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SUMMARY.

The use of adaptive mesh spatial discretisation methods, coupled spatial and temporal
error control and domain decomposition methods make it possible to construct efficient
automatic methods for the numerical solution of time-dependent Navier Stokes problems.
This paper describes the unstructured triangular mesh spatial discretisation method
being used in a prototype package for compressible flows. The scheme is a cell-centred,
second-order finite volume scheme that uses a ten triangle stencil. Previous work has
concentrated on algorithms and error estimates for convection dominated problems. In
this paper the algorithm is extended to include a new treatment of the diffusion terms.
The prototype software uses an adaptive time error control and space remeshing strategy
is used to attempt to control the numerical error in the solution.

TRIANGULAR MESH SPATIAL DISCRETISATION METHOD.

Although finite element and finite volume schemes based on unstructured triangular
meshes have been used for many years, only recently have a number of high-order cell-
centred finite volume schemes been developed, [5, 11, 8] . This paper is concerned with
the Ware and Berzins [11, 2, 3] method. Although this method has been developed for
systems of equations, for ease of exposition, consider the class of scalar p.d.e.s:
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) are the flux functions in x and
y respectively and with appropriate boundary and initial conditions. The cell-centred
finite volume scheme described here uses triangular elements as the control volumes over
which the divergence theorem is applied. The solution values are deemed to be associated
with the centroids of the triangles. In Figure 1, for example, the solution at the centroid
of triangle i is Ui , the solutions at the centroids of the triangles surrounding triangle i
are Ul, Uj and Uk and the next level of centroid values used by the discretisation method
on the ith triangle are: Um, Un, Up, Uq, Ur and Us. The mesh point at which a solution
value, say Us, is defined is denoted by (xs, ys) . Integration of equation (1) on the ith
triangle, which has area Ai, and use of the divergence theorem gives:

Ai

∂Ui

∂t
= −

∮

Ci

(f.nx + g.ny)dS,

where Ci is the circumference of triangle i. The line integral along each edge is approx-
imated by using the midpoint quadrature rule. The numerical flux is evaluated at the
midpoint of the edge:
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where ∆xi,j = xj − xi , ∆yi,j = yj − yi. The fluxes fij and gij in the x and y directions
respectively are evaluated at the midpoint of the triangle edge separating the triangles
associated with Ui and Uj . The convective parts of these fluxes are evaluated by using
approximate Riemann solvers fRm and gRm respectively with the left solution value
being defined as that internal to triangle i and the right solution value being defined as
that external to triangle i:
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(3)
where U l

ij is the internal solution, with respect to triangle i, at the midpoint of the edge
between Ui and Uj and U r

ij is the external solution, with respect to triangle i, on edge j.
Note that U r

i,j = U l
j,i as a consequence of this notation. Standard approximate Riemann

solvers such as those of Osher and Roe are used to define the convective fluxes. The left
and right values for the Riemann solver are created using limited linear upwind values.
The internal and external values at cell interface of two triangular elements, U l

ij and U r
ij

in equation (3) are replaced with the limited linearly interpolated values defined by
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where UL
ij is the internal linear upwind value, UR

ij is the external linear upwind value, rl
ij

is the internal upwind bias ratio of gradients and rr
ij is the external upwind bias ratio of

gradients. The internal and external ratio of linear gradients are defined by
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and rr
ij =
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ij − Uj

UR
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. (5)

UC
ij is the linear centred value at the cell interface. The choice of limiter function Φ(.)

is left open at this point although it should be noted that a zero limiter gives a first-
order method. Equations (4) and (5) depend on the as yet undefined, interpolated and
extrapolated values: UL

ij , UR
ij and UC

ij .
The value UL

ij is constructed by using linear extrapolation based on the solution value Ui

and an intermediate solution value (again calculated by linear interpolation) Ulk which
lies on the line joining the centroids at which Ul and Uk are defined (see Figure 1) i.e.

