:

R dj,ii
Eij = dl] szj,rs( ),j + d dr rs%s sr(uvu)lk ’
j,rs
where w is a local coordinate along the line through points rs, j and § and » is a local
coordinate defined along the line through points r, rs and s.
Thus from (38) both interpolation errors are second-order in the mesh spacing distances

dys.

Remark. Consider the case of a degenerate triangle in which the three points, say, i, k, [ are
almost collinear. The distances d, ;, and d,,, may be as much as a factor of 10 larger than d,
Suppose further that, say, d,; ,, = 2d The expression for E given above then reads:

EL = dzzj 1[(unn)ij + So(u{{)lk] :

In experiments we do not appear to have observed a loss of accuracy due to this source of
error. Venkatakrishnan and Barth [19] have suggested a modification to the method stencil that
overcomes this difficulty.

5.3. Spatial truncation error

The above results on interpolation errors may be combined with standard results for the
effect of quadrature errors (see [9]) to show that the underlying method is second-order
accurate when the limiter is not used. Consider Eq. (33) and note that the spatial truncation
error in the flux derivative approximations for the ith triangle, as denoted by TE, is, after
ignoring the second-order quadrature error, a combination of the interpolation errors defined
in Section 5.1, i.e.

1
TE, = - [(aEX)A vy, — (PER)AX,,

+(aEL)Ay,, — (PES)Ax,, + (aEF)Ay,, — (bEY)Ax,,),

where the individual errors are defined in (40) and (41) and where it is assumed that the limiter
is set to one. From the results in Section 5.1 it is possible to extract a constant second-order
factor, say dmm, depending on the minimum of the distances, d,, as defined in (38), from each
of the errors in this equation. Assuming that the individual errors all have the form

El =d?

min zk H



M. Berzins, JM. Ware / Applied Numerical Mathematics 16 (1995) 417-438 431

the expression for the truncation error may be rewritten as:
2

dmin

i

+(aeil;)Ay12 (be )Ax12+ (aeff)Ay,o— (be,-’;)szo].

It is now possible to define two linear functlons on the ith triangle E; (x, y)and E (x, y) such
that Eq(x, y) has values e}, el; and ej} at the midpoints ik, ij and ll and E (x, y) has values
eX, e ,L] and el ;j at the m1dpomts ik, ij and il. From the linearity of these functlons and the

divergence theorem it follows that

oF
f_ T ,L L R
ox A, [eikAyO,l teAyi, +e,-,Ay2,0]
and
a_E‘g = i e_I}(AxOI +e!1Ax12+e!7Ax20].
ay AT ' o l ,

Hence the truncation error (ignoring the quadrature error due to the use of the midpoint rule)
may be written as
oE oF
TE, = d%,|a—L +b—2 |,
ax dy
The error due to the use of the quadrature rule is derived by Jeng and Chen [9]. The extension
to handle the case when the limiters are used is as described by Spekreijse [16] and results in
observed convergence rates of between one and two (see Section 7 and Durlofsky et al. [8]).

6. Analysis of discretization method

This section will consider whether or not the new scheme has the properties of linearity
preservation and positivity, as proposed in recent work by Struijs et al. [17].

6.1. Linearity-preserving methods

A linearity-preserving spatial discretization method is defined by Struijs et al. [17] as one
which preserves the exact steady state solution whenever this is a linear function of the space
coordinates x and y, for any arbitrary triangulation of the domain. This is equivalent to
second-order accuracy on regular meshes (see [17]). The simplest way to prove a spatial
discretization scheme is linearity-preserving is to show that the residual truncation error will be
zero when an arbitrary linear solution is substituted.

The following is an outline proof that the unstructured flux limiter scheme is linearity-pre-
serving for a general nonlinear scalar partial differential equation. Consider the discrete form
given by (31) with the internal and external values defined by (34), (35) and (36). Consider the
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first time step. The centroid values will be point samples of the initial linear profile. Since U,.}‘,
UR and Uif are all created by linear interpolation or extrapolation they will be exact also and
riij =r;; = 1. Define the limiter function &(-) to have the standard property @(1) = 1 (see [16]).
The upwind values used in the Riemann solver U7 and U} are now U} and U7 since (34) and
(35) simplify. Since U and U} are exact they must be the same value, U;. The discrete

equation is now
o,
Aia_ = —fram(Uix ’Uik)AyO,l + &rm( Ui » Uik)Axo,1
_me(Uij’ Uij)Ayl,Z +ng(Uij’ Uij)AxLz
= fra(Uit> U)Ay, 0+ 8r(Usss Uy)Ax,.

Using the property of the Riemann solver defined by (32) and noting that the midpoint
quadrature rule used along the edges is exact for linear data ensures that the discrete
approximation for the line integral is exact. The above equation then simplifies to

oU;
Lot

- _9SC4[f(U) ‘n,+g(U) n,]ds.