UL
ij = Ui + dij,i

Ui − Ulk

di,lk

, (6)

where the term da,b denotes the positive distance between points a and b, so for example
dij,i denotes the positive distance between points ij and i, see Figure 1, as defined by

di,ij =
√

(xi − xij)2 + (yi − yij)2 , (7)

where (xij , yij) are the co-ordinates of Uij . The value UR
ij is defined in a similar way

using linear extrapolation based on the solution value Uj and an intermediate solution
value (itself calculated by linear interpolation) Urs which lies on the line joining the
centroids at which Ur and Us are defined, see Figure 1. In the case when the three
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Figure 1: Construction of Interpolants

centroid points are collinear it is not possible to define a linear interpolant and so the
immediate upwind centroid value will be used: internally Ui or externally Uj .
Assuming that all the centroid values are exact then the interpolation errors associated
with the linear interpolants defined above may be determined by standard Taylor’s series
analysis. which shows that both interpolation errors are second order in the mesh spacing
distances d∗∗, [3].
The centered value, UC

ij , is constructed from the six values: Ui, Uj , Uk, Ul, Us and
Ur by a series of one-dimensional linear interpolations. Three linear interpolations onto
the edge being considered are performed using opposing pairs of centroid values, see
Figure 1. Ulr, Uij and Uks are found using the pairs Ul and Ur, Ui and Uj and Uk and Us

respectively. If the midpoint of the edge lies between Uks and Uij then the centred value
is found by linear interpolation using these two values. Otherwise the values Ulr and Uij

are used to compute the centred value at the midpoint by using linear interpolation.

APPROXIMATION OF DIFFUSIVE FLUXES.

In order to compute the diffusive flux contributions at mid-points of edges it is necessary
to estimate the derivatives ∂u/∂x and ∂u/∂y at these points. Consider the mid-point
(xil, yil) which lies inside the triangle formed by the centroids i, l and k . Durlofsky



et. al. [5] construct first-order derivative approximations by differentiating the linear
interpolant defined by the solution values at these points. An alternative is to use the
six centroid values Ui, Ul, Uk, Um, Un and Uj to form a quadratic interpolant and then to
differentiate this. Hyman et. al. , [6], show that this is not possible for an arbitrary set
of points.
An alternative to this is to use the four points Ui, Ul, Uk, and Un to form a bilinear
interpolant and then to differentiate this. For ease of notation suppose that the edge
mid-point il is the origin and assume that all derivatives are evaluated there. Standard
Taylor’s series expansions then yield:
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+ ∆yli
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∂2u

∂x∂y
+ h.o.t. (8)

where ∆Uli = Ul − Ui , ∆xli = xl − xi and ∆xyli = xlxi − ylyi .

Similar equations for ∆Ulk and ∆Uin may be written using matrix notation as
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where Mlk
in =
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]

which is an invertible matrix. Applying the inverse of this matrix to equation (9) and
then substituting for ∂u/∂x and ∂u/∂y in equation (8) gives:
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An approximation to the required derivatives is then given by
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 + h.o.t. (12)

In order to avoid the case α = 0 it necessary to take care when choosing the local co-
ordinate system in which to calculate the bilinear approximation. The Durlofsky et. al.
approach is still used at the boundaries and gives a fallback position should α be zero.

PROPERTIES OF SPATIAL DISCRETIZATION METHOD.

Berzins and Ware [3] have considered whether or not the new scheme has the properties
of linearity preservation and positivity, as proposed by Struijs et. al., [9]. The definition
of positivity requires that every new value at a particular time can be written as a
convex combination of old values at the previous time step. Berzins and Ware considered
different flow paths through the triangle in Figure 1 and showed that three sufficient
conditions for positivity are:



1. For every upwind interpolant the centroid value nearest the edge at whose midpoint
the upwind value is being calculated is the maximum or minimum of the three values
used to form the interpolant.
2. The centred interpolant must be bounded by the centroid values on either side i.e.

UC
il = αUl + (1 − α)Ui , for 0 ≤ α ≤ 1. (13)

3. The limiter Φ(.) must be positive and Φ(S)/S ≤ 1 . This last condition is satisfied,
for example, by a modified van Leer limiter defined by

Φ(S) =
S + |S|

1 + v
where v = Max(1, |S|) . (14)

A linearity-preserving spatial discretization method is defined by [9], as one which pre-
serves the exact steady state solution whenever this is a linear function of the space
coordinates x and y, for any arbitrary triangulation of the domain. This is equivalent to
second order accuracy on regular meshes, see [9]. Berzins and Ware were able to show
that the method in its unlimited form is linearity preserving but that in some cases
condition 2 above may force linearity preservation to be violated.
The previous results on interpolation errors may be combined with standard results for
the effect of quadrature errors, see [7], to show how the errors at the mid-points of
edges accumulate in the truncation error. Consider the spatial truncation error in the
approximation of the Laplacian c

[

∂2u
∂x2 + ∂2u

∂y2

]

on the ith triangle, as denoted by TEi.

This is, after ignoring the second order quadrature error, see Jeng and Chen [7], a
combination of the derivative errors at the mid-points of the edges i.e.

TEi =
−c

Ai

[ (Eik)x∆y0,1 + (Eij)x∆y1,2 + (Eil)x∆y2,0 −
(Eik)y∆x0,1 − (Eij)y∆x1,2 − (Eil)y∆x2,0 ].

(15)

where the individual errors in the derivative approximations are defined such that (Eij)x

is the error in ∂u/∂x at the ikth midpoint for example. Assuming from the definitions
of the differentiation approximations that it is possible to extract a constant factor, say
dmin, depending on the minimum of the distances, dab, as defined in equation (7), from
each of the errors in this equation and assuming still further that the individual errors
all have the form

(Eik)x = dmin (eik)x and (Eik)y = dmin (eik)y,

the expression for the truncation error may be rewritten as:

TEi = −
c dmin

Ai

[ (eik)x∆y0,1 + (eij)x∆y1,2 + (eil)x∆y2,0 −
(eik)y∆x0,1 − (eij)y∆x1,2 − (eil)y∆x2,0 ].

(16)

It is now possible to define two linear functions on the ith triangle Ef(x, y) and Eg(x, y)
such that Ef(x, y) has values (eik)x, (eij)x and (eil)x at the midpoints ik, ij and il ,
Eg(x, y) has values (eik)y, (eij)y and (eil)y at the midpoints ik, ij and il . ¿From the
linearity of these functions and the divergence theorem it follows that

∂Ef

∂x
=

1

Ai

[(eik)x∆y0,1 + (eij)x∆y1,2 + (eil)x∆y2,0] (17)



and
∂Eg

∂y
= −

1
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[(eik)y∆x0,1 + (eij)y∆x1,2 + (eil)y∆x2,0]. (18)

Hence the truncation error (ignoring the quadrature error due to the use of the mid-point
rule) may be written as

TEi = −c dmin

[

∂Ef

∂x
+

∂Eg

∂y

]

. (19)

The error due to the use of the quadrature rule is derived by Jeng and Chen [7].

TIME INTEGRATION AND ERROR CONTROL.

The above spatial discretization scheme results in a system of differential equations,
which can be written as the initial value problem:

U̇ = FN ( t, U(t) ) , U(0) given , (20)

where the vector, U(t), is defined by U(t) = [U(x1, y1, t), U(x2, y2, t), ..., U(xN , yN , t) ]T .
The point xi, yi is the centre of the i th cell and Ui(t) is a numerical approximation to
u(xi, yi, t) . Numerical integration of equation (20) provides the approximation, V (t), to
the vector of exact p.d.e. solution values at the mesh points, u(t) . The global error in
the numerical solution can be expressed as the sum of the spatial discretization error,
e(t) = u(t) − U(t), and the global time error, g(t) = U(t) − V (t). That is,

E(t) = u(t) − V (t) = (u(t) − U(t)) + (U(t) − V (t))

= e(t) + g(t). (21)

Efficient time integration requires that the spatial and temporal are roughly the same
order of magnitude. The need for spatial error estimates unpolluted by temporal error
requires the spatial error to be the larger of the two errors.
The Theta method code, see [1] used here defines the numerical solution at tn+1 = tn+k,
where k is the time step size, as denoted by V (tn+1), by