The one-point area quadrature rule used on the left-hand side is exact for linear data
provided the quadrature point is at the centroid. Converting the line integral around the
circumference C; into an area integral using the divergence theorem gives

aUid.() ° U ° U)dn
[ J— RN +_
Lia fAiaxf() 2y 8(U) 42,

and therefore

o ° U 0 U)y=0
— + — + — =0,
ot ax f( ) ay g( )

which is equivalent to the original differential equation (29). The initial linear solution will thus
be preserved providing that sufficient accuracy is used in the time integration method.

6.2. Positivity

The definition of positivity, [17], requires that every new value can be written as a convex
combination of old values (see Eq. (16)). The approach of Spekreijse, already used in Section 3,
uses linearization and the mean value theorem via the definition of the coefficients 4 and B as
in (15), to reduce the nonlinear case to what is effectively a linear advection equation. The
same approach is implicitly used here in restricting attention to the linear advection equation as
defined by (5) and its discrete form, Eq. (33). Note the Ax;; and Ay, ; go anticlockwise around
the triangular element so

Axo’] +Ax,,+ sz,o = Ayo,1 + Ayl,2 + Ayz’o = (.
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This enables Eq. (33) to be rewritten as
_Aiahtl = a((]ii - Uilr)Ay(m - b((]i{_ l]ilrc)sz,O

+a(Uf = Uf)Ay, , — b(Uf ~ Ug)Ax, 5.
From Egs. (34) and (35) it can be seen that these internal and external values at the cell
interface are a combination of the centroid values and linear upwind values. Without loss of
generality, and by using a similar approach to Section 3 and Spekreijse [16], consider the term
a(Uf, — U)Ay, . For positivity it is sufficient to prove that

Uii U =vU—vU - 'YjUj = ¥.U, — v U, (42)

for positive multipliers v,, y;, ¥;, ¥, and v, thus giving an ODE system of the form of Eq. 24).
Thus the intention is to show that for the ith ODE all multipliers of solution coefficients other
than U, are positive and the multiplier of U, is negative. Using the notation of (37) and (39) the
left-hand side of (42) may be written as

(]i_l]lj l]llg_l]l (]I_Umn (lec—l]l
¢ L - l_dill @ R .
d' [Jik -U ’ dl,mn Ul - []l

ilj i i

U+dy,

After noting that

U-0,, (US-U)[UR-T,
d C dy, \US-U )

l,mn

this may be rewritten as

c ®(S)
U, — U+ 8y ;(U; — Uy)®(R) — (Uy — UI)T ; (43)
where
R U;1]§ - U S Uth - U 5 dik,i
\uE-g) o T ouE-u) Y dy
The centered value U’ is formed by linear interpolation, i.e.
Ui = Bu(eyU + (1 —a;)U;) + (1 = By) (e, U, + (1 — o )Uj )
for 0 <ay,ay,,.B;<1.
Similarly
U;=a,;U+ (1-a,)U for0<a;<]l. (44)

It is worth noting that the need to have positive multipliers in these two linear interpolants
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effectively restricts the mesh that can be used. A similar restriction is also used by Lin et al.
[11]. Using these last two equations to substitute in (43) gives

D(S
U,-(l +0,,,P(R) — _.(S'—)B”(1 - ail)) —Udy ;P(R)(1—a,) — U (1 - B,)(1 —ay,)
®(S ®(S o(S
X g ) _ U1+ aik,ljal%'@(R) + —g—)(l - ﬁi,ai,)) -U,1 _Bil)akn_gly (45)

which is of the form specified by (42).

Inspection of this equation shows that the Positivity Condition is that the limiter @(-) must
be positive and must satisfy #(S)/S <1 as in Eq. (18). One such limiter is the modified van
Leer limiter defined by Eq. (19).

6.3. Alternative schemes and limiters

The schemes of Venkatakrishnan and Barth [19] and Lin et al. [11] both use the same
upwind interpolants as that considered above but different limiters—which may now be
assessed in the light of the above results.

In many situations it is reasonable to expect that the edge midpoint value lies almost halfway
between the centroids on either side of the edge and consequently that 8;,= 1 and ;= 3. In
this case the positivity condition may be relaxed, for example, to @(S)/S < 1.2, as is satisfied by
the van Albeda limiter and defined by Eq. (20) used by Venkatakrishnan and Barth [19]. The
proof above also applies to the case in which Uj; is replaced by a positive combination of two
other centroid values and d,;; is modified appropriately. Thus the method devised by
Venkatakrishnan and Barth [19] for dealing with degenerate upwind triangles also fits into the
same framework. The limiter used by Lin et al. [11] differs from the Ware and Berzins scheme
in that the limited upwind values U,-f and U} are defined by

U = Uy + minmod(Uj — Uy, k- (U~ Uy)),

U; = U+ minmod(U} = U;, k- (U, — Uj)),

Fig. 2. Demonstration of nonlinearity preserving nature.
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where k is some arbitrary constant & > 0.5, the function minmod is defined by

min( |al, |b|) - sign(a), if sign(a) = sign(b),

. d(a, b) = .
minmod(a, b) {0, otherwise,

and U; and U, are defined as in Section 5. This definition of the limiter function leads to a loss
of linearity preservation. Consider the situation in Fig. 2 where the current solution is some
linear function of y only, say u(x, y) =y. Although the solution is smooth the limiter will not
allow the full upwind value to be used at the midpoint of the edge ab as the term & - (U, — U)
will be zero. In an attempt to overcome this deficiency other similar limiters are defined by Lin
et al. for different triangulation cases in [11]. Lin et al. also proved their scheme satisfies the
local maximum principle for certain triangulations.

7. Numerical examples

The following viscous Burgers’ equation will be used to illustrate the theoretical results
obtained above

ou o (u? 9 [u?
—+—| =+ ===
or axl2 ] ayl2)?

(x,y,t)€[0,1] X [0, 1] X (0,1.25]

with an exact solution of

u(x, y, t)=(1+exp((x +y—1)/p)) .

The value of p is chosen to be 0.0001 so that the partial differential equation is convection-
dominated and the boundary and initial conditions are given by the exact solution. From the
exact solution it can be seen that the computed solution should lie in the range [0, 1]. At every
time step the computed solution is examined triangle by triangle and the maximum absolute
overshoot or undershoot outside the range [0, 1] is noted.

The solution was first computed using Mesh A shown in Fig. 3 but regularly subdivided to
contain 2048 triangular elements. The Riemann solver used was the Engquist—Osher solver for
the inviscid Burgers’ equation. Using the standard van Leer limiter the maximum under /over-

Pu  u
_— + JEE——
ax?  ay?)’

Mesh A Mesh B

Fig. 3. Meshes used in numerical experiments.
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shoot recorded was 0.0. This shows that the unmodified limiter can be used to provide
oscillation-free solutions in certain circumstances.

The computation was repeated but now using Mesh B shown in Fig. 3 regularly subdivided to
contain 2816 triangular elements. The maximum under/overshoot is now 7.3369¢-3 with the
van Leer limiter. No overshoot was observed with the new limiter or the van Albeda limiter on
either mesh.

The accuracy of the schemes on this problem above is more difficult to assess due to the
shock-like behaviour of the solution. In this case Mesh A is used with regular refinement. ONE
is the first-order method, VL is the van Leer limiter, MVL is the modified limiter and VA is
the van Albeda limiter.

The results in Table 1 show that on a shock problem for which many first-order elements are
used (i.e. a flat solution or a zero limiter), all the limiters give only first-order accuracy but that
the notionally second-order methods are more accurate by a factor of two. These results are
consistent with those obtained by Berzins [2] on regular quadrilateral meshes.

In the light of the above results the accuracy of the method on a problem without shock-like
features must be studied. Consider the solution of the linear conservation law

u,+u,+u,=0, (x,y,t)e[0,1] x][0, 1] x(0,0.75] (46)
with exact solution
u(x, y, t)y=sin(2wx —t) sin(2wy — t), (47)

which is used to specify the initial and boundary conditions. This equation was solved on Mesh
A in Fig. 3 using the first-order scheme, original scheme and modified scheme. The L1 error,
weighted by element areas, was evaluated at times 0.1 to 1.0 in steps of 0.1 and these then
averaged. The smallest mesh used contained 200 elements with a 0.1 mesh spacing and the
largest mesh used contained 18200 elements with a 0.0125 mesh spacing. The results of these

L1 Error against mesh spacing for different limiters

01k modified v.I.
A van albeda i

van leer

L1 Error

001 |

0.001 EE—— AL
0.001 0.01
mesh spacing, 1

Fig. 4. Log-log graph of error versus mesh spacing.
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Table 1

L1 error norms X 1000 for Burgers’ equation

Mesh Time ONE VL MVL VA

9%x9 0.26 0.81 0.69 0.69 0.69
0.69 4.58 2.80 2.89 2.90
1.30 5.45 2.85 2.88 3.22

27x27 0.26 0.48 0.40 0.41 0.41
0.69 1.70 0.86 0.87 0.97
1.30 1.83 1.13 1.16 1.17

81x81 0.26 0.21 0.17 0.18 0.17
0.69 0.66 0.39 0.39 0.43
1.30 0.60 0.31 0.32 0.33

experiments are plotted in a log-log graph shown in Fig. 4. The results show that the scheme
with the original limiter has a convergence rate of 1.80 and that with the new limiter has a
convergence rate of 1.75. The convergence rate with the van Albeda limiter is 1.76 (see Table
1).

8. Summary

This paper has shown that standard flux limiter schemes may need to be modified when used
with cell-centered finite volume schemes on irregular one-dimensional meshes and unstruc-
tured triangular meshes in two-space dimensions. A new modified form of the van Leer limiter
was introduced together with additional but straightforward conditions on the interpolants in
the case of triangular meshes. This combination was shown to ensure both theoretically and
experimentally that the new modified scheme of Ware and Berzins [6,20] for unstructured
meshes is positive and linearity-preserving for a model problem.
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