V (tn+1) = V (tn) + (1 − θ)k V̇ (tn) + θ k F N(tn+1, V (tn+1)), θ = 0.55, (22)

in which V (tn) and V̇ (tn) are the numerical solution and its time derivative at the
previous time tn . Berzins and Ware [3] show that the method will preserve positivity
if a CFL-like condition is satisfied. Although such a condition is often used to choose a
stable timestep it may be imprecise as an accuracy control. In contrast when a standard
local error ln+1(tn+1) control i.e. || ln+1(tn+1) || < TOL is used it is difficult to
establish a relationship between the accuracy tolerance, TOL , and the global time
error.
An alternative approach is described by Berzins [1] who balances the spatial and tem-
poral errors by controling the local time error to be a fraction of the local growth in
the spatial discretization error. The local-in-time spatial error, ê(tn+1), for the timestep
from tn to tn+1 is defined as the spatial error at time tn+1 given the assumption that the
spatial error, e(tn) , at time tn is zero. A local error balancing approach is then:

|| ln+1(tn+1) || < ǫ || ê(tn+1) ||, 0 < ǫ < 1. (23)



The error ê(tn+1) is estimated by the difference between the computed solution and the
first-order solution which satisfies a modified o.d.e. system denoted by

v̇n+1 (t) = GN(t, vn+1(t)), (24)

where vn+1(tn) = V (tn) , v̇n+1(tn) = GN(t, V (tn)) and where GN(., .) is obtained simply
by setting the limiter function in the space discretisation to zero and by using the first
order space derivative approximations. The local-in-time space error is then given by

ê(tn+1) = V (tn+1) − vn+1(tn+1) (25)

and is computed by applying the θ method with one functional iteration to equation
(24). Equations (22) and (25) combined with the conditions on vn+1(tn) then give, [1],

ê(tn+1) = θ k [F N(tn+1, V (tn+1)) − GN(tn+1, V (tn+1))] +

(1 − θ) k [F N(tn, V (tn)) − GN(tn, V (tn))]. (26)

NUMERICAL EXAMPLES.

The properties of the diffusive approximation may be illustrated by two example prob-
lems with analytic solutions on (0, 1) × (0, 1). Problem A is a simple Poisson equation
with an analytic solution u(x, y) = 3ex+y(x − x2)(y − y2). Problem B is the system
of two p.d.e.s used by de Goede and Boonkamp [4] and is similar to the Navier Stokes
equations while still having an exact solution. The equations are modified to be in con-
servative form, a Reynolds number of 100 is used so that accuracy in the diffusive part
is important and integration halted at t = 2.5. The L1 norms obtained by discretization
on the unit square are given in Table 1. On regular meshes both the Durlofsky and the
bilinear approximation are second order accurate . The fixed meshes were varied so as
to be irregular and have between 136 and 8704 triangles.

Table 1: L1 Error Norms.
No. of Triangles

Method Prob. 136 544 2176 8704
Durlo. A 6.9617e-3 2.0171e-3 7.2810e-4 2.1478e-4
Bilin. A 6.5321e-3 1.7258e-3 5.5671e-4 1.5385e-4
Durlo. B 9.6889e-3 3.0749e-3 7.5211e-4 2.1395e-4
Bilin. B 9.5294e-3 2.7675e-3 6.8262e-4 1.8787e-4

CONCLUSIONS.

The improved accuracy of the new bilinear derivative on fixed meshes is demonstrated
by Table 1. Preliminary results suggest that this improvement carries across to adaptive
unstructured meshes.



The prototype adaptive software based on this discretisation method is being used to
solve a variety of problems using fully automatic mesh generation and mesh adaptation
software. The adaptivity tracks features in the solution automatically whilst using large
elements away from these features to increase the efficiency. The spatial error estimate is
used successfully in these examples to control the error through mesh adaptivity. Time
integration is performed in such a way that the spatial error dominates, see [1]. The
selection of appropriate times to adapt the spatial mesh is made by using a combination
of estimated errors and predicted future errors, [2] . The prototype package also can be
used on both shared and distributed memory computers as the flux calculation used in
the residual is designed to operate in parallel. The mapping of unstructured meshes onto
distributed memory processors is achieved by using graph-theoretic techniques, [10]; this
ensures good speed-ups on both shared and distributed memory parallel computers.
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